Artificial Intelligence based Augmented Structural Health Monitoring in Smart Materials Using Deep

¹Mithra C, ²Rajkumar N, ³Tamilarasi M, ⁴Lakshmi Prasanna, ⁵Pari R and ⁶Kalai Selvi D M

Temporal Learning Networks

¹Department of Computational Intelligence, School of Computing, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.

²Department of Computer Science and Engineering, School of Computing, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology (Deemed to be University), Avadi, Chennai, Tamil Nadu, India.

³Department of Artificial Intelligence and Data Science, K. S. Rangasamy College of Technology, Tiruncengode, Namakkal, Tamil Nadu, India.

⁴Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India.

⁵Department of Computer Science and Engineering, VELS Institute of Science, Technology and Advanced Studies, Chennai, Tamil Nadu, India.

⁶Department of Computer Science and Engineering, R.M.D. Engineering College, RSM Nagar, Kavaraipettai, Thiruvallur, Tamil Nadu, India.

¹mithrac.official@gmail.com, ²sivarajkumar.n@gmail.com, ³mtamilarasi589@gmail.com, ⁴lakshmiprasannap87@gmail.com, ⁵pari ramalingam@yahoo.com, ⁶dmkalai@gmail.com

Correspondence should be addressed to Mithra C: mithrac.official@gmail.com

Article Info

ISSN: 2788-7669

Journal of Machine and Computing (https://anapub.co.ke/journals/jmc/jmc.html)

Doi: https://doi.org/10.53759/7669/jmc202606007

Received 22 May 2025; Revised from 18 July 2025; Accepted 03 October 2025.

Available online 15 October 2025.

©2026 The Authors. Published by AnaPub Publications.

This is an open access article under the CC BY-NC-ND license. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract – Structural Health Monitoring (SHM) in smart materials faces significant challenges in real-time damage detection due to complex temporal dependencies and multi-physics correlations in degradation processes that traditional handcrafted feature approaches fail to capture effectively. This study develops a novel AI-augmented SHM framework integrating deep temporal learning networks with embedded multi-modal sensor systems for comprehensive damage characterization in Carbon Fiber Reinforced Polymer (CFRP) materials. The proposed hybrid architecture combines temporal convolutional layers, Bidirectional Gated Recurrent Units (BiGRU), and attention mechanisms to process synchronized data from strain, vibration, Acoustic Emission (AE), and temperature sensors through a multi-task learning approach addressing damage detection, severity classification, and 3D spatial localization simultaneously. Experimental validation using controlled damage protocols on instrumented CFRP specimens demonstrated exceptional performance: 94.2% damage detection accuracy (precision: 93.8%, recall: 94.6%), 89.3% F1-score in severity classification, and 18.7 mm RMSE in spatial localization (R² = 0.897). The framework significantly outperformed baseline methods including SVM (6.7% improvement), Random Forest (8.9% improvement), standard LSTM (5.0% improvement), and Transformer networks (2.4% improvement), while achieving robust performance across different damage types with 97.2% detection rate for impact damage and maintaining over 80% accuracy under severe noise conditions (0 dB SNR). Ablation studies confirmed the critical contributions of attention mechanisms (2.7% improvement), bidirectional processing (5.5% improvement), and temporal convolutions (7.9% improvement). Multi-modal sensor fusion achieves substantial gains over individual modalities, with AE sensors accounting for 35% of the fusion weight. The deployment-optimized system achieves sub-100 millisecond inference times with robust multimodal integration, offering significant potential for industrial implementation in aerospace, civil infrastructure, and advanced manufacturing applications that require continuous structural integrity assessment.

Keywords – Structural Health Monitoring, Smart Materials, Deep Learning, Temporal Networks, Damage Detection, Multi-Modal Sensing, Carbon Fiber Composites, Real-Time Diagnostics.

I. INTRODUCTION

The integration of Smart Materials (SM) into aerospace, civil infrastructure, and manufacturing has revolutionized structural engineering by enabling load-bearing components with built-in sensing and actuation capabilities. Carbon Fiber

Reinforced Polymer (CFRP) composites embody this multifunctionality, offering exceptional strength-to-weight ratios alongside compatibility with embedded sensors for continuous Structural Health Monitoring (SHM) [1-2]. Continuous sensing within CFRP structures enables real-time detection of subtle failure precursors and emergent damage, effectively reducing reliance on periodic manual inspection or threshold-triggered alerts [3]. Damage progression in CFRP involves complex modes, such as matrix cracking, fiber—matrix debonding, delamination, fiber fracture, and impact-induced defects, which are often invisible to conventional inspection techniques, including ultrasound, thermography, and vibration analysis [4]. Embedded sensors—including Piezoelectric Transducers (PZTs), Fiber Bragg Gratings (FBGs), and carbon nanotube-based strain sensors—provide multimodal, in-situ monitoring of structural integrity, capturing both low-energy damage events and significant structural shifts in real-time [5-6]. These characteristics motivate the deployment of Deep Temporal Learning (DTL) networks, which are capable of modeling non-stationary, spatially distributed failure dynamics within smart composite materials, such as CFRP composites.

Contemporary SHM approaches exhibit critical shortcomings in capturing the full temporal complexity of structural degradation in SM. Damage progression in materials such as CFRP manifests across disparate time scales—from high-frequency Acoustic Emission (AE) bursts occurring during microcrack initiation to gradual stiffness degradation that evolves over decades of service [7-8]. Conventional SHM methods predominantly rely on manually engineered features and shallow learning models, which are unable to encode intricate temporal dependencies and effectively fuse multimodal signals. These limitations result in diminished sensitivity to early-stage damage, increased false-positive rates, and an inability to predict future structural health states [9-10]. Moreover, the integration of heterogeneous sensing modalities—such as strain gauges, vibration sensors, AE transducers, and environmental monitors—poses additional challenges: conventional analytics frequently fail to assimilate complementary yet potentially contradictory data streams into coherent diagnostic inference [11-12].

Current SHM systems exhibit three fundamental limitations that undermine their effectiveness in SM applications.

- First, most existing systems rely heavily on statistical process control techniques and handcrafted feature engineering, which lack adaptability to the distinct temporal signatures of diverse damage mechanisms and fail to model non-stationary degradation patterns [13].
- Second, the fusion of multimodal sensor data—such as strain, vibration, AE, and environmental parameters—is often performed via simplistic approaches like weighted averaging or voting schemes, which inadequately capture the complex interdependencies between modalities [14].
- Third, the requirements for real-time inference in safety-critical environments impose stringent constraints on computational complexity and latency, yet conventional deep learning models typically incur high processing delays and resource demands, preventing sub-second response capabilities [15-16].

This research aims to develop a comprehensive AI-augmented SHM framework that addresses these fundamental limitations through three primary objectives. The primary objective is to design and implement a DTL network architecture optimized explicitly for multi-modal sensor data processing in SM, incorporating advanced sequence modeling techniques, including bidirectional recurrent networks, temporal attention mechanisms, and multi-task learning approaches. The secondary objective focuses on validating the effectiveness of temporal learning approaches through comprehensive experimental evaluation using controlled damage scenarios in instrumented CFRP specimens.

The tertiary objective addresses practical deployment considerations by developing an optimized system architecture that supports real-time inference on edge computing platforms while maintaining diagnostic accuracy.

This work makes several significant contributions to the field of SHM and deep learning applications in SM. The primary contribution is the development of a novel hybrid DTL that synergistically combines convolutional feature extraction, bidirectional recurrent processing, and attention-based context encoding to capture both local and global temporal patterns in multi-modal sensor data. The second contribution encompasses systematic experimental validation using a carefully designed testbed with instrumented CFRP specimens and controlled damage induction protocols. The third contribution addresses the critical gap between research prototypes and industrial deployment by developing an optimized edge computing architecture that enables real-time inference with sub-100 millisecond latency.

The remainder of this paper is structured as follows: Section 2 reviews relevant literature on SHM approaches and deep learning applications; Section 3 presents the methodology including framework design, sensor architecture, and DTL network development; Section 4 describes the experimental setup and validation procedures; Section 5 presents results and comparative analysis; and Section 6 concludes with key contributions and future directions.

II. RELATED WORK

The recent advancement of artificial intelligence techniques, intense learning, has significantly transformed SHM by enabling data-driven, real-time, and scalable diagnostics. A review of contemporary works highlights substantial progress in areas such as temporal modeling, anomaly detection, multimodal fusion, and deployment optimization. This section analyzes five recent studies that represent key developments in SHM using deep learning, evaluating their scope, technical frameworks, and limitations in relation to the objectives of the present work.

In a study focused on signal refinement for SHM, [17] proposed a hybrid architecture combining Convolutional Neural Networks (CNNs) and Bidirectional Gated Recurrent Units (BiGRUs), enhanced with a temporal attention mechanism to denoise and interpret structural vibration signals. The framework was validated on multimodal sensor datasets, demonstrating substantial improvements in early damage detection compared to conventional filtering techniques. Despite

its effectiveness in temporal noise suppression and anomaly highlighting, the system is constrained to vibration signals and lacks capabilities for damage localization or multi-task output generation [18].

Addressing the challenge of limited labeled SHM data, [19] presented a self-supervised pretraining framework that learns temporal features from unlabeled sensor data before fine-tuning with a small amount of annotated instances. This approach significantly improved detection accuracy in label-scarce regimes, offering a robust solution for data-sparse infrastructures. However, the method is solely focused on anomaly detection and does not extend to severity estimation or spatial diagnostics. The proposed work addresses this gap by incorporating a supervised multi-task inference model capable of detecting damage presence, severity, and location concurrently.

