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Abstract – In the fast-changing world of cybersecurity, cyber threats have been challenging the traditional defence 

mechanisms in the signature-based Intrusion Detection Systems (IDS). Although these systems are effective for detecting 

known threats and cannot handle advanced, unknown and evasion-based attacks. The proposed work presents an enhanced 

signature-based IDS framework to bridge the gap of conventional approaches toward detecting advanced persistent threats 

and provide timely responses to security incidents. The proposed methodology uses hyper-scaler feature engineering with 

a Long Short-Term Memory Gated Recurrent Neural Network (LSTM-GRNN) improves the efficacy and accuracy in 

intrusion detection. The approach pre-processes to start with the min-max normalization by ensuring uniform scaling of 

feature values. A new technique named Intrusion Behavior Feature Pattern Impact Rate (IBFPIR) is proposed to determine 

the relevance of feature patterns that are more related to intrusion behavior in malicious activities. For optimization of 

feature selection, a new advanced optimization approach such as Simplified Whale Optimization Algorithm (SWOA) is 

used for information gain while minimizing redundancy and reducing the dimensionality along with superior model 

performance. Finally, the LSTM-GRNN architecture is applied to classify intrusion behaviors based on the refined features. 

The long-term dependencies in time-series data captured by the LSTM combined with gated recurrent units is used to learn 

patterns during intrusion detection. The proposed system gives a better performance interms of accuracy (97%), precision 

(98%), recall (97%), F1 score (98%), with reduced false positive rate (FPR of 4%) and false negative rate (FNR of 5%) 

compared with existing models. The proposed work gives a significant development in intrusion detection systems in 

safeguarding sensitive data against cyber threats. 

 

Keywords – Intrusion Detection System, Feature Engineering, Long Short-Term Memory, Whale Optimization Algorithm, 

Intrusion Behaviour Detection, Cybersecurity. 

 

I. INTRODUCTION 

A Signature-Based Intrusion Detection System is actually a type of cybersecurity mechanism meant to detect hostile 

activities through network traffic or system behavior comparisons to a database that contains known signatures of attacks. 

These signatures refer to predetermined patterns derived from earlier cyber threats; hence, such a system has a very 

effective detection capability concerning well-documented attacks with minimum false alarms. Signature-based IDS 

operates in real-time, scanning incoming data packets or system logs for known threat indicators, allowing for swift 

mitigation. However, its primary limitation lies in its inability to detect zero-day attacks, polymorphic malware, and 

evolving evasion techniques, as it relies on previously identified attack patterns. Despite this drawback, signature-based 

IDS remain a crucial component in network security due to its efficiency, accuracy and low computational overhead when 

dealing with known threats [1]. 

Traditional IDS methods rely on signature-based anomaly detection techniques to identify malicious activities in a 

network. Signature-based IDS compares incoming data of known attack patterns but failing against zero-day attacks and 

evasive malware. Anomaly-based IDS detects differences from normal network behavior using statistical models to identify 

unknown threats. Rule-based detection such as Snort and Suricata, uses predefined security policies to flag suspicious 

activities but requires frequent manual updates and struggles against dynamic attack strategies. While these traditional 
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methods provide a foundational security layer and face challenges in adapting to rapidly evolving cyber threats 

necessitating the development of more intelligent and adaptive IDS approaches [2]. 

Machine learning (ML) is used to enhance IDS systems by automatically detecting suspicious activities through pattern 

recognition and anomaly detection. Unlike the traditional rule-based IDS, the ML-based systems learn from the historical 

attack patterns and adapt to new and evolving threats without explicit programming. The supervised learning models such 

as Support Vector Machines (SVM), Decision Trees (DT), and Random Forest (RF) uses labeled datasets to classify 

network traffic as a normal one or an abusive one and improve detection accuracy. The methods of unsupervised learning, 

such as K-Means, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Autoencoders recognize 

unknown attacks by clustering network behaviors and finding deviations. Reinforcement learning further enables the IDS 

to dynamically improve detection strategies by learning real-time cyber threats, thus minimizing false alarms while 

enhancing adaptability [3]. 

