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Abstract — In the fast-changing world of cybersecurity, cyber threats have been challenging the traditional defence
mechanisms in the signature-based Intrusion Detection Systems (IDS). Although these systems are effective for detecting
known threats and cannot handle advanced, unknown and evasion-based attacks. The proposed work presents an enhanced
signature-based IDS framework to bridge the gap of conventional approaches toward detecting advanced persistent threats
and provide timely responses to security incidents. The proposed methodology uses hyper-scaler feature engineering with
a Long Short-Term Memory Gated Recurrent Neural Network (LSTM-GRNN) improves the efficacy and accuracy in
intrusion detection. The approach pre-processes to start with the min-max normalization by ensuring uniform scaling of
feature values. A new technique named Intrusion Behavior Feature Pattern Impact Rate (IBFPIR) is proposed to determine
the relevance of feature patterns that are more related to intrusion behavior in malicious activities. For optimization of
feature selection, a new advanced optimization approach such as Simplified Whale Optimization Algorithm (SWOA) is
used for information gain while minimizing redundancy and reducing the dimensionality along with superior model
performance. Finally, the LSTM-GRNN architecture is applied to classify intrusion behaviors based on the refined features.
The long-term dependencies in time-series data captured by the LSTM combined with gated recurrent units is used to learn
patterns during intrusion detection. The proposed system gives a better performance interms of accuracy (97%), precision
(98%), recall (97%), F1 score (98%), with reduced false positive rate (FPR of 4%) and false negative rate (FNR of 5%)
compared with existing models. The proposed work gives a significant development in intrusion detection systems in
safeguarding sensitive data against cyber threats.

Keywords — Intrusion Detection System, Feature Engineering, Long Short-Term Memory, Whale Optimization Algorithm,
Intrusion Behaviour Detection, Cybersecurity.

I. INTRODUCTION

A Signature-Based Intrusion Detection System is actually a type of cybersecurity mechanism meant to detect hostile
activities through network traffic or system behavior comparisons to a database that contains known signatures of attacks.
These signatures refer to predetermined patterns derived from earlier cyber threats; hence, such a system has a very
effective detection capability concerning well-documented attacks with minimum false alarms. Signature-based IDS
operates in real-time, scanning incoming data packets or system logs for known threat indicators, allowing for swift
mitigation. However, its primary limitation lies in its inability to detect zero-day attacks, polymorphic malware, and
evolving evasion techniques, as it relies on previously identified attack patterns. Despite this drawback, signature-based
IDS remain a crucial component in network security due to its efficiency, accuracy and low computational overhead when
dealing with known threats [1].

Traditional IDS methods rely on signature-based anomaly detection techniques to identify malicious activities in a
network. Signature-based IDS compares incoming data of known attack patterns but failing against zero-day attacks and
evasive malware. Anomaly-based IDS detects differences from normal network behavior using statistical models to identify
unknown threats. Rule-based detection such as Snort and Suricata, uses predefined security policies to flag suspicious
activities but requires frequent manual updates and struggles against dynamic attack strategies. While these traditional
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methods provide a foundational security layer and face challenges in adapting to rapidly evolving cyber threats
necessitating the development of more intelligent and adaptive IDS approaches [2].

Machine learning (ML) is used to enhance IDS systems by automatically detecting suspicious activities through pattern
recognition and anomaly detection. Unlike the traditional rule-based IDS, the ML-based systems learn from the historical
attack patterns and adapt to new and evolving threats without explicit programming. The supervised learning models such
as Support Vector Machines (SVM), Decision Trees (DT), and Random Forest (RF) uses labeled datasets to classify
network traffic as a normal one or an abusive one and improve detection accuracy. The methods of unsupervised learning,
such as K-Means, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Autoencoders recognize
unknown attacks by clustering network behaviors and finding deviations. Reinforcement learning further enables the IDS
to dynamically improve detection strategies by learning real-time cyber threats, thus minimizing false alarms while
enhancing adaptability [3].

