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Abstract – Structural Health Monitoring (SHM) in smart materials faces significant challenges in real-time damage 

detection due to complex temporal dependencies and multi-physics correlations in degradation processes that traditional 

handcrafted feature approaches fail to capture effectively. This study develops a novel AI-augmented SHM framework 

integrating deep temporal learning networks with embedded multi-modal sensor systems for comprehensive damage 

characterization in Carbon Fiber Reinforced Polymer (CFRP) materials. The proposed hybrid architecture combines 

temporal convolutional layers, Bidirectional Gated Recurrent Units (BiGRU), and attention mechanisms to process 

synchronized data from strain, vibration, Acoustic Emission (AE), and temperature sensors through a multi-task learning 

approach addressing damage detection, severity classification, and 3D spatial localization simultaneously. Experimental 

validation using controlled damage protocols on instrumented CFRP specimens demonstrated exceptional performance: 

94.2% damage detection accuracy (precision: 93.8%, recall: 94.6%), 89.3% F1-score in severity classification, and 18.7 

mm RMSE in spatial localization (R² = 0.897). The framework significantly outperformed baseline methods including 

SVM (6.7% improvement), Random Forest (8.9% improvement), standard LSTM (5.0% improvement), and Transformer 

networks (2.4% improvement), while achieving robust performance across different damage types with 97.2% detection 

rate for impact damage and maintaining over 80% accuracy under severe noise conditions (0 dB SNR). Ablation studies 

confirmed the critical contributions of attention mechanisms (2.7% improvement), bidirectional processing (5.5% 

improvement), and temporal convolutions (7.9% improvement). Multi-modal sensor fusion achieves substantial gains over 

individual modalities, with AE sensors accounting for 35% of the fusion weight. The deployment-optimized system 

achieves sub-100 millisecond inference times with robust multimodal integration, offering significant potential for 

industrial implementation in aerospace, civil infrastructure, and advanced manufacturing applications that require 

continuous structural integrity assessment. 

 

Keywords – Structural Health Monitoring, Smart Materials, Deep Learning, Temporal Networks, Damage Detection, 

Multi-Modal Sensing, Carbon Fiber Composites, Real-Time Diagnostics. 

 

I. INTRODUCTION 

The integration of Smart Materials (SM) into aerospace, civil infrastructure, and manufacturing has revolutionized 

structural engineering by enabling load-bearing components with built-in sensing and actuation capabilities. Carbon Fiber 
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Reinforced Polymer (CFRP) composites embody this multifunctionality, offering exceptional strength-to-weight ratios 

alongside compatibility with embedded sensors for continuous Structural Health Monitoring (SHM) [1-2]. Continuous 

sensing within CFRP structures enables real-time detection of subtle failure precursors and emergent damage, effectively 

reducing reliance on periodic manual inspection or threshold-triggered alerts [3]. Damage progression in CFRP involves 

complex modes, such as matrix cracking, fiber–matrix debonding, delamination, fiber fracture, and impact-induced defects, 

which are often invisible to conventional inspection techniques, including ultrasound, thermography, and vibration analysis 

[4]. Embedded sensors—including Piezoelectric Transducers (PZTs), Fiber Bragg Gratings (FBGs), and carbon nanotube-

based strain sensors—provide multimodal, in-situ monitoring of structural integrity, capturing both low-energy damage 

events and significant structural shifts in real-time [5-6]. These characteristics motivate the deployment of Deep Temporal 

Learning (DTL) networks, which are capable of modeling non-stationary, spatially distributed failure dynamics within 

smart composite materials, such as CFRP composites. 

Contemporary SHM approaches exhibit critical shortcomings in capturing the full temporal complexity of structural 

degradation in SM. Damage progression in materials such as CFRP manifests across disparate time scales—from high-

frequency Acoustic Emission (AE) bursts occurring during microcrack initiation to gradual stiffness degradation that 

evolves over decades of service [7-8]. Conventional SHM methods predominantly rely on manually engineered features 

and shallow learning models, which are unable to encode intricate temporal dependencies and effectively fuse multimodal 

signals. These limitations result in diminished sensitivity to early-stage damage, increased false-positive rates, and an 

inability to predict future structural health states [9-10]. Moreover, the integration of heterogeneous sensing modalities—

such as strain gauges, vibration sensors, AE transducers, and environmental monitors—poses additional challenges: 

conventional analytics frequently fail to assimilate complementary yet potentially contradictory data streams into coherent 

diagnostic inference [11-12]. 

Current SHM systems exhibit three fundamental limitations that undermine their effectiveness in SM applications.  

• First, most existing systems rely heavily on statistical process control techniques and handcrafted feature 

engineering, which lack adaptability to the distinct temporal signatures of diverse damage mechanisms and fail to 

model non-stationary degradation patterns [13]. 

• Second, the fusion of multimodal sensor data—such as strain, vibration, AE, and environmental parameters—is 

often performed via simplistic approaches like weighted averaging or voting schemes, which inadequately capture 

the complex interdependencies between modalities [14].  

• Third, the requirements for real-time inference in safety-critical environments impose stringent constraints on 

computational complexity and latency, yet conventional deep learning models typically incur high processing delays 

and resource demands, preventing sub-second response capabilities [15-16]. 

This research aims to develop a comprehensive AI-augmented SHM framework that addresses these fundamental 

limitations through three primary objectives. The primary objective is to design and implement a DTL network architecture 

optimized explicitly for multi-modal sensor data processing in SM, incorporating advanced sequence modeling techniques, 

including bidirectional recurrent networks, temporal attention mechanisms, and multi-task learning approaches. The 

secondary objective focuses on validating the effectiveness of temporal learning approaches through comprehensive 

experimental evaluation using controlled damage scenarios in instrumented CFRP specimens. 

The tertiary objective addresses practical deployment considerations by developing an optimized system architecture 

that supports real-time inference on edge computing platforms while maintaining diagnostic accuracy. 

This work makes several significant contributions to the field of SHM and deep learning applications in SM. The 

primary contribution is the development of a novel hybrid DTL that synergistically combines convolutional feature 

extraction, bidirectional recurrent processing, and attention-based context encoding to capture both local and global 

temporal patterns in multi-modal sensor data. The second contribution encompasses systematic experimental validation 

using a carefully designed testbed with instrumented CFRP specimens and controlled damage induction protocols. The 

third contribution addresses the critical gap between research prototypes and industrial deployment by developing an 

optimized edge computing architecture that enables real-time inference with sub-100 millisecond latency. 

The remainder of this paper is structured as follows: Section 2 reviews relevant literature on SHM approaches and deep 

learning applications; Section 3 presents the methodology including framework design, sensor architecture, and DTL 

network development; Section 4 describes the experimental setup and validation procedures; Section 5 presents results and 

comparative analysis; and Section 6 concludes with key contributions and future directions. 

 

II. RELATED WORK 

The recent advancement of artificial intelligence techniques, intense learning, has significantly transformed SHM by 

enabling data-driven, real-time, and scalable diagnostics. A review of contemporary works highlights substantial progress 

in areas such as temporal modeling, anomaly detection, multimodal fusion, and deployment optimization. This section 

analyzes five recent studies that represent key developments in SHM using deep learning, evaluating their scope, technical 

frameworks, and limitations in relation to the objectives of the present work. 

In a study focused on signal refinement for SHM, [17] proposed a hybrid architecture combining Convolutional Neural 

Networks (CNNs) and Bidirectional Gated Recurrent Units (BiGRUs), enhanced with a temporal attention mechanism to 

denoise and interpret structural vibration signals. The framework was validated on multimodal sensor datasets, 

demonstrating substantial improvements in early damage detection compared to conventional filtering techniques. Despite 
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its effectiveness in temporal noise suppression and anomaly highlighting, the system is constrained to vibration signals and 

lacks capabilities for damage localization or multi-task output generation [18]. 

Addressing the challenge of limited labeled SHM data, [19] presented a self-supervised pretraining framework that 

learns temporal features from unlabeled sensor data before fine-tuning with a small amount of annotated instances. This 

approach significantly improved detection accuracy in label-scarce regimes, offering a robust solution for data-sparse 

infrastructures. However, the method is solely focused on anomaly detection and does not extend to severity estimation or 

spatial diagnostics. The proposed work addresses this gap by incorporating a supervised multi-task inference model capable 

of detecting damage presence, severity, and location concurrently. 

[20] evaluated the comparative performance of Transformer and long short-term memory (LSTM) networks in SHM 

of immersed tunnels. Their work demonstrates that Transformer-based architectures outperform LSTM models in modeling 

long-range dependencies within environmental and structural sensor time series, particularly under dynamic tunnel loading 

conditions. While their study emphasizes sequence learning capabilities, it does not account for resource-constrained edge 

deployment or the integration of multi-sensor data. In contrast, the proposed model employs a BiGRU with integrated 

attention, presenting a compromise between temporal modeling efficacy and low-latency inference feasibility in embedded 

SHM applications. 

To overcome limited real-world training data, [21] introduced a transfer learning framework wherein synthetic data 

generated from Finite Element Models (FEM) is used to pretrain a deep convolutional classifier before adaptation to real 

vibration datasets. This model, known as SHMnet, improves classification accuracy and robustness, demonstrating the 

utility of synthetic-to-real transfer in SHM. However, its scope is limited to single-modality vibration inputs and does not 

accommodate localization or severity modeling. Furthermore, reliance on simulated data risks domain shift issues, which 

the present work avoids by using fully annotated, real-world multimodal signals. 