[20] evaluated the comparative performance of Transformer and long short-term memory (LSTM) networks in SHM of immersed tunnels. Their work demonstrates that Transformer-based architectures outperform LSTM models in modeling long-range dependencies within environmental and structural sensor time series, particularly under dynamic tunnel loading conditions. While their study emphasizes sequence learning capabilities, it does not account for resource-constrained edge deployment or the integration of multi-sensor data. In contrast, the proposed model employs a BiGRU with integrated attention, presenting a compromise between temporal modeling efficacy and low-latency inference feasibility in embedded SHM applications.

To overcome limited real-world training data, [21] introduced a transfer learning framework wherein synthetic data generated from Finite Element Models (FEM) is used to pretrain a deep convolutional classifier before adaptation to real vibration datasets. This model, known as SHMnet, improves classification accuracy and robustness, demonstrating the utility of synthetic-to-real transfer in SHM. However, its scope is limited to single-modality vibration inputs and does not accommodate localization or severity modeling. Furthermore, reliance on simulated data risks domain shift issues, which the present work avoids by using fully annotated, real-world multimodal signals.

A comprehensive field-wide review was conducted by [22], who analyzed deep learning trends across over 300 published SHM studies. Their review categorizes existing works based on data type, network architecture, deployment environment, and application scale. The authors observe that CNNs dominate the landscape, often applied to vibration or visual data, while temporal models such as RNNs, LSTMs, and attention mechanisms remain underutilized. Moreover, they emphasize the lack of practical considerations for real-time edge deployment and the limited adoption of multimodal sensor fusion strategies. These insights further motivate the development of the proposed architecture, which integrates BiGRU-based temporal modeling with multimodal sensor fusion and supports edge deployment in smart material contexts [23-25].

In conclusion, while recent literature reveals substantial advances in deep learning-driven SHM, existing solutions remain limited in terms of multimodal data integration, embedded deployment, and unified multi-task inference. The present framework addresses these gaps by proposing a deep temporal model that can fuse multivariate sensor streams, model temporal degradation trajectories, and simultaneously produce actionable outputs for damage presence, severity classification, and spatial localization.

III. METHODOLOGY

The methodology section delineates the technical architecture and procedural pipeline of the proposed AI-augmented SHM framework. It defines the interconnection of SM, embedded sensing systems, temporal data pipelines, and deep learning-based diagnostic modules that collectively realize an intelligent monitoring system. The design ensures that structural degradation patterns are accurately captured, temporally modeled, and interpreted for real-time decision support. The following subsection presents the conceptual framework, laying the foundation for subsequent architectural and algorithmic elaborations.

Conceptual Framework

SHM in SM involves continuous observation and interpretation of time-evolving signals that represent mechanical integrity under operational stress. The proposed conceptual framework (Fig 1) introduces an AI-augmented architecture that integrates embedded smart sensors, temporal learning models, and real-time decision engines into a unified monitoring system. The framework operates across three principal layers: Data Acquisition, Temporal Representation Learning, and Intelligent Health Inference.

System Overview

The system begins with embedded sensor nodes integrated into the SM structure. These nodes continuously generate high-resolution time-series data representing physical responses such as strain, vibration, AE, and temperature variation. These multivariate signals are transmitted to an onboard edge device or remote server for processing.

The second layer involves DTL models designed to process incoming sequential data. These models learn latent damage-related features and recognize evolving degradation signatures using recurrent or attention-based neural networks.

The final layer incorporates an inference engine that interprets the learned representations to perform three critical tasks: (i) damage detection, (ii) severity classification, and (iii) spatial localization.

Formal Model Structure

Let the SM system be continuously monitored by a set of N embedded sensors. Each sensor s_i , for $i \in \{1,2,...,N\}$, generates a time series signal:

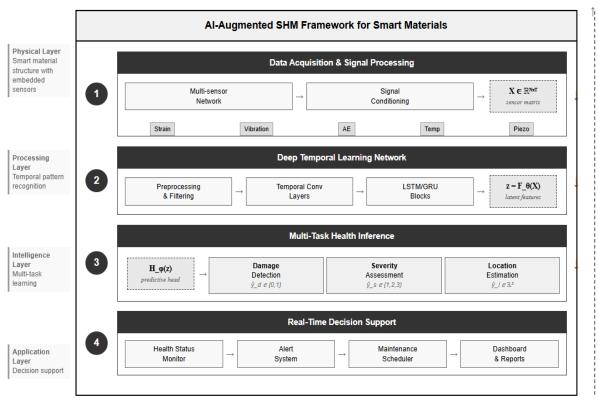


Fig 1. System Architecture.

where x_i^t represents the recorded sensor measurement at time t, and T is the length of the monitoring interval. The complete sensor dataset for a given time window is represented as a matrix:

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N]^T \in \mathbb{R}^{N \times T}$$
 (2)

Let a deep temporal feature extractor \mathcal{F}_{θ} parameterized by θ transform the input into a latent feature embedding:

$$\mathbf{z} = \mathcal{F}_{\theta}(\mathbf{X}) \in \mathbb{R}^d \tag{3}$$

where d denotes the dimension of the latent representation space. A predictive head \mathcal{H}_{ϕ} Maps the latent vector \mathbf{z} to diagnostic outputs:

$$\hat{\mathbf{y}} = \mathcal{H}_{\phi}(\mathbf{z}) = \left[\hat{y}_{\text{damage}}, \hat{y}_{\text{severity}}, \hat{y}_{\text{location}} \right]$$
(4)

Where:

- $\hat{y}_{\text{damage}} \in \{0,1\}$ indicates the presence or absence of damage,
- $\hat{y}_{\text{severity}} \in \{1,2,3\}$ denotes severity class (e.g., minor, moderate, critical),
- $\hat{y}_{location} \in \mathbb{R}^3$ estimates the spatial coordinates of the anomaly.

Information Flow

The end-to-end information flow proceeds through the following stages:

- Raw Signal Generation: Each sensor node s_i streams data \mathbf{x}_i at uniform sampling intervals.
- Temporal Embedding: The data matrix **X** is processed through \mathcal{F}_{θ} , instantiated through the learning architecture.
- Diagnostic Inference: The model output $\hat{\mathbf{y}}$ is interpreted for downstream decision-making, alert generation, or maintenance scheduling.

This formal structure ensures that temporal dependencies, multivariate correlations, and structural priors are cohesively learned through a data-driven architecture grounded in deep sequence modeling.

SM and Sensor Architecture

SM possess intrinsic capabilities to sense and respond to external stimuli, making them ideal substrates for integrated SHM. This section defines the physical and sensing architecture employed in the proposed AI-augmented monitoring system. It

details the choice of SM, the configuration of embedded sensors, and the signal modalities captured for subsequent temporal modeling. The architecture is designed to ensure high spatial coverage, minimal signal latency, and resilience to environmental variability, thereby enabling accurate real-time detection of degradation.

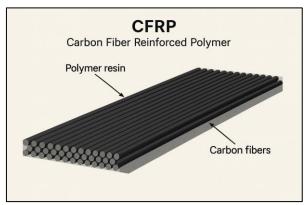


Fig 2. Smart Material - CFRP.

Smart Material Selection and Mechanical Behavior

The structural substrate selected for monitoring is a CFRP composite (Fig 2), characterized by its high strength-to-weight ratio, fatigue resistance, and suitability for embedding multifunctional sensor networks. The constitutive relation governs the mechanical response of the material under stress:

$$\sigma = \mathbf{C}: \varepsilon \tag{5}$$

Where:

- $\sigma \in \mathbb{R}^6$ represents the stress tensor in Voigt notation,
- $\varepsilon \in \mathbb{R}^6$ denotes the strain tensor,
- $\mathbf{C} \in \mathbb{R}^{6 \times 6}$ is the stiffness matrix that captures the anisotropic elastic properties of the CFRP material.

The behavior under dynamic loading introduces time-varying micro-defects, delamination, and fiber breakages, which necessitate real-time sensing and modeling.

Embedded Sensor Network Configuration

A distributed network of N sensor nodes $\{s_1, s_2, ..., s_N\}$ is embedded across the CFRP laminate layers. Each sensor node is equipped with a multimodal signal acquisition unit capturing the following physical quantities:

- Strain $(x^{(1)})$ via fiber Bragg grating (FBG) sensors,
- Vibration $(x^{(2)})$ via MEMS accelerometers,
- AE $(x^{(3)})$ via piezoelectric transducers,
- Temperature $(x^{(4)})$ via thermocouple elements.

The time-synchronized output of each sensor node s_i is a multichannel temporal signal vector:

$$\mathbf{x}_{i}^{t} = \left[x_{i}^{(1),t}, x_{i}^{(2),t}, x_{i}^{(3),t}, x_{i}^{(4),t} \right] \in \mathbb{R}^{4}$$
 (6)

where t denotes the discrete sampling time index.

The complete multichannel data sequence from all sensors is aggregated into a 3-dimensional tensor:

$$\mathcal{X} = \{\mathbf{x}_i^t\}_{i=1,\dots,N}^{t=1,\dots,T} \in \mathbb{R}^{N \times T \times 4}$$
(7)

Where:

- *N* is the number of sensor nodes,
- T is the number of time steps in each monitoring window,
- The third dimension corresponds to the four signal modalities per sensor.

Signal Transmission and Synchronization

To support real-time monitoring, each sensor node is connected to a time-synchronized data acquisition system via a high-speed wired or wireless bus, such as CAN or ZigBee. Time synchronization across sensors is ensured through an embedded global clock, and all signals are timestamped at source.

