Journal of Robotics Spectrum


Autonomous Robotic Capabilities in Space Exploration: From Mars to Beyond



Journal of Robotics Spectrum

Received On : 10 December 2023

Revised On : 22 January 2024

Accepted On : 15 February 2024

Published On : 26 February 2024

Volume 02, 2024

Pages : 034-045


Abstract


The historical timeline of automated systems functioning in space settings spans around 75 years, whereas the existence of practical automated equipment to facilitate astronomical observation dates back over 200 years. Over time, physical servomechanisms have seen advancements in both hardware and software capabilities, enabling their successful operation on the Martian surface and even during journeys to the heliopause, which marks the outer boundary of interstellar space. Contemporary spaceflight operations exemplify a growing capacity to provide decentralized coordination across several automated systems, intricate communication networks, and diverse communities of scientists and engineers. This article examines the impact of autonomous robotic functionalities on space explorations, specifically emphasizing the investigation of Mars' surface. The article examines the use of robotic systems in past missions, specifically focusing on their application in activities like as the identification and analysis of water ice deposits, study of geological features, and the deployment of sensor devices. The article further emphasizes the achievements of autonomous operations in missions conducted in Earth's orbit, as well as the progress made in developing autonomy for operations in close vicinity to minor celestial bodies. This research explores the Chang'e 4 lunar mission and the OSIRIS-REx mission as instances of autonomous exploration and sample gathering on minor celestial bodies. The research also encompasses the exploration of prospective autonomy in forthcoming expeditions to oceanic realms and distant locales.


Keywords


Space Robots, Robotic Systems, Autonomous Robotic Capabilities, Attitude Determination, Space Missions, Control System.