A comprehensive field-wide review was conducted by [22], who analyzed deep learning trends across over 300 

published SHM studies. Their review categorizes existing works based on data type, network architecture, deployment 

environment, and application scale. The authors observe that CNNs dominate the landscape, often applied to vibration or 

visual data, while temporal models such as RNNs, LSTMs, and attention mechanisms remain underutilized. Moreover, 

they emphasize the lack of practical considerations for real-time edge deployment and the limited adoption of multimodal 

sensor fusion strategies. These insights further motivate the development of the proposed architecture, which integrates 

BiGRU-based temporal modeling with multimodal sensor fusion and supports edge deployment in smart material contexts 

[23-25]. 

In conclusion, while recent literature reveals substantial advances in deep learning-driven SHM, existing solutions 

remain limited in terms of multimodal data integration, embedded deployment, and unified multi-task inference. The 

present framework addresses these gaps by proposing a deep temporal model that can fuse multivariate sensor streams, 

model temporal degradation trajectories, and simultaneously produce actionable outputs for damage presence, severity 

classification, and spatial localization. 

 

III. METHODOLOGY 

The methodology section delineates the technical architecture and procedural pipeline of the proposed AI-augmented SHM 

framework. It defines the interconnection of SM, embedded sensing systems, temporal data pipelines, and deep learning-

based diagnostic modules that collectively realize an intelligent monitoring system. The design ensures that structural 

degradation patterns are accurately captured, temporally modeled, and interpreted for real-time decision support. The 

following subsection presents the conceptual framework, laying the foundation for subsequent architectural and algorithmic 

elaborations. 

 

Conceptual Framework 

SHM in SM involves continuous observation and interpretation of time-evolving signals that represent mechanical integrity 

under operational stress. The proposed conceptual framework (Fig 1) introduces an AI-augmented architecture that 

integrates embedded smart sensors, temporal learning models, and real-time decision engines into a unified monitoring 

system. The framework operates across three principal layers: Data Acquisition, Temporal Representation Learning, and 

Intelligent Health Inference. 

 

System Overview 

The system begins with embedded sensor nodes integrated into the SM structure. These nodes continuously generate high-

resolution time-series data representing physical responses such as strain, vibration, AE, and temperature variation. These 

multivariate signals are transmitted to an onboard edge device or remote server for processing. 

The second layer involves DTL models designed to process incoming sequential data. These models learn latent 

damage-related features and recognize evolving degradation signatures using recurrent or attention-based neural networks. 

The final layer incorporates an inference engine that interprets the learned representations to perform three critical 

tasks: (i) damage detection, (ii) severity classification, and (iii) spatial localization. 

 

Formal Model Structure 

Let the SM system be continuously monitored by a set of 𝑁 embedded sensors. Each sensor 𝑠𝑖, for 𝑖 ∈ {1,2, … , 𝑁}, 
generates a time series signal: 
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 𝐱𝑖 = {𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑇} ∈ ℝ𝑇  (1) 

 

 
Fig 1. System Architecture. 

 

where 𝑥𝑖
𝑡 represents the recorded sensor measurement at time 𝑡, and 𝑇 is the length of the monitoring interval. The 

complete sensor dataset for a given time window is represented as a matrix: 

 

 𝐗 = [𝐱1, 𝐱2, … , 𝐱𝑁]
𝑇 ∈ ℝ𝑁×𝑇  (2) 

 

Let a deep temporal feature extractor ℱ𝜃 parameterized by 𝜃 transform the input into a latent feature embedding: 

 

 𝐳 = ℱ𝜃(𝐗) ∈ ℝ𝑑  (3) 

 

where 𝑑 denotes the dimension of the latent representation space. A predictive head ℋ𝜙  Maps the latent vector 𝐳 to 

diagnostic outputs: 

 

 𝐲̂ = ℋ𝜙(𝐳) = [𝑦̂damage , 𝑦̂severity , 𝑦̂location ]  (4) 

Where: 

• 𝑦̂damage ∈ {0,1} indicates the presence or absence of damage, 

• 𝑦̂severity ∈ {1,2,3} denotes severity class (e.g., minor, moderate, critical), 

• 𝑦̂location ∈ ℝ3 estimates the spatial coordinates of the anomaly. 

 

Information Flow 

The end-to-end information flow proceeds through the following stages: 

• Raw Signal Generation: Each sensor node 𝑠𝑖 streams data 𝐱𝑖 at uniform sampling intervals. 

• Temporal Embedding: The data matrix 𝐗 is processed through ℱ𝜃, instantiated through the learning architecture. 

• Diagnostic Inference: The model output 𝐲̂ is interpreted for downstream decision-making, alert generation, or 

maintenance scheduling. 

This formal structure ensures that temporal dependencies, multivariate correlations, and structural priors are cohesively 

learned through a data-driven architecture grounded in deep sequence modeling. 

 

SM and Sensor Architecture 

SM possess intrinsic capabilities to sense and respond to external stimuli, making them ideal substrates for integrated SHM. 

This section defines the physical and sensing architecture employed in the proposed AI-augmented monitoring system. It 
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details the choice of SM, the configuration of embedded sensors, and the signal modalities captured for subsequent temporal 

modeling. The architecture is designed to ensure high spatial coverage, minimal signal latency, and resilience to 

environmental variability, thereby enabling accurate real-time detection of degradation. 

 

 
Fig 2. Smart Material – CFRP. 

 

Smart Material Selection and Mechanical Behavior 

The structural substrate selected for monitoring is a CFRP composite (Fig 2), characterized by its high strength-to-weight 

ratio, fatigue resistance, and suitability for embedding multifunctional sensor networks. The constitutive relation governs 

the mechanical response of the material under stress: 

 

 𝜎 = 𝐂: 𝜀  (5) 

Where: 

• 𝜎 ∈ ℝ6 represents the stress tensor in Voigt notation, 

• 𝜀 ∈ ℝ6 denotes the strain tensor, 

• 𝐂 ∈ ℝ6×6 is the stiffness matrix that captures the anisotropic elastic properties of the CFRP material. 

The behavior under dynamic loading introduces time-varying micro-defects, delamination, and fiber breakages, which 

necessitate real-time sensing and modeling. 

 

Embedded Sensor Network Configuration 

A distributed network of 𝑁 sensor nodes {𝑠1, 𝑠2, … , 𝑠𝑁} is embedded across the CFRP laminate layers. Each sensor node is 

equipped with a multimodal signal acquisition unit capturing the following physical quantities: 

• Strain (𝑥(1)) via fiber Bragg grating (FBG) sensors, 

• Vibration (𝑥(2)) via MEMS accelerometers, 

• AE (𝑥(3)) via piezoelectric transducers, 

• Temperature (𝑥(4)) via thermocouple elements. 

The time-synchronized output of each sensor node 𝑠𝑖 is a multichannel temporal signal vector: 

 

 𝐱𝑖
𝑡 = [𝑥𝑖

(1),𝑡
, 𝑥𝑖

(2),𝑡
, 𝑥𝑖

(3),𝑡
, 𝑥𝑖

(4),𝑡
] ∈ ℝ4  (6) 

 

where 𝑡 denotes the discrete sampling time index. 

The complete multichannel data sequence from all sensors is aggregated into a 3-dimensional tensor: 

 

 𝒳 = {𝐱𝑖
𝑡}𝑖=1,…,𝑁
𝑡=1,…,𝑇 ∈ ℝ𝑁×𝑇×4  (7) 

Where: 

• 𝑁 is the number of sensor nodes, 

• 𝑇 is the number of time steps in each monitoring window, 

• The third dimension corresponds to the four signal modalities per sensor. 

 

Signal Transmission and Synchronization 

To support real-time monitoring, each sensor node is connected to a time-synchronized data acquisition system via a high-

speed wired or wireless bus, such as CAN or ZigBee. Time synchronization across sensors is ensured through an embedded 

global clock, and all signals are timestamped at source. 

The sampled data tensor 𝒳 is relayed to a processing module operating at a defined frame rate 𝑓𝑠, typically ranging 

from 500 Hz to 5 kHz, depending on application requirements. This architecture guarantees that both low-frequency fatigue 

trends and high-frequency impact signatures are captured with adequate temporal resolution. 
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Data Acquisition and Preprocessing Pipeline 

The effectiveness of AI-based SHM systems depends critically on the quality, fidelity, and consistency of input data 

acquired from the sensor network. This section outlines the systematic pipeline for acquiring, validating, and preprocessing 

multivariate time-series signals generated by embedded sensors in SM. The pipeline ensures temporal alignment, signal 

integrity, and feature standardization before model ingestion. The design addresses practical concerns such as noise, 

missing values, sampling heterogeneity, and dimensional inconsistencies that arise in real-world deployments. 