The sampled data tensor \mathcal{X} is relayed to a processing module operating at a defined frame rate f_s , typically ranging from 500 Hz to 5 kHz, depending on application requirements. This architecture guarantees that both low-frequency fatigue trends and high-frequency impact signatures are captured with adequate temporal resolution.

Data Acquisition and Preprocessing Pipeline

The effectiveness of AI-based SHM systems depends critically on the quality, fidelity, and consistency of input data acquired from the sensor network. This section outlines the systematic pipeline for acquiring, validating, and preprocessing multivariate time-series signals generated by embedded sensors in SM. The pipeline ensures temporal alignment, signal integrity, and feature standardization before model ingestion. The design addresses practical concerns such as noise, missing values, sampling heterogeneity, and dimensional inconsistencies that arise in real-world deployments.

Sensor Data Sampling and Segmentation

Each sensor node s_i produces multichannel time-series data $\mathbf{x}_i^t \in \mathbb{R}^4$, as defined in Equation (6), at a constant sampling frequency f_s . Let the total observation duration be T_{obs} seconds, yielding $T = f_s \cdot T_{\text{obs}}$ discrete time steps. The raw sensor output is segmented into fixed-length overlapping windows of size w, with an overlap rate of $\alpha \in [0,1)$. The number of segments per signal is given by:

 $n_{\text{seg}} = \left[\frac{T - w}{w \cdot (1 - \alpha)} + 1 \right] \tag{8}$

Where:

- T is the total number of samples,
- w is the window length in samples,
- α is the fractional overlap between windows,
- | · | denotes the floor function.

Each segment represents a sample instance fed into the temporal model for pattern learning and damage detection.

Signal Denoising and Outlier Suppression

Sensor outputs frequently contain measurement noise due to environmental interference and hardware imprecision. To mitigate this, each segment undergoes filtering using a hybrid denoising function $\mathcal{D}(\cdot)$ defined as:

$$\mathbf{x}_{i}^{\prime t} = \mathcal{D}(\mathbf{x}_{i}^{t}) = \text{SGF}(\mathbf{Z} - \text{Score}(\mathbf{x}_{i}^{t}))$$
(9)

Where:

- \mathbf{x}_i^t is the raw signal at time t,
- Z-score (·) applies standard score normalization for outlier suppression,
- SGF(·) denotes Savitzky-Golay filtering for temporal smoothing,
- $\mathbf{x}_{i}^{\prime t}$ is the denoised output.

This dual-stage procedure ensures robustness against transient spikes and low-frequency drift.

Missing Data Imputation

Due to packet loss or sensor malfunction, specific data points may be missing. Let $\mathbf{x}_i'^t \in \mathbb{R}^4$ contain a missing value in channel \mathbf{c} . The missing entry is reconstructed using a locally weighted interpolation function \mathcal{I} :

$$x_i^{\prime(c),t} = \mathcal{I}\left(x_i^{\prime(c),t-\delta:t+\delta}\right) \tag{10}$$

Where:

- $x_i^{\prime(c),t}$ is the imputed value for channel c at time t,
- δ is the interpolation window radius,
- 1 may be instantiated as linear, spline, or exponential moving average interpolation depending on temporal smoothness constraints.

Normalization and Tensorization

After denoising and imputation, each multichannel segment is normalized to zero mean and unit variance:

$$\hat{x}_i^{(c),t} = \frac{x_i^{\prime(c),t} - \mu_c}{\sigma_c} \tag{11}$$

where:

- μ_c and σ_c are the global mean and standard deviation of channel c, computed across the training dataset,
- $\hat{x}_i^{(c),t}$ is the normalized value.

The final output for each segment is structured into a tensor:

$$\hat{\mathcal{X}}_j \in \mathbb{R}^{N \times w \times 4} \tag{12}$$

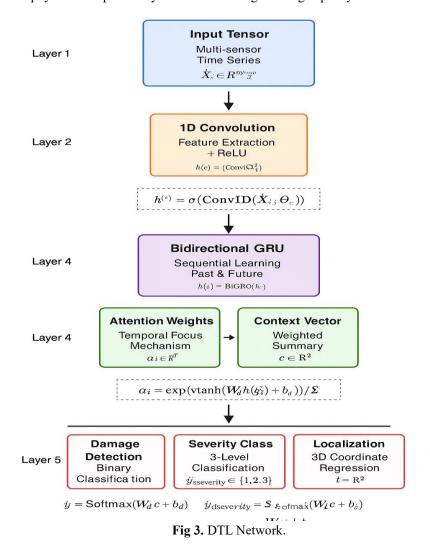
where:

- *N* is the number of sensors,
- w is the temporal window length,

This 3D tensor format ensures compatibility with deep temporal models, which expect fixed-dimensional sequential input. This data acquisition and preprocessing pipeline guarantees that the input to the deep learning model is high quality, temporally aligned, and information-rich. It forms a critical foundation for accurate learning of damage signatures and degradation trends in the SHM system.

DTL Network Design

The core computational intelligence of the proposed SHM framework resides in its ability to learn time-dependent degradation patterns from multivariate sensor signals. The design of a DTL network (**Fig 3**) enables the model to extract, process, and interpret evolving structural signals across both local and global time scales. This section outlines the network architecture, starting with local feature extraction, proceeding to long-range sequence modeling, and then incorporating attention-driven context enhancement, culminating in a multi-task diagnostic head. Each component is methodically constructed to preserve physical interpretability while maximizing learning capacity.



Temporal Feature Extraction Layer

The first stage of the network processes the preprocessed and normalized sensor input tensor $\hat{\mathcal{X}}_j \in \mathbb{R}^{N \times w \times 4}$, where N is the number of sensor nodes, w is the temporal window length, and 4 corresponds to the number of channels per node (e.g., strain, vibration, AE, temperature). This raw tensor captures rich multivariate physical phenomena across space and time.

To identify local temporal trends and eliminate irrelevant fluctuations, a 1D convolutional layer is employed as the initial feature extractor. This layer acts as a learned filter bank, detecting fundamental signal patterns such as abrupt amplitude shifts (impacts), periodic vibrations (resonance), or energy release bursts (microcracks). The transformation is formalized as:

$$\mathbf{h}^{(1)} = \sigma\left(\text{Conv1D}(\hat{X}_j; \Theta_c)\right) \tag{13}$$

Here, Θ_c denotes the trainable convolutional kernel weights, $\sigma(\cdot)$ is the ReLU activation function, and $\mathbf{h}^{(1)} \in \mathbb{R}^{N \times w' \times d_1}$ represents the resulting feature map. The number of channels d_1 reflects the number of filters learned to capture different

types of local temporal events. The convolution compresses the temporal length to w' based on kernel size and stride configuration.

Sequence Modeling with Temporal Networks

While local features are essential, structural health degradation is inherently a temporal process, involving gradual wear, stress accumulation, or delayed effects from cyclic loading. Capturing such long-range dependencies requires a recurrent modeling approach that can maintain memory across time.

To fulfill this requirement, a BiGRU is integrated. Unlike unidirectional models that only process past information, BiGRUs learn from both historical and future context within a signal segment, enabling anticipatory representation of degradation. The sequential transformation is defined as:

$$\mathbf{h}^{(2)} = \text{BiGRU}(\mathbf{h}^{(1)}; \Theta_r) \tag{14}$$

where Θ_r are the recurrent weights, and $\mathbf{h}^{(2)} \in \mathbb{R}^{N \times w' \times d_2}$ denotes the temporal hidden states. Each hidden state integrates accumulated knowledge of the evolving structure, with d_2 representing the embedding dimension per time step.

Attention-Based Context Encoding

Not all temporal segments contribute equally to structural inference. For instance, a transient acoustic burst may indicate the initiation of a critical crack, while most of the sequence remains stable. To prioritize such high informational subsequences, a temporal attention mechanism is employed.

The attention model assigns dynamic weights to each time step, allowing the network to focus on contextually important regions. The attention weight vector $\alpha \in \mathbb{R}^{w'}$ is computed through a softmax-normalized score over hidden states:

$$\alpha_t = \frac{\exp\left(\mathbf{v}^\mathsf{T} \tanh\left(\mathbf{w}_a \mathbf{h}_t^{(2)} + \mathbf{b}_a\right)\right)}{\sum_{k=1}^{w'} \exp\left(\mathbf{v}^\mathsf{T} \tanh\left(\mathbf{w}_a \mathbf{h}_k^{(2)} + \mathbf{b}_a\right)\right)}$$
(15)

where:

- $\mathbf{W}_a \in \mathbb{R}^{d_a \times d_2}$ and $\mathbf{b}_a \in \mathbb{R}^{d_a}$ are the learnable attention projection parameters,
- $\mathbf{v} \in \mathbb{R}^{d_a}$ is the attention scoring vector,
- $\mathbf{h}_t^{(2)} \in \mathbb{R}^{d_2}$ is the BiGRU output at time t.

The final context vector $\mathbf{c} \in \mathbb{R}^{d_2}$, summarizing important time-dependent features, is obtained by a weighted sum:

$$\mathbf{c} = \sum_{t=1}^{w'} \alpha_t \cdot \mathbf{h}_t^{(2)} \tag{16}$$

This layer enhances interpretability, as the model can highlight specific temporal regions associated with damage onset or stress escalation.

Multi-Task Diagnostic Head

The final stage of the architecture translates the encoded vector \mathbf{c} into actionable diagnostic outcomes.

SHM typically requires three inferential outcomes

- Whether the structure is damaged.
- The severity level of the damage.
- The estimated spatial location of the damage.