Neural networks are used to extract complex features from large-scale network traffic data. Convolutional Neural
Networks (CNNs) are effective in intrusion detection by identifying spatial correlations in traffic patterns while Recurrent
Neural Network (RNN) and Long Short Time Memory (LSTM) networks are suited for processing sequential data and
capturing temporal dependencies in cyber-attacks. Gated Recurrent Units (GRUs) and Transformer-based models improve
IDS by learning long-term dependencies and increasing the accuracy of classification. Hybrid deep learning models
integrate CNNs with LSTM or attention mechanisms in detecting advanced threats with higher accuracy, precision, and
recall. The integration of deep learning techniques in modern IDS allows for automated threat detection, minimizes false
positives and improves real-time cybersecurity defences against sophisticated attacks [4].

The proposed IDS follow a structured roadmap integrating Intrusion Behavior Feature Pattern Impact Rate, Simplified
Whale Optimization Algorithm and LSTM-Gated Recurrent Neural Network for enhanced cyber security threat detection.
The process begins with data pre-processing where Min-Max normalization ensures uniform feature scaling. Next, IBFPIR
is applied to analyze and rank feature relevance by assessing their impact on intrusion behavior, refining feature selection
for improved classification. To further optimize feature selection and reduce dimensionality, SWOA is employed by
enhancing information gain while minimizing redundancy. The LSTM-GRNN model takes the refined feature set where
LSTM captures long-term dependencies in sequential network traffic data and GRNN manages the more complex temporal
patterns of malicious activities. The integration of IBFPIR, SWOA, and LSTM-GRNN in the proposed IDS becomes
necessary as the conventional signature-based IDSs are not very capable of detecting unknown, advanced and evasion-
based attacks [5].

IBFPIR is crucial for identifying high-impact features directly related to malicious activities, reducing irrelevant data
and improving feature interpretability. SWOA enhances feature selection by maximizing information gain while
minimizing redundancy, ensuring optimal dimensionality reduction for efficient learning. LSTM-GRNN is essential for
handling sequential network traffic data, capturing long-term dependencies and recognizing complex attack patterns that
conventional models fail to detect. This combined approach enhances accuracy, reduces false alarms and strengthens real-
time cyber threat detection [6]. The main contributions of proposed work are given below.

e Designed an advanced signature-based IDS framework to detect evasion-based and emerging advanced cyber

threats.

o Introduced Intrusion Behaviour Feature Pattern Impact Rate (IBFPIR) to identify high-relevance features pertaining

to malicious activities.

o SWOA is applied for feature selection with optimal dimension reduction while retaining crucial information.

o Designed LSTM-Gated Recurrent Neural Network (LSTM-GRNN) for intrusion patterns and style feature learning

where long-term dependencies of intrusion patterns would be captured for more effective classification.

e Min-max normalization was used to scale the features uniformly and to make the model more stable.

e Accuracy, precision, recall, and F1-score were enhanced up to 97%, 98%, 97%, and 98%, respectively as compared

to other IDS models.

e FPR and FNR are reduced to 4% and 5%, respectively by enhancing the detection reliability.

Section II describes the related work in IDS with its advantages and disadvantages. Section III explains the proposed
work flow architecture and its observation with model summary. Section IV discusses the result obtained by proposed work
using IBFPIR and SWOA for effective feature selection. LSTM-GRNN is used for classification of normal and attack data
efficiently by visualizing the results. Section V concludes the proposed work and the comparative analysis with existing
models were observed.

II. RELATED WORK
Past researchers [7] proposed a methodology uses feature selection techniques to enhance intrusion detection and hybrid
classification models are used to improve the accuracy. The use of fuzzy clustering helps group similar intrusion patterns
to reduce false alarms. This approach enhances the detection of both known and unknown threats [8] and introduced a
methodology employs deep learning architectures trained on network traffic data to distinguish between normal and
malicious activities. The model is hyper parameter-tuned and regularized to avoid overfitting. The most prominent
advantage of the system is the ability to generalize well across the different attack scenarios [9]. In past, the researchers
proposed [10] a metaheuristic-based methodology to integrate metaheuristic optimization techniques with deep learning
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models to improve feature selection and classification performance. The proposed system significantly enhances intrusion
detection in Internet of Things (IoT) and smart environments. The advantage is its adaptive learning capability by allowing
it to detect evolving attack patterns while maintaining computational efficiency.