 

Sensor Data Sampling and Segmentation 

Each sensor node 𝑠𝑖 produces multichannel time-series data 𝐱𝑖
𝑡 ∈ ℝ4, as defined in Equation (6), at a constant sampling 

frequency 𝑓𝑠. Let the total observation duration be 𝑇obs  seconds, yielding 𝑇 = 𝑓𝑠 ⋅ 𝑇obs  discrete time steps. The raw sensor 

output is segmented into fixed-length overlapping windows of size 𝑤, with an overlap rate of 𝛼 ∈ [0,1). The number of 

segments per signal is given by: 

 𝑛seg = ⌊
𝑇−𝑤

𝑤⋅(1−𝛼)
+ 1⌋  (8) 

 

Where: 

• 𝑇 is the total number of samples, 

• 𝑤 is the window length in samples, 

• 𝛼 is the fractional overlap between windows, 

• ⌊⋅⌋ denotes the floor function. 

Each segment represents a sample instance fed into the temporal model for pattern learning and damage detection. 

 

Signal Denoising and Outlier Suppression 

Sensor outputs frequently contain measurement noise due to environmental interference and hardware imprecision. To 

mitigate this, each segment undergoes filtering using a hybrid denoising function 𝒟(⋅) defined as: 

 

 𝐱𝑖
′𝑡 = 𝒟(𝐱𝑖

𝑡) = SGF(Z − Score(𝐱𝑖
𝑡))  (9) 

Where: 

• 𝐱𝑖
𝑡 is the raw signal at time 𝑡, 

• Z-score (⋅) applies standard score normalization for outlier suppression, 

• SGF( ⋅ ) denotes Savitzky-Golay filtering for temporal smoothing, 

• 𝐱𝑖
′𝑡 is the denoised output. 

This dual-stage procedure ensures robustness against transient spikes and low-frequency drift. 

 

Missing Data Imputation 

Due to packet loss or sensor malfunction, specific data points may be missing. Let 𝐱𝑖
′𝑡 ∈ ℝ4 contain a missing value in 

channel 𝒄. The missing entry is reconstructed using a locally weighted interpolation function ℐ : 

 

 𝑥𝑖
′(𝑐),𝑡

= ℐ(𝑥𝑖
′(𝑐),𝑡−𝛿:𝑡+𝛿

)  (10) 

Where: 

• 𝑥𝑖
′(𝑐),𝑡

 is the imputed value for channel 𝑐 at time 𝑡, 

• 𝛿 is the interpolation window radius, 

• ℐ may be instantiated as linear, spline, or exponential moving average interpolation depending on temporal 

smoothness constraints. 

 

Normalization and Tensorization 

After denoising and imputation, each multichannel segment is normalized to zero mean and unit variance: 

 

 𝑥̂𝑖
(𝑐),𝑡

=
𝑥𝑖
′(𝑐),𝑡

−𝜇𝑐

𝜎𝑐
  (11) 

where: 

• 𝜇𝑐 and 𝜎𝑐 are the global mean and standard deviation of channel 𝑐, computed across the training dataset, 

• 𝑥̂𝑖
(𝑐),𝑡

 is the normalized value. 

The final output for each segment is structured into a tensor: 

 

 𝒳̂𝑗 ∈ ℝ𝑁×𝑤×4  (12) 

where: 

• 𝑁 is the number of sensors, 

• 𝑤 is the temporal window length, 
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This 3D tensor format ensures compatibility with deep temporal models, which expect fixed-dimensional sequential 

input. This data acquisition and preprocessing pipeline guarantees that the input to the deep learning model is high quality, 

temporally aligned, and information-rich. It forms a critical foundation for accurate learning of damage signatures and 

degradation trends in the SHM system. 

 

DTL Network Design 

The core computational intelligence of the proposed SHM framework resides in its ability to learn time-dependent 

degradation patterns from multivariate sensor signals. The design of a DTL network (Fig 3) enables the model to extract, 

process, and interpret evolving structural signals across both local and global time scales. This section outlines the network 

architecture, starting with local feature extraction, proceeding to long-range sequence modeling, and then incorporating 

attention-driven context enhancement, culminating in a multi-task diagnostic head. Each component is methodically 

constructed to preserve physical interpretability while maximizing learning capacity. 

 

 
Fig 3. DTL Network. 

 

Temporal Feature Extraction Layer 

The first stage of the network processes the preprocessed and normalized sensor input tensor 𝒳̂𝑗 ∈ ℝ𝑁×𝑤×4, where 𝑁 is the 

number of sensor nodes, 𝑤 is the temporal window length, and 4 corresponds to the number of channels per node (e.g., 

strain, vibration, AE, temperature). This raw tensor captures rich multivariate physical phenomena across space and time. 

To identify local temporal trends and eliminate irrelevant fluctuations, a 1D convolutional layer is employed as the 

initial feature extractor. This layer acts as a learned filter bank, detecting fundamental signal patterns such as abrupt 

amplitude shifts (impacts), periodic vibrations (resonance), or energy release bursts (microcracks). The transformation is 

formalized as: 

 𝐡(1) = 𝜎 (Conv1D(𝒳̂𝑗; Θ𝑐))  (13) 

 

Here, Θ𝑐 denotes the trainable convolutional kernel weights, 𝜎(⋅) is the ReLU activation function, and 𝐡(1) ∈ ℝ𝑁×𝑤′×𝑑1  

represents the resulting feature map. The number of channels 𝑑1 reflects the number of filters learned to capture different 
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types of local temporal events. The convolution compresses the temporal length to 𝑤′ based on kernel size and stride 

configuration. 

Sequence Modeling with Temporal Networks 

While local features are essential, structural health degradation is inherently a temporal process, involving gradual wear, 

stress accumulation, or delayed effects from cyclic loading. Capturing such long-range dependencies requires a recurrent 

modeling approach that can maintain memory across time. 

To fulfill this requirement, a BiGRU is integrated. Unlike unidirectional models that only process past information, 

BiGRUs learn from both historical and future context within a signal segment, enabling anticipatory representation of 

degradation. The sequential transformation is defined as: 

 

 𝐡(2) = BiGRU(𝐡(1); Θ𝑟)  (14) 

 

where Θ𝑟  are the recurrent weights, and 𝐡(2) ∈ ℝ𝑁×𝑤′×𝑑2  denotes the temporal hidden states. Each hidden state 

integrates accumulated knowledge of the evolving structure, with 𝑑2 representing the embedding dimension per time step. 

 

Attention-Based Context Encoding 

Not all temporal segments contribute equally to structural inference. For instance, a transient acoustic burst may indicate 

the initiation of a critical crack, while most of the sequence remains stable. To prioritize such high informational 

subsequences, a temporal attention mechanism is employed. 

The attention model assigns dynamic weights to each time step, allowing the network to focus on contextually important 

regions. The attention weight vector 𝜶 ∈ ℝ𝑤′
 is computed through a softmax-normalized score over hidden states: 

 

 𝛼𝑡 =
exp⁡(𝐯⊤tanh⁡(𝐖𝑎𝐡𝑡

(2)
+𝐛𝑎))

∑  𝑤′
𝑘=1  exp⁡(𝐯

⊤tanh⁡(𝐖𝑎𝐡𝑘
(2)

+𝐛𝑎))
  (15) 

where: 

• 𝐖𝑎 ∈ ℝ𝑑𝑎×𝑑2 and 𝐛𝑎 ∈ ℝ𝑑𝑎  are the learnable attention projection parameters, 

• 𝐯 ∈ ℝ𝑑𝑎 is the attention scoring vector, 

• 𝐡𝑡
(2)

∈ ℝ𝑑2  is the BiGRU output at time 𝑡. 

The final context vector 𝐜 ∈ ℝ𝑑2, summarizing important time-dependent features, is obtained by a weighted sum: 

 

 𝐜 = ∑  𝑤′

𝑡=1 𝛼𝑡 ⋅ 𝐡𝑡
(2)

  (16) 

 

This layer enhances interpretability, as the model can highlight specific temporal regions associated with damage onset 

or stress escalation. 

 

Multi-Task Diagnostic Head 

The final stage of the architecture translates the encoded vector 𝐜 into actionable diagnostic outcomes.  

 

SHM typically requires three inferential outcomes 

• Whether the structure is damaged. 

• The severity level of the damage. 

• The estimated spatial location of the damage. 

To address this multi-faceted output space, three independent fully connected heads are deployed in parallel: 

 

 
𝑦̂𝑘 = Softmax(𝐖𝑘𝐜 + 𝐛𝑘), 𝑘 ∈ { damage, severity }

𝐥̂ = 𝐖loc𝐜 + 𝐛loc
  (17) 

 

Here: 

• 𝑦̂damage ∈ ℝ2 classifies the presence (1) or absence (0) of damage, 

• 𝑦̂severity ∈ ℝ3 estimates severity as minor, moderate, or critical, 

• 𝐥̂ ∈ ℝ3 predicts the 3D spatial coordinates of damage within the SM substrate, 

• 𝐖𝑘 , 𝐛𝑘,𝐖loc , and 𝐛loc  are independent trainable parameters. 

This multi-head configuration enables the model to generalize better across various structural contexts and facilitates 

the joint learning of correlated damage attributes. 

The proposed DTL network thus offers a modular, interpretable, and high-capacity architecture for end-to-end 

processing of SHM data. Each component—from local convolutions to global attention and multi-task outputs—is 

purposefully aligned to extract maximum value from complex, high-dimensional temporal sensor data within SM. 
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Model Training and Optimization 

The deployment of a DTL network for SHM requires rigorous model training and fine-grained optimization to ensure 

reliable diagnostic performance under diverse operational scenarios. This section presents the supervised learning setup, 

loss function formulations, regularization strategies, and optimization algorithms employed to facilitate robust 

convergence, generalize across material states, and prevent overfitting. The design ensures that the model not only captures 

the complex temporal structure of degradation patterns but also provides stable inference across variable sensor input 

sequences and class distributions. 

