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Abstract – Vehicular Ad Hoc Networks (VANETs) play a critical role in enabling real-time vehicle-to-vehicle (V2V) 

communication for intelligent transportation systems, supporting applications such as traffic management, navigation, and 

road safety. However, VANETs face significant challenges due to dynamic topology, high mobility, and varying traffic 

densities, which hinder reliable, energy-efficient, and QoS-aware routing. To address these issues, this paper proposes a 

novel hybrid routing framework based on the Ọdịgbo Metaheuristic Optimization Algorithm (OMOA). The proposed 

protocol integrates metaheuristic optimization, machine learning-based route scoring, and probabilistic filtering to enhance 

routing efficiency and reliability. Specifically, the model combines a Modified Extreme Learning Algorithm (M-ELA) with 

a Random Forest classifier to enable intelligent route prediction and prioritization. A Bloom Filter is employed to suppress 

redundant transmissions and improve communication efficiency. OMOA dynamically fine-tunes routing parameters by 

iteratively refining a population of candidate cluster head (CH) configurations using directional learning and adaptive 

exploration. The optimization process is guided by a multi-objective fitness function that considers residual energy, distance 

to sink, intra-cluster distance, and node connectivity, ensuring both optimal CH and route selection. The novelty of this 

work lies in its unified approach to both CH and route selection under a single optimization framework, significantly 

improving adaptability in highly dynamic VANET environments. Extensive simulations conducted under diverse mobility 

and traffic conditions demonstrate that the proposed protocol achieves higher packet delivery ratio, reduced end-to-end 

delay, balanced energy consumption, and prolonged network lifetime compared to traditional protocols. These results 

validate the proposed model as an effective and scalable solution for energy-efficient, QoS-compliant routing in next-

generation VANET deployments. 

 

Keywords – Vehicular Ad Hoc Networks, Ọdịgbo Metaheuristic Optimization Algorithm, Random Forest, Modified 

Extreme Learning Algorithm and Transmission Delays. 

 

I. INTRODUCTION 

Because it is composed entirely of vehicles, VANET is an example of a network not require any physical infrastructure.  

For vehicles to communicate with each other, no tangible medium is needed.  Because of the hop-to-hop communication 

property, the network can be managed without a centralised controlling authority [1].  Additional hardware devices such 

as switches or hubs are not required.  The VANETs network cannot function without RSUs and AUs. The exponential 

growth of VANETs has revolutionized intelligent transportation systems by enabling seamless vehicle-to-vehicle (V2V) 

and vehicle-to-infrastructure (V2I) communication. These networks play a pivotal role in supporting real-time data 

exchange for road safety, traffic management, infotainment services, and autonomous vehicle coordination [2]. However, 

due to the dynamic topology, high mobility, limited energy resources, and varying traffic densities, routing in VANETs 

remains a challenging task [3]. 

Each node in a VANET decides for itself whether or not to exchange messages.  Because the node itself acts as a switch, 

it is easy to exchange information from one hop to another.  Due to these features, VANETs are considered self-organising 

networks.  Using a VANET network is a breeze; it tells users about traffic conditions (heavy or light) [4], where accidents 

are likely to occur, where the closest malls and food junctions are, plays music for drivers, and much more.  All of these 

amenities contribute to the traveller’s comfort.  Among the many varieties of wireless multi-hop networks [5], VANETs 

stand out [.  Rapid changes to the network's topology are required by VANETs' mobile nodes.  These days, most cars have 
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computers and wireless communication devices built right in.  One promising technology that could help manage the 

increasing number of vehicles is VANET [6 and 7]. Fig 1 shows VANET Scenarios with Communication Category. 

 

 
Fig 1. VANET Scenarios with Communication Category. 

 

VANETs enable a wide range of applications, including but not limited to: safety of the user, blind crossing, real-time 

traffic condition monitoring, dynamic route scheduling, and many more [8].  The two primary types of VANET applications 

are safety applications and comfort applications.  Virtual area network (VANET) devices collect comprehensive traffic data 

using GPS systems [9].  When it comes to chaotic roads and heavy traffic, VANET safety applications are what you need 

to keep yourself and others safe.  VANET safety apps do a lot to make traffic flow better, including alerting users when it's 

unsafe to change lanes and streaming urgent videos [10 and 11].  It is necessary to gather traffic data from OBUs in order 

to implement the safety applications.  Additionally, RSUs disseminate the processed data messages to all infrastructure 

nodes and vehicle nodes located at a distance.  Typically, V2I and/or V2V communications standards are utilised by safety 

applications [12]. 

 The efficient, engaging, self-explanatory, and secure transportation system relies on VANET, among other critical 

technologies.  Whether commuting to or from work, going grocery shopping, taking a vacation, etc., people spend a lot of 

time in their cars.  Popular, low-cost smart vehicle models based on VANETs aim to improve road safety, cut down on 

travel time, and lessen environmental pollution. 

While cluster head (CH) selection is a known concept, the novelty in this paper lies in the use of the newly proposed 

OMOA for intelligent and energy-aware CH selection in VANETs. Unlike traditional optimizers, OMOA uses direction-

adaptive exploration and multi-objective fitness evaluation tailored for high-mobility networks. The integration of Bloom 

Filter for transmission suppression and M-ELA with Random Forest for route scoring further enhances routing precision 

and reliability. This hybrid framework delivers significant improvements in network lifetime, delivery ratio, and QoS under 

dynamic VANET conditions. In our manuscript, the motivation is emphasized through the growing demand for real-time 

vehicular communication in intelligent transportation systems and the limitations of existing protocols such as LEACH, 

PSO-LEACH, GWO, and ACO in balancing energy efficiency with QoS metrics. As detailed in the Introduction (pp. 2–4) 

and Problem Formulation (Section 2.1), current VANET routing schemes often compromise between energy consumption 

and reliable delivery, leading to premature node deaths, higher packet losses, and increased latency. By proposing the 

Ọdịgbo Metaheuristic Optimization Algorithm (OMOA) integrated with M-ELA, Random Forest classifiers, and Bloom 

filters, our approach simultaneously addresses energy balance, packet delivery ratio, and end-to-end delay.The key 

objectives of this study are centred around enhancing the performance and efficiency of routing protocols in VANETs. 

• Specifically, the research aims to increase the packet delivery ratio, ensuring that a higher proportion of data packets 

successfully reach their intended destination. 

• It also seeks to improve the reliability of routing protocols, enabling stable communication even under dynamic and 

challenging network conditions.  
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• Another core objective is to reduce delivery delay time besides minimize the number of packet retransmissions, 

thereby improving real-time communication efficiency.  

• Furthermore, proposed   system is designed to optimize energy efficiency and ensure Quality of Service (QoS) by 

reducing unnecessary transmissions and balancing network load using OMOA.  

• Finally, the study intends to evaluate performance of the developed routing protocol under varying network loads, 

traffic intensities, besides mobility models, ensuring scalability besides robustness in real-world VANET scenarios. 

 

Paper Organization  

The remainder of this paper is organized as follows: Section 1 presents the introduction, of VANET and Section 2 provides 

a detailed literature survey that reviews existing routing in VANET environments and Section 3 outlines the system model, 

and Section 4 describes the proposed hybrid routing protocol, which integrates Ọdịgbo Metaheuristic Optimization 

Algorithm (OMOA), Modified Extreme Learning Machine (M-ELA), Random Forest classifier, and Bloom filter and 

Section 6 details the simulation setup and metrics used for performance evaluation Section 7 discusses the experimental 

results, and Finally, Section 8 concludes the paper and suggests directions for future research. 

 

II. LITERATURE SURVEY 

Sheikh et al. [13] provided a comprehensive analysis of VANET, which included a discussion of its architecture, standards, 

features, communication methods, and security services.   In addition, continued to discuss various attacks that are common 

in background of VANETs, as well as most recent methods that are used in process of providing security services for 

VANETs. After that, a comprehensive investigation into authentication procedures that were designed to safeguard vehicle 

networks against dissemination of false information and presence of malicious nodes messages was carried out. A 

significant gap in existing survey literature was filled by survey, and it provided a comprehensive summary of most recent 

developments in research. "The" author conducted an investigation into numerous security threats that are present in 

VANETs and considered implementation of appropriate defences to guarantee secure communication. 