Neural networks are used to extract complex features from large-scale network traffic data. Convolutional Neural 

Networks (CNNs) are effective in intrusion detection by identifying spatial correlations in traffic patterns while Recurrent 

Neural Network (RNN) and Long Short Time Memory (LSTM) networks are suited for processing sequential data and 

capturing temporal dependencies in cyber-attacks. Gated Recurrent Units (GRUs) and Transformer-based models improve 

IDS by learning long-term dependencies and increasing the accuracy of classification. Hybrid deep learning models 

integrate CNNs with LSTM or attention mechanisms in detecting advanced threats with higher accuracy, precision, and 

recall. The integration of deep learning techniques in modern IDS allows for automated threat detection, minimizes false 

positives and improves real-time cybersecurity defences against sophisticated attacks [4]. 

The proposed IDS follow a structured roadmap integrating Intrusion Behavior Feature Pattern Impact Rate, Simplified 

Whale Optimization Algorithm and LSTM-Gated Recurrent Neural Network for enhanced cyber security threat detection. 

The process begins with data pre-processing where Min-Max normalization ensures uniform feature scaling. Next, IBFPIR 

is applied to analyze and rank feature relevance by assessing their impact on intrusion behavior, refining feature selection 

for improved classification. To further optimize feature selection and reduce dimensionality, SWOA is employed by 

enhancing information gain while minimizing redundancy. The LSTM-GRNN model takes the refined feature set where 

LSTM captures long-term dependencies in sequential network traffic data and GRNN manages the more complex temporal 

patterns of malicious activities. The integration of IBFPIR, SWOA, and LSTM-GRNN in the proposed IDS becomes 

necessary as the conventional signature-based IDSs are not very capable of detecting unknown, advanced and evasion-

based attacks [5]. 

IBFPIR is crucial for identifying high-impact features directly related to malicious activities, reducing irrelevant data 

and improving feature interpretability. SWOA enhances feature selection by maximizing information gain while 

minimizing redundancy, ensuring optimal dimensionality reduction for efficient learning. LSTM-GRNN is essential for 

handling sequential network traffic data, capturing long-term dependencies and recognizing complex attack patterns that 

conventional models fail to detect. This combined approach enhances accuracy, reduces false alarms and strengthens real-

time cyber threat detection [6]. The main contributions of proposed work are given below. 

• Designed an advanced signature-based IDS framework to detect evasion-based and emerging advanced cyber 

threats. 

• Introduced Intrusion Behaviour Feature Pattern Impact Rate (IBFPIR) to identify high-relevance features pertaining 

to malicious activities. 

• SWOA is applied for feature selection with optimal dimension reduction while retaining crucial information. 

• Designed LSTM-Gated Recurrent Neural Network (LSTM-GRNN) for intrusion patterns and style feature learning 

where long-term dependencies of intrusion patterns would be captured for more effective classification. 

• Min-max normalization was used to scale the features uniformly and to make the model more stable. 

• Accuracy, precision, recall, and F1-score were enhanced up to 97%, 98%, 97%, and 98%, respectively as compared 

to other IDS models. 

• FPR and FNR are reduced to 4% and 5%, respectively by enhancing the detection reliability. 

Section II describes the related work in IDS with its advantages and disadvantages. Section III explains the proposed 

work flow architecture and its observation with model summary. Section IV discusses the result obtained by proposed work 

using IBFPIR and SWOA for effective feature selection. LSTM-GRNN is used for classification of normal and attack data 

efficiently by visualizing the results. Section V concludes the proposed work and the comparative analysis with existing 

models were observed. 