Past researchers [11] proposed a methodology utilizes genetic algorithms for optimizing feature selection while
applying deep learning-based classification for intrusion detection. This system has an advantage of scalability and
adaptability in dynamic Mobile Adhoc Networks (MANET) environments with high accuracy and minimal false positives.

Past researchers [12] uses genetic algorithms to evolve IDS rules dynamically through signature-based intrusion
detection. Adaptation of intrusion patterns is taken place without user intervention in changing the rules manually. The idea
is self-learning which leads to less frequent updates of the signatures and increases the rate of detection. In past, the
researchers proposed two-phase IDS combining Naive Bayes (NB) for classification and Elliptic Envelope for anomaly
detection [13]. The methodology applies machine learning based classification for known intrusions and employs anomaly
detection to identify unknown threats and integrates Deep Convolutional Neural Networks (DCNN) for feature extraction
and Bidirectional LSTM for sequential anomaly detection.

Past researchers [14] utilizes CNN for spatial feature extraction and LSTM for sequential learning with Hurst parameter
analysis improving feature selection. The advantage is its high adaptability to real-world network anomalies by ensuring
robust cyber security protection for critical infrastructure [15] and developed RNN-based model on network traffic data to
detect sequential attack patterns. The advantage is to identify evolving attack patterns in high-traffic network environments
[16]. The comparative analysis of the existing models is given in Table 1.

Table 1. Comparison of IDS with ML and DL Approaches

; Accuracy | FPR
S.No Methodology Advantage Disadvantage (%) (%)
Signature-based IDS High accurac Computationally expensive
1 with ML, DL, and 9 Y, P y €Xp 91.2 41
- reduced FPR/FNR for large datasets
fuzzy clustering [5]
2 DNN-based IDS [6] Gengrallzes We_II, Requires extensive training 89.7 53
real-time detection data
- Adaptive learning, .
3 Metaheurlstlc-b_ased DL low computational May struggle with unseen 879 6.0
for 10T security [7] cost attacks
PPGA and Stacked Scalable, adaptable
4 LSTM for MANET to dynamic Increased training time 90.3 4.8
security [8] environments
Anomaly-based IDS for Robust against . .
5 loT [9] zero-day threats High FPR in some cases 86.5 6.8
Dugat-LSTM with Captures temporal
6 chaotic optimization g P Computationally intensive 92.0 4.3
[10] ependencies
. : Self-learning, .
7 Ger_letlc—based adaptive minimal manual Requwes_fr_equent 854 71
signature IDS [11] retraining
updates
Two-phase IDS. (Nawe Detects known and | Performance degrades on
8 Bayes + Elliptic X 88.2 55
novel threats imbalanced data
Envelope) [12]
. Learns spatial &
9 I_-|ybr|d DCNN- temporal Higher training complexity 90.8 4.6
BIiLSTM IDS [13] .
dependencies
10 Enhanced CNN-LSTM | Robust for SCADA | Requires domain-specific 915 49
for SCADA IDS [14] systems tuning ' '
Effective for
11 RNN-based IDS [15] sequential attack High memory consumption 83.7 6.9
detection

III. PROPOSED WORK
The proposed work process begins with the preprocessing, which involves the Min-max normalization of feature values.
All the features will have feature values in a standardized range. The proposal introduces the IBFPIR, which measures the
correlation between the limits of the feature and intrusion patterns for the intrusion detection of the most critical features.
For maximizing information gain and reducing redundancy in feature selection, the simplified whale optimization
algorithm is used. The LSTM-GRNN model has excellent sequential dependency to capture complex patterns. The
proposed approach enhances signature-based IDS by incorporating more advanced feature engineering and a hybrid LSTM-
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GRNN model for improved complex intrusion behaviors' detection. The workflow of the proposed feature extraction,
selection and classification is detailed in Fig 1.