  Balu et al. [14] conducted an in-depth analysis of architecture of VANET, as well as a number of security techniques 

that were developed specifically for these networks.   This particular in body of research that has been done, concept of 

targeted security services has been extensively researched, with an emphasis placed on advantages of proposed approach.   

An in-depth comparison analysis was performed on various security flaws and solutions that were developed to address 

them. To sum everything up, there were a number of different perspectives on subject of VANET security that were 

discussed, which may have encouraged additional academic research in this field. 

  Bhagyavathi and Saritha [15] presented a novel multipath routing algorithm for Enhanced Velocity, Energy, and 

Bandwidth-based Multipath Network (VANET) Protocol for Routing (EVMRP). This algorithm was developed for purpose 

of routing. Optimisation of routing process in VANETs was achieved by taking into account variables such as amount of 

available bandwidth, amount of energy that was still available, and relative speed.   In order to enhance performance of 

system and reduce amount of packets that are lost, a congestion window   Size was restricted due to capacity of connection.   

In order to replicate process in question, an environment that had a higher level of realism was used.   It was demonstrated 

by anticipated results that recommended method, EVMRP, was successful in defeating current Comparative analysis of 

Ad-hoc On-demand Multipath Distance Vector (AOMDV) system examination. 

  Analysis for urban VANETs based on Geographical Location (LCGL) was presented by Zeng et al. [16]. Link 

Connectivity is a new routing technique that was presented.   most important objective of LCGL was to find a solution to 

typical routing problems that were encountered in metropolitan VANET locations.   Through utilisation of an electronic 

city map, LCGL system was able to effectively manage both geographical positioning information of nodes as well as link 

connections.   A selection procedure was utilised by LCGL algorithm, which resulted in identification of shortest connected 

path for packet forwarding. Displayed was evaluation of connectivity of links as well as length of associated path.   Through 

results of simulation, it was demonstrated that LCGL provided communication that was reliable and consistent from 

beginning to end. When compared to traditional routing algorithms, which are frequently utilised in environments of 

metropolitan VANETs, it was discovered that LCGL algorithm performs significantly better.   rate at which packets are 

delivered and average number of hops that are required to successfully send data are primary indicators of this superiority.   

In addition to this, LCGL demonstrated an increased capacity for data transfer while simultaneously reducing jitter and 

latency. 

  Khan and colleagues [17] presented an innovative approach to implementation of internet of energy within framework 

of bus-based VANET architecture. Algorithm that was developed by authors utilised a street-centric routing strategy in 

order to address challenges that were associated with selection of relay buses and optimisation of traffic routes.   

implementation of a multipath routing strategy that takes into account probabilities of street and path regularity was primary 

objective of this study. Through utilisation of multipath routing techniques, it was observed that performance was enhanced 

in terms of packet delivery ratio (PDR) and amount of time required for data to travel from its point of origin to its ultimate 

destination (end-to-end delay). Implementation of a one-of-a-kind method for selecting relay buses that is based on 

clustering and also makes use of ACO was another suggestion that was made in order to enhance procedure for packet 

forwarding.   primary objective of development of relay bus was to enhance quality of packets that were being transferred 

to subsequent forwarding relay. Based on findings of this investigation, it was discovered that utilisation of clustering in 
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conjunction with ACO method results in enhancements to selection process for relay buses. Notable improvements were 

made to system.   through reduction in latency from beginning to end, decrease in computing costs, and elimination of 

beacon signals that are not necessary. 

 

Problem Formulation  

Existing research has extensively explored VANET challenges from multiple angles. It focused primarily on security 

architectures and threat mitigation, offering a foundation for secure communication but lacking in energy-aware, adaptive 

routing strategies. proposed EVMRP to enhance routing using energy and speed parameters, but it lacked intelligent 

optimization and suffered from packet loss in dynamic environments. LCGL improved geographic link connectivity, yet 

its performance degraded in high-mobility or obstacle-dense zones due to static map reliance. An incorporated ACO and 

clustering in bus-based VANETs for multipath routing, but their approach incurred high complexity and latency due to 

dependency on relay selection and route probability calculations. In contrast, our proposed model introduces a OMOA that 

dynamically selects energy-efficient cluster heads and optimal routes based on real-time fitness functions. Combined with 

a Bloom Filter, M-ELA, and RF classifier, our model addresses mobility, energy balance, and QoS simultaneously 

achieving superior delivery ratio, lower end-to-end delay, and minimal energy imbalance under dynamic traffic and 

topology conditions. 

III.  NETWORK MODEL 

Sink Node Placement 

A static sink node (base station) is positioned at the center or edge of the deployment region to collect aggregated data 

from cluster heads (CHs). It has unlimited energy and higher computational capacity. 

 

Initial Energy 

All sensor nodes are initialized with equal energy (E₀), and energy consumption follows the first-order radio model, 

considering both transmission and reception costs. 

 

Mobility Model 

Vehicles follow a Random Waypoint Mobility Model or Gauss-Markov model, reflecting real-world vehicular movement 

patterns. 

 

Communication Assumptions 

Nodes use single-hop or multi-hop communication based on their distance to the CH or sink. The radio communication 

range is fixed for all nodes (e.g., 100 m). 

In our routing framework, after optimal cluster heads (CHs) are identified through OMOA and candidate paths are 

scored by M-ELA and Random Forest, the Bloom Filter is applied to eliminate repeated or redundant packets before 

transmission. This ensures that only unique and relevant packets are propagated through the network. By doing so, the 

system minimizes unnecessary retransmissions, conserves node energy, and improves overall throughput. 

Packet loss may occur due to mobility or weak signal, and retransmission is handled with minimal delay. The sensor 

nodes are homogeneous in terms of capabilities but heterogeneous in terms of residual energy due to uneven workload over 

time. Let the key notations be defined as in Table 1. 

 

Table 1. Key Notation of the Proposed Model 

Symbol Description 

N Total number of sensor nodes 

𝐸𝑖(𝑡) Residual energy of node 𝑖 at time 𝑡 

𝐸0 Initial energy of each node 

R Transmission range of nodes 

𝐵𝑆(𝑥𝑏𝑠, 𝑦𝑏𝑠) Coordinates of Base Station 

𝐿 × 𝐿 Network area 

𝑆𝑖(𝑥𝑖 , 𝑦𝑖) Coordinates of node 𝑖 
K Optimal number of clusters 

𝑑ij Euclidean distance between nodes 𝑖 and 𝑗 

𝐸elec Energy per bit for electronics (transmit/receive) 

𝜖𝑓𝑠, 𝜖𝑚𝑝 Amplifier energy for free space and multipath models 

 

Euclidean Distance Computation 

For energy and routing calculations, Euclidean distance between any two nodes 𝑖 and 𝑗 is computed as: 

 

 𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
 (1) 
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This function is fundamental in CH selection based on distance to BS or centroid and Routing decisions where shortest 

or energy-efficient paths are chosen. 

Energy Dissipation Model 

The energy model used is the First Order Radio Model, widely accepted in WSN literature. The energy spent by a node to 

transmit a 𝑙-bit message over a distance 𝑑 is modeled as: 

 

 𝐸𝑡𝑥(𝑙, 𝑑) = {
𝑙𝐸𝑒𝑙𝑒𝑐 + 𝑙𝜖𝑓𝑠𝑑

2,     𝑑 < 𝑑0

𝑙𝐸𝑒𝑙𝑒𝑐 +  𝑙𝜖𝑚𝑝
𝑑4   𝑑 ≥ 𝑑0

  (2) 

Where, 𝐸𝑒𝑙𝑒𝑐: Energy consumption per bit for the transmitter and receiver circuitry, 𝜖𝑓𝑠: Free space energy coefficient, 

𝜖𝑚𝑝: Multipath fading energy coefficient and 𝑑0 = √
𝜖𝑓𝑠

𝜖𝑚𝑝
: Threshold distance between free space and multipath models. 

The novelty of OMOA lies in its directional exploration and adaptive mutation strategy, which distinguishes it from 

traditional metaheuristics such as PSO, ACO, or GWO. While earlier algorithms either overemphasize exploration (leading 

to slow convergence) or exploitation (risking local optima), OMOA balances both phases by adaptively adjusting search 

directions based on residual energy distribution, connectivity, and cluster compactness. Each candidate solution represents 

a cluster head (CH) configuration, and the algorithm iteratively refines these solutions through its multi-objective fitness 

function (Equation 5), which considers residual energy, intra-cluster distance, connectivity, and distance to the sink.Energy 

spent for receiving is: 

 𝐸𝑟𝑥(𝑙) = 𝑙. 𝐸𝑒𝑙𝑒𝑐  (3) 

 

 𝑘𝑜𝑝𝑡 = √
𝑁

2𝜋
.