 

II. RELATED WORK 

Past researchers [7] proposed a methodology uses feature selection techniques to enhance intrusion detection and hybrid 

classification models are used to improve the accuracy. The use of fuzzy clustering helps group similar intrusion patterns 

to reduce false alarms. This approach enhances the detection of both known and unknown threats [8] and introduced a 

methodology employs deep learning architectures trained on network traffic data to distinguish between normal and 

malicious activities. The model is hyper parameter-tuned and regularized to avoid overfitting. The most prominent 

advantage of the system is the ability to generalize well across the different attack scenarios [9]. In past, the researchers 

proposed [10] a metaheuristic-based methodology to integrate metaheuristic optimization techniques with deep learning 
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models to improve feature selection and classification performance. The proposed system significantly enhances intrusion 

detection in Internet of Things (IoT) and smart environments. The advantage is its adaptive learning capability by allowing 

it to detect evolving attack patterns while maintaining computational efficiency. 

Past researchers [11] proposed a methodology utilizes genetic algorithms for optimizing feature selection while 

applying deep learning-based classification for intrusion detection. This system has an advantage of scalability and 

adaptability in dynamic Mobile Adhoc Networks (MANET) environments with high accuracy and minimal false positives. 

Past researchers [12] uses genetic algorithms to evolve IDS rules dynamically through signature-based intrusion 

detection. Adaptation of intrusion patterns is taken place without user intervention in changing the rules manually. The idea 

is self-learning which leads to less frequent updates of the signatures and increases the rate of detection. In past, the 

researchers proposed two-phase IDS combining Naïve Bayes (NB) for classification and Elliptic Envelope for anomaly 

detection [13]. The methodology applies machine learning based classification for known intrusions and employs anomaly 

detection to identify unknown threats and integrates Deep Convolutional Neural Networks (DCNN) for feature extraction 

and Bidirectional LSTM for sequential anomaly detection. 

Past researchers [14] utilizes CNN for spatial feature extraction and LSTM for sequential learning with Hurst parameter 

analysis improving feature selection. The advantage is its high adaptability to real-world network anomalies by ensuring 

robust cyber security protection for critical infrastructure [15] and developed RNN-based model on network traffic data to 

detect sequential attack patterns. The advantage is to identify evolving attack patterns in high-traffic network environments 

[16]. The comparative analysis of the existing models is given in Table 1. 

 

Table 1. Comparison of IDS with ML and DL Approaches 

S.No Methodology Advantage Disadvantage 
Accuracy 

(%) 

FPR 

(%) 

1 

Signature-based IDS 

with ML, DL, and 

fuzzy clustering [5] 

High accuracy, 

reduced FPR/FNR 

Computationally expensive 

for large datasets 
91.2 4.1 

2 DNN-based IDS [6] 
Generalizes well, 

real-time detection 

Requires extensive training 

data 
89.7 5.3 

3 
Metaheuristic-based DL 

for IoT security [7] 

Adaptive learning, 

low computational 

cost 

May struggle with unseen 

attacks 
87.9 6.0 

4 

PPGA and Stacked 

LSTM for MANET 

security [8] 

Scalable, adaptable 

to dynamic 

environments 

Increased training time 90.3 4.8 

5 
Anomaly-based IDS for 

IoT [9] 

Robust against 

zero-day threats 
High FPR in some cases 86.5 6.8 

6 

Dugat-LSTM with 

chaotic optimization 

[10] 

Captures temporal 

dependencies 
Computationally intensive 92.0 4.3 

7 
Genetic-based adaptive 

signature IDS [11] 

Self-learning, 

minimal manual 

updates 

Requires frequent 

retraining 
85.4 7.1 

8 

Two-phase IDS (Naïve 

Bayes + Elliptic 

Envelope) [12] 

Detects known and 

novel threats 

Performance degrades on 

imbalanced data 
88.2 5.5 

9 
Hybrid DCNN-

BiLSTM IDS [13] 

Learns spatial & 

temporal 

dependencies 

Higher training complexity 90.8 4.6 

10 
Enhanced CNN-LSTM 

for SCADA IDS [14] 

Robust for SCADA 

systems 

Requires domain-specific 

tuning 
91.5 4.2 

11 RNN-based IDS [15] 

Effective for 

sequential attack 

detection 

High memory consumption 83.7 6.9 

 

III. PROPOSED WORK 

The proposed work process begins with the preprocessing, which involves the Min-max normalization of feature values. 

