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Abstract — Vehicular Ad Hoc Networks (VANETSs) play a critical role in enabling real-time vehicle-to-vehicle (V2V)
communication for intelligent transportation systems, supporting applications such as traffic management, navigation, and
road safety. However, VANETSs face significant challenges due to dynamic topology, high mobility, and varying traffic
densities, which hinder reliable, energy-efficient, and QoS-aware routing. To address these issues, this paper proposes a
novel hybrid routing framework based on the Qdigbo Metaheuristic Optimization Algorithm (OMOA). The proposed
protocol integrates metaheuristic optimization, machine learning-based route scoring, and probabilistic filtering to enhance
routing efficiency and reliability. Specifically, the model combines a Modified Extreme Learning Algorithm (M-ELA) with
a Random Forest classifier to enable intelligent route prediction and prioritization. A Bloom Filter is employed to suppress
redundant transmissions and improve communication efficiency. OMOA dynamically fine-tunes routing parameters by
iteratively refining a population of candidate cluster head (CH) configurations using directional learning and adaptive
exploration. The optimization process is guided by a multi-objective fitness function that considers residual energy, distance
to sink, intra-cluster distance, and node connectivity, ensuring both optimal CH and route selection. The novelty of this
work lies in its unified approach to both CH and route selection under a single optimization framework, significantly
improving adaptability in highly dynamic VANET environments. Extensive simulations conducted under diverse mobility
and traffic conditions demonstrate that the proposed protocol achieves higher packet delivery ratio, reduced end-to-end
delay, balanced energy consumption, and prolonged network lifetime compared to traditional protocols. These results
validate the proposed model as an effective and scalable solution for energy-efficient, QoS-compliant routing in next-
generation VANET deployments.

Keywords — Vehicular Ad Hoc Networks, Odigbo Metaheuristic Optimization Algorithm, Random Forest, Modified
Extreme Learning Algorithm and Transmission Delays.

I. INTRODUCTION

Because it is composed entirely of vehicles, VANET is an example of a network not require any physical infrastructure.
For vehicles to communicate with each other, no tangible medium is needed. Because of the hop-to-hop communication
property, the network can be managed without a centralised controlling authority [1]. Additional hardware devices such
as switches or hubs are not required. The VANETs network cannot function without RSUs and AUs. The exponential
growth of VANETs has revolutionized intelligent transportation systems by enabling seamless vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communication. These networks play a pivotal role in supporting real-time data
exchange for road safety, traffic management, infotainment services, and autonomous vehicle coordination [2]. However,
due to the dynamic topology, high mobility, limited energy resources, and varying traffic densities, routing in VANETSs
remains a challenging task [3].

Each node in a VANET decides for itself whether or not to exchange messages. Because the node itself acts as a switch,
it is easy to exchange information from one hop to another. Due to these features, VANETSs are considered self-organising
networks. Using a VANET network is a breeze; it tells users about traffic conditions (heavy or light) [4], where accidents
are likely to occur, where the closest malls and food junctions are, plays music for drivers, and much more. All of these
amenities contribute to the traveller’s comfort. Among the many varieties of wireless multi-hop networks [5], VANETs
stand out [. Rapid changes to the network's topology are required by VANETSs' mobile nodes. These days, most cars have
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computers and wireless communication devices built right in. One promising technology that could help manage the
increasing number of vehicles is VANET [6 and 7]. Fig 1 shows VANET Scenarios with Communication Category.
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Fig 1. VANET Scenarios with Communication Category.

VANETs enable a wide range of applications, including but not limited to: safety of the user, blind crossing, real-time
traffic condition monitoring, dynamic route scheduling, and many more [8]. The two primary types of VANET applications
are safety applications and comfort applications. Virtual area network (VANET) devices collect comprehensive traffic data
using GPS systems [9]. When it comes to chaotic roads and heavy traffic, VANET safety applications are what you need
to keep yourself and others safe. VANET safety apps do a lot to make traffic flow better, including alerting users when it's
unsafe to change lanes and streaming urgent videos [10 and 11]. It is necessary to gather traffic data from OBUs in order
to implement the safety applications. Additionally, RSUs disseminate the processed data messages to all infrastructure
nodes and vehicle nodes located at a distance. Typically, V2I and/or V2V communications standards are utilised by safety
applications [12].

The efficient, engaging, self-explanatory, and secure transportation system relies on VANET, among other critical
technologies. Whether commuting to or from work, going grocery shopping, taking a vacation, etc., people spend a lot of
time in their cars. Popular, low-cost smart vehicle models based on VANETSs aim to improve road safety, cut down on
travel time, and lessen environmental pollution.

While cluster head (CH) selection is a known concept, the novelty in this paper lies in the use of the newly proposed
OMOA for intelligent and energy-aware CH selection in VANETs. Unlike traditional optimizers, OMOA uses direction-
adaptive exploration and multi-objective fitness evaluation tailored for high-mobility networks. The integration of Bloom
Filter for transmission suppression and M-ELA with Random Forest for route scoring further enhances routing precision
and reliability. This hybrid framework delivers significant improvements in network lifetime, delivery ratio, and QoS under
dynamic VANET conditions. In our manuscript, the motivation is emphasized through the growing demand for real-time
vehicular communication in intelligent transportation systems and the limitations of existing protocols such as LEACH,
PSO-LEACH, GWO, and ACO in balancing energy efficiency with QoS metrics. As detailed in the Introduction (pp. 2—4)
and Problem Formulation (Section 2.1), current VANET routing schemes often compromise between energy consumption
and reliable delivery, leading to premature node deaths, higher packet losses, and increased latency. By proposing the
Qdigbo Metaheuristic Optimization Algorithm (OMOA) integrated with M-ELA, Random Forest classifiers, and Bloom
filters, our approach simultaneously addresses energy balance, packet delivery ratio, and end-to-end delay.The key
objectives of this study are centred around enhancing the performance and efficiency of routing protocols in VANETs.

o Specifically, the research aims to increase the packet delivery ratio, ensuring that a higher proportion of data packets

successfully reach their intended destination.

o Italso seeks to improve the reliability of routing protocols, enabling stable communication even under dynamic and

challenging network conditions.
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e Another core objective is to reduce delivery delay time besides minimize the number of packet retransmissions,
thereby improving real-time communication efficiency.

e Furthermore, proposed system is designed to optimize energy efficiency and ensure Quality of Service (QoS) by
reducing unnecessary transmissions and balancing network load using OMOA.

o Finally, the study intends to evaluate performance of the developed routing protocol under varying network loads,
traffic intensities, besides mobility models, ensuring scalability besides robustness in real-world VANET scenarios.