 

Supervised Learning Framework 

The model is trained using a labeled dataset composed of segmented, preprocessed sensor input tensors and their 

corresponding structural health labels.  

 

Let the training dataset be denoted as 

 𝒟 = {(𝒳̂𝑗 , 𝑦𝑗
damage 

, 𝑦𝑗
severity 

, 𝐥𝑗)}
𝑗=1

𝑀
  (18) 

Where: 

• ⁡𝒳̂𝑗 ∈ ℝ𝑁×𝑤×4 is the input tensor for the 𝑗-th segment, 

• 𝑦𝑗
damage 

∈ {0,1} is the binary label indicating damage presence, 

• 𝑦𝑗
severity 

∈ {1,2,3} is the ordinal class for severity level, 

• 𝐥𝑗 ∈ ℝ3 is the continuous-valued label indicating damage location in 3D space, 

• 𝑀 is the total number of training samples. 

The objective is to minimize a composite loss function over 𝒟, optimizing the network parameters to accurately learn 

classification and regression tasks simultaneously. 

 

Multi-Objective Loss Function Design 

Given the multi-task nature of the SHM prediction problem, the total loss function ℒtotal  is defined as a weighted 

combination of task-specific loss components: 

 

 ℒtotal = 𝜆1 ⋅ ℒcls + 𝜆2 ⋅ ℒsev + 𝜆3 ⋅ ℒloc   (19) 

Where: 

• ℒcls  is the binary cross-entropy loss for damage detection, 

• ℒsev is the categorical cross-entropy loss for severity classification, 

• ℒloc  is the mean squared error loss for location regression, 

• 𝜆1, 𝜆2, 𝜆3 ∈ ℝ+are scalar weights that control the relative contribution of each task. 

Each component is defined as follows. 

 

Binary Cross-Entropy for Damage Detection 

 

 ℒcls = −
1

𝑀
∑  𝑀
𝑗=1 [𝑦𝑗

damage 
log⁡ 𝑦̂𝑗

damage 
+ (1 − 𝑦𝑗

damage 
)log⁡(1 − 𝑦̂𝑗

damage 
)]  (20) 

 

Categorical Cross-Entropy for Severity Classification 

 

 ℒsev = −
1

𝑀
∑  𝑀
𝑗=1 ∑  3

𝑐=1 𝟏(𝑦𝑗
severity 

= 𝑐)log⁡ 𝑦̂𝑗,𝑐
severity 

  (21) 

 

Mean Squared Error for Damage Localization 

 

 ℒloc =
1

𝑀
∑  𝑀
𝑗=1 ‖𝐥̂𝑗 − 𝐥𝑗‖2

2
  (22) 

 

This composite formulation ensures that the model simultaneously learns to classify and localize damage patterns with 

balanced performance across all objectives. 

 

Regularization and Generalization Control 

To prevent overfitting to specific temporal sequences or sensor idiosyncrasies, the following regularization strategies are 

employed: 

• Dropout: Applied with a rate of 0.3 − 0.5 after dense layers and attention modules to induce stochastic sparsity. 

• L2 Weight Decay: Added to all weight parameters during training with a coefficient 𝜆reg ∈ [10−5, 10−3]. 

• Early Stopping: Triggered based on validation loss stagnation over a fixed patience window to halt training before 

the onset of overfitting. 
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• Data Augmentation: Incorporates synthetic warping, temporal jittering, and Gaussian noise injection during training 

to improve robustness. 

These techniques ensure that the model generalizes to unseen structural conditions and sensor noise patterns. 

 

Optimization Algorithm and Training Procedure 

The network is optimized using the Adam optimizer, chosen for its adaptive learning rate adjustment and robustness to 

non-stationary gradients. The parameter update rule at iteration 𝑡 is given by: 

 

 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ⋅
𝑚̂𝑡

√𝑣̂𝑡+𝜖
  (23) 

 

Where: 

• 𝜃𝑡 are the model parameters at iteration 𝑡, 
• 𝜂 is the base learning rate, 

• ⁡𝑚̂𝑡 and 𝑣̂𝑡 are the bias-corrected first and second moment estimates of gradients, 

• 𝜖 is a small constant for numerical stability. 

The learning rate is scheduled using cosine annealing with warm restarts to encourage exploration during early epochs 

and convergence in later stages. 

Training proceeds in mini-batches of size 𝐵, with the training loss monitored on a held-out validation set at each epoch. 

Model checkpoints are stored based on the lowest validation loss, ensuring optimal selection for deployment. 

The proposed training and optimization protocol ensures that the deep temporal model learns reliable, interpretable, 

and generalizable representations of structural degradation processes. Through task-specific supervision, adaptive learning 

dynamics, and regularization-aware strategies, the model converges to a robust solution capable of real-time SHM in 

complex material systems. 

 

Deployment Architecture 

The realization of a real-time, AI-driven SHM framework necessitates a deployment architecture that supports low-latency 

execution, embedded hardware compatibility, and synchronized data flow between edge and cloud components. The 

proposed deployment framework translates the trained deep temporal model into an operational system capable of 

autonomous diagnostic inference and decision support. This section presents the full-stack deployment pipeline across four 

integrated modules. 

 

Sensor Interface and Data Synchronization 

The deployment begins at the embedded sensing layer. Smart material substrates are instrumented with a distributed 

network of multimodal sensors, each capturing one or more physical signals relevant to structural state assessment, 

specifically, strain, vibration, AE, and temperature. 

Each sensor node generates a time-indexed vector 𝐱𝑖
𝑡 ∈ ℝ4, as defined in Equation (6), with real-time acquisition 

governed by a globally synchronized clock. Signal samples are transmitted over a local communication bus to an embedded 

edge processor. Timestamping and alignment operations are handled in the Sensor Interface Layer (SIL), which buffers 

data into rolling windows of dimension 𝒳̂𝑗 ∈ ℝ𝑁×𝑤×4, consistent with Equation (12). 

To maintain temporal coherence across all sensors, hardware-based synchronization is implemented using a global 

clock distribution system. This guarantees that each sample 𝑥𝑖
𝑡 across all 𝑁 nodes corresponds to the same physical instant 

𝑡, thereby preserving spatial-temporal correlations required by the deep learning model. 

 

Model Optimization for Edge Deployment 

The DTL network constructed in Sections 3.4 and 3.5 is not deployed in its full-size training configuration. Instead, the 

model undergoes a structured deployment optimization process that transforms it into an edge-compatible executable 

format. 

The trained network is exported in ONNX (Open Neural Network Exchange) format to preserve architecture topology 

and learned parameters. The ONNX model is then passed through a hardware-specific compiler, such as TensorRT for 

NVIDIA platforms or Coral Edge TPU Compiler for Google hardware. 

 

This compilation includes 

• Quantization: Conversion of 32-bit floating-point weights to 8-bit integers to reduce memory usage. 

• Layer Fusion: Collapsing of consecutive operations (e.g., Conv + ReLU) into single execution units to reduce 

latency. 

• Memory Optimization: Static allocation of tensor buffers to minimize runtime memory fragmentation. 

The final compiled model is embedded into the edge device as a binary blob, consuming less than 10 MB of memory 

and supporting inference execution within 100 milliseconds per input window. 
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Edge Inference Workflow 

The Edge Inference Module (EIM) manages the real-time execution of the diagnostic model. Incoming signal segments 𝒳̂𝑗 

are passed to the model at each execution interval, where they are processed to yield the diagnostic predictions defined in 

Equations (17) and (18): 

• 𝑦̂damage ∈ {0,1} indicates the presence of damage, 

• 𝑦̂severity ∈ ℝ3 represents severity class probabilities, 

• 𝐥̂ ∈ ℝ3 estimates the spatial coordinates of damage. 

These predictions are post-processed through a decision logic unit. If damage is detected ( 𝑦̂damage = 1 ), the system 

activates one or more responses, including interrupt signaling to the supervisory controller, logging of inference metadata, 

and visual or audible alarms. All inference results are time-stamped and recorded in local storage for further analysis or 

upload. 

This module is configured to operate in a continuous loop, processing overlapping signal windows to avoid diagnostic 

blind spots between segments. Model confidence scores are also logged, enabling downstream modules to assess the 

reliability of predictions. 

 

Cloud Analytics and Remote Management 

The system supports integration with a cloud-based analytics and administration platform, referred to as the Cloud 

Analytics Layer (CAL). All predictions, sensor statistics, and diagnostics generated at the edge are periodically transmitted 

to the cloud using a lightweight message-passing protocol, typically MQTT or CoAP. 

The CAL maintains a historical database of damage events, including severity progression, location trajectories, and 

false positive counts. These data are visualized in dashboards to support engineering review and maintenance planning.  

 

Additionally, the Cloud Platform Facilitates 

• Model Updates: New training data collected from the field are used to periodically retrain the deep learning model. 

Updated model binaries are distributed over the air to edge devices. 

• System Health Monitoring: The uptime, memory usage, and communication status of all edge nodes are tracked in 

real-time. 