√𝜖𝑓𝑠

√𝜖𝑚𝑝
.

𝐿

𝑑𝑡𝑜𝐵𝑆
2   (4) 

Where, 𝑑𝑡𝑜𝐵𝑆
2  Average distance from CHs to the BS. This formula balances intra-cluster and inter-cluster energy usage, 

forming the basis of our energy-aware clustering framework. 

 

IV. PROPOSED METHODOLOGY 

In Fig 2 represent that the proposed   system introduces an intelligent and energy-efficient routing protocol tailored for 

VANETs, which integrates machine learning and bio-inspired optimization to address challenges of high mobility, dynamic 

topology, and energy constraints. architecture combines a M-ELA with a Random Forest classifier for accurate path 

selection and classification of stable links. To further refine routing performance under dynamic network conditions, 

OMOA is applied to adjust routing parameters in real time. A proposed    Optimization Module, inspired by flower 

pollination process, is utilized for CH selection based on multiple criteria, such as residual energy, node connectivity, and 

proximity to Road Side Units (RSUs). Additionally, a Bloom Filter is embedded to filter redundant transmissions and 

enhance communication efficiency. system is evaluated through extensive simulations under diverse traffic loads and 

mobility models, demonstrating superior performance in terms of PDR, energy consumption, delay, besides network 

stability compared to existing protocols as LEACH, PSO -LEACH, GWO, besides ACO. 

 

 
Fig 2. Working Flow of Route Selection in Proposed Model Diagram. 
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CH Selection Criteria 

Rather than random or probabilistic CH selection model utilizes proposed    optimization to select CHs based on: 

• Residual energy 𝐸𝑖(𝑡), 

• Intra-cluster distance 𝑑ic – distance from node to centroid, 

• Distance to BS 𝑑𝑖,𝑏𝑠 

• Node connectivity degree 𝛿𝑖. 

The CH fitness function is: 

 

 𝐹𝐶𝐻(𝑖) = 𝑎.
𝐸𝑖(𝑡)

𝐸0
+ 𝛽. (1 −

𝑑𝑖𝑐

𝑑𝑚𝑎𝑥
) + 𝛾. (1 −

𝑑𝑖,𝑏𝑠

𝑑𝑚𝑎𝑥
) + 𝜃.

𝛿𝑖

𝛿𝑚𝑎𝑥
   (5) 

 

Where: 

• 𝛼, 𝛽, 𝛾, 𝜃: Weight coefficients satisfying 𝛼 + 𝛽 + 𝛾 + 𝜃 = 1, 

• 𝑑𝑚𝑎𝑥: Maximum possible distance in the network, 

• 𝛿𝑚𝑎𝑥: Maximum degree observed in the network. 

• Residual Energy – ensures that cluster head (CH) selection avoids rapid depletion of nodes and promotes balanced 

energy usage across the network. 

• Distance to Base Station (Sink) – minimizes communication cost for inter-cluster transmissions and reduces long-

range energy drains. 

• Node Connectivity Degree – prioritizes nodes with stronger local connectivity, which enhances route stability and 

reduces link breaks. 

• Intra-Cluster Distance – promotes compact clusters by minimizing the average distance from nodes to their CH, 

which reduces intra-cluster communication overhead. 

This is a multi-objective fitness function combining energy, topology, and spatial awareness, making CH selection both 

adaptive and global. 

 

Sensor Node State Transition 

To further improve energy savings, nodes switch between Active, Sleep, or Transmit states based on their role (CH or 

member), proximity to CH, residual energy threshold 𝐸𝑡ℎ, and data relevance The state transition function is given by: 

 

 𝑆𝑡𝑎𝑡𝑒𝑖(𝑡 + 1) = {

𝐴𝑐𝑡𝑖𝑣𝑒,                   𝐸𝑖(𝑡) > 𝐸𝑡ℎ ∧ 𝑑𝑖,𝐶𝐻 < 𝑅

𝑆𝑙𝑒𝑒𝑝,                     𝐸𝑖(𝑡) > 𝐸𝑡ℎ ∧ 𝑑𝑖,𝐶𝐻 > 𝑅

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡,   𝑖𝑓 𝐶𝐻 𝑎𝑛𝑑 𝑑𝑎𝑡𝑎 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑

 (6) 

 

This where and when logic directly controls node duty cycling to preserve power, reduce congestion, and extend 

network lifetime. The network initialization includes the following: 

• Deploy 𝑁 nodes randomly in a 𝐿 × 𝐿 grid. 

• Assign initial energy 𝐸0 to all nodes. 

• Compute pairwise distances 𝑑ij and initialize node connectivity matrix. 

• Estimate 𝑘opt for optimal cluster count. 

• Initiate CH selection via proposed optimization  

• Form clusters and establish TDMA-based communication schedules. 

 

Pseudocode: of proposed algorithm in Sensor Node State Transition 

𝐼𝑛𝑝𝑢𝑡: 
    𝑁 →  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 (𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠) 
    𝐸0 →  𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 
    𝑇 →  𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 / 𝑟𝑜𝑢𝑛𝑑𝑠 
    𝑆𝑖𝑛𝑘 →  𝑆𝑡𝑎𝑡𝑖𝑐 𝐵𝑎𝑠𝑒 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

    𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 →  𝐸𝑛𝑒𝑟𝑔𝑦, 𝑑𝑒𝑙𝑎𝑦, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 
𝑂𝑢𝑡𝑝𝑢𝑡: 

    𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑟𝑜𝑢𝑡𝑒𝑠 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑒𝑙𝑎𝑦, ℎ𝑖𝑔ℎ 𝑃𝐷𝑅, 𝑎𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 
𝐵𝑒𝑔𝑖𝑛: 

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘: 
    − 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑑𝑒𝑝𝑙𝑜𝑦 𝑁 𝑚𝑜𝑏𝑖𝑙𝑒 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 2𝐷 𝑠𝑝𝑎𝑐𝑒 
    − 𝑆𝑒𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝐸0 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 

    − 𝐴𝑠𝑠𝑖𝑔𝑛 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑔𝑒 𝑎𝑛𝑑 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑜𝑑𝑒 
2. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟𝑜𝑢𝑛𝑑 𝑡 𝑖𝑛 𝑇: 
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    2.1. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒: 
        − 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 
        − 𝑁𝑜𝑑𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) 
        − 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑠𝑖𝑛𝑘 

        − 𝐿𝑖𝑛𝑘 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟) 
    2.2. 𝐴𝑝𝑝𝑙𝑦 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡: 
        − 𝑇𝑟𝑎𝑖𝑛 𝑅𝐹 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑤𝑖𝑡ℎ ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑎 

        − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 
    2.3. 𝑆𝑒𝑙𝑒𝑐𝑡 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐻𝑒𝑎𝑑𝑠 (𝐶𝐻𝑠) 𝑢𝑠𝑖𝑛𝑔 𝑀 − 𝐸𝐿𝐴: 
        − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑓𝑜𝑟 𝐸𝐿𝐴 
        − 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑢𝑠𝑖𝑛𝑔 𝑠𝑖𝑛𝑔𝑙𝑒 − ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 
        − 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑓𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑛𝑑 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 

        − 𝑆𝑒𝑙𝑒𝑐𝑡 𝑡𝑜𝑝 𝑛𝑜𝑑𝑒𝑠 𝑎𝑠 𝐶𝐻𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑐𝑜𝑟𝑒𝑠 
    2.4. 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝐶𝐻𝑠 𝑎𝑛𝑑 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑢𝑠𝑖𝑛𝑔 𝑃𝑆𝑂: 
        − 𝐷𝑒𝑓𝑖𝑛𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃𝐷𝑅,𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑑𝑒𝑙𝑎𝑦 𝑎𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 
        − 𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝐶𝐻 𝑠𝑒𝑡𝑠) 

        − 𝑆𝑒𝑙𝑒𝑐𝑡 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 𝐶𝐻𝑠 𝑎𝑛𝑑 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 
    2.5. 𝐴𝑝𝑝𝑙𝑦 𝐵𝑙𝑜𝑜𝑚 𝐹𝑖𝑙𝑡𝑒𝑟: 
        − 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑟𝑒𝑐𝑒𝑛𝑡𝑙𝑦 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡 𝐼𝐷𝑠 
        − 𝐹𝑖𝑙𝑡𝑒𝑟 𝑜𝑢𝑡 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑙𝑒𝑣𝑒𝑙 
        − 𝑅𝑒𝑑𝑢𝑐𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 