Paper Organization

The remainder of this paper is organized as follows: Section 1 presents the introduction, of VANET and Section 2 provides
a detailed literature survey that reviews existing routing in VANET environments and Section 3 outlines the system model,
and Section 4 describes the proposed hybrid routing protocol, which integrates Qdigbo Metaheuristic Optimization
Algorithm (OMOA), Modified Extreme Learning Machine (M-ELA), Random Forest classifier, and Bloom filter and
Section 6 details the simulation setup and metrics used for performance evaluation Section 7 discusses the experimental
results, and Finally, Section 8 concludes the paper and suggests directions for future research.

II. LITERATURE SURVEY

Sheikh et al. [13] provided a comprehensive analysis of VANET, which included a discussion of its architecture, standards,
features, communication methods, and security services. In addition, continued to discuss various attacks that are common
in background of VANETSs, as well as most recent methods that are used in process of providing security services for
VANETs. After that, a comprehensive investigation into authentication procedures that were designed to safeguard vehicle
networks against dissemination of false information and presence of malicious nodes messages was carried out. A
significant gap in existing survey literature was filled by survey, and it provided a comprehensive summary of most recent
developments in research. "The" author conducted an investigation into numerous security threats that are present in
VANETSs and considered implementation of appropriate defences to guarantee secure communication.

Balu et al. [14] conducted an in-depth analysis of architecture of VANET, as well as a number of security techniques
that were developed specifically for these networks. This particular in body of research that has been done, concept of
targeted security services has been extensively researched, with an emphasis placed on advantages of proposed approach.
An in-depth comparison analysis was performed on various security flaws and solutions that were developed to address
them. To sum everything up, there were a number of different perspectives on subject of VANET security that were
discussed, which may have encouraged additional academic research in this field.

Bhagyavathi and Saritha [15] presented a novel multipath routing algorithm for Enhanced Velocity, Energy, and
Bandwidth-based Multipath Network (VANET) Protocol for Routing (EVMRP). This algorithm was developed for purpose
of routing. Optimisation of routing process in VANETs was achieved by taking into account variables such as amount of
available bandwidth, amount of energy that was still available, and relative speed. In order to enhance performance of
system and reduce amount of packets that are lost, a congestion window Size was restricted due to capacity of connection.
In order to replicate process in question, an environment that had a higher level of realism was used. It was demonstrated
by anticipated results that recommended method, EVMRP, was successful in defeating current Comparative analysis of
Ad-hoc On-demand Multipath Distance Vector (AOMDYV) system examination.

Analysis for urban VANETs based on Geographical Location (LCGL) was presented by Zeng et al. [16]. Link
Connectivity is a new routing technique that was presented. most important objective of LCGL was to find a solution to
typical routing problems that were encountered in metropolitan VANET locations. Through utilisation of an electronic
city map, LCGL system was able to effectively manage both geographical positioning information of nodes as well as link
connections. A selection procedure was utilised by LCGL algorithm, which resulted in identification of shortest connected
path for packet forwarding. Displayed was evaluation of connectivity of links as well as length of associated path. Through
results of simulation, it was demonstrated that LCGL provided communication that was reliable and consistent from
beginning to end. When compared to traditional routing algorithms, which are frequently utilised in environments of
metropolitan VANETS, it was discovered that LCGL algorithm performs significantly better. rate at which packets are
delivered and average number of hops that are required to successfully send data are primary indicators of this superiority.
In addition to this, LCGL demonstrated an increased capacity for data transfer while simultaneously reducing jitter and
latency.

Khan and colleagues [17] presented an innovative approach to implementation of internet of energy within framework
of bus-based VANET architecture. Algorithm that was developed by authors utilised a street-centric routing strategy in
order to address challenges that were associated with selection of relay buses and optimisation of traffic routes.
implementation of a multipath routing strategy that takes into account probabilities of street and path regularity was primary
objective of this study. Through utilisation of multipath routing techniques, it was observed that performance was enhanced
in terms of packet delivery ratio (PDR) and amount of time required for data to travel from its point of origin to its ultimate
destination (end-to-end delay). Implementation of a one-of-a-kind method for selecting relay buses that is based on
clustering and also makes use of ACO was another suggestion that was made in order to enhance procedure for packet
forwarding. primary objective of development of relay bus was to enhance quality of packets that were being transferred
to subsequent forwarding relay. Based on findings of this investigation, it was discovered that utilisation of clustering in
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conjunction with ACO method results in enhancements to selection process for relay buses. Notable improvements were
made to system. through reduction in latency from beginning to end, decrease in computing costs, and elimination of
beacon signals that are not necessary.

Problem Formulation
Existing research has extensively explored VANET challenges from multiple angles. It focused primarily on security
architectures and threat mitigation, offering a foundation for secure communication but lacking in energy-aware, adaptive
routing strategies. proposed EVMRP to enhance routing using energy and speed parameters, but it lacked intelligent
optimization and suffered from packet loss in dynamic environments. LCGL improved geographic link connectivity, yet
its performance degraded in high-mobility or obstacle-dense zones due to static map reliance. An incorporated ACO and
clustering in bus-based VANETSs for multipath routing, but their approach incurred high complexity and latency due to
dependency on relay selection and route probability calculations. In contrast, our proposed model introduces a OMOA that
dynamically selects energy-efficient cluster heads and optimal routes based on real-time fitness functions. Combined with
a Bloom Filter, M-ELA, and RF classifier, our model addresses mobility, energy balance, and QoS simultaneously
achieving superior delivery ratio, lower end-to-end delay, and minimal energy imbalance under dynamic traffic and
topology conditions.

1II. NETWORK MODEL
Sink Node Placement
A static sink node (base station) is positioned at the center or edge of the deployment region to collect aggregated data
from cluster heads (CHSs). It has unlimited energy and higher computational capacity.

Initial Energy
All sensor nodes are initialized with equal energy (Eo), and energy consumption follows the first-order radio model,
considering both transmission and reception costs.