Maximum Information Gain

Pattern Detection
Intrusion Detection Results

Fig 1. A Working Flow of the Proposed Model.

Data Collection & Pre-Processing
The first step in the suggested work is

raw data collection. The dataset comprises 125,972 entries and 43 columns

representing different attributes about network traffic and system behavior that were collected for intrusion detection. The

features comprise numerical data like the

duration of connections, bytes transmitted in both source and destination, error

rates, and counts of various system events such as failed logins, file creations, and root attempts. This dataset consists of
categorical attributes such as type of protocol used, type of service, flag which reflects the features in the network
communication. Further, the data comprises a binary output variable that captures whether the particular entry falls within
normal or is an attack while also providing level column for generalizing severity, or nature. After gathering the data, the
pre-processing stage is done to clean up the raw data before feeding it to the feature engineering and model training stages

[17].
Table 2. Dataset Description
Feature Type Count (Number of Features)
Numerical 24
Categorical 4
Float 15
Target (Integer) 1

The data description in Table 2 will break down the feature types of the data set. The result shows there are 24 numerical
features presented as integer types that describe other features such as duration of traffic, byte count, and log-in attempts
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and 4 categorical features include the type of protocol, the type of service, the type of flag, and whether a login is to be a
guest or host. The dataset also includes 15 floating-point features, which represent rates or proportions, such as error rates
and service-related rates. Finally, the target feature is an integer, indicating the classification of the attack or normal
behaviour [18][19].

The data pre-processing involves taking the Min-Max normalization scaling of feature value within a prescribed range,
0 to 1. Then, it was ensured that in the model no feature would outperform others but instead all contributes equally because
every feature does have a larger difference between its smallest and largest number. After normalization, other operations
such as handling missing values, removing irrelevant features, and ensuring that the data is balanced between normal and
attack classes are performed. Pre-processing is essential for improving the accuracy of the model, reducing noise, and
enhancing its ability to generalize to unseen data.

Feature Engineering & Identification

Feature engineering and feature identification are steps that enhance the performance of a machine learning model,
especially concerning intrusion detection systems. In the process, raw data is changed into meaningful features that can
describe the underlying intrusion behaviors better [20]. The first stage of feature engineering is cleaning a dataset, such as
handling missing values and addressing outliers. This ensures that the data is ready for analysis and machine learning
algorithms. For example, categorical features such as protocol type and service can be encoded using techniques like one-
hot encoding or label encoding.

Min-Max normalization ensures that all features are within a standardized range. This is important in order not to let
features that have larger numeric values dominate the learning process. Thus, it is possible for the model to treat all the
features equally important. Moreover, new features could be created either by combining other existing ones or applying
domain knowledge [21]. The important features are identified using various techniques such as correlation analysis and
statistical tests that reveal which features have the greatest effect on intrusion detection. The method IBFPIR calculates the
rate of interaction between the different features and behaviors about an intrusion, along with the benefits it may have for
the most indicative features. The model is equipped to distinguish the usual from non-usual network behavior. Thus
intrusion detection becomes more accurate and effective by carefully choosing important features.

The min max normalization is sued to scale features in a specified range using equation (1) where x’; is the normalized
value of the feature x.

x,i _ x;—min(x) (1)

max(x)—-min(x)

Y =D i-y)
rxy = = =1 _I. nl = (2)
Jzi=l(xi—x)z*\]zhl(yi—y)z

In equation (2), the Pearson correlation coefficient r is commonly used which measures the linear relationship between
two features x and y. x; & y;are individual sample values of features x and y. X, ¥ are the means of features x and y and n
is the number of data points.

2};1 P(FinAj)

IBFPIR(F;) = =L D)

3)

In equation (3), the rate of correlation between each feature F; and its associated behaviour can be represented. F; is a
feature, A; is an intrusion pattern, P(Fl- n Aj) is the joint probability of feature F; and attack A;. P(F;) is the probability of
feature F; and P(A ]-) is the probability of attack pattern A;.