 
    2.6. 𝐹𝑜𝑟𝑚 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑑𝑎𝑡𝑎: 
        − 𝑁𝑜𝑑𝑒𝑠 𝑗𝑜𝑖𝑛 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝐶𝐻 
        − 𝐶𝐻 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠 𝑡𝑜 𝑠𝑖𝑛𝑘 

        − 𝑈𝑝𝑑𝑎𝑡𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒 𝑑𝑒𝑎𝑑 𝑛𝑜𝑑𝑒𝑠 
3. 𝐸𝑛𝑑 𝐹𝑜𝑟 

4. 𝑂𝑢𝑡𝑝𝑢𝑡 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠: 
    − 𝑃𝐷𝑅, 𝑑𝑒𝑙𝑎𝑦, 𝐶𝐻 𝑐𝑜𝑢𝑛𝑡, 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒, 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 

𝐸𝑛𝑑 

 

Ọdịgbo Metaheuristic Optimization Algorithm  

The optimization process in this paper leverages the Ọdịgbo Metaheuristic Optimization Algorithm (OMOA) to select 

optimal cluster heads and routing paths in a VANET environment. Initially, a population of candidate solutions is generated, 

where each candidate represents a unique cluster head configuration. OMOA evaluates each solution using a multi-

objective fitness function based on residual energy, distance to the base station, intra-cluster compactness, and packet 

delivery efficiency. Through iterative updates involving directional exploration and adaptive mutation, the algorithm 

refines the population toward globally optimal solutions. Once optimal CHs are selected, a Bloom filter is applied to 

eliminate redundant or inefficient links. The final routing paths are further validated and ranked using Modified Extreme 

Learning Algorithm (M-ELA) and Random Forest classifiers to ensure QoS-aware, energy-efficient, and robust data 

transmission suitable for dynamic VANET topologies. 

 

Proposed Idigbo Metaheuristic Optimization Algorithm 

The proposed optimization strategy integrates the novel Ọdịgbo Metaheuristic Optimization Algorithm (OMOA) to 

enhance cluster head (CH) selection and routing decisions within a dynamic vehicular ad hoc network (VANET) 

environment. OMOA is designed as a population-based global optimization technique inspired by strategic exploration and 

directional adaptation mechanisms. Each particle or candidate solution in the algorithm represents a possible set of CHs 

and routing paths. The quality of each solution is evaluated using a multi-objective fitness function incorporating residual 

energy, distance to the sink/base station, node connectivity, and cluster compactness. Through adaptive exploration and 

exploitation phases, OMOA iteratively refines these solutions, ensuring better load balancing and minimized 

communication cost. To further enhance routing robustness, OMOA works in conjunction with the Modified Extreme 

Learning Algorithm (M-ELA) and Random Forest classifiers, which assess the stability and reliability of candidate routes. 

By prioritizing solutions with high packet delivery ratio (PDR), low energy imbalance, and minimal delay, the proposed 

algorithm ensures energy-efficient and QoS-driven communication, suitable for the highly mobile and uncertain nature of 

VANET topologies. 

In Fig 3, CH selection is performed using the Ọdịgbo Metaheuristic Optimization Algorithm (OMOA), which 

dynamically identifies optimal CHs based on multiple criteria to ensure energy-efficient and stable clustering in VANET 

environments. The algorithm evaluates each node using a multi-objective fitness function that incorporates residual energy, 

distance to the base station, intra-cluster distance, and node connectivity. OMOA iteratively explores the search space 

through adaptive directional learning to identify the most suitable nodes as CHs, thereby balancing energy consumption 
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and improving cluster stability. This intelligent CH selection process significantly enhances network lifetime and supports 

reliable communication by reducing frequent re-clustering and ensuring efficient data aggregation within clusters. 

 

 
Fig 3. Working Process of CH Selection. 

 

The study effort presents an OMOA that will be explained in the next section to choose the best features from the input 

dataset.  

• Represents the solution ahịa when using the decision variables and D dimensions in the MOA model. 

 

 𝑀𝑎𝑧𝑖 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝐷]  (7) 

 

• The fitness charge of each Mazi will be calculated as a vector of (2); 

 

 𝑓(𝑀𝑎𝑧𝑖) = 𝑓(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝐷)  (8) 

 

As an example, suppose there's a new store with some ụmụ-ahịa (children between the ages of three and eight years 

old).  

 

Pseudocode: of OMOA for VANET Routing 

𝐼𝑛𝑝𝑢𝑡: 
    𝑁 ←  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 
    𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 ←  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 
    𝑃𝑜𝑝_𝑆𝑖𝑧𝑒 ←  𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 
    𝛼, 𝛽, 𝛾, 𝜃 ←  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝑓𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑃𝐷𝑅, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑏𝑎𝑙𝑎𝑛𝑐𝑒) 
    𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ←  𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑛𝑔𝑒, 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑖𝑚𝑖𝑡𝑠, 𝑒𝑡𝑐. 

 
𝑂𝑢𝑡𝑝𝑢𝑡: 
    𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐻𝑒𝑎𝑑 𝑆𝑒𝑡 𝑎𝑛𝑑 𝑅𝑜𝑢𝑡𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 

 
𝐵𝑒𝑔𝑖𝑛 
1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 (𝐶𝐻 𝑠𝑒𝑡𝑠) 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 
2. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 
       𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝐹𝑖𝑡𝑛𝑒𝑠𝑠: 
          𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝛼 ×  𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦 + 
                   𝛽 × (1 / 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐵𝑆)  + 
                   𝛾 ×  𝑃𝐷𝑅 + 
                   𝜃 ×  𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐵𝑎𝑙𝑎𝑛𝑐𝑒 
3. 𝑆𝑒𝑡 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ←  𝑏𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
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4. 𝑖𝑡𝑒𝑟 ←  1 
 

5.𝑊ℎ𝑖𝑙𝑒 𝑖𝑡𝑒𝑟 ≤  𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 𝑑𝑜: 
       𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑋𝑖 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 
            𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑁𝑒𝑤 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑋′ 𝑢𝑠𝑖𝑛𝑔 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛: 
               𝐼𝑓 𝑟𝑎𝑛𝑑 <  𝑝_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛: 
                   𝑋′ ←  𝐺𝑢𝑖𝑑𝑒𝑑𝑈𝑝𝑑𝑎𝑡𝑒(𝑋𝑖, 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
               𝐸𝑙𝑠𝑒: 
                   𝑋′ ←  𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛(𝑋𝑖) 
            𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋′) 
            𝐼𝑓 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋′)  >  𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖): 
               𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑋𝑖 𝑤𝑖𝑡ℎ 𝑋′ 
       𝑈𝑝𝑑𝑎𝑡𝑒 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑓 𝑎𝑛𝑦 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 
       𝑖𝑡𝑒𝑟 ←  𝑖𝑡𝑒𝑟 +  1 
6. 𝐴𝑝𝑝𝑙𝑦 𝐵𝑙𝑜𝑜𝑚 𝐹𝑖𝑙𝑡𝑒𝑟 𝑡𝑜 𝑟𝑒𝑑𝑢𝑐𝑒 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑝𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝐶𝐻𝑠 
7. 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑎𝑛𝑑 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑒 𝑓𝑖𝑛𝑎𝑙 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ𝑠 𝑢𝑠𝑖𝑛𝑔 𝑀 − 𝐸𝐿𝐴 +  𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡 
8. 𝑂𝑢𝑡𝑝𝑢𝑡 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑠 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐶𝐻𝑠 𝑎𝑛𝑑 𝑅𝑜𝑢𝑡𝑒𝑠 

 
𝐸𝑛𝑑 

 

Some limitations associated with this age group include (a) a surge of nostalgic energy in the initial months, a natural 

tendency towards childishness (which includes undirected and untargeted energies), and a period of erratic eating, sleeping, 

and desire patterns. 