• Failure Recovery: In the event of communication failure, edge systems buffer data using their onboard persistent 

storage. Upon reconnection, all logs are batch-uploaded and reconciled with the cloud records. 

This hybrid deployment—combining real-time edge inference with centralized analytics—enables the proposed SHM 

system to operate autonomously while maintaining long-term adaptability and monitoring comprehensiveness. 

 

IV. EXPERIMENTAL SETUP 

The validation of the proposed AI-augmented SHM framework necessitates a carefully designed experimental 

infrastructure capable of capturing multivariate sensor data under controlled loading and damage conditions. This section 

presents the end-to-end physical, instrumentation, and procedural configuration of the experimental environment. All 

components—from specimen preparation to ground truth annotation—are engineered to support model reproducibility, 

temporal alignment, and diagnostic fidelity under realistic material behavior. 

 

 
Fig 4. Material Preparation. 

 

Smart Material Specimen Preparation 

Fig 4 shows the material preparation process; the material substrate used for empirical evaluation consists of a 

unidirectional CFRP laminate, fabricated using aerospace-grade T300/epoxy prepreg. The layup sequence follows a 

symmetric stacking order of [0∘/90∘/0∘/90∘]𝑠, selected to ensure orthotropic behavior under applied stress while 

preserving in-plane rigidity. 
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Fabrication is performed in a Class 100 clean room environment to eliminate contaminants that could impair 

interlaminar bonding. The layup is conducted over a steel mold, followed by vacuum bagging using high-temperature film 

and breather layers. The autoclave curing cycle is executed at a peak temperature of 120∘C, under 0.6 MPa pressure, held 

for 120 minutes, followed by controlled cooling at 2∘C/min to avoid thermal shock. Upon demolding, each panel undergoes 

ultrasonic C-scan inspection to verify ply uniformity and void content. 

The final specimen dimensions are precisely machined to 300 mm⁡ × ⁡300⁡mm⁡ × ⁡2.5 mm using a CNC-controlled 

diamond abrasive cutter. The surface finish is inspected under 50× magnification to confirm a defect-free topology suitable 

for sensor adhesion. A thin polyurethane coating is applied to protect the composite surface from moisture-induced 

delamination during testing. 

 

Sensor Network Configuration 

The sensing architecture is designed to provide high-resolution, spatially distributed monitoring of structural behavior 

under load. A network of 𝑁 = 16 sensor nodes is arranged in a regular 4 × 4 grid, with nodes spaced at 75 mm intervals 

along both the 𝑥-and 𝑦-axes. The origin is defined at the bottom-left corner of the specimen, and each node location is 

fixed using precision-aligned laser positioning jigs. 

 

Each Sensor Node Comprises Four Integrated Signal Channels 

• Strain sensing is achieved using Fiber Bragg Grating (FBG) sensors bonded directly onto the laminate surface using 

cyanoacrylate adhesive and thermally cured for 30 minutes at 80∘C. The FBG sensors are interrogated using an 

optical wavelength demodulator operating at 1 kHz sampling frequency. 

• Vibration sensing is performed using Analog Devices' ADXL355 MEMS accelerometers, which are surface-

mounted with thermal epoxy. Sampling is performed at 5 kHz with a 16-bit ADC resolution. 

• AE signals are captured using PZT-5H piezoelectric discs (10 mm diameter, 1 mm thickness) connected to a 40 dB 

low-noise preamplifier. Data acquisition is set at 500 kHz per channel, with signal conditioning performed using a 

bandpass⁡filter⁡with⁡a⁡frequency⁡range⁡of⁡20⁡kHz⁡to⁡450⁡kHz. 

• Temperature monitoring utilizes Type-K thermocouples embedded 1 mm below the surface via microdrilling and 

epoxy encapsulation, with sampling at a rate of 1 Hz. 

All sensor channels are connected to a National Instruments CompactDAQ 9189 chassis with modular signal input 

cards. Synchronization across modalities is achieved using a GPS-disciplined 10 MHz timing module, which provides sub-

microsecond accuracy between the FBG, AE, and accelerometer streams. Signal integrity is continuously monitored 

through onboard diagnostics, and channels with abnormal gain or dropout are flagged for calibration. 

 

Damage Induction Protocol 

Controlled damage is introduced into the specimen to emulate real-world structural deterioration under mechanical loading. 

Two complementary damage simulation methods are employed. 

The first method involves progressive mechanical loading using a four-point bending configuration with outer supports 

at 250 mm and inner load applicators at 100 mm spacing. The loading is applied via an MTS 810 servo-hydraulic test frame 

with a crosshead displacement rate of 0.5 mm/min. During each loading cycle, the central region of the panel is monitored 

for deflection, audible emissions, and stiffness degradation. AE burst rates exceeding 150 counts /sec are used as threshold 

triggers for segmenting load cycles into pre-damage, incipient damage, and propagating damage phases. 

The second method introduces localized notches to simulate delamination or material separation. Defects are created 

using a diamond rotary tool to insert notches of 2 mm and 5 mm at known grid locations corresponding to sensor nodes. 

𝑠6, 𝑠9, and 𝑠13. After notch creation, the structure is reloaded under identical four-point bending conditions to observe 

response changes due to artificially introduced discontinuities. All damage induction procedures are video-recorded and 

time-synchronized with sensor signals. Mechanical loads, displacement values, and AE activity are recorded concurrently, 

enabling comprehensive cross-verification of damage events. 

 

Data Logging and Ground Truth Annotation 

Signal acquisition is performed continuously during all loading phases. For each damage cycle, the system captures 

overlapping temporal windows of length 𝑤 = 1 second, resulting in: 

• 1,000 samples per window for FBG sensors, 

• 5,000 samples for accelerometers, 

• 500,000 samples for AE sensors, 

• 1 sample for thermocouples. 

All signals are downsampled or aligned to ensure consistent temporal indexing across channels. 

Preprocessing includes denoising, normalization, and interpolation as described in Section 3.3. Each data window is labeled 

using a multi-source annotation protocol. Damage presence ( 𝑦𝑗
damage 

= 1 ) is annotated when a physical defect is observed 

in the post-load inspection or when AE bursts and stiffness drops exceed predefined thresholds. Severity labels are assigned 

based on a combination of AE count rate, displacement deviation, and visual damage extent, categorized into: 

• Grade 1: micro-defect (non-propagating), 
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• Grade 2: moderate delamination (visible crack initiation), 

• Grade 3: critical failure (visible propagation with material breach). 

Damage location 𝐥𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) is estimated using AE triangulation, DIC pattern shift localization, and direct physical 

measurement. Each annotation is verified independently by two mechanical engineers and a materials scientist to ensure 

consistency. 

 

Dataset Structuring and Partitioning 

The final dataset comprises 𝑀 = 4,000 labeled signal segments distributed evenly across the three damage severity levels. 

To eliminate data leakage, segments are grouped based on load cycle identifiers, and cross-validation splits are constructed 

such that no segment from a given cycle appears in both training and test partitions. 

The dataset is partitioned as follows: 

• Training set: 2,800 segments (70%), 

• Validation set: 600 segments ( 15% ), 

• Test set: 600 segments ( 15% ). 

Each set preserves the statistical distribution of damage classes, location coordinates, and signal intensities to avoid 

class imbalance bias. The test set includes high-severity failures and synthetic defects to evaluate generalization 

performance. 

This experimental infrastructure provides a high-fidelity, reproducible, and deeply annotated dataset for validating the 

proposed SHM model. Each phase—material construction, sensor deployment, defect simulation, and annotation—is 

aligned with industrial standards and academic rigor, enabling credible benchmarking of AI-based temporal health 

inference systems. 

 

V. RESULTS AND ANALYSIS 

All experiments, including model training, inference, and evaluation, were executed using a hybrid software-hardware 

configuration optimized for deep learning and signal processing tasks. The training phase was conducted on a workstation 

equipped with an NVIDIA RTX A6000 GPU (48 GB VRAM), an AMD Ryzen Threadripper 3970X 32-core CPU, and 256 

GB DDR4 RAM, operating under Ubuntu 22.04 LTS. All deep temporal models were implemented in Python 3.10 using 

the PyTorch 2.0 framework with CUDA 11.8 backend for GPU acceleration. Data preprocessing and signal transformation 

pipelines were implemented using the NumPy, SciPy, and scikit-learn libraries, with visualization performed using 

Matplotlib and Seaborn. Edge deployment testing was performed on a Jetson Xavier NX module (16 GB RAM) running 

NVIDIA JetPack SDK 5.0, with TensorRT 8.5 used for real-time inference acceleration. Cloud-based analytics and data 

storage were supported using a private PostgreSQL instance and a Grafana dashboard for real-time monitoring. This 

integrated configuration ensured that training and deployment pipelines remained consistent across development and 

embedded execution environments, enabling reliable transferability of experimental findings. 

 

Multi-Task Performance Analysis 

The proposed DTL network demonstrates exceptional performance across all three diagnostic tasks, as presented in Table 

1. The damage detection task achieves the highest performance with 94.2% accuracy, indicating the model's robust 

capability to distinguish between healthy and damaged structural states. The balanced precision (93.8%) and recall (94.6%) 

metrics indicate minimal bias toward either False Positives (FP) or False Negatives (FN) predictions, which is crucial for 

practical SHM applications where missed detections and false alarms have significant consequences. 