0i-Ep?
X2 = {'(=1LE—iL (4)

The chi square can be used to identify the significant features. For instance, chi square is calculated using the equation
(4) where O; is the observed frequency for category i, E; is the expected frequency and k is the number of categories. X2
is related to the outcome (intrusion or normal behavior).

Feature Selection with SWOA

Feature selection is the most important step in eliminating redundancy and improves the model's performance by focusing
on the most important features. For this purpose, the Simplified Whale Optimization Algorithm is used. This algorithm will
choose the most significant features by offering an efficient, nature-inspired approach. In the SWOA algorithm, first of all,
the population of candidate solutions is initialized in the feature space as whales. Every whale represents a possible feature
subset that could be used for intrusion detection. Initially, random solutions (subsets of features) are selected and will form
the first population. All whales are evaluated using a fitness function that quantifies how well the feature subset performs
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when applied to the intrusion detection problem. The fitness function usually includes the accuracy of a machine learning
model, such as LSTM-GRNN, when trained on the selected feature set. Higher fitness values indicate better-performing
feature subsets. The fitness function helps evaluate the quality of each candidate feature subset. SWOA uses the social
behavior of humpback whales to guide the search for optimal feature subsets. It combines both the exploration of broad
search and fine-tuning or exploitation around the promising areas by updating the whales' positions- feature subsets-for
their fitness score and the global best position found by the whales. In the exploration phase, the whales roam randomly in
their search space with the possibility that they might cover new feature subsets that contain promising features.

This phase includes focusing areas around the best solution by fine-tuning the positions. It is a feature subset to improve
the fitness more. The whale positions are updated iteratively by a mathematical model, simulating the behavior of
humpback whales while hunting. This is achieved by updating each whale's position according to the best whale's position
and the current whale's position, considering random factors to simulate the search dynamics of the whales. The position
update equation is devised to enable the algorithm to switch between exploration and exploitation. The updated positions
of the whales are new candidate feature subsets. After several iterations of updating whale positions and evaluating their
fitness, the algorithm converges toward the optimal feature subset. The final solution is the feature subset that gives the
best performance according to the fitness function. This subset is used in the subsequent steps of the IDS pipeline. When
the optimal subset of features has been selected by SWOA, then the dimensionality of the dataset is reduced focusing only
on the most relevant features. It uses this reduced feature set for training the intrusion detection model-LSTM-GRNN, with
which the model gets faster, trains more accurately, and it performs better during generalization.

The general position update is given in equation (5) where X;(t) is the current position of the ith value at time step t
which represents a candidate feature subset and X™* is the position of the best performing whale. A is a random coefficient
that controls the exploration and C is used to adjust the influence of the best whale’s position on the current whale’s position.
r; and r, are random numbers in the range [0, 1] as given in equation (5) and (6).

X (t+1) =Xt +A|C.X" — X, (5)
A=2-11—1,C=2.1, (6)

The fitness function can be defined using equation (7) where F; is the ith feature subset selected by the whale i.
Fitness(F;) = Accuracy(F;) @)

LSTM-GRNN Model

A combination of two powerful architectures, it is a combination of the LSTM and GRNN designed to handle complex,
time-series data for the classification of attacks evolve over time. LSTM are good at managing long-term dependencies
and sequential patterns in data in analyzing the temporal patterns of network traffic in IDS functions. GRNNs improves
the model in handling dynamic and nonlinear relationships among features toward recognizing complex patterns in
intrusions.

LSTMs are famous for solving the vanishing gradient problem commonly occurring in traditional RNNs which
guarantees it to have long-term memory. In the context of IDS, LSTMs are excel in analyzing sequences of network traffic
data for long-term patterns in feature interactions such as traffic spikes, failed login attempts, or unusual request sequences.
An LSTM unit consists of three gates such as the input gate controls what enters the cell. The output gate governs what
comes out of the cell and the forget gate regulates inside the cell. This arrangement enables a model to recollect events for
extended periods by eliminating important information.