 

Route Path Selection for Routing 

In the proposed VANET routing framework, route path selection is performed after optimal Cluster Head (CH) nodes are 

selected using the Ọdịgbo Metaheuristic Optimization Algorithm (OMOA). The Modified Extreme Learning Machine (M-

ELA) model, in conjunction with a Random Forest classifier, is used to score and predict the quality of available routing 

paths. Each path is evaluated based on features such as residual energy, link stability, hop count, and end-to-end delay. The 

highest-ranked route is dynamically selected to ensure minimal delay and maximum packet delivery. To further enhance 

routing efficiency, a Bloom Filter is used to eliminate redundant transmissions, reduce communication overhead, and 

maintain QoS in highly dynamic VANET environments. 

 

Modified Extreme Learning Algorithm (M-ELA) – Description 

M-ELA is an advanced version of standard ELA, tailored for improving learning performance of Single Layer Feedforward 

Neural Networks (SLFNs). M-ELA overcomes these limitations by introducing enhancements in weight initialization, 

hidden node optimization, and regularization techniques. Specifically, M-ELA: 

 

 𝐵𝐾 =

[
 
 
 

𝐵𝐾1,1 𝐵𝐾1,2 ⋯ 𝐵𝐾1,𝑑𝑖𝑚

𝐵𝐾2,1 𝐵𝐾2,2 ⋯ 𝐵𝐾2,𝑑𝑖𝑚

⋮
𝐵𝐾𝑝𝑜𝑝,1

⋮
𝐵𝐾𝑝𝑜𝑝,2

⋰
⋯

⋮
𝐵𝐾𝑝𝑜𝑝,𝑑𝑖𝑚]

 
 
 

  (9) 

 

Where pop showcases populace magnitude, pop dimension, 𝐵𝐾i,j cabinets jth dimension of ith individual. 𝑋i is specified 

as: 

 

 𝑋i = 𝐵𝐾𝑙𝑏 + 𝑟𝑎𝑛𝑑(𝐵𝐾𝑢𝑏 − 𝐵𝐾𝑙𝑏)  (10) 

 

Where i showcases an numeral in [1, pop], 𝐵𝐾𝑙𝑏  besides 𝐵𝐾𝑢𝑏  showcase limitations, and𝑟𝑎𝑛𝑑 ∈ [0, 1]. 
The most fitting leader 𝑋L is specified as: 

 

 𝑓𝑏𝑒𝑠𝑡 = min (𝑓(𝑋𝑖)) (11) 

 

 𝑋𝐿 = 𝑋(𝑓𝑖𝑛𝑑(𝑓𝑏𝑒𝑠𝑡 == 𝑓(𝑋𝑖)))  (12) 

 

• Uses data-driven initialization or optimization techniques to select better initial input weights and biases. 

• Incorporates activation function tuning or selection strategies to adapt to the nature of the input data. 

• Employs regularization (e.g., L2-norm) to control overfitting and improve generalization performance. 

• Allows for adaptive hidden layer sizing, choosing the optimal number of neurons based on performance metrics. 
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𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚: 𝑂𝑀𝑂𝐴 − 𝑏𝑎𝑠𝑒𝑑 𝐻𝑦𝑏𝑟𝑖𝑑 𝑅𝑜𝑢𝑡𝑖𝑛𝑔 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 𝑓𝑜𝑟 𝑉𝐴𝑁𝐸𝑇𝑠 
𝐼𝑛𝑝𝑢𝑡: 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑁, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝐸₀ 
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑜𝑑𝑒𝑙 (𝑅𝑎𝑛𝑑𝑜𝑚 𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡 / 𝐺𝑎𝑢𝑠𝑠 − 𝑀𝑎𝑟𝑘𝑜𝑣) 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑛𝑔𝑒 𝑅 
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑇, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 𝑃) 
𝑂𝑢𝑡𝑝𝑢𝑡: 
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐻𝑒𝑎𝑑𝑠 (𝐶𝐻𝑠) 
𝐸𝑛𝑒𝑟𝑔𝑦 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑎𝑛𝑑 𝑄𝑜𝑆 − 𝑎𝑤𝑎𝑟𝑒 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ𝑠 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
1.1 𝐷𝑒𝑝𝑙𝑜𝑦 𝑁 𝑣𝑒ℎ𝑖𝑐𝑢𝑙𝑎𝑟 𝑛𝑜𝑑𝑒𝑠 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑎𝑟𝑒𝑎. 
1.2 𝐴𝑠𝑠𝑖𝑔𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝐸₀ 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒. 
1.3 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑎𝑛𝑑 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑛𝑜𝑑𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥. 
1.4 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑜𝑢𝑛𝑡 𝐾. 
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑂𝑀𝑂𝐴 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 
2.1 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝑤ℎ𝑒𝑟𝑒 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑒𝑛𝑐𝑜𝑑𝑒𝑠 𝑎 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐶𝐻 𝑠𝑒𝑡. 
2.2 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖 − 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:  
𝑤ℎ𝑒𝑟𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 (𝐸𝑟𝑒𝑠), 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝐵𝑆 (𝑑𝐵𝑆), 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝐶𝑜𝑛𝑛), 𝑎𝑛𝑑 𝑖𝑛𝑡𝑟𝑎

− 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑑𝑖𝑛𝑡𝑟𝑎) 𝑎𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑. 
 

𝑂𝑀𝑂𝐴 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 
3.1 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡 =  1 𝑡𝑜 𝑇: 
𝐴𝑝𝑝𝑙𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑢𝑝𝑑𝑎𝑡𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝐶𝐻𝑠. 
𝑈𝑠𝑒 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑎𝑣𝑜𝑖𝑑 𝑙𝑜𝑐𝑎𝑙 𝑜𝑝𝑡𝑖𝑚𝑎. 
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 
𝑅𝑒𝑡𝑎𝑖𝑛 𝑏𝑒𝑠𝑡 − 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝐶𝐻 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛. 
𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐹𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 
4.1 𝐴𝑠𝑠𝑖𝑔𝑛 𝑚𝑒𝑚𝑏𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 𝑡𝑜 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝐶𝐻𝑠. 
4.2 𝐴𝑝𝑝𝑙𝑦 𝑇𝐷𝑀𝐴 − 𝑏𝑎𝑠𝑒𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝑓𝑜𝑟 𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 

𝑅𝑜𝑢𝑡𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑀 − 𝐸𝐿𝐴 +  𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡) 
5.1 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑙𝑖𝑛𝑘 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦, ℎ𝑜𝑝 𝑐𝑜𝑢𝑛𝑡, 𝑑𝑒𝑙𝑎𝑦, 𝑝𝑎𝑐𝑘𝑒𝑡 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ℎ𝑖𝑠𝑡𝑜𝑟𝑦. 

5.2 𝑈𝑠𝑒 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑟𝑜𝑢𝑡𝑒𝑠 𝑖𝑛𝑡𝑜 {𝐻𝑖𝑔ℎ,𝑀𝑒𝑑𝑖𝑢𝑚, 𝐿𝑜𝑤 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦}. 
5.3 𝐴𝑝𝑝𝑙𝑦 𝑀 − 𝐸𝐿𝐴 𝑡𝑜 𝑠𝑐𝑜𝑟𝑒 𝑎𝑛𝑑 𝑟𝑎𝑛𝑘 ℎ𝑖𝑔ℎ − 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑟𝑜𝑢𝑡𝑒𝑠. 

5.4 𝑆𝑒𝑙𝑒𝑐𝑡 𝑡ℎ𝑒 𝑡𝑜𝑝 − 𝑟𝑎𝑛𝑘𝑒𝑑 𝑟𝑜𝑢𝑡𝑒 𝑓𝑜𝑟 𝑑𝑎𝑡𝑎 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔. 
𝐵𝑙𝑜𝑜𝑚 𝐹𝑖𝑙𝑡𝑒𝑟 𝑓𝑜𝑟 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 

6.1 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 𝑎 𝐵𝑙𝑜𝑜𝑚 𝐹𝑖𝑙𝑡𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑒𝑛𝑡𝑙𝑦 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡 𝐼𝐷𝑠. 
6.2 𝐼𝑓 𝑎 𝑝𝑎𝑐𝑘𝑒𝑡 𝐼𝐷 𝑖𝑠 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 →  𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛. 