All the features will have feature values in a standardized range. The proposal introduces the IBFPIR, which measures the 

correlation between the limits of the feature and intrusion patterns for the intrusion detection of the most critical features. 

For maximizing information gain and reducing redundancy in feature selection, the simplified whale optimization 

algorithm is used. The LSTM-GRNN model has excellent sequential dependency to capture complex patterns. The 

proposed approach enhances signature-based IDS by incorporating more advanced feature engineering and a hybrid LSTM-
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GRNN model for improved complex intrusion behaviors' detection. The workflow of the proposed feature extraction, 

selection and classification is detailed in Fig 1. 

 

 
Fig 1. A Working Flow of the Proposed Model. 

 

Data Collection & Pre-Processing 

The first step in the suggested work is raw data collection. The dataset comprises 125,972 entries and 43 columns 

representing different attributes about network traffic and system behavior that were collected for intrusion detection. The 

features comprise numerical data like the duration of connections, bytes transmitted in both source and destination, error 

rates, and counts of various system events such as failed logins, file creations, and root attempts. This dataset consists of 

categorical attributes such as type of protocol used, type of service, flag which reflects the features in the network 

communication. Further, the data comprises a binary output variable that captures whether the particular entry falls within 

normal or is an attack while also providing level column for generalizing severity, or nature. After gathering the data, the 

pre-processing stage is done to clean up the raw data before feeding it to the feature engineering and model training stages 

[17]. 

 

Table 2. Dataset Description 

Feature Type Count (Number of Features) 

Numerical 24 

Categorical 4 

Float 15 

Target (Integer) 1 

 

The data description in Table 2 will break down the feature types of the data set. The result shows there are 24 numerical 

features presented as integer types that describe other features such as duration of traffic, byte count, and log-in attempts 
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and 4 categorical features include the type of protocol, the type of service, the type of flag, and whether a login is to be a 

guest or host. The dataset also includes 15 floating-point features, which represent rates or proportions, such as error rates 

and service-related rates. Finally, the target feature is an integer, indicating the classification of the attack or normal 

behaviour [18][19]. 

The data pre-processing involves taking the Min-Max normalization scaling of feature value within a prescribed range, 

0 to 1. Then, it was ensured that in the model no feature would outperform others but instead all contributes equally because 

every feature does have a larger difference between its smallest and largest number. After normalization, other operations 

such as handling missing values, removing irrelevant features, and ensuring that the data is balanced between normal and 

attack classes are performed. Pre-processing is essential for improving the accuracy of the model, reducing noise, and 

enhancing its ability to generalize to unseen data. 

 

Feature Engineering & Identification 

Feature engineering and feature identification are steps that enhance the performance of a machine learning model, 

especially concerning intrusion detection systems. In the process, raw data is changed into meaningful features that can 

describe the underlying intrusion behaviors better [20]. The first stage of feature engineering is cleaning a dataset, such as 

handling missing values and addressing outliers. This ensures that the data is ready for analysis and machine learning 

algorithms. For example, categorical features such as protocol type and service can be encoded using techniques like one-

hot encoding or label encoding. 

Min-Max normalization ensures that all features are within a standardized range. This is important in order not to let 

features that have larger numeric values dominate the learning process. Thus, it is possible for the model to treat all the 

features equally important. Moreover, new features could be created either by combining other existing ones or applying 

domain knowledge [21]. The important features are identified using various techniques such as correlation analysis and 

statistical tests that reveal which features have the greatest effect on intrusion detection. The method IBFPIR calculates the 

rate of interaction between the different features and behaviors about an intrusion, along with the benefits it may have for 

the most indicative features. The model is equipped to distinguish the usual from non-usual network behavior. Thus 

intrusion detection becomes more accurate and effective by carefully choosing important features. 

The min max normalization is sued to scale features in a specified range using equation (1) where 𝑥′
𝑖 is the normalized 

value of the feature x.  

 

 𝑥′
𝑖 =

𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
   (1) 

 

 𝑟𝑥𝑦 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 ∗√∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

  (2) 

 

In equation (2), the Pearson correlation coefficient r is commonly used which measures the linear relationship between 

two features x and y. 𝑥𝑖  & 𝑦𝑖are individual sample values of features x and y. 𝑥̅, 𝑦̅  are the means of features x and y and n 

is the number of data points. 