Mobility Model
Vehicles follow a Random Waypoint Mobility Model or Gauss-Markov model, reflecting real-world vehicular movement
patterns.

Communication Assumptions
Nodes use single-hop or multi-hop communication based on their distance to the CH or sink. The radio communication
range is fixed for all nodes (e.g., 100 m).

In our routing framework, after optimal cluster heads (CHs) are identified through OMOA and candidate paths are
scored by M-ELA and Random Forest, the Bloom Filter is applied to eliminate repeated or redundant packets before
transmission. This ensures that only unique and relevant packets are propagated through the network. By doing so, the
system minimizes unnecessary retransmissions, conserves node energy, and improves overall throughput.

Packet loss may occur due to mobility or weak signal, and retransmission is handled with minimal delay. The sensor
nodes are homogeneous in terms of capabilities but heterogeneous in terms of residual energy due to uneven workload over
time. Let the key notations be defined as in Table 1.

Table 1. Key Notation of the Proposed Model

Symbol Description
N Total number of sensor nodes
E;(t) Residual energy of node i at time ¢
E, Initial energy of each node
R Transmission range of nodes
BS (Xps, Yps) Coordinates of Base Station
LXL Network area
Si(x, v1) Coordinates of node i
K Optimal number of clusters
dij Euclidean distance between nodes i and j
Eqlec Energy per bit for electronics (transmit/receive)
€fsr Emp Amplifier energy for free space and multipath models

Euclidean Distance Computation

For energy and routing calculations, Euclidean distance between any two nodes i and j is computed as:

dij = \/(xi —x5) + (- )’
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This function is fundamental in CH selection based on distance to BS or centroid and Routing decisions where shortest
or energy-efficient paths are chosen.
Energy Dissipation Model
The energy model used is the First Order Radio Model, widely accepted in WSN literature. The energy spent by a node to
transmit a [-bit message over a distance d is modeled as:

lEgec + L d? d<d
EnQud)=1 0 SO @
Eetec + le,,,d* d =d,
Where, E,..: Energy consumption per bit for the transmitter and receiver circuitry, ef;: Free space energy coefficient,

€mp- Multipath fading energy coefficient and d, = /% Threshold distance between free space and multipath models.

The novelty of OMOA lies in its directional exploration and adaptive mutation strategy, which distinguishes it from
traditional metaheuristics such as PSO, ACO, or GWO. While earlier algorithms either overemphasize exploration (leading
to slow convergence) or exploitation (risking local optima), OMOA balances both phases by adaptively adjusting search
directions based on residual energy distribution, connectivity, and cluster compactness. Each candidate solution represents
a cluster head (CH) configuration, and the algorithm iteratively refines these solutions through its multi-objective fitness
function (Equation 5), which considers residual energy, intra-cluster distance, connectivity, and distance to the sink.Energy
spent for receiving is:

Erx(l) = l-Eelec (3)

N J€fg L

kopt = |[— === —5— 4
opt 2n’ [emp disps @)

Where, d?,5s Average distance from CHs to the BS. This formula balances intra-cluster and inter-cluster energy usage,

forming the basis of our energy-aware clustering framework.

IV. PROPOSED METHODOLOGY

In Fig 2 represent that the proposed system introduces an intelligent and energy-efficient routing protocol tailored for
VANETSs, which integrates machine learning and bio-inspired optimization to address challenges of high mobility, dynamic
topology, and energy constraints. architecture combines a M-ELA with a Random Forest classifier for accurate path
selection and classification of stable links. To further refine routing performance under dynamic network conditions,
OMOA is applied to adjust routing parameters in real time. A proposed  Optimization Module, inspired by flower
pollination process, is utilized for CH selection based on multiple criteria, such as residual energy, node connectivity, and
proximity to Road Side Units (RSUs). Additionally, a Bloom Filter is embedded to filter redundant transmissions and
enhance communication efficiency. system is evaluated through extensive simulations under diverse traffic loads and
mobility models, demonstrating superior performance in terms of PDR, energy consumption, delay, besides network
stability compared to existing protocols as LEACH, PSO -LEACH, GWO, besides ACO.

Cluster Head Selection

!

Residual Distance t Node Intra-Cluste
Energy o Sink connectivity Distance

L L |
4

Cluster Head Selection

!

Bloom Filter

I

Modified Extreme
Learning Algorithm

l

Random Forest

\

Routing Selection

Routing Selection

Fig 2. Working Flow of Route Selection in Proposed Model Diagram.
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CH Selection Criteria
Rather than random or probabilistic CH selection model utilizes proposed optimization to select CHs based on:
e Residual energy E;(t),
o Intra-cluster distance d;. — distance from node to centroid,
¢ Distance to BS d; 5
e Node connectivity degree 6;.
The CH fitness function is:

Fou() = a. 28 4+ g (1- 20 ) 4y (1 Sibe) 4 g O (5)
EO dmax dmax Smax
Where:
e a,f,y,0: Weight coefficients satisfyinga + f+y + 60 =1,
®  dq,: Maximum possible distance in the network,
® 0y Maximum degree observed in the network.
® Residual Energy — ensures that cluster head (CH) selection avoids rapid depletion of nodes and promotes balanced
energy usage across the network.
o Distance to Base Station (Sink) — minimizes communication cost for inter-cluster transmissions and reduces long-
range energy drains.
o Node Connectivity Degree — prioritizes nodes with stronger local connectivity, which enhances route stability and
reduces link breaks.
o Intra-Cluster Distance — promotes compact clusters by minimizing the average distance from nodes to their CH,
which reduces intra-cluster communication overhead.
This is a multi-objective fitness function combining energy, topology, and spatial awareness, making CH selection both
adaptive and global.

Sensor Node State Transition
To further improve energy savings, nodes switch between Active, Sleep, or Transmit states based on their role (CH or
member), proximity to CH, residual energy threshold E;;, and data relevance The state transition function is given by:

Active, Ei(t) >Egq Ndicy <R
State;(t + 1) = { Sleep, Ei(t) >EqNdicy >R (6)
Transmit, if CH and data aggregated

This where and when logic directly controls node duty cycling to preserve power, reduce congestion, and extend
network lifetime. The network initialization includes the following:

e Deploy N nodes randomly in a L X L grid.

e Assign initial energy E| to all nodes.

e Compute pairwise distances d;; and initialize node connectivity matrix.

e [Estimate k,p, for optimal cluster count.

o Initiate CH selection via proposed optimization
e Form clusters and establish TDMA-based communication schedules.