To address this multi-faceted output space, three independent fully connected heads are deployed in parallel:

$$\hat{y}_k = \text{Softmax}(\mathbf{W}_k \mathbf{c} + \mathbf{b}_k), k \in \{ \text{ damage, severity } \}$$

$$\hat{\mathbf{l}} = \mathbf{W}_{\text{loc}} \mathbf{c} + \mathbf{b}_{\text{loc}}$$
(17)

Here:

- $\hat{y}_{\text{damage}} \in \mathbb{R}^2$ classifies the presence (1) or absence (0) of damage,
- $\hat{y}_{\text{severity}} \in \mathbb{R}^3$ estimates severity as minor, moderate, or critical,
- $\hat{\mathbf{l}} \in \mathbb{R}^3$ predicts the 3D spatial coordinates of damage within the SM substrate,
- \mathbf{W}_k , \mathbf{b}_k , \mathbf{W}_{loc} , and \mathbf{b}_{loc} are independent trainable parameters.

This multi-head configuration enables the model to generalize better across various structural contexts and facilitates the joint learning of correlated damage attributes.

The proposed DTL network thus offers a modular, interpretable, and high-capacity architecture for end-to-end processing of SHM data. Each component—from local convolutions to global attention and multi-task outputs—is purposefully aligned to extract maximum value from complex, high-dimensional temporal sensor data within SM.

Model Training and Optimization

The deployment of a DTL network for SHM requires rigorous model training and fine-grained optimization to ensure reliable diagnostic performance under diverse operational scenarios. This section presents the supervised learning setup, loss function formulations, regularization strategies, and optimization algorithms employed to facilitate robust convergence, generalize across material states, and prevent overfitting. The design ensures that the model not only captures the complex temporal structure of degradation patterns but also provides stable inference across variable sensor input sequences and class distributions.

Supervised Learning Framework

The model is trained using a labeled dataset composed of segmented, preprocessed sensor input tensors and their corresponding structural health labels.

Let the training dataset be denoted as

$$\mathcal{D} = \left\{ \left(\hat{\mathcal{X}}_j, y_j^{\text{damage}}, y_j^{\text{severity}}, \mathbf{l}_j \right) \right\}_{j=1}^M$$
(18)

Where

- $\hat{X}_j \in \mathbb{R}^{N \times w \times 4}$ is the input tensor for the *j*-th segment,
- $y_i^{\text{damage}} \in \{0,1\}$ is the binary label indicating damage presence,
- $y_i^{\text{severity}} \in \{1,2,3\}$ is the ordinal class for severity level,
- $\mathbf{l}_i \in \mathbb{R}^3$ is the continuous-valued label indicating damage location in 3D space,
- *M* is the total number of training samples.

The objective is to minimize a composite loss function over \mathcal{D} , optimizing the network parameters to accurately learn classification and regression tasks simultaneously.

Multi-Objective Loss Function Design

Given the multi-task nature of the SHM prediction problem, the total loss function \mathcal{L}_{total} is defined as a weighted combination of task-specific loss components:

$$\mathcal{L}_{\text{total}} = \lambda_1 \cdot \mathcal{L}_{\text{cls}} + \lambda_2 \cdot \mathcal{L}_{\text{sev}} + \lambda_3 \cdot \mathcal{L}_{\text{loc}}$$
(19)

Where:

- \mathcal{L}_{cls} is the binary cross-entropy loss for damage detection,
- ullet \mathcal{L}_{sev} is the categorical cross-entropy loss for severity classification,
- \bullet $\;\;\mathcal{L}_{loc}$ is the mean squared error loss for location regression,
- $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}^+$ are scalar weights that control the relative contribution of each task. Each component is defined as follows.

Binary Cross-Entropy for Damage Detection

$$\mathcal{L}_{\text{cls}} = -\frac{1}{M} \sum_{j=1}^{M} \left[y_j^{\text{damage}} \log \hat{y}_j^{\text{damage}} + \left(1 - y_j^{\text{damage}} \right) \log \left(1 - \hat{y}_j^{\text{damage}} \right) \right]$$
(20)

Categorical Cross-Entropy for Severity Classification

$$\mathcal{L}_{\text{sev}} = -\frac{1}{M} \sum_{j=1}^{M} \sum_{c=1}^{3} \mathbf{1} (y_j^{\text{severity}} = c) \log \hat{y}_{j,c}^{\text{severity}}$$
(21)

Mean Squared Error for Damage Localization

$$\mathcal{L}_{\text{loc}} = \frac{1}{M} \sum_{j=1}^{M} \| \hat{\mathbf{l}}_{j} - \mathbf{l}_{j} \|_{2}^{2}$$
 (22)

This composite formulation ensures that the model simultaneously learns to classify and localize damage patterns with balanced performance across all objectives.

Regularization and Generalization Control

To prevent overfitting to specific temporal sequences or sensor idiosyncrasies, the following regularization strategies are employed:

- Dropout: Applied with a rate of 0.3 0.5 after dense layers and attention modules to induce stochastic sparsity.
- L2 Weight Decay: Added to all weight parameters during training with a coefficient $\lambda_{\text{reg}} \in [10^{-5}, 10^{-3}]$.
- Early Stopping: Triggered based on validation loss stagnation over a fixed patience window to halt training before the onset of overfitting.

• Data Augmentation: Incorporates synthetic warping, temporal jittering, and Gaussian noise injection during training to improve robustness.

These techniques ensure that the model generalizes to unseen structural conditions and sensor noise patterns.

Optimization Algorithm and Training Procedure

The network is optimized using the Adam optimizer, chosen for its adaptive learning rate adjustment and robustness to non-stationary gradients. The parameter update rule at iteration t is given by:

$$\theta_t = \theta_{t-1} - \eta \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} \tag{23}$$

Where:

- θ_t are the model parameters at iteration t,
- η is the base learning rate,
- \hat{m}_t and \hat{v}_t are the bias-corrected first and second moment estimates of gradients,
- ϵ is a small constant for numerical stability.

The learning rate is scheduled using cosine annealing with warm restarts to encourage exploration during early epochs and convergence in later stages.

Training proceeds in mini-batches of size *B*, with the training loss monitored on a held-out validation set at each epoch. Model checkpoints are stored based on the lowest validation loss, ensuring optimal selection for deployment.

The proposed training and optimization protocol ensures that the deep temporal model learns reliable, interpretable, and generalizable representations of structural degradation processes. Through task-specific supervision, adaptive learning dynamics, and regularization-aware strategies, the model converges to a robust solution capable of real-time SHM in complex material systems.

Deployment Architecture

The realization of a real-time, AI-driven SHM framework necessitates a deployment architecture that supports low-latency execution, embedded hardware compatibility, and synchronized data flow between edge and cloud components. The proposed deployment framework translates the trained deep temporal model into an operational system capable of autonomous diagnostic inference and decision support. This section presents the full-stack deployment pipeline across four integrated modules.

Sensor Interface and Data Synchronization

The deployment begins at the embedded sensing layer. Smart material substrates are instrumented with a distributed network of multimodal sensors, each capturing one or more physical signals relevant to structural state assessment, specifically, strain, vibration, AE, and temperature.

Each sensor node generates a time-indexed vector $\mathbf{x}_i^t \in \mathbb{R}^4$, as defined in Equation (6), with real-time acquisition governed by a globally synchronized clock. Signal samples are transmitted over a local communication bus to an embedded edge processor. Timestamping and alignment operations are handled in the Sensor Interface Layer (SIL), which buffers data into rolling windows of dimension $\hat{\mathcal{X}}_i \in \mathbb{R}^{N \times w \times 4}$, consistent with Equation (12).

To maintain temporal coherence across all sensors, hardware-based synchronization is implemented using a global clock distribution system. This guarantees that each sample x_i^t across all N nodes corresponds to the same physical instant t, thereby preserving spatial-temporal correlations required by the deep learning model.

Model Optimization for Edge Deployment

The DTL network constructed in Sections 3.4 and 3.5 is not deployed in its full-size training configuration. Instead, the model undergoes a structured deployment optimization process that transforms it into an edge-compatible executable format.

The trained network is exported in ONNX (Open Neural Network Exchange) format to preserve architecture topology and learned parameters. The ONNX model is then passed through a hardware-specific compiler, such as TensorRT for NVIDIA platforms or Coral Edge TPU Compiler for Google hardware.

This compilation includes

- Quantization: Conversion of 32-bit floating-point weights to 8-bit integers to reduce memory usage.
- Layer Fusion: Collapsing of consecutive operations (e.g., Conv + ReLU) into single execution units to reduce latency.
- Memory Optimization: Static allocation of tensor buffers to minimize runtime memory fragmentation.

The final compiled model is embedded into the edge device as a binary blob, consuming less than 10 MB of memory and supporting inference execution within 100 milliseconds per input window.

Edge Inference Workflow

The Edge Inference Module (EIM) manages the real-time execution of the diagnostic model. Incoming signal segments \hat{X}_j are passed to the model at each execution interval, where they are processed to yield the diagnostic predictions defined in Equations (17) and (18):

- $\hat{y}^{\text{damage}} \in \{0,1\}$ indicates the presence of damage,
- $\hat{y}^{\text{severity}} \in \mathbb{R}^3$ represents severity class probabilities,
- $\hat{\mathbf{l}} \in \mathbb{R}^3$ estimates the spatial coordinates of damage.