 

 𝐼𝐵𝐹𝑃𝐼𝑅(𝐹𝑖) =
∑ 𝑃(𝐹𝑖∩𝐴𝑗)𝑛

𝑗=1

𝑃(𝐹𝑖).𝑃(𝐴𝑗)
   (3) 

 

In equation (3), the rate of correlation between each feature 𝐹𝑖 and its associated behaviour can be represented. 𝐹𝑖 is a 

feature, 𝐴𝑗 is an intrusion pattern, 𝑃(𝐹𝑖 ∩ 𝐴𝑗) is the joint probability of feature 𝐹𝑖 and attack 𝐴𝑗. 𝑃(𝐹𝑖) is the probability of 

feature 𝐹𝑖 and 𝑃(𝐴𝑗) is the probability of attack pattern 𝐴𝑗. 

 

 𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑘
𝑖=1    (4) 

 

The chi square can be used to identify the significant features. For instance, chi square is calculated using the equation 

(4) where 𝑂𝑖  is the observed frequency for category i, 𝐸𝑖 is the expected frequency and k is the number of categories. 𝑋2 

is related to the outcome (intrusion or normal behavior). 

 

Feature Selection with SWOA 

Feature selection is the most important step in eliminating redundancy and improves the model's performance by focusing 

on the most important features. For this purpose, the Simplified Whale Optimization Algorithm is used. This algorithm will 

choose the most significant features by offering an efficient, nature-inspired approach. In the SWOA algorithm, first of all, 

the population of candidate solutions is initialized in the feature space as whales. Every whale represents a possible feature 

subset that could be used for intrusion detection. Initially, random solutions (subsets of features) are selected and will form 

the first population. All whales are evaluated using a fitness function that quantifies how well the feature subset performs 
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when applied to the intrusion detection problem. The fitness function usually includes the accuracy of a machine learning 

model, such as LSTM-GRNN, when trained on the selected feature set. Higher fitness values indicate better-performing 

feature subsets. The fitness function helps evaluate the quality of each candidate feature subset. SWOA uses the social 

behavior of humpback whales to guide the search for optimal feature subsets. It combines both the exploration of broad 

search and fine-tuning or exploitation around the promising areas by updating the whales' positions- feature subsets-for 

their fitness score and the global best position found by the whales. In the exploration phase, the whales roam randomly in 

their search space with the possibility that they might cover new feature subsets that contain promising features.  

This phase includes focusing areas around the best solution by fine-tuning the positions. It is a feature subset to improve 

the fitness more. The whale positions are updated iteratively by a mathematical model, simulating the behavior of 

humpback whales while hunting. This is achieved by updating each whale's position according to the best whale's position 

and the current whale's position, considering random factors to simulate the search dynamics of the whales. The position 

update equation is devised to enable the algorithm to switch between exploration and exploitation. The updated positions 

of the whales are new candidate feature subsets. After several iterations of updating whale positions and evaluating their 

fitness, the algorithm converges toward the optimal feature subset. The final solution is the feature subset that gives the 

best performance according to the fitness function. This subset is used in the subsequent steps of the IDS pipeline. When 

the optimal subset of features has been selected by SWOA, then the dimensionality of the dataset is reduced focusing only 

on the most relevant features. It uses this reduced feature set for training the intrusion detection model-LSTM-GRNN, with 

which the model gets faster, trains more accurately, and it performs better during generalization. 

The general position update is given in equation (5) where 𝑋𝑖(𝑡) is the current position of the ith value at time step t 

which represents a candidate feature subset and 𝑋∗ is the position of the best performing whale.  A is a random coefficient 

that controls the exploration and C is used to adjust the influence of the best whale’s position on the current whale’s position. 

r1 and r2 are random numbers in the range [0, 1] as given in equation (5) and (6). 