The GRNN component refines the capabilities of LSTM by adding a gating mechanism that enables the model to focus
on the most important features of the input sequence. It dynamically changes the attention to different aspects of the data.
This is useful in intrusion detection, where certain features such as the number of login attempts or the rate of file access
will be more indicative of an intrusion at certain times than others. The GRNN mechanism enables the model to capture
such changing patterns by improving classification accuracy.

fe = U(Wf- [he—1, 2] + bf) (®)

In equation (8), an LSTM unit processes sequential data by maintaining long term memory through three main gates.

The input gate (i;), the forget gate (f;) and the output gate (0;). The core equations (9) to (13) fora LSTM are given. Forget
gate determines what information from the previous cell state should be discarded.

iy = (W [he—1, x¢] + by) ©

The input gate decides what new information to store in the cell state. The candidate cell state proposes new candidate
values to be added to the cell state.
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The cell state update is done by combining the old state, the forget gate’s decision and th
e input gates new information. The output gate decides what part of the cell state will be output to the next hidden state.

Ce=fe-Cor + 1. G (11)
0y = o(Wo. [h¢—1, X¢] + bo) 12)

The hidden state h; is computed based on the output gate and cell state where o(+) is the sigmoid activation function,
tanh(.) is the hyperbolic tangent activation function , Wy, W;, W, W, are weight matrices and by, b;, b, by are bias term

ht = Ot.tal’lh(Ct) (13)
Gated Regression Neural Network (GRNN) is used to refine the model attention toward relevant features by adapting

its focus based on dynamic pattern in the data as given in equation (14) where y; is the i center point, ¢ is a spread
parameter that controls the width of the Gaussian function.

( ||xt-u||2>
exp| — 20_2
ht =

Z (14)
n ( [lce—s4| >
i=1XP\ 7557

After processing the hidden layer, the GRNN produces an output which is a weighted sum of the hidden layer’s output
as given in equation (15) where w; is the weight associated with the i output.

Ve = wi hy (16)

Input Data

LSTM Layer Reset Gate Update Gate

GRNN Layer

Input Gate Forget Gate

Hidden State

i Candidate State }
f Qutput Gate z

@
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(M12Y) 12he] asuaqg
siakeq asuaq

Fig 2. An Architecture of LSTM-GRNN.
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Fig 2 represents the architecture of the LSTM-GRNN model, which is a combination of LSTM units that process
sequential data and GRNNSs that focus adaptively on relevant features. The LSTM layers capture long-term dependencies
in the data and the GRNN gates dynamically adapt the model's attention to significant patterns. The hybrid architecture
improves intrusion detection accuracy by learning complex temporal relationships and non-linear feature interactions.

IV.RESULTS AND DISCUSSION

The performance is evaluated using accuracy, precision, recall, and F1-score using the equation (16) to (19). TP is True
Positive, TN is True Negative, FP is False Positive and FN is False Negative.

Correctly predicetd sample
Accuracy = 7P L (17)
TP+TN+FP+FN
.. TP
Precision = (18)
TP+FP
TP
Recall = (19)
TP+FN
TP
F1Score = ————— (20)
TP+0.5(FP+FN)

count

Fig 3. The Count of Protocol Type.

normal

count

attack
Fig 4. The Count of Outcome.
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Fig 3 depicts protocol type distribution across the dataset where the frequency of each protocol can be seen. Fig 4 is
the number of different results which actually represents the occurrences of each result in the intrusion detection system.