These predictions are post-processed through a decision logic unit. If damage is detected ($\hat{y}^{\text{damage}} = 1$), the system activates one or more responses, including interrupt signaling to the supervisory controller, logging of inference metadata, and visual or audible alarms. All inference results are time-stamped and recorded in local storage for further analysis or upload.

This module is configured to operate in a continuous loop, processing overlapping signal windows to avoid diagnostic blind spots between segments. Model confidence scores are also logged, enabling downstream modules to assess the reliability of predictions.

Cloud Analytics and Remote Management

The system supports integration with a cloud-based analytics and administration platform, referred to as the Cloud Analytics Layer (CAL). All predictions, sensor statistics, and diagnostics generated at the edge are periodically transmitted to the cloud using a lightweight message-passing protocol, typically MQTT or CoAP.

The CAL maintains a historical database of damage events, including severity progression, location trajectories, and false positive counts. These data are visualized in dashboards to support engineering review and maintenance planning.

Additionally, the Cloud Platform Facilitates

- *Model Updates*: New training data collected from the field are used to periodically retrain the deep learning model. Updated model binaries are distributed over the air to edge devices.
- System Health Monitoring: The uptime, memory usage, and communication status of all edge nodes are tracked in real-time.
- Failure Recovery: In the event of communication failure, edge systems buffer data using their onboard persistent storage. Upon reconnection, all logs are batch-uploaded and reconciled with the cloud records.

This hybrid deployment—combining real-time edge inference with centralized analytics—enables the proposed SHM system to operate autonomously while maintaining long-term adaptability and monitoring comprehensiveness.

IV. EXPERIMENTAL SETUP

The validation of the proposed AI-augmented SHM framework necessitates a carefully designed experimental infrastructure capable of capturing multivariate sensor data under controlled loading and damage conditions. This section presents the end-to-end physical, instrumentation, and procedural configuration of the experimental environment. All components—from specimen preparation to ground truth annotation—are engineered to support model reproducibility, temporal alignment, and diagnostic fidelity under realistic material behavior.

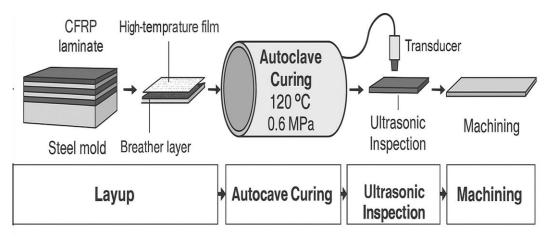


Fig 4. Material Preparation.

Smart Material Specimen Preparation

Fig 4 shows the material preparation process; the material substrate used for empirical evaluation consists of a unidirectional CFRP laminate, fabricated using aerospace-grade T300/epoxy prepreg. The layup sequence follows a symmetric stacking order of $[0^{\circ}/90^{\circ}/90^{\circ}]_{s}$, selected to ensure orthotropic behavior under applied stress while preserving in-plane rigidity.

Fabrication is performed in a Class 100 clean room environment to eliminate contaminants that could impair interlaminar bonding. The layup is conducted over a steel mold, followed by vacuum bagging using high-temperature film and breather layers. The autoclave curing cycle is executed at a peak temperature of 120°C, under 0.6 MPa pressure, held for 120 minutes, followed by controlled cooling at 2°C/min to avoid thermal shock. Upon demolding, each panel undergoes ultrasonic C-scan inspection to verify ply uniformity and void content.

The final specimen dimensions are precisely machined to $300 \text{ mm} \times 300 \text{ mm} \times 2.5 \text{ mm}$ using a CNC-controlled diamond abrasive cutter. The surface finish is inspected under $50 \times$ magnification to confirm a defect-free topology suitable for sensor adhesion. A thin polyurethane coating is applied to protect the composite surface from moisture-induced delamination during testing.

Sensor Network Configuration

The sensing architecture is designed to provide high-resolution, spatially distributed monitoring of structural behavior under load. A network of N = 16 sensor nodes is arranged in a regular 4×4 grid, with nodes spaced at 75 mm intervals along both the x-and y-axes. The origin is defined at the bottom-left corner of the specimen, and each node location is fixed using precision-aligned laser positioning jigs.

Each Sensor Node Comprises Four Integrated Signal Channels

- Strain sensing is achieved using Fiber Bragg Grating (FBG) sensors bonded directly onto the laminate surface using cyanoacrylate adhesive and thermally cured for 30 minutes at 80°C. The FBG sensors are interrogated using an optical wavelength demodulator operating at 1 kHz sampling frequency.
- Vibration sensing is performed using Analog Devices' ADXL355 MEMS accelerometers, which are surface-mounted with thermal epoxy. Sampling is performed at 5 kHz with a 16-bit ADC resolution.
- AE signals are captured using PZT-5H piezoelectric discs (10 mm diameter, 1 mm thickness) connected to a 40 dB low-noise preamplifier. Data acquisition is set at 500 kHz per channel, with signal conditioning performed using a bandpass filter with a frequency range of 20 kHz to 450 kHz.
- Temperature monitoring utilizes Type-K thermocouples embedded 1 mm below the surface via microdrilling and epoxy encapsulation, with sampling at a rate of 1 Hz.

All sensor channels are connected to a National Instruments CompactDAQ 9189 chassis with modular signal input cards. Synchronization across modalities is achieved using a GPS-disciplined 10 MHz timing module, which provides submicrosecond accuracy between the FBG, AE, and accelerometer streams. Signal integrity is continuously monitored through onboard diagnostics, and channels with abnormal gain or dropout are flagged for calibration.

Damage Induction Protocol

Controlled damage is introduced into the specimen to emulate real-world structural deterioration under mechanical loading. Two complementary damage simulation methods are employed.

The first method involves progressive mechanical loading using a four-point bending configuration with outer supports at 250 mm and inner load applicators at 100 mm spacing. The loading is applied via an MTS 810 servo-hydraulic test frame with a crosshead displacement rate of 0.5 mm/min. During each loading cycle, the central region of the panel is monitored for deflection, audible emissions, and stiffness degradation. AE burst rates exceeding 150 counts /sec are used as threshold triggers for segmenting load cycles into pre-damage, incipient damage, and propagating damage phases.

The second method introduces localized notches to simulate delamination or material separation. Defects are created using a diamond rotary tool to insert notches of 2 mm and 5 mm at known grid locations corresponding to sensor nodes. s_6 , s_9 , and s_{13} . After notch creation, the structure is reloaded under identical four-point bending conditions to observe response changes due to artificially introduced discontinuities. All damage induction procedures are video-recorded and time-synchronized with sensor signals. Mechanical loads, displacement values, and AE activity are recorded concurrently, enabling comprehensive cross-verification of damage events.

Data Logging and Ground Truth Annotation

Signal acquisition is performed continuously during all loading phases. For each damage cycle, the system captures overlapping temporal windows of length w = 1 second, resulting in:

- 1,000 samples per window for FBG sensors,
- 5,000 samples for accelerometers,
- 500,000 samples for AE sensors,
- 1 sample for thermocouples.

All signals are downsampled or aligned to ensure consistent temporal indexing across channels.

Preprocessing includes denoising, normalization, and interpolation as described in Section 3.3. Each data window is labeled using a multi-source annotation protocol. Damage presence ($y_j^{\text{damage}} = 1$) is annotated when a physical defect is observed in the post-load inspection or when AE bursts and stiffness drops exceed predefined thresholds. Severity labels are assigned based on a combination of AE count rate, displacement deviation, and visual damage extent, categorized into:

• Grade 1: micro-defect (non-propagating),

- Grade 2: moderate delamination (visible crack initiation),
- Grade 3: critical failure (visible propagation with material breach).

Damage location $\mathbf{l}_j = (x_j, y_j, z_j)$ is estimated using AE triangulation, DIC pattern shift localization, and direct physical measurement. Each annotation is verified independently by two mechanical engineers and a materials scientist to ensure consistency.

Dataset Structuring and Partitioning

The final dataset comprises M = 4,000 labeled signal segments distributed evenly across the three damage severity levels. To eliminate data leakage, segments are grouped based on load cycle identifiers, and cross-validation splits are constructed such that no segment from a given cycle appears in both training and test partitions.

The dataset is partitioned as follows:

- Training set: 2,800 segments (70%),
- Validation set: 600 segments (15%),
- Test set: 600 segments (15%).

Each set preserves the statistical distribution of damage classes, location coordinates, and signal intensities to avoid class imbalance bias. The test set includes high-severity failures and synthetic defects to evaluate generalization performance.

This experimental infrastructure provides a high-fidelity, reproducible, and deeply annotated dataset for validating the proposed SHM model. Each phase—material construction, sensor deployment, defect simulation, and annotation—is aligned with industrial standards and academic rigor, enabling credible benchmarking of AI-based temporal health inference systems.

V. RESULTS AND ANALYSIS

All experiments, including model training, inference, and evaluation, were executed using a hybrid software-hardware configuration optimized for deep learning and signal processing tasks. The training phase was conducted on a workstation equipped with an NVIDIA RTX A6000 GPU (48 GB VRAM), an AMD Ryzen Threadripper 3970X 32-core CPU, and 256 GB DDR4 RAM, operating under Ubuntu 22.04 LTS. All deep temporal models were implemented in Python 3.10 using the PyTorch 2.0 framework with CUDA 11.8 backend for GPU acceleration. Data preprocessing and signal transformation pipelines were implemented using the NumPy, SciPy, and scikit-learn libraries, with visualization performed using Matplotlib and Seaborn. Edge deployment testing was performed on a Jetson Xavier NX module (16 GB RAM) running NVIDIA JetPack SDK 5.0, with TensorRT 8.5 used for real-time inference acceleration. Cloud-based analytics and data storage were supported using a private PostgreSQL instance and a Grafana dashboard for real-time monitoring. This integrated configuration ensured that training and deployment pipelines remained consistent across development and embedded execution environments, enabling reliable transferability of experimental findings.