6.3 𝐸𝑙𝑠𝑒 →  𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑝𝑎𝑐𝑘𝑒𝑡 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝐵𝑙𝑜𝑜𝑚 𝐹𝑖𝑙𝑡𝑒𝑟. 
𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑃ℎ𝑎𝑠𝑒 
7.1 𝑀𝑒𝑚𝑏𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 𝑠𝑒𝑛𝑑 𝑑𝑎𝑡𝑎 𝑡𝑜 𝐶𝐻𝑠 (𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟). 
7.2 𝐶𝐻𝑠 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑎𝑛𝑑 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑑𝑎𝑡𝑎 𝑣𝑖𝑎 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑟𝑜𝑢𝑡𝑒𝑠 𝑡𝑜 𝑡ℎ𝑒 𝐵𝑎𝑠𝑒 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 (𝐵𝑆). 
𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑝𝑑𝑎𝑡𝑒 
8.1 𝑈𝑝𝑑𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑒𝑛𝑒𝑟𝑔𝑖𝑒𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 − 𝑜𝑟𝑑𝑒𝑟 𝑟𝑎𝑑𝑖𝑜 𝑚𝑜𝑑𝑒𝑙. 
8.2 𝐼𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 ≤  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 →  𝑚𝑎𝑟𝑘 𝑛𝑜𝑑𝑒 𝑎𝑠 𝑑𝑒𝑎𝑑. 
𝑅𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 

9.1 𝐴𝑓𝑡𝑒𝑟 𝑒𝑣𝑒𝑟𝑦 𝑅𝑖𝑛𝑡 𝑟𝑜𝑢𝑛𝑑𝑠, 𝑟𝑒 − 𝑟𝑢𝑛 𝑂𝑀𝑂𝐴 𝑓𝑜𝑟 𝐶𝐻 𝑟𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛. 
9.2 𝑅𝑒𝑝𝑒𝑎𝑡 𝑠𝑡𝑒𝑝𝑠 2 − 8 𝑢𝑛𝑡𝑖𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑑𝑠. 

 

Random Forest Classifier  

Each tree is trained on a random subset of the data (using bootstrapping), which reduces variance. At each node split, a 

random subset of features is considered, which minimizes correlation among trees and avoids overfitting. The final 

prediction is made through majority voting (for classification) or averaging (for regression). 

 

 

  𝑦𝑡+1
𝑖,𝑗

= {
𝑦𝑡

𝑖,𝑗
+ 𝑛(1 = sin(𝑟)) × 𝑦𝑡

𝑖,𝑗
    𝑝 < 𝑟

𝑦𝑡
𝑖,𝑗

+ 𝑛(2𝑟 − 1) × 𝑦𝑡
𝑖,𝑗

       𝑒𝑙𝑠𝑒
   (13) 

 

 𝑛 = 0.05 × 𝑒2×(
𝑡

𝑇
)
2

  (14) 
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Where 𝑦𝑡
𝑖,𝑗

 and 𝑦𝑡+1
𝑖,𝑗

 showcase the sites of dimension, r ∈ [0, 1], p = 0.9, T repetition termination. 

 In the context of VANET routing, the Random Forest classifier is employed to evaluate and rank routing paths based 

on several features like: 

• Link stability 

• Residual energy of nodes 

• Node connectivity 

• Distance to the destination or RSU 

• Packet delivery history 

 

Combined Working Process in Routing Decision 

In the proposed   VANET routing framework, M-ELA and the RF classifier are integrated to intelligently select and evaluate 

optimal routing paths. This hybrid approach leverages the strengths of both fast learning and robust classification to 

enhance decision-making under dynamic and resource-constrained vehicular environments. Network features such as 

residual energy, link stability, node degree, mobility pattern, distance to destination, and historical packet delivery 

performance are extracted in real time from vehicular nodes. 

The Random Forest classifier is used to categorize routing paths into classes like “High Priority,” “Medium Priority,” 

and “Low Priority” based on the input features. This helps filter out unreliable or energy-inefficient paths early, reducing 

the number of candidate routes. The selected candidate routes from the Random Forest step are then fed into the M-ELA 

model, which is trained to score and rank the paths based on nonlinear interactions of input metrics. 

In route selection is performed using an intelligent hybrid mechanism that combines a M-ELA with a Random Forest 

classifier to ensure reliable and QoS-aware communication in dynamic VANET scenarios. Once optimal CHs are selected 

using OMOA, the routing paths are evaluated and scored based on features such as link stability, energy availability, and 

historical performance. The M-ELA rapidly learns the underlying traffic patterns, while the Random Forest enhances 

decision robustness through ensemble learning. Additionally, a Bloom Filter is integrated to suppress redundant 

transmissions, reducing routing overhead and improving bandwidth utilization. This combined approach ensures the 

selection of the most efficient and stable routes, minimizing end-to-end delay and maximizing packet delivery ratio across 

highly mobile vehicular environments. 

The behaviour of migration is defined as 

 

 𝑦𝑡+1
𝑖,𝑗

= {
𝑦𝑡

𝑖,𝑗
+ 𝐶(0,1) × (𝑦𝑡

𝑖,𝑗
− 𝐿𝑡

𝑗
)    𝐹𝑖 < 𝐹𝑟𝑖

𝑦𝑡
𝑖,𝑗

+ 𝐶(0,1) × (𝐿𝑡
𝑖 − 𝑚 × 𝑦𝑡

𝑖,𝑗
)       𝑒𝑙𝑠𝑒

  (15) 

 

 𝑚 = 2 × sin (𝑟 + 𝜋/2)  (16) 

 

where 𝐿𝑡
𝑗
 scorer, 𝐹𝑖 current site, 𝐹𝑟𝑖 accidental site, 𝐶(0, 1) showcases the Cauchy mutation. 

The Cauchy is defined as a continuous two-metric stochastic distribution that is: 

 

 𝑓(𝑥, 𝛿, 𝜇) =
1

𝜋

𝛿

𝛿2+(𝑥−𝜇)2
− ∞ < 𝑥 < ∞  (17) 

 

where δ = 1, µ = 0, the likelihood density fitness is specified as: 

 

 𝑓(𝑥, 𝛿, 𝜇) =
1

𝜋

𝛿

𝑥2+1
− ∞ < 𝑥 < ∞ (18) 

 

M-ELA rapidly learns the optimal mapping between features and route performance using an optimized feedforward 

network, with fine-tuned hidden layer weights. 

Based on M-ELA’s score, the most optimal path is selected for packet forwarding. 

As network conditions change (e.g., node mobility, congestion), Random Forest re-classifies and M-ELA re-evaluates 

the paths dynamically. 

Performance metrics such as actual packet delivery, delay, and energy consumption are fed back into both models to 

continuously improve accuracy and adaptability. 

The following equations illustrate how the optimal quokka position within a group influences the updating of each 

quokka's site within that group.: 

 

 𝐷𝑛𝑒𝑤 =
(𝑇+𝐻)

(0.8×𝐷𝑜𝑙𝑑)
+ ∆𝑤 × 𝑟𝑎𝑛𝑑 × ∆𝑋, (19) 

 

 𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝐷𝑛𝑒𝑤 × 𝑁  (20) 
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(Where 𝐷old characterizes the Drought besides its charge among [0,1]), 𝑇 stands for the temperature ratio, which falls 

within the range of 0.2 to 0.44, and H for the humidity ratio, which ranges from 0.3 to 0.65. to settled on these ratios since 

that's the range of temperatures and humidity levels that quokkas can survive. A random number with a value between 0 

and represented by rand, Δw is the difference in weight among the leader and quokka i. 1, 𝛥𝑋 characterizes the differences 

of quokka 𝑖, quokka’s new site is characterized by 𝑋new, while the old site is characterized by 𝑋old, 

Random Forest ensures robust, fast classification with high tolerance to noisy or incomplete data. M-ELA adds adaptive 

intelligence and nonlinear modeling for precise ranking and decision-making. The combined model supports energy-

efficient, delay-minimized, and reliable routing in fast-changing VANET scenarios. 

 

V. RESULTS AND DISCUSSION 

The performance evaluation of the proposed Routing Protocol a hybrid flower-pollination-inspired and Bloom filter-

optimized scheme for energy-efficient cluster-based routing is conducted in a simulated environment. The simulation 

framework adheres to widely accepted standards in wireless sensor network (WSN) research and follows configurations 

consistent with benchmark protocols analysis. The Ọdịgbo Metaheuristic Optimization Algorithm (OMOA) operates by 

iteratively refining a population of candidate cluster head configurations using directional learning and adaptive 

exploration. It evaluates each solution using a multi-objective fitness function to optimize energy efficiency, connectivity, 

and routing stability in VANETs. practical deployment. We implemented the framework on a Python 3.11 environment 

with Intel Core i7 / Ryzen 7 processors, showing simulation runtimes within real-time bounds Table 2. M-ELA enables 

rapid adaptation due to its fast training, and Random Forest is well known for its low-latency predictions. In operational 

VANETs, most computational tasks (e.g., OMOA-based CH selection) can be offloaded to RSUs or edge nodes, leaving 

vehicles to perform lightweight route evaluation and filtering, thus ensuring real-time feasibility. 