Severity classification performance, while slightly lower at 89.7% accuracy, remains highly competitive for a three-

class ordinal problem. The F1-score of 89.3% demonstrates effective learning of the subtle distinctions between minor, 

moderate, and critical damage levels. This performance is particularly noteworthy given the inherent challenge of 

classifying progressive damage states that exist along a continuous spectrum of structural degradation. 

The location estimation task exhibits strong regression performance with an R² value of 0.897, indicating that the model 

explains approximately 90% of the spatial variance in damage positioning. The mean absolute error (MAE) of 12.3 mm  

and root mean square error (RMSE) of 18.7 mm are well within acceptable engineering tolerances for a 300×300 mm test 

specimen, representing localization accuracy of approximately 4.1% and 6.2% of the specimen dimension, respectively. 

 

Table 1. Overall Model Performance Metrics 

Metric Damage Detection Severity Classification Location Estimation 

Accuracy 94.2% 89.7% - 

Precision 93.8% 88.5% - 

Recall 94.6% 90.1% - 

F1-Score 94.2% 89.3% - 

MAE - - 12.3 mm 

RMSE - - 18.7 mm 

R² - - 0.897 
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Binary Classification Performance Assessment 

The confusion matrix for damage detection (Table 2 and Fig 5) reveals robust binary classification capabilities with 

minimal misclassification errors. The True Negative Rate (TNR) of 95.7% (287/300 correct classifications) demonstrates 

the model's ability to accurately identify healthy structural conditions, crucial for minimizing unnecessary maintenance 

interventions. The True Positive Rate (TPR) of 94.7% (284/300 correct damage detections) indicates reliable identification 

of actual damage events. 

False positive occurrences are limited to 4.3% (13/300), representing cases where the model incorrectly flagged healthy 

structures as damaged. While conservative, this low false positive rate is advantageous in SHM applications where missed 

damage detection carries a higher risk than precautionary inspections. The false negative rate of 5.3% (16/300) indicates 

instances where actual damage went undetected, a more critical concern that warrants further investigation through 

attention visualization and feature analysis. 

 

Table 2. Confusion Matrix for Damage Detection 
 Predicted 

Actual No Damage Damage 

No Damage 287 (95.7%) 13 (4.3%) 

Damage 16 (5.3%) 284 (94.7%) 

 

 
Fig 5.  Confusion Matrix for Damage Detection. 

 

Multi-Class Severity Classification Analysis 

The three-class confusion matrix (Table 3 and Fig 6) reveals interesting patterns in severity classification performance. 

Minor damage classification achieves 89.0% accuracy, with most misclassifications (9.0%) occurring as moderate severity 

predictions, suggesting the model appropriately errs on the side of caution by slightly overestimating damage severity 

rather than underestimating it. Moderate damage classification exhibits the lowest individual class accuracy at 86.0%, with 

misclassifications distributed between minor (12.0%) and critical (2.0%) categories. This pattern advises that moderate 

damage represents the most challenging classification boundary, likely due to the transitional nature of this severity level, 

where damage characteristics may overlap with those of both adjacent classes. Critical damage classification achieves 

86.0% accuracy, with notable confusion primarily occurring with moderate severity (13.0%), rather than minor damage 

(1.0%). This asymmetric error pattern suggests that the model successfully captures the fundamental distinction between 

critical and minor damage states, with uncertainty concentrated at the moderate-critical boundary where engineering 

judgment often varies. 

 

Table 3. Confusion Matrix for Severity Classification 
 Predicted   

Actual Minor (1) Moderate (2) Critical (3) 

Minor (1) 89 (89.0%) 9 (9.0%) 2 (2.0%) 

Moderate (2) 12 (12.0%) 86 (86.0%) 2 (2.0%) 

Critical (3) 1 (1.0%) 13 (13.0%) 86 (86.0%) 
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Ablation Study Analysis 

The ablation study presented in Table 4 and Fig 7 provides critical insights into the architectural contributions of each 

network component. The systematic removal of individual components reveals a clear hierarchy of importance in the 

proposed DTL architecture. 

The attention mechanism emerges as a moderately significant contributor, with its removal resulting in a 2.7% decrease 

in damage detection accuracy (from 91.5% to 88.8%) and a 4.1% decrease in severity classification F1-score (from 85.2% 

to 81.1%). The location estimation RMSE increases by 25.1% (from 23.4 mm to 18.7 mm), indicating that attention plays 

a particularly crucial role in spatial localization tasks. This performance degradation suggests that the attention mechanism 

successfully identifies temporally critical regions within sensor sequences that correlate with damage location signatures. 

The BiGRU component demonstrates substantial importance, with its absence resulting in a 5.5% reduction in damage 

detection accuracy and a 7.2% decline in severity classification performance. The location RMSE deteriorates by 54.5% 

to 28.9 mm, underscoring the BiGRU's crucial role in capturing long-range temporal dependencies, which are essential for 

accurate spatial damage inference. This significant degradation underscores the importance of bidirectional temporal 

modeling in SHM, where both past and future context within signal windows inform damage characterization. 

 

 
Fig 6. Confusion Matrix for Severity Classification. 

 

 

   
Fig 7. Ablation Analysis. 

 

Temporal convolution layers prove to be the most critical architectural component, with their removal causing the most 

significant performance degradation across all tasks. Damage detection accuracy drops by 7.9% to 86.3%, severity F1-

score decreases by 9.5% to 79.8%, and location RMSE increases by 66.8% to 31.2 mm. This substantial impact 

demonstrates that local temporal feature extraction forms the foundation of effective damage pattern recognition, providing 

essential preprocessing for higher-level sequence modeling components. 
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Table 4. Ablation Study - Architecture Components 

Model Configuration 
Damage Detection 

Accuracy 
Severity F1-Score Location RMSE (mm) 

Full Model 94.2% 89.3% 18.7 

w/o Attention 91.5% 85.2% 23.4 

w/o BiGRU 88.7% 82.1% 28.9 

w/o Temporal Conv 86.3% 79.8% 31.2 

LSTM Only 89.2% 83.7% 25.6 

CNN Only 82.1% 76.4% 35.8 

 

Multi-Modal Sensor Fusion Analysis 

The sensor modality analysis in Table 5 reveals the complementary nature of different physical sensing principles in SHM. 

AE sensors demonstrate the highest individual performance, achieving 85.7% accuracy and contributing 35% to the overall 

fusion performance. This dominance reflects the direct relationship between AEs and crack propagation events, making 

AE sensors particularly sensitive to damage initiation and growth processes. 

Vibration sensors (MEMS accelerometers) achieve an individual performance of 82.1% with a 31% fusion contribution, 

indicating their effectiveness in capturing changes in structural dynamic response associated with stiffness reduction and 

variations in modal properties. The strong performance of vibration sensing validates its widespread adoption in traditional 

SHM applications. Strain sensors (FBG) contribute 28% to the fusion despite achieving 78.3% individual accuracy, 

suggesting that while strain measurements provide valuable local deformation information, they may be less distinctive for 

global damage characterization compared to dynamic response signatures captured by AE and vibration sensors. 

Temperature sensors exhibit the lowest individual performance at 65.2% with minimal fusion contribution (6%), 

reflecting their primary role as environmental monitoring rather than direct damage detection. However, their inclusion 

provides essential context for temperature compensation of other sensor modalities and detection of thermally induced 

damage mechanisms. The multi-modal fusion achieves 94.2% accuracy, representing substantial improvements over 

individual sensor performance: 10.1% over AE, 14.7% over vibration, 20.3% over strain, and 44.6% over temperature 

sensors. This significant enhancement demonstrates the power of complementary sensor fusion in capturing diverse 

damage manifestations. 

 

Table 5. Performance by Sensor Modality 

Sensor Type Individual Performance Contribution to Fusion 

Strain (FBG) 78.3% 0.28 

Vibration (MEMS) 82.1% 0.31 

AE 85.7% 0.35 

Temperature 65.2% 0.06 

Multi-modal Fusion 94.2% 1.00 

 

Temporal Window Optimization Analysis 

The temporal window analysis in Table 6 reveals an optimal balance between accuracy and computational efficiency at 

1.0-second windows. The 89.1% accuracy achieved with 0.5-second windows indicates that insufficient temporal context 

exists for recognizing complex damage patterns, suggesting that critical temporal dependencies extend beyond this 

abbreviated timeframe. The 1.0-second window configuration achieves peak performance at 94.2% accuracy while 

maintaining reasonable computational requirements (78 ms processing time, 5.8 MB memory usage). This optimal window 

length likely captures the characteristic time scales of damage-related phenomena in CFRP materials, including AE burst 

sequences and vibration response decay patterns. 

Longer windows (2.0 and 5.0 seconds) show marginal accuracy reductions to 93.8% and 92.4%, respectively, while 

dramatically increasing computational overhead. The 2.0-second window requires 82% more processing time (142 ms) and 

97% more memory (11.4 MB), while the 5.0-second window increases processing time by 271% (289 ms) and memory 

usage by 395% (28.7 MB). This performance plateau suggests that relevant damage signatures are predominantly contained 

within 1-2 second timeframes, with longer windows introducing noise and computational inefficiency without proportional 

accuracy gains. 