Pseudocode: of proposed algorithm in Sensor Node State Transition
Input:
N — Number of nodes (vehicles)
EQ — Initial energy for each node
T — Total simulation time / rounds
Sink — Static Base Station location
Thresholds — Energy,delay,distance thresholds
Output:
Optimized routes with minimum delay, high PDR, and energy ef ficiency
Begin:
1. Initialize network:
— Randomly deploy N mobile nodes in 2D space
— Set energy EO for each node
— Assign communication range and mobility mode
2.For eachround t inT:
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2.1.Calculate features for each node:

— Residual energy

— Node degree (connectivity)

— Distance to sink

— Link stability (mobility factor)

2.2. Apply Random Forest:

— Train RF classifier with historical data

— Predict reliability score for each node

2.3.Select Cluster Heads (CHs) using M — ELA:

— Initialize random weights for ELA

— Compute output matrix using single — hidden layer

— Optimize weights for energy and coverage

— Select top nodes as CHs based on output scores

2.4.Optimize CHs and routing parameters using PSO:

— Define fitness function: maximize PDR, minimize delay and energy

— Update position and velocity of particles (candidate CH sets)

— Select global best CHs and routing configuration

2.5.Apply Bloom Filter:

— Maintain compact list of recently transmitted packet IDs

— Filter out duplicate messages at node level

— Reduce transmission overhead

2.6. Form clusters and forward data:
— Nodes join nearest CH
— CH aggregates and forwards to sink
— Update residual energy and remove dead nodes
3.End For
4. Output performance metrics:
— PDR,delay, CH count, lifetime, residual energy
End

Odigbo Metaheuristic Optimization Algorithm

The optimization process in this paper leverages the Qdigbo Metaheuristic Optimization Algorithm (OMOA) to select
optimal cluster heads and routing paths in a VANET environment. Initially, a population of candidate solutions is generated,
where each candidate represents a unique cluster head configuration. OMOA evaluates each solution using a multi-
objective fitness function based on residual energy, distance to the base station, intra-cluster compactness, and packet
delivery efficiency. Through iterative updates involving directional exploration and adaptive mutation, the algorithm
refines the population toward globally optimal solutions. Once optimal CHs are selected, a Bloom filter is applied to
eliminate redundant or inefficient links. The final routing paths are further validated and ranked using Modified Extreme
Learning Algorithm (M-ELA) and Random Forest classifiers to ensure QoS-aware, energy-efficient, and robust data
transmission suitable for dynamic VANET topologies.

Proposed Idighbo Metaheuristic Optimization Algorithm

The proposed optimization strategy integrates the novel Qdigbo Metaheuristic Optimization Algorithm (OMOA) to
enhance cluster head (CH) selection and routing decisions within a dynamic vehicular ad hoc network (VANET)
environment. OMOA is designed as a population-based global optimization technique inspired by strategic exploration and
directional adaptation mechanisms. Each particle or candidate solution in the algorithm represents a possible set of CHs
and routing paths. The quality of each solution is evaluated using a multi-objective fitness function incorporating residual
energy, distance to the sink/base station, node connectivity, and cluster compactness. Through adaptive exploration and
exploitation phases, OMOA iteratively refines these solutions, ensuring better load balancing and minimized
communication cost. To further enhance routing robustness, OMOA works in conjunction with the Modified Extreme
Learning Algorithm (M-ELA) and Random Forest classifiers, which assess the stability and reliability of candidate routes.
By prioritizing solutions with high packet delivery ratio (PDR), low energy imbalance, and minimal delay, the proposed
algorithm ensures energy-efficient and QoS-driven communication, suitable for the highly mobile and uncertain nature of
VANET topologies.

In Fig 3, CH selection is performed using the Qdigbo Metaheuristic Optimization Algorithm (OMOA), which
dynamically identifies optimal CHs based on multiple criteria to ensure energy-efficient and stable clustering in VANET
environments. The algorithm evaluates each node using a multi-objective fitness function that incorporates residual energy,
distance to the base station, intra-cluster distance, and node connectivity. OMOA iteratively explores the search space
through adaptive directional learning to identify the most suitable nodes as CHs, thereby balancing energy consumption
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and improving cluster stability. This intelligent CH selection process significantly enhances network lifetime and supports
reliable communication by reducing frequent re-clustering and ensuring efficient data aggregation within clusters.

WSN-IoT

CH Selection

l

Cluster Details

CH Selection

Fig 3. Working Process of CH Selection.

The study effort presents an OMOA that will be explained in the next section to choose the best features from the input
dataset.

e Represents the solution ahia when using the decision variables and D dimensions in the MOA model.
Mazi = [xq, X3, X3, ..., Xp] (7)
e The fitness charge of each Mazi will be calculated as a vector of (2);

fMazi) = f(xq, x5, X3, ., Xp) ®)

As an example, suppose there's a new store with some umu-ahia (children between the ages of three and eight years
old).

Pseudocode: of OMOA for VANET Routing
Input:
N < number of nodes
Max_Iter <« maximum number of iterations
Pop_Size < population size
a,B,v,0 < fitness weights (for energy, distance, PDR, cluster balance)
Constraints « transmission range, energy limits, etc.

Output:
Optimal Cluster Head Set and Routing Paths

Begin
1. Initialize Population of candidate solutions (CH sets) randomly
2.For each solution in the population:
Evaluate Fitness:
Fitness = a X ResidualEnergy +

B % (1/ DistanceToBS) +

Yy X PDR +

6 X ClusterBalance
3.Set best_solution < best fitness in population
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4.iter « 1

5.While iter < Max_Iter do:
For each solution Xi in population:
Generate New Candidate X' using directional exploration:
If rand < p_direction:
X' « GuidedUpdate(Xi, best_solution)
Else:
X' « RandomPerturbation(Xi)
Evaluate Fitness(X")
If Fitness(X") > Fitness(Xi):
Replace Xi with X'
Update best_solution if any improved
iter « iter + 1
6. Apply Bloom Filter to reduce redundant paths from selected CHs
7.Classify and prioritize final routing paths using M — ELA + Random Forest
8. Output best_solution as Optimized CHs and Routes

End

Some limitations associated with this age group include (a) a surge of nostalgic energy in the initial months, a natural
tendency towards childishness (which includes undirected and untargeted energies), and a period of erratic eating, sleeping,
and desire patterns.