 

 𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝐴. |𝐶. 𝑋∗ − 𝑋𝑖(𝑡)   (5) 

 

 𝐴 = 2 ⋅ r1 − 1; C = 2. r2  (6) 

 

The fitness function can be defined using equation (7) where 𝐹𝑖 is the ith feature subset selected by the whale i. 

 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐹𝑖) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐹𝑖)    (7) 

 

LSTM-GRNN Model 

A combination of two powerful architectures, it is a combination of the LSTM and GRNN designed to handle complex, 

time-series data for the classification of attacks evolve over time. LSTM are good at managing long-term dependencies 

and sequential patterns in data in analyzing the temporal patterns of network traffic in IDS functions. GRNNs improves 

the model in handling dynamic and nonlinear relationships among features toward recognizing complex patterns in 

intrusions.  

LSTMs are famous for solving the vanishing gradient problem commonly occurring in traditional RNNs which 

guarantees it to have long-term memory. In the context of IDS, LSTMs are excel in analyzing sequences of network traffic 

data for long-term patterns in feature interactions such as traffic spikes, failed login attempts, or unusual request sequences. 

An LSTM unit consists of three gates such as the input gate controls what enters the cell. The output gate governs what 

comes out of the cell and the forget gate regulates inside the cell. This arrangement enables a model to recollect events for 

extended periods by eliminating important information. 

The GRNN component refines the capabilities of LSTM by adding a gating mechanism that enables the model to focus 

on the most important features of the input sequence. It dynamically changes the attention to different aspects of the data. 

This is useful in intrusion detection, where certain features such as the number of login attempts or the rate of file access 

will be more indicative of an intrusion at certain times than others. The GRNN mechanism enables the model to capture 

such changing patterns by improving classification accuracy. 

 

 𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (8) 

 

In equation (8), an LSTM unit processes sequential data by maintaining long term memory through three main gates. 

The input gate (𝑖𝑡), the forget gate (𝑓𝑡) and the output gate (𝑜𝑡). The core equations (9) to (13) for a LSTM are given. Forget 

gate determines what information from the previous cell state should be discarded. 

 

 𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)   (9) 

 

The input gate decides what new information to store in the cell state. The candidate cell state proposes new candidate 

values to be added to the cell state. 
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 𝐶𝑡̅ = tanh(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)   (10) 

 

The cell state update is done by combining the old state, the forget gate’s decision and th 

e input gates new information. The output gate decides what part of the cell state will be output to the next hidden state. 

 

 𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡 . 𝐶𝑡̅      (11) 

 

 𝑜𝑡 = 𝜎(𝑊0. [ℎ𝑡−1, 𝑥𝑡] + 𝑏0)  (12) 

 

The hidden state ℎ𝑡 is computed based on the output gate and cell state where σ(⋅) is the sigmoid activation function, 

tanh(.) is the hyperbolic tangent activation function , 𝑊𝑓 , 𝑊𝑖 , 𝑊𝐶 , 𝑊0 are weight matrices and 𝑏𝑓 , 𝑏𝑖 , 𝑏𝐶 , 𝑏𝑂 are bias term 

 

 ℎ𝑡 = 𝑜𝑡 . tanh(𝐶𝑡)   (13) 

 

Gated Regression Neural Network (GRNN) is used to refine the model attention toward relevant features by adapting 

its focus based on dynamic pattern in the data as given in equation (14) where 𝜇𝑖 is the ith center point, σ is a spread 

parameter that controls the width of the Gaussian function. 

 

 ℎ𝑡 =

exp(−
||𝑥𝑡−𝜇||

2

2𝜎2 )

∑ exp(−
||𝑥𝑡−𝜇𝑖||

2

2𝜎2 )𝑛
𝑖=1

    (14) 

 

After processing the hidden layer, the GRNN produces an output which is a weighted sum of the hidden layer’s output 

as given in equation (15) where 𝑤𝑖  is the weight associated with the ith output. 