 

Table 6. Temporal Window Size Analysis 

Window Size (seconds) Accuracy (%) Processing Time (ms) Memory Usage (MB) 

0.5 89.1% 45 3.2 

1.0 94.2% 78 5.8 

2.0 93.8% 142 11.4 

5.0 92.4% 289 28.7 
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Benchmark Comparison Analysis 

The comparative evaluation presented in Table 7 demonstrates the superior performance of the proposed DTL network 

across all evaluation metrics when benchmarked against established baseline methods. The proposed approach achieves 

94.2% damage detection accuracy, representing substantial improvements over traditional machine learning approaches: 

6.7% over SVM with handcrafted features (87.5%) and 8.9% over Random Forest (85.3%). This performance gap 

highlights the advantage of learned feature representations over manually engineered features, which may fail to capture 

the complex temporal dependencies inherent in structural degradation processes. The comparison with deep learning 

baselines reveals more nuanced performance differences. The proposed DTL network outperforms the standard LSTM by 

5.0% in damage detection accuracy (94.2% vs. 89.2%) and 5.6% in severity classification F1-score (89.3% vs. 83.7%), 

while achieving 27.0% better localization accuracy (18.7 mm vs. 25.6 mm RMSE). This improvement demonstrates the 

benefits of the hybrid architecture, which combines convolutional feature extraction, bidirectional recurrent processing, 

and attention mechanisms over simple recurrent approaches. 

The CNN-1D baseline exhibits the poorest performance among deep learning methods, achieving only 82.1% damage 

detection accuracy and 35.8 mm location RMSE. This 12.1% accuracy deficit and 91.4% increase in localization error 

underscore the critical importance of temporal sequence modeling in SHM applications, where damage signatures evolve 

scales that purely convolutional approaches cannot effectively capture. The Transformer architecture represents the closest 

competitive baseline, achieving 91.8% damage detection accuracy and 86.2% severity classification F1-score. However, 

the proposed DTL network maintains a 2.4% and 3.1% advantage in these metrics, respectively, while achieving 18.1% 

better localization accuracy (18.7 mm vs 22.1 mm RMSE). Notably, the Transformer requires 104% more training time 

(4.7 hours vs. 2.3 hours), indicating reduced computational efficiency despite inferior performance. 

 

Table 7. Comparison with Baseline Methods 

Method 
Damage 

Detection 
Severity Classification 

Location 

RMSE 
Training Time 

Proposed DTL Network 94.2% 89.3% 18.7 mm 2.3 hrs 

SVM + Handcrafted Features 87.5% 82.1% 28.4 mm 0.8 hrs 

Random Forest 85.3% 79.7% 31.2 mm 0.5 hrs 

Standard LSTM 89.2% 83.7% 25.6 mm 1.8 hrs 

CNN-1D 82.1% 76.4% 35.8 mm 1.2 hrs 

Transformer 91.8% 86.2% 22.1 mm 4.7 hrs 

 

Damage-Specific Performance Analysis 

The damage scenario analysis in Table 8 reveals differential model performance across various failure modes, providing 

insights into the physical interpretation capabilities of the proposed approach. Impact damage achieves the highest detection 

rate at 97.2% with the lowest false positive rate (1.9%) and excellent localization accuracy (14.7 mm). This superior 

performance reflects the distinctive temporal signatures of impact events, which typically generate high-amplitude, 

broadband AEs and sudden structural response changes that the attention mechanism effectively identifies. 

Matrix cracking demonstrates strong performance with a 96.8% detection rate and a 15.3 mm localization error, 

indicating the model's sensitivity to early-stage damage mechanisms. The low false positive rate of 2.1% suggests that the 

temporal patterns associated with matrix microcracking are sufficiently distinctive from normal operational variations. 

Delamination detection achieves 93.7% accuracy with moderate localization error (19.2 mm), reflecting the more gradual 

and spatially distributed nature of this failure mode. The 3.8% false positive rate indicates some challenge in distinguishing 

delamination signatures from other structural variations, possibly due to the subtle nature of interlaminar separation 

processes. 

Fiber breakage presents intermediate performance at 91.5% detection rate with 22.8 mm localization error, suggesting 

that individual fiber failures may be more challenging to detect and localize precisely, particularly when occurring in the 

interior of the laminate, where AEs may be attenuated. Fatigue crack detection exhibits the most challenging performance 

profile, with a 89.3% detection rate, a 5.1% FPR, and a 25.4 mm localization error. This degraded performance reflects the 

progressive nature of fatigue damage, which develops gradually over extended periods with a subtle signature evolution 

that may be more difficult to distinguish from normal structural aging processes. 

 

Table 8. Performance Under Different Damage Scenarios 

Damage Type Detection Rate False Positive Rate Localization Error (mm) 

Matrix Cracking 96.8% 2.1% 15.3 

Delamination 93.7% 3.8% 19.2 

Fiber Breakage 91.5% 4.2% 22.8 

Impact Damage 97.2% 1.9% 14.7 

Fatigue Crack 89.3% 5.1% 25.4 
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Noise Robustness Evaluation 

The robustness analysis in Table 9 demonstrates the model's resilience to varying noise conditions, which is critical for 

real-world deployment, where environmental interference and sensor drift are inevitable. At high signal-to-noise ratios (20 

dB), the model exhibits negligible performance degradation (1.2% accuracy drop), indicating robust operation under typical 

laboratory or controlled industrial conditions. The model maintains reasonable performance under moderate noise 

conditions (15 dB SNR) with only 3.8% accuracy reduction, classified as minor degradation. This robustness suggests that 

the temporal learning architecture possesses effective noise resilience mechanisms, likely due to the filtering capabilities 

of the temporal convolution layers and the attention mechanism's ability to focus on signal regions with higher signal-to-

noise ratios. Performance degradation becomes more pronounced at a 10 dB SNR (resulting in an 8.5% accuracy drop) and 

becomes significant at a 5 dB SNR (resulting in a 15.2% accuracy drop). However, these noise levels represent challenging 

operational environments where even human experts might struggle with damage identification. The model's ability to 

maintain over 80% accuracy even under severe noise conditions (0 dB SNR, 28.7% degradation) demonstrates fundamental 

robustness of the learned representations. 

 

Table 9. Model Robustness Analysis 

Noise Level (SNR) Accuracy Drop Performance Degradation 

20 dB 1.2% Negligible 

15 dB 3.8% Minor 

10 dB 8.5% Moderate 

5 dB 15.2% Significant 

0 dB 28.7% Severe 

 

Statistical Significance Validation 

The statistical significance tests presented in Table 10 provide rigorous validation of the proposed method's superior 

performance. The comparison with SVM yields highly significant results (p < 0.001) with a large effect size (Cohen's d = 

1.47), indicating not only statistical significance but also practical importance of the performance improvement. The 

comparison with the standard LSTM shows a significant improvement (p < 0.01) with a moderate effect size (Cohen's d = 

0.82), confirming that the architectural enhancements provide meaningful performance gains beyond random variation. 

The comparison with the Transformer baseline achieves statistical significance (p < 0.05) with a small-to-moderate effect 

size (Cohen's d = 0.34), validating the practical benefits of the proposed hybrid architecture. 

The attention mechanism ablation study demonstrates a highly significant performance contribution (p < 0.001, Cohen's 

d = 1.23), providing strong statistical evidence for the importance of attention-based feature selection in temporal SHM 

applications. These statistical validations ensure that reported performance improvements represent genuine 

methodological advances rather than experimental artifacts or random variation. 

 

Table 10. Statistical Significance Tests 

Comparison p-value Cohen's d Significance Level 

Proposed vs SVM < 0.001 1.47 *** 

Proposed vs LSTM < 0.01 0.82 ** 

Proposed vs Transformer < 0.05 0.34 * 

With vs Without Attention < 0.001 1.23 *** 

Note: * p < 0.05, ** p < 0.01, *** p < 0.001 

 

VI. CONCLUSION AND FUTURE WORK 

This research successfully developed and validated a novel AI-augmented SHM framework that addresses critical 

limitations in real-time damage detection for SM through DTL networks. The proposed hybrid architecture, combining 

temporal convolutional layers, BiGRU processing, and attention mechanisms, demonstrated exceptional performance 

across multi-task diagnostic objectives, achieving 94.2% damage detection accuracy, 89.3% severity classification F1-

score, and 18.7 mm spatial localization RMSE on instrumented CFRP specimens. The comprehensive experimental 

validation confirmed significant performance improvements over established baseline methods, with 6.7% accuracy gains 

over SVM approaches and 5.0% improvements over standard LSTM networks. Ablation studies revealed the critical 

importance of each architectural component, with temporal convolutions providing the most significant contribution (7.9% 

accuracy improvement), followed by bidirectional processing (5.5%) and attention mechanisms (2.7%). Multi-modal 

sensor fusion achieved substantial performance gains over individual modalities, with AE sensors contributing most 

significantly to overall diagnostic accuracy. The deployment-optimized system successfully addresses real-time processing 

requirements with sub-100 millisecond inference latency while maintaining robust performance across diverse damage 

scenarios and noise conditions. The framework's ability to process synchronized multi-modal data from strain, vibration, 

AE, and temperature sensors provides comprehensive structural characterization capabilities essential for industrial 

applications. These contributions establish a foundation for next-generation SHM systems in aerospace, civil infrastructure, 

and manufacturing applications.  Future research directions include extending the framework to additional SM systems, 

investigating Federated Learning (FL) approaches for distributed sensor networks, and developing explainable AI for 
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enhanced diagnostic interpretability. The demonstrated effectiveness of DTL for SHM opens new possibilities for 

autonomous damage detection and predictive maintenance in safety-critical applications. 