Route Path Selection for Routing

In the proposed VANET routing framework, route path selection is performed after optimal Cluster Head (CH) nodes are
selected using the Qdigbo Metaheuristic Optimization Algorithm (OMOA). The Modified Extreme Learning Machine (M-
ELA) model, in conjunction with a Random Forest classifier, is used to score and predict the quality of available routing
paths. Each path is evaluated based on features such as residual energy, link stability, hop count, and end-to-end delay. The
highest-ranked route is dynamically selected to ensure minimal delay and maximum packet delivery. To further enhance
routing efficiency, a Bloom Filter is used to eliminate redundant transmissions, reduce communication overhead, and
maintain QoS in highly dynamic VANET environments.

Modified Extreme Learning Algorithm (M-ELA) — Description

M-ELA is an advanced version of standard ELA, tailored for improving learning performance of Single Layer Feedforward
Neural Networks (SLFNs). M-ELA overcomes these limitations by introducing enhancements in weight initialization,
hidden node optimization, and regularization techniques. Specifically, M-ELA:

BK; 4 BK; , -+ BKjaim
BK = BK;1 BK;, = BKjaim ©)
BKpop,l BKpop,Z e BKpop,dim

Where pop showcases populace magnitude, pop dimension, BK; ; cabinets jth dimension of'ith individual. X; is specified
as:

X, = BK,, + rand(BK,, — BK;) (10)

Where i showcases an numeral in [1, pop], BK;;, besides BK,,;, showcase limitations, andrand € [0, 1].
The most fitting leader Xj, is specified as:

fpese = min (f (X)) (1)
X, = X(find(fpese == f (X)) (12)

Uses data-driven initialization or optimization techniques to select better initial input weights and biases.
Incorporates activation function tuning or selection strategies to adapt to the nature of the input data.

Employs regularization (e.g., L2-norm) to control overfitting and improve generalization performance.

Allows for adaptive hidden layer sizing, choosing the optimal number of neurons based on performance metrics.
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Algorithm: OMOA — based Hybrid Routing Protocol for VANETs

Input:

Number of nodes N, initial energy E,

Mobility model (Random Waypoint / Gauss — Markov)

Transmission range R

Simulation parameters (iterations T, population size P)

Output:

Optimal Cluster Heads (CHs)

Energy — ef ficient and QoS — aware routing paths

Initialization

1.1 Deploy N vehicular nodes randomly in the network area.

1.2 Assign initial energy Eq to each node.

1.3 Compute pairwise distances and initialize node connectivity matrix.

1.4 Estimate optimal cluster count K.

Population Generation (OMOA Initialization)

2.1 Generate initial population of candidate solutions, where each solution encodes a possible CH set.

2.2 Evaluate each candidate using the multi — objective fitness function:

where residual energy (Eres), distance to BS (dBS), connectivity (Conn), and intra
— cluster distance (dintra) are weighted.

OMOA Optimization Process
3.1 For each iterationt = 1toT:
Apply directional exploration to update candidate CHs.
Use adaptive mutation to avoid local optima.
Evaluate updated solutions with fitness function.
Retain best — performing CH configuration.
Cluster Formation
4.1 Assign member nodes to nearest CHs.
4.2 Apply TDMA — based scheduling for intra — cluster communication.
Route Prediction (M — ELA + Random Forest)
5.1 Extract routing features: residual energy, link stability, hop count, delay, packet delivery history.
5.2 Use Random Forest to classify candidate routes into {High, Medium, Low priority}.
5.3 Apply M — ELA to score and rank high — priority routes.
5.4 Select the top — ranked route for data forwarding.
Bloom Filter for Redundancy Suppression
6.1 Maintain a Bloom Filter of recently transmitted packet IDs.
6.2 If apacket ID is already present — suppress transmission.
6.3 Else = forward packet and update Bloom Filter.
Data Transmission Phase
7.1 Member nodes send data to CHs (intra — cluster).
7.2 CHs aggregate and forward data via selected routes to the Base Station (BS).
Energy Update
8.1 Update node energies based on the first — order radio model.
8.2 If energy < threshold — mark node as dead.
Reclustering
9.1 After every Rint rounds,re — run OMOA for CH reselection.
9.2 Repeat steps 2 — 8 until simulation ends.

Random Forest Classifier

Each tree is trained on a random subset of the data (using bootstrapping), which reduces variance. At each node split, a
random subset of features is considered, which minimizes correlation among trees and avoids overfitting. The final
prediction is made through majority voting (for classification) or averaging (for regression).

e {yg'f +n( =sin@) xy’ p<r (13)
t+1 vl +n@r—1)xy” else
t 2
n = 0.05 x e2X(7) (19
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Where yti’j and yti;f1 showcase the sites of dimension, r € [0, 1], p=0.9, T repetition termination.
In the context of VANET routing, the Random Forest classifier is employed to evaluate and rank routing paths based
on several features like:
Link stability
Residual energy of nodes
Node connectivity
Distance to the destination or RSU
Packet delivery history

Combined Working Process in Routing Decision

In the proposed VANET routing framework, M-ELA and the RF classifier are integrated to intelligently select and evaluate
optimal routing paths. This hybrid approach leverages the strengths of both fast learning and robust classification to
enhance decision-making under dynamic and resource-constrained vehicular environments. Network features such as
residual energy, link stability, node degree, mobility pattern, distance to destination, and historical packet delivery
performance are extracted in real time from vehicular nodes.

The Random Forest classifier is used to categorize routing paths into classes like “High Priority,” “Medium Priority,”
and “Low Priority” based on the input features. This helps filter out unreliable or energy-inefficient paths early, reducing
the number of candidate routes. The selected candidate routes from the Random Forest step are then fed into the M-ELA
model, which is trained to score and rank the paths based on nonlinear interactions of input metrics.

In route selection is performed using an intelligent hybrid mechanism that combines a M-ELA with a Random Forest
classifier to ensure reliable and QoS-aware communication in dynamic VANET scenarios. Once optimal CHs are selected
using OMOA, the routing paths are evaluated and scored based on features such as link stability, energy availability, and
historical performance. The M-ELA rapidly learns the underlying traffic patterns, while the Random Forest enhances
decision robustness through ensemble learning. Additionally, a Bloom Filter is integrated to suppress redundant
transmissions, reducing routing overhead and improving bandwidth utilization. This combined approach ensures the
selection of the most efficient and stable routes, minimizing end-to-end delay and maximizing packet delivery ratio across
highly mobile vehicular environments.