  1. H. Hakima and M. R. Emami, “Assessment of active methods for removal of LEO debris,” Acta Astronautica, vol. 144, pp. 225–243, Mar. 2018, doi: 10.1016/j.actaastro.2017.12.036.
  2. C. Hajiyev and M. Q. S. Bahar, “Attitude determination and control system design of the ITU-UUBF LEO1 satellite,” Acta Astronautica, vol. 52, no. 2–6, pp. 493–499, Jan. 2003, doi: 10.1016/s0094-5765(02)00192-3.
  3. J. D. Boles, J. J. Piel, and D. J. Perreault, “Enumeration and analysis of DC–DC converter implementations based on piezoelectric resonators,” IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 129–145, Jan. 2021, doi: 10.1109/tpel.2020.3004147.
  4. F. Zhou et al., “Simulations of Mars rover traverses,” Journal of Field Robotics, vol. 31, no. 1, pp. 141–160, Sep. 2013, doi: 10.1002/rob.21483.
  5. C. M. Caudill et al., “CanMars mission Science Team operational results: Implications for operations and the sample selection process for Mars Sample Return (MSR),” Planetary and Space Science, vol. 172, pp. 43–56, Aug. 2019, doi: 10.1016/j.pss.2019.04.004.
  6. D. E. Bernard et al., “Design of the Remote Agent experiment for spacecraft autonomy,” 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339), Nov. 2002, doi: 10.1109/aero.1998.687914.
  7. W. Blume, “Deep Impact Mission design,” Space Science Reviews, vol. 117, no. 1–2, pp. 23–42, Mar. 2005, doi: 10.1007/s11214-005-3386-4.
  8. T. Doggett et al., “Autonomous detection of cryospheric change with hyperion on-board Earth Observing-1,” Remote Sensing of Environment, vol. 101, no. 4, pp. 447–462, Apr. 2006, doi: 10.1016/j.rse.2005.11.014.
  9. B. D. Smith, K. Rajan, and N. Muscettola, “Knowledge acquisition for the onboard planner of an autonomous spacecraft,” in Lecture Notes in Computer Science, 1997, pp. 253–268. doi: 10.1007/bfb0026790.
  10. S. Ramaswamy, “Efficient indexing for constraint and temporal databases,” in Lecture Notes in Computer Science, 1996, pp. 419–431. doi: 10.1007/3-540-62222-5_61.
  11. M. Mori, H. Kagawa, and Y. Saito, “Summary of studies on space solar power systems of Japan Aerospace Exploration Agency (JAXA),” Acta Astronautica, vol. 59, no. 1–5, pp. 132–138, Jul. 2006, doi: 10.1016/j.actaastro.2006.02.033.
  12. A. J. D’Alfonso, B. Freitag, D. O. Klenov, and L. J. Allen, “Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy,” Physical Review B, vol. 81, no. 10, Mar. 2010, doi: 10.1103/physrevb.81.100101.
  13. J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-Ray microanalysis. 2018. doi: 10.1007/978-1-4939-6676-9.
  14. E. Betzig, J. K. Trautman, T. D. Harris, J. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: Optical microscopy on a nanometric scale,” Science, vol. 251, no. 5000, pp. 1468–1470, Mar. 1991, doi: 10.1126/science.251.5000.1468.
  15. S. Watanabe, Y. Tsuda, M. Yoshikawa, S. Tanaka, T. Saiki, and S. Nakazawa, “Hayabusa2 Mission Overview,” Space Science Reviews, vol. 208, no. 1–4, pp. 3–16, Jun. 2017, doi: 10.1007/s11214-017-0377-1.
  16. T. Matsumoto, S. Hasegawa, S. Nakao, M. Sakai, and H. Yurimoto, “Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa,” Icarus, vol. 303, pp. 22–33, Mar. 2018, doi: 10.1016/j.icarus.2017.12.017.
  17. K. Keil, “Thermal alteration of asteroids: evidence from meteorites,” Planetary and Space Science, vol. 48, no. 10, pp. 887–903, Aug. 2000, doi: 10.1016/s0032-0633(00)00054-4.
  18. A. Cincinelli, F. Pieri, Y. Zhang, M. Seed, and K. C. Jones, “Compound Specific Isotope Analysis (CSIA) for chlorine and bromine: A review of techniques and applications to elucidate environmental sources and processes,” Environmental Pollution, vol. 169, pp. 112–127, Oct. 2012, doi: 10.1016/j.envpol.2012.05.006.
  19. K. Wada et al., “Asteroid Ryugu before the Hayabusa2 encounter,” Progress in Earth and Planetary Science, vol. 5, no. 1, Dec. 2018, doi: 10.1186/s40645-018-0237-y.
  20. A. Maturilli, J. Helbert, and M. D’Amore, “The Planetary Emissivity Laboratory (PEL) at DLR, Berlin,” 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Jun. 2010, doi: 10.1109/whispers.2010.5594936.