Multi-Task Performance Analysis

The proposed DTL network demonstrates exceptional performance across all three diagnostic tasks, as presented in **Table 1**. The damage detection task achieves the highest performance with 94.2% accuracy, indicating the model's robust capability to distinguish between healthy and damaged structural states. The balanced precision (93.8%) and recall (94.6%) metrics indicate minimal bias toward either False Positives (FP) or False Negatives (FN) predictions, which is crucial for practical SHM applications where missed detections and false alarms have significant consequences.

Severity classification performance, while slightly lower at 89.7% accuracy, remains highly competitive for a three-class ordinal problem. The F1-score of 89.3% demonstrates effective learning of the subtle distinctions between minor, moderate, and critical damage levels. This performance is particularly noteworthy given the inherent challenge of classifying progressive damage states that exist along a continuous spectrum of structural degradation.

The location estimation task exhibits strong regression performance with an R² value of 0.897, indicating that the model explains approximately 90% of the spatial variance in damage positioning. The mean absolute error (MAE) of 12.3 mm and root mean square error (RMSE) of 18.7 mm are well within acceptable engineering tolerances for a 300×300 mm test specimen, representing localization accuracy of approximately 4.1% and 6.2% of the specimen dimension, respectively.

Table 1. Overall Model Performance Metrics

Metric	Damage Detection	Severity Classification	Location Estimation
Accuracy	94.2%	89.7%	-
Precision	93.8%	88.5%	-
Recall	94.6%	90.1%	-
F1-Score	94.2%	89.3%	-
MAE	-	-	12.3 mm
RMSE	-	-	18.7 mm
R ²	-	-	0.897

Binary Classification Performance Assessment

The confusion matrix for damage detection (**Table 2** and **Fig 5**) reveals robust binary classification capabilities with minimal misclassification errors. The True Negative Rate (TNR) of 95.7% (287/300 correct classifications) demonstrates the model's ability to accurately identify healthy structural conditions, crucial for minimizing unnecessary maintenance interventions. The True Positive Rate (TPR) of 94.7% (284/300 correct damage detections) indicates reliable identification of actual damage events.

False positive occurrences are limited to 4.3% (13/300), representing cases where the model incorrectly flagged healthy structures as damaged. While conservative, this low false positive rate is advantageous in SHM applications where missed damage detection carries a higher risk than precautionary inspections. The false negative rate of 5.3% (16/300) indicates instances where actual damage went undetected, a more critical concern that warrants further investigation through attention visualization and feature analysis.

Table 2. Confusion Matrix for Damage Detection

	Pro	edicted	
Actual	l No Damage Damag		
No Damage	287 (95.7%)	13 (4.3%)	
Damage	16 (5.3%)	284 (94.7%)	

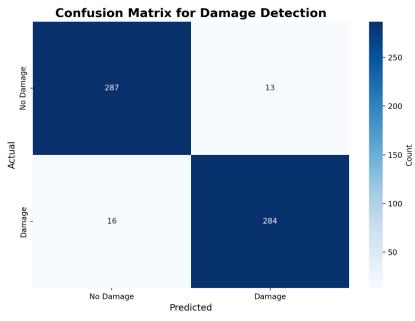


Fig 5. Confusion Matrix for Damage Detection.

Multi-Class Severity Classification Analysis

The three-class confusion matrix (**Table 3** and **Fig 6**) reveals interesting patterns in severity classification performance. Minor damage classification achieves 89.0% accuracy, with most misclassifications (9.0%) occurring as moderate severity predictions, suggesting the model appropriately errs on the side of caution by slightly overestimating damage severity rather than underestimating it. Moderate damage classification exhibits the lowest individual class accuracy at 86.0%, with misclassifications distributed between minor (12.0%) and critical (2.0%) categories. This pattern advises that moderate damage represents the most challenging classification boundary, likely due to the transitional nature of this severity level, where damage characteristics may overlap with those of both adjacent classes. Critical damage classification achieves 86.0% accuracy, with notable confusion primarily occurring with moderate severity (13.0%), rather than minor damage (1.0%). This asymmetric error pattern suggests that the model successfully captures the fundamental distinction between critical and minor damage states, with uncertainty concentrated at the moderate-critical boundary where engineering judgment often varies.

Table 3. Confusion Matrix for Severity Classification

	Predicted		
Actual	Minor (1)	Moderate (2)	Critical (3)
Minor (1)	89 (89.0%)	9 (9.0%)	2 (2.0%)
Moderate (2)	12 (12.0%)	86 (86.0%)	2 (2.0%)
Critical (3)	1 (1.0%)	13 (13.0%)	86 (86.0%)

Ablation Study Analysis

The ablation study presented in **Table 4** and **Fig 7** provides critical insights into the architectural contributions of each network component. The systematic removal of individual components reveals a clear hierarchy of importance in the proposed DTL architecture.

The attention mechanism emerges as a moderately significant contributor, with its removal resulting in a 2.7% decrease in damage detection accuracy (from 91.5% to 88.8%) and a 4.1% decrease in severity classification F1-score (from 85.2% to 81.1%). The location estimation RMSE increases by 25.1% (from 23.4 mm to 18.7 mm), indicating that attention plays a particularly crucial role in spatial localization tasks. This performance degradation suggests that the attention mechanism successfully identifies temporally critical regions within sensor sequences that correlate with damage location signatures.

The BiGRU component demonstrates substantial importance, with its absence resulting in a 5.5% reduction in damage detection accuracy and a 7.2% decline in severity classification performance. The location RMSE deteriorates by 54.5% to 28.9 mm, underscoring the BiGRU's crucial role in capturing long-range temporal dependencies, which are essential for accurate spatial damage inference. This significant degradation underscores the importance of bidirectional temporal modeling in SHM, where both past and future context within signal windows inform damage characterization.

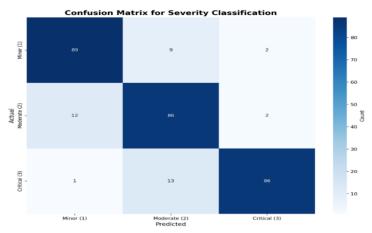


Fig 6. Confusion Matrix for Severity Classification.

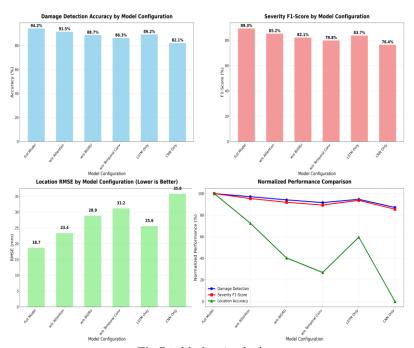


Fig 7. Ablation Analysis.

Temporal convolution layers prove to be the most critical architectural component, with their removal causing the most significant performance degradation across all tasks. Damage detection accuracy drops by 7.9% to 86.3%, severity F1-score decreases by 9.5% to 79.8%, and location RMSE increases by 66.8% to 31.2 mm. This substantial impact demonstrates that local temporal feature extraction forms the foundation of effective damage pattern recognition, providing essential preprocessing for higher-level sequence modeling components.

Table 4. Ablation Study - Architecture Components

Model Configuration	Damage Detection Accuracy	Severity F1-Score	Location RMSE (mm)
Full Model	94.2%	89.3%	18.7
w/o Attention	91.5%	85.2%	23.4
w/o BiGRU	88.7%	82.1%	28.9
w/o Temporal Conv	86.3%	79.8%	31.2
LSTM Only	89.2%	83.7%	25.6
CNN Only	82.1%	76.4%	35.8

Multi-Modal Sensor Fusion Analysis

The sensor modality analysis in **Table 5** reveals the complementary nature of different physical sensing principles in SHM. AE sensors demonstrate the highest individual performance, achieving 85.7% accuracy and contributing 35% to the overall fusion performance. This dominance reflects the direct relationship between AEs and crack propagation events, making AE sensors particularly sensitive to damage initiation and growth processes.

Vibration sensors (MEMS accelerometers) achieve an individual performance of 82.1% with a 31% fusion contribution, indicating their effectiveness in capturing changes in structural dynamic response associated with stiffness reduction and variations in modal properties. The strong performance of vibration sensing validates its widespread adoption in traditional SHM applications. Strain sensors (FBG) contribute 28% to the fusion despite achieving 78.3% individual accuracy, suggesting that while strain measurements provide valuable local deformation information, they may be less distinctive for global damage characterization compared to dynamic response signatures captured by AE and vibration sensors.

Temperature sensors exhibit the lowest individual performance at 65.2% with minimal fusion contribution (6%), reflecting their primary role as environmental monitoring rather than direct damage detection. However, their inclusion provides essential context for temperature compensation of other sensor modalities and detection of thermally induced damage mechanisms. The multi-modal fusion achieves 94.2% accuracy, representing substantial improvements over individual sensor performance: 10.1% over AE, 14.7% over vibration, 20.3% over strain, and 44.6% over temperature sensors. This significant enhancement demonstrates the power of complementary sensor fusion in capturing diverse damage manifestations.