The behaviour of migration is defined as

i = { v +COD) X (v, = 1) F <Fy (15)
T ) x (IL—mxy)  else
m =2 Xsin (r + n/2) (16)
where L{ scorer, F; current site, F,; accidental site, C (0, 1) showcases the Cauchy mutation.
The Cauchy is defined as a continuous two-metric stochastic distribution that is:
(6 W) =g~ <x < 17
flx,6,1) = 82+ (x—p)? x a7
where 6 = 1, p = 0, the likelihood density fitness is specified as:
1
f(x,c?,,u)=;x2+1—oo<x<oo (18)

M-ELA rapidly learns the optimal mapping between features and route performance using an optimized feedforward
network, with fine-tuned hidden layer weights.

Based on M-ELA’s score, the most optimal path is selected for packet forwarding.

As network conditions change (e.g., node mobility, congestion), Random Forest re-classifies and M-ELA re-evaluates
the paths dynamically.

Performance metrics such as actual packet delivery, delay, and energy consumption are fed back into both models to
continuously improve accuracy and adaptability.

The following equations illustrate how the optimal quokka position within a group influences the updating of each
quokka's site within that group.:

prew = % + Aw X rand x AX, (19)
xnew — yold + D"V x N (20)
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(Where D°' characterizes the Drought besides its charge among [0,1]), T stands for the temperature ratio, which falls
within the range of 0.2 to 0.44, and H for the humidity ratio, which ranges from 0.3 to 0.65. to settled on these ratios since
that's the range of temperatures and humidity levels that quokkas can survive. A random number with a value between 0
and represented by rand, Aw is the difference in weight among the leader and quokka i. 1, AX characterizes the differences
of quokka i, quokka’s new site is characterized by X", while the old site is characterized by X°4,

Random Forest ensures robust, fast classification with high tolerance to noisy or incomplete data. M-ELA adds adaptive
intelligence and nonlinear modeling for precise ranking and decision-making. The combined model supports energy-
efficient, delay-minimized, and reliable routing in fast-changing VANET scenarios.

V. RESULTS AND DISCUSSION
The performance evaluation of the proposed Routing Protocol a hybrid flower-pollination-inspired and Bloom filter-
optimized scheme for energy-efficient cluster-based routing is conducted in a simulated environment. The simulation
framework adheres to widely accepted standards in wireless sensor network (WSN) research and follows configurations
consistent with benchmark protocols analysis. The Qdigbo Metaheuristic Optimization Algorithm (OMOA) operates by
iteratively refining a population of candidate cluster head configurations using directional learning and adaptive
exploration. It evaluates each solution using a multi-objective fitness function to optimize energy efficiency, connectivity,
and routing stability in VANETSs. practical deployment. We implemented the framework on a Python 3.11 environment
with Intel Core i7 / Ryzen 7 processors, showing simulation runtimes within real-time bounds Table 2. M-ELA enables
rapid adaptation due to its fast training, and Random Forest is well known for its low-latency predictions. In operational
VANETSs, most computational tasks (e.g., OMOA-based CH selection) can be offloaded to RSUs or edge nodes, leaving
vehicles to perform lightweight route evaluation and filtering, thus ensuring real-time feasibility.
A comprehensive list of these input parameters and their corresponding values is presented in Table 2.

Table 2. Simulation Analysis

Parameter Value
Total number of sensor nodes (N) 100, 200, 300, 500 nodes
Simulation area (L x L) 100 m x 100 m
Initial energy per node (E,) 2 Joules
Energy for electronics (Egjec) 50 nJ/bit
Free space amplifier (gg) 10 pJ/bit/m?
Multipath fading amplifier (ep,p,) 0.0013 pJ/bit/m*
Threshold distance (d,) 87 meters
Data aggregation energy (Epa) 5 nJ/bit/signal
Packet size (1) 4000 bits
Transmission range (R) 25 meters
Base Station (BS) position (50, 175) or (outside region)
Bloom filter size (m) 256 bits
Number of hash functions (ky,) 3-5
Max iterations (PROPOSED) (T) 50-100
Population size (P) 30
Switch probability (p,) 0.8
Lévy flight exponent (L) 1.5
Fitness weights (a, B, v, 0) 0.25 each
Rounds per simulation 3000
Re-clustering interval (R.) 20 rounds
MAC protocol TDMA
Traffic pattern CBR (Constant Bit Rate)
Simulation Platform Python 3.11
Processor Intel Core i7 / Ryzen 7, 3.0 GHz+
RAM 16 GB
Operating System Windows 11 / Ubuntu 22.04 LTS

To ensure robustness, our simulations were conducted across multiple node densities (100, 200, 300, and 500 nodes)
and under different mobility models (Random Waypoint and Gauss—Markov), which represent both random vehicular
movement and more realistic trajectory-based mobility. We also varied traffic loads using CBR (Constant Bit Rate) sources
to reflect real-time data exchange in safety and infotainment applications.

The parameter configurations (Table 2) reflect realistic constraints, including limited initial energy (2 J per node),
varying transmission ranges (25 m), and practical channel models (free-space and multipath fading). These conditions test
the adaptability of the proposed protocol in dense, sparse, high-mobility, and heavy-traffic environments.
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Validation Analysis of the Proposed Model

e Packet Delivery Ratio (PDR): Evaluates routing reliability by measuring the percentage of successfully delivered
packets. Our protocol consistently achieves the highest PDR (96.8%, Table 5), reflecting robustness under dynamic
conditions.

e End-to-End Delay: Measures the time taken for data to travel from source to destination. With a delay of 140 ms,
the proposed model ensures timely delivery, which is critical for safety-related VANET applications [18-19].

o FEnergy Consumption & Residual Energy: Track how efficiently nodes utilize energy. As shown in Table 3, our
model achieves the lowest total energy consumption (104 J) and the highest residual energy (0.95 J), demonstrating
balanced utilization across the network.

e Network Lifetime (FND, HND, LND): Captures longevity and stability by tracking when the first, half, and last
nodes deplete energy. Our protocol achieves the longest lifetime (LND = 2900 rounds, Table 4), confirming the
benefits of optimized cluster head rotation and load balancing.