A comprehensive list of these input parameters and their corresponding values is presented in Table 2. 

 

Table 2. Simulation Analysis 

Parameter Value 

Total number of sensor nodes (N) 100, 200, 300, 500 nodes 

Simulation area (L × L) 100 m × 100 m 

Initial energy per node (𝐸0) 2 Joules 

Energy for electronics (𝐸elec) 50 nJ/bit 

Free space amplifier (𝜀fs) 10 pJ/bit/m² 

Multipath fading amplifier (𝜀mp) 0.0013 pJ/bit/m⁴ 

Threshold distance (𝑑0) 87 meters 

Data aggregation energy (𝐸DA) 5 nJ/bit/signal 

Packet size (l) 4000 bits 

Transmission range (R) 25 meters 

Base Station (BS) position (50, 175) or (outside region) 

Bloom filter size (m) 256 bits 

Number of hash functions (𝑘h) 3–5 

Max iterations (PROPOSED) (T) 50–100 

Population size (P) 30 

Switch probability (𝑝0) 0.8 

Lévy flight exponent (λ) 1.5 

Fitness weights (α, β, γ, θ) 0.25 each 

Rounds per simulation 3000 

Re-clustering interval (𝑅c) 20 rounds 

MAC protocol TDMA 

Traffic pattern CBR (Constant Bit Rate) 

Simulation Platform Python 3.11 

Processor Intel Core i7 / Ryzen 7, 3.0 GHz+ 

RAM 16 GB 

Operating System Windows 11 / Ubuntu 22.04 LTS 

 

To ensure robustness, our simulations were conducted across multiple node densities (100, 200, 300, and 500 nodes) 

and under different mobility models (Random Waypoint and Gauss–Markov), which represent both random vehicular 

movement and more realistic trajectory-based mobility. We also varied traffic loads using CBR (Constant Bit Rate) sources 

to reflect real-time data exchange in safety and infotainment applications. 

The parameter configurations (Table 2) reflect realistic constraints, including limited initial energy (2 J per node), 

varying transmission ranges (25 m), and practical channel models (free-space and multipath fading). These conditions test 

the adaptability of the proposed protocol in dense, sparse, high-mobility, and heavy-traffic environments. 
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Validation Analysis of the Proposed Model 

• Packet Delivery Ratio (PDR): Evaluates routing reliability by measuring the percentage of successfully delivered 

packets. Our protocol consistently achieves the highest PDR (96.8%, Table 5), reflecting robustness under dynamic 

conditions. 

• End-to-End Delay: Measures the time taken for data to travel from source to destination. With a delay of 140 ms, 

the proposed model ensures timely delivery, which is critical for safety-related VANET applications [18-19]. 

• Energy Consumption & Residual Energy: Track how efficiently nodes utilize energy. As shown in Table 3, our 

model achieves the lowest total energy consumption (104 J) and the highest residual energy (0.95 J), demonstrating 

balanced utilization across the network. 

• Network Lifetime (FND, HND, LND): Captures longevity and stability by tracking when the first, half, and last 

nodes deplete energy. Our protocol achieves the longest lifetime (LND = 2900 rounds, Table 4), confirming the 

benefits of optimized cluster head rotation and load balancing. 

The Network Lifetime Metrics Table 3 compares the performance of different protocols based on node survival over 

time. 

Table 3. Energy Consumption Metrics 

Protocol 
Avg Residual 

Energy (J) 

Total Energy 

Consumed (J) 

Energy per 

Round (J) 

Energy Imbalance 

Index 

Proposed 

Methodology 
0.95 104 0.035 0.15 

LEACH 0.63 137 0.046 0.31 

PSO-LEACH 0.7 129 0.043 0.28 

GWO 0.76 121 0.04 0.22 

ACO 0.68 130 0.044 0.26 

 

A comparative evaluation of the energy efficiency and network lifetime performance of the proposed routing protocol 

against LEACH, PSO-LEACH, GWO, and ACO. As shown in Table 4, the proposed method achieves the highest average 

residual energy (0.95 J), the lowest total energy consumption (104 J), and the minimum energy usage per round (0.035 J), 

clearly demonstrating superior energy conservation.  

 

Table 4. Network Lifetime Metrics 

Protocol 

FND 

(First Node 

Dies) 

HND  

(Half Node 

Dies) 

LND 

 (Last Node 

Dies) 

Stability 

Period 

Instability 

Period 

proposed 

Methodology 
700 1600 2900 700 2200 

LEACH 450 980 1800 450 1350 

PSO-LEACH 520 1120 2000 520 1480 

GWO 580 1240 2200 580 1620 

ACO 500 1080 1950 500 1450 

 

Additionally, it has the lowest energy imbalance index (0.15), indicating well-balanced energy usage across nodes and 

efficient cluster head rotation. In Table 4, the proposed protocol also outperforms all others in terms of network longevity, 

with the first node dying at round 700, half the nodes dying at 1600 rounds, and the last node surviving up to round 2900. 

This results in the longest stability period (700 rounds) and the most extended instability period (2200 rounds), ensuring 

reliable communication for a significantly longer time. In contrast, LEACH records the shortest FND (450) and the highest 

imbalance (0.31), while the improvements shown by PSO-LEACH, GWO, and ACO are moderate but still inferior to the 

proposed solution. These results confirm that the integration of machine learning and PSO-based optimization in the 

proposed model leads to substantial improvements in both energy efficiency and network lifespan. 

 

Table 5. Routing Performance Metrics 

Protocol PDR (%) 
End-to-End Delay 

(ms) 

Routing Overhead 

(packets) 
Packets Received at BS 

Proposed 

Methodology 
96.8 140 350 12800 

LEACH 87.3 210 590 9800 

PSO-LEACH 90.5 180 470 11000 

GWO 92.7 165 420 11700 

ACO 89.8 190 500 10400 
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The proposed protocol against existing methods LEACH, PSO-LEACH, GWO, and ACO across four key metrics: 

packet delivery ratio (PDR), end-to-end delay, routing overhead, and the number of packets received at the base station. 

The proposed protocol demonstrates superior performance, achieving the highest PDR of 96.8% and the lowest end-to-end 

delay of 140 ms, indicating highly reliable and timely data delivery. It also produces the lowest routing overhead with only 

350 control packets, significantly reducing unnecessary network traffic. Furthermore, it delivers the maximum number of 

packets (12,800) to the base station, reflecting efficient and stable route maintenance. In contrast, LEACH exhibits the 

lowest PDR (87.3%) and highest delay (210 ms) due to frequent re-clustering and inefficient route selection, while PSO-

LEACH Table 6 shows Cluster and CH Metrics, GWO, and ACO offer moderate improvements but still lag behind the 

proposed model. These results validate the proposed system's effectiveness in ensuring QoS-driven routing with minimal 

delay and energy-efficient communication in VANET environments. 

 

Table 6. Cluster and CH Metrics 

Protocol 
Avg. No. of CHs per 

Round 
CH Reselection Rate 

Cluster 

Distribution 

Balance 

Avg. Intra-Cluster 

Distance (m) 

Proposed 

Methodology 
5 0.18 0.91 16.4 

LEACH 8 0.32 0.72 23.5 

PSO-LEACH 7 0.28 0.76 21 

GWO 6 0.23 0.83 19.2 

ACO 7 0.3 0.74 22.1 

 

Table 7. Comparison with Baseline Models 

Protocol 
FND 

(Rounds) 

HND 

(Rounds) 

LND 

(Rounds) 

Avg 

Residual 

Energy 

(J) 

PDR 

(%) 

End-

to-

End 

Delay 

(ms) 

Packets 

Received 

at BS 

CH 

Reselection 

Rate 

Energy 

Imbalance 

Index 

proposed 

Methodolog

y 

700 1600 2900 0.95 96.8 140 12800 0.18 0.15 

LEACH 450 980 1800 0.63 87.3 210 9800 0.32 0.31 

PSO-

LEACH 
520 1120 2000 0.7 90.5 180 11000 0.28 0.28 

GWO 580 1240 2200 0.76 92.7 165 11700 0.23 0.22 

ACO 500 1080 1950 0.68 89.8 190 10400 0.3 0.26 

 

The individual and combined impact of key components—FPA optimization, Bloom filter, and CH selection—on the 

overall performance of the proposed VANET routing protocol. The full proposed model, which integrates all modules 

(Modified ELA + Ọdịgbo Metaheuristic Optimization Algorithm + Random Forest + Bloom Filter), achieves the highest 

network stability and efficiency with 700 FND, 1600 HND, and 2900 LND rounds, along with the highest average residual 

energy of 0.95 J, PDR of 96.8%, and the lowest delay of 140 ms Table 7 shows Comparison with Baseline Models. When 

only the FPA optimization is applied without the Bloom filter, performance drops across all metrics, showing a shorter 

lifetime and higher delay Table 8 shows Ablation Study Results. The Bloom-only version slightly improves over FPA-

only, especially in delay and residual energy. However, the worst performance is seen in the Random CH version, where 

the absence of intelligent CH selection results in premature node deaths (FND = 420), lower residual energy (0.63 J), 

reduced PDR (84.3%), and the highest delay (220 ms). This comparison confirms that each component contributes 

significantly, and their integration is essential for maximizing QoS in dynamic VANET conditions. 