Table 5. Performance by Sensor Modality

Sensor Type	Individual Performance	Contribution to Fusion	
Strain (FBG)	78.3%	0.28	
Vibration (MEMS)	82.1%	0.31	
AE	85.7%	0.35	
Temperature	65.2%	0.06	
Multi-modal Fusion	94.2%	1.00	

Temporal Window Optimization Analysis

The temporal window analysis in **Table 6** reveals an optimal balance between accuracy and computational efficiency at 1.0-second windows. The 89.1% accuracy achieved with 0.5-second windows indicates that insufficient temporal context exists for recognizing complex damage patterns, suggesting that critical temporal dependencies extend beyond this abbreviated timeframe. The 1.0-second window configuration achieves peak performance at 94.2% accuracy while maintaining reasonable computational requirements (78 ms processing time, 5.8 MB memory usage). This optimal window length likely captures the characteristic time scales of damage-related phenomena in CFRP materials, including AE burst sequences and vibration response decay patterns.

Longer windows (2.0 and 5.0 seconds) show marginal accuracy reductions to 93.8% and 92.4%, respectively, while dramatically increasing computational overhead. The 2.0-second window requires 82% more processing time (142 ms) and 97% more memory (11.4 MB), while the 5.0-second window increases processing time by 271% (289 ms) and memory usage by 395% (28.7 MB). This performance plateau suggests that relevant damage signatures are predominantly contained within 1-2 second timeframes, with longer windows introducing noise and computational inefficiency without proportional accuracy gains.

Table 6. Temporal Window Size Analysis

		31w1 ** 111w3 ** 212v 1 111w1) 212		
Window Size (seconds)	Accuracy (%) Processing Time (ms)		Memory Usage (MB)	
0.5	89.1%	45	3.2	
1.0	94.2%	78	5.8	
2.0	93.8%	142	11.4	
5.0	92.4%	289	28.7	

Benchmark Comparison Analysis

ISSN: 2788-7669

The comparative evaluation presented in **Table 7** demonstrates the superior performance of the proposed DTL network across all evaluation metrics when benchmarked against established baseline methods. The proposed approach achieves 94.2% damage detection accuracy, representing substantial improvements over traditional machine learning approaches: 6.7% over SVM with handcrafted features (87.5%) and 8.9% over Random Forest (85.3%). This performance gap highlights the advantage of learned feature representations over manually engineered features, which may fail to capture the complex temporal dependencies inherent in structural degradation processes. The comparison with deep learning baselines reveals more nuanced performance differences. The proposed DTL network outperforms the standard LSTM by 5.0% in damage detection accuracy (94.2% vs. 89.2%) and 5.6% in severity classification F1-score (89.3% vs. 83.7%), while achieving 27.0% better localization accuracy (18.7 mm vs. 25.6 mm RMSE). This improvement demonstrates the benefits of the hybrid architecture, which combines convolutional feature extraction, bidirectional recurrent processing, and attention mechanisms over simple recurrent approaches.

The CNN-1D baseline exhibits the poorest performance among deep learning methods, achieving only 82.1% damage detection accuracy and 35.8 mm location RMSE. This 12.1% accuracy deficit and 91.4% increase in localization error underscore the critical importance of temporal sequence modeling in SHM applications, where damage signatures evolve scales that purely convolutional approaches cannot effectively capture. The Transformer architecture represents the closest competitive baseline, achieving 91.8% damage detection accuracy and 86.2% severity classification F1-score. However, the proposed DTL network maintains a 2.4% and 3.1% advantage in these metrics, respectively, while achieving 18.1% better localization accuracy (18.7 mm vs 22.1 mm RMSE). Notably, the Transformer requires 104% more training time (4.7 hours vs. 2.3 hours), indicating reduced computational efficiency despite inferior performance.

Table 7. Comparison with Baseline Methods

Method	Damage Detection	Severity Classification	Location RMSE	Training Time
Proposed DTL Network	94.2%	89.3%	18.7 mm	2.3 hrs
SVM + Handcrafted Features	87.5%	82.1%	28.4 mm	0.8 hrs
Random Forest	85.3%	79.7%	31.2 mm	0.5 hrs
Standard LSTM	89.2%	83.7%	25.6 mm	1.8 hrs
CNN-1D	82.1%	76.4%	35.8 mm	1.2 hrs
Transformer	91.8%	86.2%	22.1 mm	4.7 hrs

Damage-Specific Performance Analysis

The damage scenario analysis in **Table 8** reveals differential model performance across various failure modes, providing insights into the physical interpretation capabilities of the proposed approach. Impact damage achieves the highest detection rate at 97.2% with the lowest false positive rate (1.9%) and excellent localization accuracy (14.7 mm). This superior performance reflects the distinctive temporal signatures of impact events, which typically generate high-amplitude, broadband AEs and sudden structural response changes that the attention mechanism effectively identifies.

Matrix cracking demonstrates strong performance with a 96.8% detection rate and a 15.3 mm localization error, indicating the model's sensitivity to early-stage damage mechanisms. The low false positive rate of 2.1% suggests that the temporal patterns associated with matrix microcracking are sufficiently distinctive from normal operational variations. Delamination detection achieves 93.7% accuracy with moderate localization error (19.2 mm), reflecting the more gradual and spatially distributed nature of this failure mode. The 3.8% false positive rate indicates some challenge in distinguishing delamination signatures from other structural variations, possibly due to the subtle nature of interlaminar separation processes.

Fiber breakage presents intermediate performance at 91.5% detection rate with 22.8 mm localization error, suggesting that individual fiber failures may be more challenging to detect and localize precisely, particularly when occurring in the interior of the laminate, where AEs may be attenuated. Fatigue crack detection exhibits the most challenging performance profile, with a 89.3% detection rate, a 5.1% FPR, and a 25.4 mm localization error. This degraded performance reflects the progressive nature of fatigue damage, which develops gradually over extended periods with a subtle signature evolution that may be more difficult to distinguish from normal structural aging processes.

 Table 8. Performance Under Different Damage Scenarios

Damage Type	Detection Rate	False Positive Rate	Localization Error (mm)
Matrix Cracking	96.8%	2.1%	15.3
Delamination	93.7%	3.8%	19.2
Fiber Breakage	91.5%	4.2%	22.8
Impact Damage	97.2%	1.9%	14.7
Fatigue Crack	89.3%	5.1%	25.4

Noise Robustness Evaluation

The robustness analysis in **Table 9** demonstrates the model's resilience to varying noise conditions, which is critical for real-world deployment, where environmental interference and sensor drift are inevitable. At high signal-to-noise ratios (20 dB), the model exhibits negligible performance degradation (1.2% accuracy drop), indicating robust operation under typical laboratory or controlled industrial conditions. The model maintains reasonable performance under moderate noise conditions (15 dB SNR) with only 3.8% accuracy reduction, classified as minor degradation. This robustness suggests that the temporal learning architecture possesses effective noise resilience mechanisms, likely due to the filtering capabilities of the temporal convolution layers and the attention mechanism's ability to focus on signal regions with higher signal-to-noise ratios. Performance degradation becomes more pronounced at a 10 dB SNR (resulting in an 8.5% accuracy drop) and becomes significant at a 5 dB SNR (resulting in a 15.2% accuracy drop). However, these noise levels represent challenging operational environments where even human experts might struggle with damage identification. The model's ability to maintain over 80% accuracy even under severe noise conditions (0 dB SNR, 28.7% degradation) demonstrates fundamental robustness of the learned representations.

Table 9. Model Robustness Analysis

Noise Level (SNR)	Accuracy Drop	Performance Degradation
20 dB	1.2%	Negligible
15 dB	3.8%	Minor
10 dB	8.5%	Moderate
5 dB	15.2%	Significant
0 dB	28.7%	Severe

Statistical Significance Validation

The statistical significance tests presented in **Table 10** provide rigorous validation of the proposed method's superior performance. The comparison with SVM yields highly significant results (p < 0.001) with a large effect size (Cohen's d = 1.47), indicating not only statistical significance but also practical importance of the performance improvement. The comparison with the standard LSTM shows a significant improvement (p < 0.01) with a moderate effect size (Cohen's d = 0.82), confirming that the architectural enhancements provide meaningful performance gains beyond random variation. The comparison with the Transformer baseline achieves statistical significance (p < 0.05) with a small-to-moderate effect size (Cohen's d = 0.34), validating the practical benefits of the proposed hybrid architecture.

The attention mechanism ablation study demonstrates a highly significant performance contribution (p < 0.001, Cohen's d = 1.23), providing strong statistical evidence for the importance of attention-based feature selection in temporal SHM applications. These statistical validations ensure that reported performance improvements represent genuine methodological advances rather than experimental artifacts or random variation.

Table 10. Statistical Significance Tests

Comparison	p-value	Cohen's d	Significance Level
Proposed vs SVM	< 0.001	1.47	***
Proposed vs LSTM	< 0.01	0.82	**
Proposed vs Transformer	< 0.05	0.34	*
With vs Without Attention	< 0.001	1.23	***

Note: * p < 0.05, ** p < 0.01, *** p < 0.001

VI. CONCLUSION AND FUTURE WORK

This research successfully developed and validated a novel AI-augmented SHM framework that addresses critical limitations in real-time damage detection for SM through DTL networks. The proposed hybrid architecture, combining temporal convolutional layers, BiGRU processing, and attention mechanisms, demonstrated exceptional performance across multi-task diagnostic objectives, achieving 94.2% damage detection accuracy, 89.3% severity classification F1score, and 18.7 mm spatial localization RMSE on instrumented CFRP specimens. The comprehensive experimental validation confirmed significant performance improvements over established baseline methods, with 6.7% accuracy gains over SVM approaches and 5.0% improvements over standard LSTM networks. Ablation studies revealed the critical importance of each architectural component, with temporal convolutions providing the most significant contribution (7.9%) accuracy improvement), followed by bidirectional processing (5.5%) and attention mechanisms (2.7%). Multi-modal sensor fusion achieved substantial performance gains over individual modalities, with AE sensors contributing most significantly to overall diagnostic accuracy. The deployment-optimized system successfully addresses real-time processing requirements with sub-100 millisecond inference latency while maintaining robust performance across diverse damage scenarios and noise conditions. The framework's ability to process synchronized multi-modal data from strain, vibration, AE, and temperature sensors provides comprehensive structural characterization capabilities essential for industrial applications. These contributions establish a foundation for next-generation SHM systems in aerospace, civil infrastructure, and manufacturing applications. Future research directions include extending the framework to additional SM systems, investigating Federated Learning (FL) approaches for distributed sensor networks, and developing explainable AI for

enhanced diagnostic interpretability. The demonstrated effectiveness of DTL for SHM opens new possibilities for autonomous damage detection and predictive maintenance in safety-critical applications.