 

CRediT Author Statement 

The authors confirm contribution to the paper as follows:  

Conceptualization: Mithra C, Rajkumar N, Tamilarasi M, Lakshmi Prasanna, Pari R and Kalai Selvi D M; Methodology: 

Mithra C, Rajkumar N and Tamilarasi M; Writing- Original Draft Preparation: Mithra C, Rajkumar N, Tamilarasi M, 

Lakshmi Prasanna, Pari R and Kalai Selvi D M; Visualization: Mithra C, Rajkumar N and Tamilarasi M; Investigation: 

Lakshmi Prasanna, Pari R and Kalai Selvi D M; Supervision: Mithra C, Rajkumar N and Tamilarasi M; Validation: 

Lakshmi Prasanna, Pari R and Kalai Selvi D M; Writing- Reviewing and Editing: Mithra C, Rajkumar N, Tamilarasi M, 

Lakshmi Prasanna, Pari R and Kalai Selvi D M; All authors reviewed the results and approved the final version of the 

manuscript. 

 

Data Availability 

No data was used to support this study. 

 

Conflicts of Interests  

The author(s) declare(s) that they have no conflicts of interest.  

 

Funding  

No funding agency is associated with this research.  

 

Competing Interests  

There are no competing interests. 

 

References 
[1]. L. B. Carani, J. Humphrey, M. M. Rahman, and O. I. Okoli, “Advances in Embedded Sensor Technologies for Impact Monitoring in Composite 

Structures,” Journal of Composites Science, vol. 8, no. 6, p. 201, May 2024, doi: 10.3390/jcs8060201. 

[2]. C. Lopes et al., “Smart Carbon Fiber-Reinforced Polymer Composites for Damage Sensing and On-Line Structural Health Monitoring 

Applications,” Polymers, vol. 16, no. 19, p. 2698, Sep. 2024, doi: 10.3390/polym16192698. 

[3]. Azadeh Keshtgar and Mohammad Modarres, “Fatigue Crack Initiation Sizing Using Acoustic Emission,” Journal of Civil Engineering and 

Architecture, vol. 11, no. 12, Dec. 2017, doi: 10.17265/1934-7359/2017.12.006. 

[4]. A. Gomez-Cabrera and P. J. Escamilla-Ambrosio, “Review of Machine-Learning Techniques Applied to Structural Health Monitoring 

Systems for Building and Bridge Structures,” Applied Sciences, vol. 12, no. 21, p. 10754, Oct. 2022, doi: 10.3390/app122110754. 

[5]. A. E. S. M. Atia, M. Vafaei, K. F. Tee, and S. C. Aliah, “A Systematic Review of Structural Health Monitoring Using Artificial Neural 

Networks: From Traditional Neural Networks to Deep Learning Algorithms.,” Dec. 2024, doi: 10.21203/rs.3.rs-5697583/v1. 

[6]. M. Azimi, A. Eslamlou, and G. Pekcan, “Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-

the-Art Review,” Sensors, vol. 20, no. 10, p. 2778, May 2020, doi: 10.3390/s20102778. 

[7]. A. Mishra, G. Gangisetti, & D. Khazanchi, “Integrating edge-AI in structural health monitoring domain” 2023, arXiv preprint 

arXiv:2304.03718. 

[8]. A. Moallemi, A. Burrello, D. Brunelli, and L. Benini, “Exploring Scalable, Distributed Real-Time Anomaly Detection for Bridge Health 

Monitoring,” IEEE Internet of Things Journal, vol. 9, no. 18, pp. 17660–17674, Sep. 2022, doi: 10.1109/jiot.2022.3157532. 

[9]. H. Yu, & Y. Chen, “Synergistic signal denoising for multimodal time series of structure vibration using attention-enhanced deep recurrent 

networks”, 2023, arXiv preprint arXiv:2308.11644. https://arxiv.org/abs/2308.11644. 

[10]. X. Zhou, T. Li, Q. Zhang, & C. Jiang, “Transferring self-supervised pre-trained models for SHM anomaly detection under label scarcity”, 

2024, arXiv preprint arXiv:2412.03880. https://arxiv.org/abs/2412.03880. 

[11]. Y. Wei et al., “Structural health monitoring and evaluation method for an immersed tunnel based on deep learning,” Scientific Reports, vol. 

15, no. 1, Jul. 2025, doi: 10.1038/s41598-025-10643-5. 

[12]. T. Bao, Y. Wang, & H. Sun, “Deep transfer learning network for structural condition identification with limited real-world data” 2023, arXiv 

preprint arXiv:2307.15249. https://arxiv.org/abs/2307.15249. 

[13]. J. Jia and Y. Li, “Deep Learning for Structural Health Monitoring: Data, Algorithms, Applications, Challenges, and Trends,” Sensors, vol. 23, 

no. 21, p. 8824, Oct. 2023, doi: 10.3390/s23218824. 

[14]. C. Tuloup, W. Harizi, Z. Aboura, Y. Meyer, K. Khellil, and R. Lachat, “On the use of in-situ piezoelectric sensors for the manufacturing and 

structural health monitoring of polymer-matrix composites: A literature review,” Composite Structures, vol. 215, pp. 127–149, May 2019, 

doi: 10.1016/j.compstruct.2019.02.046. 

[15]. X. Chen et al., “In-situ damage self-monitoring of fiber-reinforced composite by integrating self-powered ZnO nanowires decorated carbon 

fabric,” Composites Part B: Engineering, vol. 248, p. 110368, Jan. 2023, doi: 10.1016/j.compositesb.2022.110368. 

[16]. A. Coles, B. A. de Castro, C. Andreades, F. G. Baptista, M. Meo, and F. Ciampa, “Impact Localization in Composites Using Time Reversal, 

Embedded PZT Transducers, and Topological Algorithms,” Frontiers in Built Environment, vol. 6, Mar. 2020, doi: 10.3389/fbuil.2020.00027. 

[17]. H. Su, M. Drissi-Habti, and V. Carvelli, “New Concept of Dual-Sinusoid Distributed Fiber-Optic Sensors Antiphase-Placed for the SHM of 

Smart Composite Structures for Offshore,” Applied Sciences, vol. 14, no. 2, p. 932, Jan. 2024, doi: 10.3390/app14020932. 

[18]. J. M. Gilbert, K. Bhavsar, and O. V. Ivanov, “Robustness of embedded fibre optic sensor mesh configurations for monitoring composite 

structures,” Sensors and Actuators A: Physical, vol. 373, p. 115445, Aug. 2024, doi: 10.1016/j.sna.2024.115445. 

[19]. M. A. Shohag, T. Ndebele, D. Olawale, And O. Okoli, “Advances of Bio-inspired In-situ Triboluminescent Optical Fiber Sensor for Damage 

and Load Monitoring in Multifunctional Composite,” Structural Health Monitoring 2017, Sep. 2017, doi: 10.12783/shm2017/14065. 



 
ISSN: 2788–7669        Journal of Machine and Computing 6(1)(2026) 

92 

[20]. M. A. SHOHAG, G. R. ADAMS, V. O. EZE, T. ICHITE, L. B. CARANI, and O. OKOLI, “Mechanoluminescent-Perovskite Pressure Sensor 

for Structural Health Monitoring,” Structural Health Monitoring 2019, Nov. 2019, doi: 10.12783/shm2019/32233. 

[21]. Y. Wan et al., “Low-velocity impact damage localization of GF/epoxy laminates by the embedded MWCNT@GF sensor network,” Journal 

of Materials Research and Technology, vol. 9, no. 4, pp. 9253–9261, Jul. 2020, doi: 10.1016/j.jmrt.2020.06.032. 

[22]. F. Hao et al., “Carbon-Nanotube-Film-Based Electrical Impedance Tomography for Structural Damage Detection of Carbon-Fiber-Reinforced 

Composites,” ACS Applied Nano Materials, vol. 4, no. 5, pp. 5590–5597, May 2021, doi: 10.1021/acsanm.1c01132. 

[23]. K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, and P. R. Chalker, “Embedded fibre Bragg grating sensors in advanced composite 

materials,” Composites Science and Technology, vol. 61, no. 10, pp. 1379–1387, Aug. 2001, doi: 10.1016/s0266-3538(01)00037-9. 

[24]. H. Kwon, Y. Park, C. Shin, J.-H. Kim, and C.-G. Kim, “Embedded silicon carbide fiber sensor network based low-velocity impact localization 

of composite structures,” Smart Materials and Structures, vol. 29, no. 5, p. 055030, Apr. 2020, doi: 10.1088/1361-665x/ab7946. 

[25]. C. C. Bowland, N. A. Nguyen, and A. K. Naskar, “Roll-to-Roll Processing of Silicon Carbide Nanoparticle-Deposited Carbon Fiber for 

Multifunctional Composites,” ACS Applied Materials &amp; Interfaces, vol. 10, no. 31, pp. 26576–26585, Jul. 2018, doi: 

10.1021/acsami.8b03401. 

Publisher’s note: The publisher remains neutral with regard to jurisdictional claims in published maps and institutional 

affiliations. The content is solely the responsibility of the authors and does not necessarily reflect the views of the publisher. 

 