Table 3. Intrusion behaviour Feature Pattern Impact Rate (IBFPIR) Scores

Feature IBFPIR Score
same_srv_rate 0.751912
dst_host srv_count 0.722546
dst host same srv rate 0.693813
logged in 0.690181
dst_host_srv_serror rate 0.654984
dst_host _serror_rate 0.651840
serror_rate 0.650651
Srv_serror_rate 0.648287
flag 0.647071
count 0.576442
Distribution of duration 166 Distribution of src_bytes
2.5
150000
2.0
£ 100000 2151
2 2
9] Y] 1.0
50000
051
0 T T T T T 0.0 —‘ T T T T T
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166 Distribution of dst_bytes Distribution of land
3 4
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0.0 02 04 06 08 10 0.0 02 04 06 08 10
dst_bytes land
Distribution of wrong_fragment 166 Distribution of urgent
125000 ] 1
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wrong_fragment urgent

Fig S. Feature Distributions After Min-Max Normalization.

Table 3 shows the Intrusion Behavior Feature Pattern Impact Rate (IBFPIR) scores of different features, where higher
scores indicate the importance of these features in intrusion detection. The features listed, including same srv rate,
dst_host _srv_count, and logged in, have relatively high scores, indicating that they play significant roles in identifying
intrusion behaviors. Fig 5 depicts the feature distributions after min-max normalization, which ensures that all feature
values, are scaled uniformly within a specific range. This normalization helps to enhance the accuracy of the IDS by
standardizing feature values before further processing.
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same_srv_rate
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Fig 6. Top 10 Features by IBFPIR Score.

Fig 6 showcases the top 10 features ranked by their IBFPIR scores, highlighting the most impactful features for
intrusion detection. These features, such as same srv_rate and dst host srv_count, are used to identifying intrusion
behavior. Fig 7 presents the correlation matrix of these top 10 features, illustrating the relationships between them. The
matrix helps identify which features are strongly correlated for better feature selection and reducing redundancy in the
model.

pasen ﬂ - . . . - >
dst_host_srv_serror_rate -0.57 .4 0.99 9 r . -0.2

dst_host_serror_rate
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serror_rate -

Srv_serror_rate -

dst_haost_serror_rate -

dst_host_srv_serror_rate -

dst_host_same_srv_rate

Fig 7. Correlation Matrix of Top 10 Features by IBFPIR Score.

Table 4. Selected Features Based on SWOA
S.No Selected Features
src_bytes
dst_bytes
same_srv_rate
diff_srv_rate
level
dst_host_same_srv_rate
flag
logged_in
protocol_type

© @O N@ |01~ W=
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dst_bytes

same_srv_rate

diff_srv_rate
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dst_host_same_srv_rate
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flag

logged_in

protocol_type
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f T T T T T T T
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Fig 8. Top 10 Important Features Selected By SWOA.

Table 4 gives the features chosen with the SWOA algorithm as described below; among the chosen features are key
ones like src_bytes, dst_bytes, and protocol_type. After feature selection through SWOA, these have emerged to be most
relevant to intrusion detection. Fig 8 presents a visualization of the top 10 most important features chosen by SWOA for
the identification of intrusion behavior.

Table 5. Model Summary of LSTM-GRNN

Layer (type) Output Shape Param #
reshape 1 (Reshape) (Nong, 15, 1) 0
Istm_2 (LSTM) (None, 15, 64) 16,896
Istm_3 (LSTM) (None, 32) 12,416
dense 2 (Dense) (None, 16) 528
dense_3 (Dense) (None, 1) 17

As can be seen in Table 5, the architecture of the model summary of the LSTM-GRNN is well covered in terms of
layers and output shapes and the number of parameters. There is an architecture that includes one LSTM layer having 64
units and a second LSTM layer having 32 units followed by two dense layers for the final classification. It uses 8 epochs
with 32 batch size and learning rate of 0.001. The model seems to have a manageable amount of parameters overall. Fig 9
depicts the structure of the LSTM-GRNN model and how data flows through the LSTM layers to capture long-term
dependencies, thus helping in the detection and classification of intrusion behaviors.

reshape_1 (Reshape)

Input shape: (None, 15) Output shape: (None, 15, 1)

Input shape: (None, 15, 1) Output shape: (None, 15, 64)

Input shape: (None, 15, 64) Output shape: (None, 32)

dense_2 (Dense)

Input shape: (None, 32) Output shape: (None, 16)

dense_3 (Dense)

Input shape: (None, 16) Output shape: (None, 1)

Fig 9. The Visualization of LSTM-GRNN.
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Table 6. Metrics for the Model (Train and Test Performance)

Metric Score
Train Accuracy 0.979470
Test Accuracy 0.978369
Precision 0.987029
Recall 0.972060
F1 Score 0.979487
Table 7. Confusion Matrix for Proposed Work
Predicted / Actual Attack (1) Normal (0)
Attack (1) 950 50
Normal (0) 40 960
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Fig 10. Predict of Threat Level After SWO.
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Fig 11. Confusion Matrix.