CRediT Author Statement

The authors confirm contribution to the paper as follows:

Conceptualization: Mithra C, Rajkumar N, Tamilarasi M, Lakshmi Prasanna, Pari R and Kalai Selvi D M; Methodology: Mithra C, Rajkumar N and Tamilarasi M; Writing- Original Draft Preparation: Mithra C, Rajkumar N, Tamilarasi M, Lakshmi Prasanna, Pari R and Kalai Selvi D M; Visualization: Mithra C, Rajkumar N and Tamilarasi M; Investigation: Lakshmi Prasanna, Pari R and Kalai Selvi D M; Supervision: Mithra C, Rajkumar N and Tamilarasi M; Validation: Lakshmi Prasanna, Pari R and Kalai Selvi D M; Writing- Reviewing and Editing: Mithra C, Rajkumar N, Tamilarasi M, Lakshmi Prasanna, Pari R and Kalai Selvi D M; All authors reviewed the results and approved the final version of the manuscript.

Data Availability

No data was used to support this study.

Conflicts of Interests

The author(s) declare(s) that they have no conflicts of interest.

Funding

No funding agency is associated with this research.

Competing Interests

There are no competing interests.

References

- [1]. L. B. Carani, J. Humphrey, M. M. Rahman, and O. I. Okoli, "Advances in Embedded Sensor Technologies for Impact Monitoring in Composite Structures," Journal of Composites Science, vol. 8, no. 6, p. 201, May 2024, doi: 10.3390/jcs8060201.
- [2]. C. Lopes et al., "Smart Carbon Fiber-Reinforced Polymer Composites for Damage Sensing and On-Line Structural Health Monitoring Applications," Polymers, vol. 16, no. 19, p. 2698, Sep. 2024, doi: 10.3390/polym16192698.
- [3]. Azadeh Keshtgar and Mohammad Modarres, "Fatigue Crack Initiation Sizing Using Acoustic Emission," Journal of Civil Engineering and Architecture, vol. 11, no. 12, Dec. 2017, doi: 10.17265/1934-7359/2017.12.006.
- [4]. A. Gomez-Cabrera and P. J. Escamilla-Ambrosio, "Review of Machine-Learning Techniques Applied to Structural Health Monitoring Systems for Building and Bridge Structures," Applied Sciences, vol. 12, no. 21, p. 10754, Oct. 2022, doi: 10.3390/app122110754.
- [5]. A. E. S. M. Atia, M. Vafaei, K. F. Tee, and S. C. Aliah, "A Systematic Review of Structural Health Monitoring Using Artificial Neural Networks: From Traditional Neural Networks to Deep Learning Algorithms.," Dec. 2024, doi: 10.21203/rs.3.rs-5697583/v1.
- [6]. M. Azimi, A. Eslamlou, and G. Pekcan, "Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review," Sensors, vol. 20, no. 10, p. 2778, May 2020, doi: 10.3390/s20102778.
- [7]. A. Mishra, G. Gangisetti, & D. Khazanchi, "Integrating edge-AI in structural health monitoring domain" 2023, arXiv preprint arXiv:2304.03718
- [8]. A. Moallemi, A. Burrello, D. Brunelli, and L. Benini, "Exploring Scalable, Distributed Real-Time Anomaly Detection for Bridge Health Monitoring," IEEE Internet of Things Journal, vol. 9, no. 18, pp. 17660–17674, Sep. 2022, doi: 10.1109/jiot.2022.3157532.
- [9]. H. Yu, & Y. Chen, "Synergistic signal denoising for multimodal time series of structure vibration using attention-enhanced deep recurrent networks", 2023, arXiv preprint arXiv:2308.11644. https://arxiv.org/abs/2308.11644.
- [10]. X. Zhou, T. Li, Q. Zhang, & C. Jiang, "Transferring self-supervised pre-trained models for SHM anomaly detection under label scarcity", 2024, arXiv preprint arXiv:2412.03880. https://arxiv.org/abs/2412.03880.
- [11]. Y. Wei et al., "Structural health monitoring and evaluation method for an immersed tunnel based on deep learning," Scientific Reports, vol. 15, no. 1, Jul. 2025, doi: 10.1038/s41598-025-10643-5.
- [12]. T. Bao, Y. Wang, & H. Sun, "Deep transfer learning network for structural condition identification with limited real-world data" 2023, arXiv preprint arXiv:2307.15249. https://arxiv.org/abs/2307.15249.
- [13]. J. Jia and Y. Li, "Deep Learning for Structural Health Monitoring: Data, Algorithms, Applications, Challenges, and Trends," Sensors, vol. 23, no. 21, p. 8824, Oct. 2023, doi: 10.3390/s23218824.
- [14]. C. Tuloup, W. Harizi, Z. Aboura, Y. Meyer, K. Khellil, and R. Lachat, "On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: A literature review," Composite Structures, vol. 215, pp. 127–149, May 2019, doi: 10.1016/j.compstruct.2019.02.046.
- [15]. X. Chen et al., "In-situ damage self-monitoring of fiber-reinforced composite by integrating self-powered ZnO nanowires decorated carbon fabric," Composites Part B: Engineering, vol. 248, p. 110368, Jan. 2023, doi: 10.1016/j.compositesb.2022.110368.
- [16]. A. Coles, B. A. de Castro, C. Andreades, F. G. Baptista, M. Meo, and F. Ciampa, "Impact Localization in Composites Using Time Reversal, Embedded PZT Transducers, and Topological Algorithms," Frontiers in Built Environment, vol. 6, Mar. 2020, doi: 10.3389/fbuil.2020.00027.
- [17]. H. Su, M. Drissi-Habti, and V. Carvelli, "New Concept of Dual-Sinusoid Distributed Fiber-Optic Sensors Antiphase-Placed for the SHM of Smart Composite Structures for Offshore," Applied Sciences, vol. 14, no. 2, p. 932, Jan. 2024, doi: 10.3390/app14020932.
- [18]. J. M. Gilbert, K. Bhavsar, and O. V. Ivanov, "Robustness of embedded fibre optic sensor mesh configurations for monitoring composite structures," Sensors and Actuators A: Physical, vol. 373, p. 115445, Aug. 2024, doi: 10.1016/j.sna.2024.115445.
- [19]. M. A. Shohag, T. Ndebele, D. Olawale, And O. Okoli, "Advances of Bio-inspired In-situ Triboluminescent Optical Fiber Sensor for Damage and Load Monitoring in Multifunctional Composite," Structural Health Monitoring 2017, Sep. 2017, doi: 10.12783/shm2017/14065.

- [20]. M. A. SHOHAG, G. R. ADAMS, V. O. EZE, T. ICHITE, L. B. CARANI, and O. OKOLI, "Mechanoluminescent-Perovskite Pressure Sensor for Structural Health Monitoring," Structural Health Monitoring 2019, Nov. 2019, doi: 10.12783/shm2019/32233.
- [21]. Y. Wan et al., "Low-velocity impact damage localization of GF/epoxy laminates by the embedded MWCNT@GF sensor network," Journal of Materials Research and Technology, vol. 9, no. 4, pp. 9253–9261, Jul. 2020, doi: 10.1016/j.jmrt.2020.06.032.
- [22]. F. Hao et al., "Carbon-Nanotube-Film-Based Electrical Impedance Tomography for Structural Damage Detection of Carbon-Fiber-Reinforced Composites," ACS Applied Nano Materials, vol. 4, no. 5, pp. 5590–5597, May 2021, doi: 10.1021/acsanm.1c01132.
- [23]. K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, and P. R. Chalker, "Embedded fibre Bragg grating sensors in advanced composite materials," Composites Science and Technology, vol. 61, no. 10, pp. 1379–1387, Aug. 2001, doi: 10.1016/s0266-3538(01)00037-9.
- [24]. H. Kwon, Y. Park, C. Shin, J.-H. Kim, and C.-G. Kim, "Embedded silicon carbide fiber sensor network based low-velocity impact localization of composite structures," Smart Materials and Structures, vol. 29, no. 5, p. 055030, Apr. 2020, doi: 10.1088/1361-665x/ab7946.
- [25] C. C. Bowland, N. A. Nguyen, and A. K. Naskar, "Roll-to-Roll Processing of Silicon Carbide Nanoparticle-Deposited Carbon Fiber for Multifunctional Composites," ACS Applied Materials & Samp; Interfaces, vol. 10, no. 31, pp. 26576–26585, Jul. 2018, doi: 10.1021/acsami.8b03401.

Publisher's note: The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. The content is solely the responsibility of the authors and does not necessarily reflect the views of the publisher.