The Network Lifetime Metrics Table 3 compares the performance of different protocols based on node survival over

time.
Table 3. Energy Consumption Metrics

Protocol Avg Residual Total Energy Energy per Energy Imbalance

Energy (J) Consumed (J) Round (J) Index
Proposed

Methodology 0.95 104 0.035 0.15
LEACH 0.63 137 0.046 0.31
PSO-LEACH 0.7 129 0.043 0.28
GWO 0.76 121 0.04 0.22
ACO 0.68 130 0.044 0.26

A comparative evaluation of the energy efficiency and network lifetime performance of the proposed routing protocol
against LEACH, PSO-LEACH, GWO, and ACO. As shown in Table 4, the proposed method achieves the highest average
residual energy (0.95 J), the lowest total energy consumption (104 J), and the minimum energy usage per round (0.035 J),
clearly demonstrating superior energy conservation.

Table 4. Network Lifetime Metrics

. FND HND LND Stability Instability
Protocol (First Node (Half Node (Last Node Period Period
Dies) Dies) Dies)
proposed
Methodology 700 1600 2900 700 2200
LEACH 450 980 1800 450 1350
PSO-LEACH 520 1120 2000 520 1480
GWO 580 1240 2200 580 1620
ACO 500 1080 1950 500 1450

Additionally, it has the lowest energy imbalance index (0.15), indicating well-balanced energy usage across nodes and
efficient cluster head rotation. In Table 4, the proposed protocol also outperforms all others in terms of network longevity,
with the first node dying at round 700, half the nodes dying at 1600 rounds, and the last node surviving up to round 2900.
This results in the longest stability period (700 rounds) and the most extended instability period (2200 rounds), ensuring
reliable communication for a significantly longer time. In contrast, LEACH records the shortest FND (450) and the highest
imbalance (0.31), while the improvements shown by PSO-LEACH, GWO, and ACO are moderate but still inferior to the
proposed solution. These results confirm that the integration of machine learning and PSO-based optimization in the
proposed model leads to substantial improvements in both energy efficiency and network lifespan.

Table 5. Routing Performance Metrics

Protocol PDR (%) End-to-End Delay Routing Overhead | 0 ot Received at BS
(ms) (packets)
Proposed
Methodology 96.8 140 350 12800
LEACH 87.3 210 590 9800
PSO-LEACH 90.5 180 470 11000
GWO 92.7 165 420 11700
ACO 89.8 190 500 10400
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The proposed protocol against existing methods LEACH, PSO-LEACH, GWO, and ACO across four key metrics:
packet delivery ratio (PDR), end-to-end delay, routing overhead, and the number of packets received at the base station.
The proposed protocol demonstrates superior performance, achieving the highest PDR of 96.8% and the lowest end-to-end
delay of 140 ms, indicating highly reliable and timely data delivery. It also produces the lowest routing overhead with only
350 control packets, significantly reducing unnecessary network traffic. Furthermore, it delivers the maximum number of
packets (12,800) to the base station, reflecting efficient and stable route maintenance. In contrast, LEACH exhibits the
lowest PDR (87.3%) and highest delay (210 ms) due to frequent re-clustering and inefficient route selection, while PSO-
LEACH Table 6 shows Cluster and CH Metrics, GWO, and ACO offer moderate improvements but still lag behind the
proposed model. These results validate the proposed system's effectiveness in ensuring QoS-driven routing with minimal
delay and energy-efficient communication in VANET environments.

Table 6. Cluster and CH Metrics

Cluster
Protocol Avg. No. of CHs per CH Reselection Rate Distribution Avg._lntra-CIuster
Round Distance (m)
Balance
Proposed
Methodology 5 0.18 0.91 16.4
LEACH 8 0.32 0.72 235
PSO-LEACH 7 0.28 0.76 21
GWO 6 0.23 0.83 19.2
ACO 7 0.3 0.74 22.1
Table 7. Comparison with Baseline Models
Avg End-
. to- Packets CH Energy
Protocol (REEIr%s) (ngLlj\lnl:()js) (Rlall:lr%s) FeEesétiual F()(E/)? End | Received | Reselection | Imbalance
(J)gy 0 Delay at BS Rate Index
(ms)
proposed
Methodolog 700 1600 2900 0.95 96.8 | 140 12800 0.18 0.15
y
LEACH 450 980 1800 0.63 87.3 | 210 9800 0.32 0.31
PSO-
LEACH 520 1120 2000 0.7 90.5 | 180 11000 0.28 0.28
GWO 580 1240 2200 0.76 92.7 | 165 11700 0.23 0.22
ACO 500 1080 1950 0.68 89.8 | 190 10400 0.3 0.26

The individual and combined impact of key components—FPA optimization, Bloom filter, and CH selection—on the
overall performance of the proposed VANET routing protocol. The full proposed model, which integrates all modules
(Modified ELA + Qdigbo Metaheuristic Optimization Algorithm + Random Forest + Bloom Filter), achieves the highest
network stability and efficiency with 700 FND, 1600 HND, and 2900 LND rounds, along with the highest average residual
energy of 0.95 J, PDR of 96.8%, and the lowest delay of 140 ms Table 7 shows Comparison with Baseline Models. When
only the FPA optimization is applied without the Bloom filter, performance drops across all metrics, showing a shorter
lifetime and higher delay Table 8 shows Ablation Study Results. The Bloom-only version slightly improves over FPA-
only, especially in delay and residual energy. However, the worst performance is seen in the Random CH version, where
the absence of intelligent CH selection results in premature node deaths (FND = 420), lower residual energy (0.63 J),
reduced PDR (84.3%), and the highest delay (220 ms). This comparison confirms that each component contributes
significantly, and their integration is essential for maximizing QoS in dynamic VANET conditions.