  21. G. Branduardi‐Raymont et al., “AXIOM: advanced X-ray imaging of the magnetosphere,” Experimental Astronomy, vol. 33, no. 2–3, pp. 403–443, Jul. 2011, doi: 10.1007/s10686-011-9239-0.
  22. K. Naveen Durai, R. Subha, and A. Haldorai, “Hybrid Invasive Weed Improved Grasshopper Optimization Algorithm for Cloud Load Balancing,” Intelligent Automation & Soft Computing, vol. 34, no. 1, pp. 467–483, 2022, doi: 10.32604/iasc.2022.026020.
  23. Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, and S. Nakazawa, “System design of the Hayabusa 2—Asteroid sample return mission to 1999 JU3,” Acta Astronautica, vol. 91, pp. 356–362, Oct. 2013, doi: 10.1016/j.actaastro.2013.06.028.
  24. J. Bibring et al., “The Rosetta Lander (‘Philae’) investigations,” Space Science Reviews, vol. 128, no. 1–4, pp. 205–220, Feb. 2007, doi: 10.1007/s11214-006-9138-2.
  25. Д. С. Лауретта et al., “OSIRIS-REx: Sample Return from Asteroid (101955) Bennu,” Space Science Reviews, vol. 212, no. 1–2, pp. 925–984, Aug. 2017, doi: 10.1007/s11214-017-0405-1.
  26. T. Xu et al., “Scientific data products and the data pre-processing subsystem of the Chang’e-3 mission,” Research in Astronomy and Astrophysics, vol. 14, no. 12, pp. 1682–1694, Dec. 2014, doi: 10.1088/1674-4527/14/12/016.
  27. S. Gou et al., “Lunar deep materials observed by Chang’e-4 rover,” Earth and Planetary Science Letters, vol. 528, p. 115829, Dec. 2019, doi: 10.1016/j.epsl.2019.115829.
  28. X. Zhu et al., “Ground experiments and performance evaluation of the Low-Frequency Radio Spectrometer onboard the lander of Chang’e-4 mission,” Research in Astronomy and Astrophysics, vol. 21, no. 5, p. 116, Jun. 2021, doi: 10.1088/1674-4527/21/5/116.
  29. J. Liu, W. Yan, C. Li, T. Xu, X. Ren, and L. Mu, “Reconstructing the landing trajectory of the CE-3 lunar probe by using images from the landing camera,” Research in Astronomy and Astrophysics, vol. 14, no. 12, pp. 1530–1542, Dec. 2014, doi: 10.1088/1674-4527/14/12/003.
  30. J. Haruyama et al., “Long-Lived volcanism on the lunar farside revealed by SELENE Terrain Camera,” Science, vol. 323, no. 5916, pp. 905–908, Feb. 2009, doi: 10.1126/science.1163382.
  31. R. F. Wimmer‐Schweingruber et al., “The Lunar Lander Neutron and Dosimetry (LND) experiment on Chang’E 4,” Space Science Reviews, vol. 216, no. 6, Aug. 2020, doi: 10.1007/s11214-020-00725-3.
  32. M. Wieser et al., “The Advanced Small Analyzer for Neutrals (ASAN) on the Chang’E-4 Rover Yutu-2,” Space Science Reviews, vol. 216, no. 4, Jun. 2020, doi: 10.1007/s11214-020-00691-w.
  33. J. F. Bell et al., “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” Journal of Geophysical Research, vol. 108, no. E12, Nov. 2003, doi: 10.1029/2003je002070.
  34. G. Fang et al., “Lunar Penetrating Radar onboard the Chang’e-3 mission,” Research in Astronomy and Astrophysics, vol. 14, no. 12, pp. 1607–1622, Dec. 2014, doi: 10.1088/1674-4527/14/12/009.
  35. Z. He et al., “Operating principles and detection characteristics of the Visible and Near-Infrared Imaging Spectrometer in the Chang’e-3,” Research in Astronomy and Astrophysics, vol. 14, no. 12, pp. 1567–1577, Dec. 2014, doi: 10.1088/1674-4527/14/12/006.
  36. L. Chen, P. Jian, H. Falcke, M. K. Wolt, and N. Team, “The Netherlands-China Low Frequency Explorer (NCLE),” Bulletin of the American Astronomical Society, vol. 52, no. 3, pp. 1–2, Jun. 2020, [Online]. Available: https://baas.aas.org/pub/aas236-102p03-chen
  37. M. Bentum et al., “A roadmap towards a space-based radio telescope for ultra-low frequency radio astronomy,” Advances in Space Research, vol. 65, no. 2, pp. 856–867, Jan. 2020, doi: 10.1016/j.asr.2019.09.007.
  38. K. Di et al., “Geospatial technologies for Chang’e-3 and Chang’e-4 lunar rover missions,” Geo-spatial Information Science, vol. 23, no. 1, pp. 87–97, Jan. 2020, doi: 10.1080/10095020.2020.1718002.
  39. T. Kubota, T. Hashimoto, J. Kawaguchi, M. Uo, and K. Shirakawa, “Guidance and navigation of Hayabusa spacecraft for asteroid exploration and sample return mission,” 2006 SICE-ICASE International Joint Conference, Jan. 2006, doi: 10.1109/sice.2006.314761.