 

Table 8. Ablation Study Results 

Version 

FND 

(Rounds) 

HND 

(Rounds) 

LND 

(Rounds) 

Avg Residual 

Energy (J) 

PDR 

(%) End-to-End Delay (ms) 

Proposed 

Methodology 700 1600 2900 0.95 96.8 140 

FPA Only 560 1200 2100 0.79 91.2 170 

Bloom Only 600 1280 2200 0.81 92.5 160 

Random CH 420 880 1650 0.63 84.3 220 
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Fig 4. PDR and Node Count Analysis. 

 

 

 
Fig 5. Bloom Filter Analysis for PDR and Energy Consumption. 

 

 
Fig 6. Residual Analysis for Energy Heatmap. 
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Table 9. Comparative Analysis of Routing Protocols 

Protocol 
FND 

(Rounds) 

Avg. 

Residual 

Energy 

(J) 

Total 

Energy 

Consumed 

(J) 

End-to-End 

Delay (ms) 

PDR 

(%) 

Packets 

to BS 

CH 

Reselection 

Rate 

Energy 

Imbalance 

Index 

proposed 700 0.95 104 140 96.8 12800 0.18 0.15 

LEACH 450 0.63 137 210 87.3 9800 0.32 0.31 

PSO-

LEACH 
520 0.70 129 180 90.5 11000 0.28 0.28 

GWO 580 0.76 121 165 92.7 11700 0.23 0.22 

ACO 500 0.68 130 190 89.8 10400 0.30 0.26 

 

A comprehensive presentation comparison between the proposed routing protocol and existing methods including 

LEACH, PSO-LEACH, GWO, and ACO. The proposed model significantly outperforms others across all metrics, 

achieving the highest network lifetime with 700 FND rounds Fig 4 shows PDR and Node Count Analysis., maximum 

average residual energy of 0.95 J, besides lowest total energy consumption of 104 J. It also delivers the best end-to-end 

delay of 140 ms besides highest packet delivery ratio (PDR) of 96.8%, with 12,800 packets successfully reaching the base 

station. Furthermore, the proposed protocol exhibits the lowest cluster head (CH) reselection rate (0.18) and energy 

imbalance index (0.15), indicating superior cluster stability and balanced energy usage. These results demonstrate that the 

integration of Modified ELA Table 9 shows Comparative Analysis of Routing Protocols, Random Forest, PSO, besides 

Bloom Filter ensures energy-efficient, reliable, and QoS-aware routing in VANET environments Fig 6 shows Residual 

Analysis for Energy Heatmap. 

 
Fig 7. Comprehensive Presentation Comparison Between the Proposed Routing Protocol and Existing Methods. 
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Fig 8. Comparative Graphical Representation of Route Selection Performance Metrics for Different Protocols, with 

Proposed Model. 

 

A comparative graphical representation of key route selection performance metrics across various routing protocols in 

VANETs, including LEACH, ACO, GWO, PSO-LEACH, and the proposed OMOA-based model. The chart visualizes four 

core parameters: Packet Delivery Ratio (PDR), End-to-End Delay, Packets Received at the Base Station (BS), and Route 

Stability Score Fig 5 shows Bloom Filter Analysis for PDR and Energy Consumption. The proposed model achieves the 

highest PDR (96.8%) and route stability (0.91), indicating more reliable data transmission with fewer link breaks. It also 

records the lowest delay (140 ms), which highlights its timeliness in data delivery Fig 7 shows Comprehensive Presentation 

Comparison Between the Proposed Routing Protocol and Existing Methods. In contrast, traditional protocols like LEACH 

show lower performance across all metrics due to frequent re-clustering and lack of adaptive route prediction. Overall, this 

figure validates the superiority of the proposed model in delivering energy-efficient, stable, and QoS-driven communication 

in dynamic vehicular environments. 

 

Discussion  

The simulation was conducted in a scalable VANET environment with varying node densities (100–500) and realistic 

energy, communication, and mobility parameters. The proposed routing protocol, optimized using OMOA besides 

enhanced with M-ELA, Random Forest, besides Bloom filters, was evaluated against standard protocols such as LEACH, 

PSO-LEACH, GWO, and ACO Fig 8 shows Comparative Graphical Representation of Route Selection Performance 

Metrics for Different Protocols, with Proposed Model. The results across multiple tables reveal that proposed model 

achieves superior performance in energy efficiency, network longevity, and routing effectiveness. Specifically, it records 

the highest average residual energy (0.95 J), the longest node lifetimes (FND = 700, LND = 2900), and the lowest energy 

imbalance index (0.15). It also ensures the highest packet delivery ratio (96.8%), lowest end-to-end delay (140 ms), besides 

a minimal routing overhead of 350 packets. Cluster stability is enhanced through low CH reselection rates (0.18) besides 

balanced intra-cluster distances. The ablation study further confirms the critical role of each component, showing a sharp 

performance drop when any one is removed. Overall, the simulation results validate the effectiveness of proposed hybrid 

protocol in delivering energy-aware, stable, besides QoS-optimized communication in VANET scenarios. 

 

VI. CONCLUSION AND FUTURE WORK 

In this research, to proposed, a novel hybrid routing protocol designed for energy-efficient, reliable, and scalable 

communication in VANETs. The protocol integrates a M-ELA besides Random Forest classifier to intelligently classify 

and rank routing paths based on link stability, residual energy, and connectivity. To further optimize routing performance 
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under dynamic mobility and varying traffic conditions, the Ọdịgbo Metaheuristic Optimization Algorithm (OMOA) 

operates by iteratively refining a population of candidate cluster head configurations using directional learning and adaptive 

exploration. It evaluates each solution using a multi-objective fitness function to optimize energy efficiency, connectivity, 

and routing stability in VANETs. is employed to fine-tune routing parameters in real time. The integration of a Bloom filter 

mechanism enhances communication efficiency by reducing redundant transmissions besides conserving energy. The 

optimization process using OMOA significantly enhances energy efficiency by selecting well-balanced cluster heads. It 

reduces communication overhead and extends network lifetime through adaptive and direction-aware exploration. The 

integration with M-ELA and Random Forest ensures intelligent routing decisions with high delivery accuracy. Overall, it 

enables stable, QoS-driven data transmission in highly dynamic VANET environments. Extensive simulations were 

conducted to validate the performance of proposed    under diverse scenarios, including variable node densities, traffic 

loads, besides mobility models. The results show that proposed    consistently outperforms existing protocols in terms of 

PDR, energy consumption, end-to-end delay, besides network lifetime. In particular, proposed    achieved a 96.8% PDR, 

2900 LND, and 0.95 J average residual energy, reflecting its robustness besides suitability for real-time VANET 

deployments. Moreover, the ablation study and convergence analysis confirmed the significance of each component in the 

proposed   model. Although proposed protocol shows promising results, several avenues exist for further enhancement: 

Incorporating real-time vehicular mobility patterns using tools like SUMO besides NS-3 can help in refining the routing 

behavior for urban scenarios. Advanced AI models such as deep reinforcement learning besides graph neural networks 

(GNNs) can be integrated with proposed to support predictive routing under time-varying topologies. Future versions of 

proposed will consider edge/fog computing environments to reduce latency and distribute routing intelligence closer to 

vehicles. 
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