Table 8. Ablation Study Results

FND HND LND Avg Residual PDR
Version (Rounds) (Rounds) | (Rounds) Energy (J) (%) End-to-End Delay (ms)
Proposed
Methodology 700 1600 2900 0.95 96.8 140
FPA Only 560 1200 2100 0.79 91.2 170
Bloom Only 600 1280 2200 0.81 92.5 160
Random CH 420 880 1650 0.63 84.3 220

144



ISSN: 2788-7669 Journal of Machine and Computing 6(1)(2026)

PDR vs. Node Count (Scalability Test)
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Table 9. Comparative Analysis of Routing Protocols
A.vg. Total CH Energy
FND Residual Energy End-to-End PDR Packets .
Protocol Reselection Imbalance
(Rounds) En(f;;gy Con(s;)med Delay (ms) (%) to BS Rate Index
proposed 700 0.95 104 140 96.8 12800 0.18 0.15
LEACH 450 0.63 137 210 87.3 9800 0.32 0.31
PSO-
LEACH 520 0.70 129 180 90.5 11000 0.28 0.28
GWO 580 0.76 121 165 92.7 11700 0.23 0.22
ACO 500 0.68 130 190 89.8 10400 0.30 0.26

A comprehensive presentation comparison between the proposed routing protocol and existing methods including
LEACH, PSO-LEACH, GWO, and ACO. The proposed model significantly outperforms others across all metrics,
achieving the highest network lifetime with 700 FND rounds Fig 4 shows PDR and Node Count Analysis., maximum
average residual energy of 0.95 J, besides lowest total energy consumption of 104 J. It also delivers the best end-to-end
delay of 140 ms besides highest packet delivery ratio (PDR) of 96.8%, with 12,800 packets successfully reaching the base
station. Furthermore, the proposed protocol exhibits the lowest cluster head (CH) reselection rate (0.18) and energy
imbalance index (0.15), indicating superior cluster stability and balanced energy usage. These results demonstrate that the
integration of Modified ELA Table 9 shows Comparative Analysis of Routing Protocols, Random Forest, PSO, besides
Bloom Filter ensures energy-efficient, reliable, and QoS-aware routing in VANET environments Fig 6 shows Residual
Analysis for Energy Heatmap.

Scatter Plots of Performance Metrics Across Routing Protocols
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Comparative Route Selection Metrics
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Fig 8. Comparative Graphical Representation of Route Selection Performance Metrics for Different Protocols, with
Proposed Model.

A comparative graphical representation of key route selection performance metrics across various routing protocols in
VANETs, including LEACH, ACO, GWO, PSO-LEACH, and the proposed OMOA-based model. The chart visualizes four
core parameters: Packet Delivery Ratio (PDR), End-to-End Delay, Packets Received at the Base Station (BS), and Route
Stability Score Fig 5 shows Bloom Filter Analysis for PDR and Energy Consumption. The proposed model achieves the
highest PDR (96.8%) and route stability (0.91), indicating more reliable data transmission with fewer link breaks. It also
records the lowest delay (140 ms), which highlights its timeliness in data delivery Fig 7 shows Comprehensive Presentation
Comparison Between the Proposed Routing Protocol and Existing Methods. In contrast, traditional protocols like LEACH
show lower performance across all metrics due to frequent re-clustering and lack of adaptive route prediction. Overall, this
figure validates the superiority of the proposed model in delivering energy-efficient, stable, and QoS-driven communication
in dynamic vehicular environments.

Discussion

The simulation was conducted in a scalable VANET environment with varying node densities (100—500) and realistic
energy, communication, and mobility parameters. The proposed routing protocol, optimized using OMOA besides
enhanced with M-ELA, Random Forest, besides Bloom filters, was evaluated against standard protocols such as LEACH,
PSO-LEACH, GWO, and ACO Fig 8 shows Comparative Graphical Representation of Route Selection Performance
Metrics for Different Protocols, with Proposed Model. The results across multiple tables reveal that proposed model
achieves superior performance in energy efficiency, network longevity, and routing effectiveness. Specifically, it records
the highest average residual energy (0.95 J), the longest node lifetimes (FND = 700, LND = 2900), and the lowest energy
imbalance index (0.15). It also ensures the highest packet delivery ratio (96.8%), lowest end-to-end delay (140 ms), besides
a minimal routing overhead of 350 packets. Cluster stability is enhanced through low CH reselection rates (0.18) besides
balanced intra-cluster distances. The ablation study further confirms the critical role of each component, showing a sharp
performance drop when any one is removed. Overall, the simulation results validate the effectiveness of proposed hybrid
protocol in delivering energy-aware, stable, besides QoS-optimized communication in VANET scenarios.

VI. CONCLUSION AND FUTURE WORK
In this research, to proposed, a novel hybrid routing protocol designed for energy-efficient, reliable, and scalable
communication in VANETs. The protocol integrates a M-ELA besides Random Forest classifier to intelligently classify
and rank routing paths based on link stability, residual energy, and connectivity. To further optimize routing performance
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under dynamic mobility and varying traffic conditions, the Qdigbo Metaheuristic Optimization Algorithm (OMOA)
operates by iteratively refining a population of candidate cluster head configurations using directional learning and adaptive
exploration. It evaluates each solution using a multi-objective fitness function to optimize energy efficiency, connectivity,
and routing stability in VANETSs. is employed to fine-tune routing parameters in real time. The integration of a Bloom filter
mechanism enhances communication efficiency by reducing redundant transmissions besides conserving energy. The
optimization process using OMOA significantly enhances energy efficiency by selecting well-balanced cluster heads. It
reduces communication overhead and extends network lifetime through adaptive and direction-aware exploration. The
integration with M-ELA and Random Forest ensures intelligent routing decisions with high delivery accuracy. Overall, it
enables stable, QoS-driven data transmission in highly dynamic VANET environments. Extensive simulations were
conducted to validate the performance of proposed under diverse scenarios, including variable node densities, traffic
loads, besides mobility models. The results show that proposed consistently outperforms existing protocols in terms of
PDR, energy consumption, end-to-end delay, besides network lifetime. In particular, proposed achieved a 96.8% PDR,
2900 LND, and 0.95 J average residual energy, reflecting its robustness besides suitability for real-time VANET
deployments. Moreover, the ablation study and convergence analysis confirmed the significance of each component in the
proposed model. Although proposed protocol shows promising results, several avenues exist for further enhancement:

Incorporating real-time vehicular mobility patterns using tools like SUMO besides NS-3 can help in refining the routing
behavior for urban scenarios. Advanced Al models such as deep reinforcement learning besides graph neural networks
(GNNSs) can be integrated with proposed to support predictive routing under time-varying topologies. Future versions of
proposed will consider edge/fog computing environments to reduce latency and distribute routing intelligence closer to
vehicles.
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