Fig 10 presents the threat level after classifying SWO. Table 7 represents the confusion matrix of proposed work
which has 950 true positives due to Attack and 960 false positives due to Normal. The false positives at 50 and the false
negatives at 40 are low, thus showing that the model perfoms well for distinguishing between attack and normal behavior
by reducing misclassifications as seen in Fig 11. Table 6 shows metrics for the model (Train and Test Performance).
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Fig 13. Loss of the Proposed LSTM-GRNN.

Fig 12 demonstrates the accuracy of the proposed LSTM-GRNN model, showing a steady increase in accuracy as the
model trains. This depicts the strong learning ability of the model and its effectiveness in the correct classification of
intrusion behaviors. Fig 13 demonstrates the loss curve of the proposed LSTM-GRNN. The loss has been consistently
reduced over time. This reduction in loss indicates that the model is improving in its predictions and minimizing errors.

Table 8. Comparative Analysis with Existing Models

Model Accuracy Precision Recall F1 Score FPR FNR

Logistic Regression 0.90 0.85 0.88 0.86 0.12 0.15
Decision Tree 0.87 0.83 0.85 0.84 0.14 0.17

Random Forest 0.92 0.89 0.91 0.90 0.09 0.11

SVM 0.89 0.84 0.87 0.85 0.13 0.16

XGBoost 0.93 0.91 0.92 0.91 0.08 0.09

CNN 0.88 0.84 0.86 0.85 0.13 0.15

LSTM 0.87 0.82 0.85 0.83 0.14 0.18

CNN-LSTM 0.90 0.86 0.88 0.87 0.11 0.14
Proposed Work(LSTM-GRNN) 0.97 0.98 0.97 0.98 0.04 0.05

Table 8 shows the comparative analysis of different models with performance metrics of accuracy, precision, recall, F1
score, False Positive Rate (FPR) and False Negative Rate (FNR). The proposed LSTM-GRNN model is found to be better
than other models with maximum accuracy (97%), precision (98%), recall (97%), and F1 score (98%), and lower FPR
(4%) and FNR (5%). Fig 14 visually presents the proposed work based on the effectiveness of detection and minimizes the
error rates. It performs better compared to the traditional machine learning and deep learning models like Logistic
Regression, Decision Tree, SVM, XGBoost, CNN and many others.
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Fig 14. Comparison of Model Performance.

V. CONCLUSION

The proposed framework of LSTM-GRNN coupled with IBFPIR feature engineering and driving feature selection process
by SWOA improves intrusion detection significantly by increased accuracy, precision, recall, and F1 score while also
reducing false positive and false negatives. The designed model effectively discovers known and complex cyber threats
within network traffic as it exploits its long-term dependence and optimizes the relevance feature. The approach ensures
robustness against evolving attack patterns, making it a valuable advancement in IDS. The proposed LSTM-GRNN
framework with IBFPIR-based feature engineering and SWOA-driven feature selection significantly enhances intrusion
detection by improving accuracy at 97%, precision at 98%, recall at 97%, and F1 score at 98% while reducing the FPR of
4% and FNR of 5%. By exploiting long-term dependencies in network traffic and optimizing feature relevance, the model
effectively identifies both known and advanced cyber threats. The approach is robust against changing attack patterns by
making it a valuable advancement in IDS. Future work will focus on real-time deployment and adaptive learning
mechanisms to further enhance IDS performance in dynamic cybersecurity environments.
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