  40. K. M. Getzandanner et al., “Small Body Proximity Operations & TAG: Navigation Experiences & Lessons Learned from the OSIRIS-REx Mission,” AIAA SCITECH 2022 Forum, Jan. 2022, doi: 10.2514/6.2022-2387.
  41. G. S, D. T, and A. Haldorai, “A Supervised Machine Learning Model for Tool Condition Monitoring in Smart Manufacturing,” Defence Science Journal, vol. 72, no. 5, pp. 712–720, Nov. 2022, doi: 10.14429/dsj.72.17533.
  42. A. H and A. R, “Artificial Intelligence and Machine Learning for Enterprise Management,” 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), Nov. 2019, doi: 10.1109/icssit46314.2019.8987964.
  43. M. A. Barucci et al., “OSIRIS-REx spectral analysis of (101955) Bennu by multivariate statistics,” Astronomy and Astrophysics, vol. 637, p. L4, May 2020, doi: 10.1051/0004-6361/202038144.
  44. P. R. Christensen et al., “The OSIRIS-REx Thermal Emission Spectrometer (OTES) instrument,” Space Science Reviews, vol. 214, no. 5, Jul. 2018, doi: 10.1007/s11214-018-0513-6.
  45. D. J. Scheeres, “Proximity Operations about Apophis through its 2029 Earth Flyby,” arXiv (Cornell University), Nov. 2022, doi: 10.48550/arxiv.2211.10903.
  46. D. R. Doelling et al., “Inter-Calibration of the OSIRIS-REx NavCams with Earth-Viewing Imagers,” Remote Sensing, vol. 11, no. 22, p. 2717, Nov. 2019, doi: 10.3390/rs11222717.
  47. J. P. Grotzinger et al., “Mars Science Laboratory Mission and Science Investigation,” Space Science Reviews, vol. 170, no. 1–4, pp. 5–56, Jul. 2012, doi: 10.1007/s11214-012-9892-2.
  48. J. Rose, A. E. Gamal, and A. Sangiovanni-Vincentelli, “Architecture of field-programmable gate arrays,” Proceedings of the IEEE, vol. 81, no. 7, pp. 1013–1029, Jul. 1993, doi: 10.1109/5.231340.
  49. A. Boetius, A. M. Anesio, J. W. Deming, J. A. Mikucki, and J. Z. Rapp, “Microbial ecology of the cryosphere: sea ice and glacial habitats,” Nature Reviews Microbiology, vol. 13, no. 11, pp. 677–690, Sep. 2015, doi: 10.1038/nrmicro3522.
  50. T. Bartels-Rausch et al., “Ice structures, patterns, and processes: A view across the icefields,” Reviews of Modern Physics, vol. 84, no. 2, pp. 885–944, May 2012, doi: 10.1103/revmodphys.84.885.
  51. J. Holbrook et al., “Enabling Urban Air Mobility: Human-Autonomy Teaming Research challenges and recommendations,” AIAA AVIATION 2020 FORUM, Jun. 2020, doi: 10.2514/6.2020-3250.
  52. R. P. Binzel, A. S. Rivkin, J. Stuart, A. W. Harris, S. J. Bus, and T. H. Burbine, “Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes,” Icarus, vol. 170, no. 2, pp. 259–294, Aug. 2004, doi: 10.1016/j.icarus.2004.04.004.
  53. J. A. Fernández, “The formation of the oort cloud and the primitive galactic environment,” Icarus, vol. 129, no. 1, pp. 106–119, Sep. 1997, doi: 10.1006/icar.1997.5754.

Acknowledgements


The authors would like to thank to the reviewers for nice comments on the manuscript.


Funding


No funding was received to assist with the preparation of this manuscript.


Ethics declarations


Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.


Availability of data and materials


No data available for above study.


Author information


Contributions

All authors have equal contribution in the paper and all authors have read and agreed to the published version of the manuscript.


Corresponding author


Rights and permissions


Open Access This article is licensed under a Creative Commons Attribution NoDerivs is a more restrictive license. It allows you to redistribute the material commercially or non-commercially but the user cannot make any changes whatsoever to the original, i.e. no derivatives of the original work. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/4.0/


Cite this article


Mariano Rajoy Lorca, “Autonomous Robotic Capabilities in Space Exploration: From Mars to Beyond”, Journal of Robotics Spectrum, vol.2, pp. 034-045, 2024. doi: 10.53759/9852/JRS202402004.


Copyright


© 2024 Mariano Rajoy Lorca. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.