 

 𝑦𝑡 = 𝑤𝑖 . ℎ𝑡           (16) 

 

 
Fig 2. An Architecture of LSTM-GRNN. 
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Fig 2 represents the architecture of the LSTM-GRNN model, which is a combination of LSTM units that process 

sequential data and GRNNs that focus adaptively on relevant features. The LSTM layers capture long-term dependencies 

in the data and the GRNN gates dynamically adapt the model's attention to significant patterns. The hybrid architecture 

improves intrusion detection accuracy by learning complex temporal relationships and non-linear feature interactions. 

 

IV. RESULTS AND DISCUSSION 

The performance is evaluated using accuracy, precision, recall, and F1-score using the equation (16) to (19). TP is True 

Positive, TN is True Negative, FP is False Positive and FN is False Negative. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑒𝑡𝑑 𝑠𝑎𝑚𝑝𝑙𝑒  

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (17) 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (18) 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (19) 

 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
𝑇𝑃

𝑇𝑃+0.5(𝐹𝑃+𝐹𝑁)
   (20) 

 

 
Fig 3. The Count of Protocol Type. 

 

 
Fig 4. The Count of Outcome. 
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Fig 3 depicts protocol type distribution across the dataset where the frequency of each protocol can be seen. Fig 4 is 

the number of different results which actually represents the occurrences of each result in the intrusion detection system. 

 

Table 3. Intrusion behaviour Feature Pattern Impact Rate (IBFPIR) Scores 

Feature IBFPIR Score 

same_srv_rate 0.751912 

dst_host_srv_count 0.722546 

dst_host_same_srv_rate 0.693813 

logged_in 0.690181 

dst_host_srv_serror_rate 0.654984 

dst_host_serror_rate 0.651840 

serror_rate 0.650651 

srv_serror_rate 0.648287 

flag 0.647071 

count 0.576442 

 

 
Fig 5. Feature Distributions After Min-Max Normalization. 

 

Table 3 shows the Intrusion Behavior Feature Pattern Impact Rate (IBFPIR) scores of different features, where higher 

scores indicate the importance of these features in intrusion detection. The features listed, including same_srv_rate, 

dst_host_srv_count, and logged_in, have relatively high scores, indicating that they play significant roles in identifying 

intrusion behaviors. Fig 5 depicts the feature distributions after min-max normalization, which ensures that all feature 

values, are scaled uniformly within a specific range. This normalization helps to enhance the accuracy of the IDS by 

standardizing feature values before further processing. 
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Fig 6. Top 10 Features by IBFPIR Score. 

 

Fig 6 showcases the top 10 features ranked by their IBFPIR scores, highlighting the most impactful features for 

intrusion detection. These features, such as same_srv_rate and dst_host_srv_count, are used to identifying intrusion 

behavior. Fig 7 presents the correlation matrix of these top 10 features, illustrating the relationships between them. The 

matrix helps identify which features are strongly correlated for better feature selection and reducing redundancy in the 

model. 

 

 
Fig 7. Correlation Matrix of Top 10 Features by IBFPIR Score. 

 

Table 4. Selected Features Based on SWOA 

S.No Selected Features 

1.  src_bytes 

2.  dst_bytes 

3.  same_srv_rate 

4.  diff_srv_rate 

5.  level 

6.  dst_host_same_srv_rate 

7.  flag 

8.  logged_in 

9.  protocol_type 
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Fig 8. Top 10 Important Features Selected By SWOA. 

 

Table 4 gives the features chosen with the SWOA algorithm as described below; among the chosen features are key 

ones like src_bytes, dst_bytes, and protocol_type. After feature selection through SWOA, these have emerged to be most 

relevant to intrusion detection. Fig 8 presents a visualization of the top 10 most important features chosen by SWOA for 

the identification of intrusion behavior. 

 

Table 5. Model Summary of LSTM-GRNN 

Layer (type) Output Shape Param # 

reshape_1 (Reshape) (None, 15, 1) 0 

lstm_2 (LSTM) (None, 15, 64) 16,896 

lstm_3 (LSTM) (None, 32) 12,416 

dense_2 (Dense) (None, 16) 528 

dense_3 (Dense) (None, 1) 17 

 

As can be seen in Table 5, the architecture of the model summary of the LSTM-GRNN is well covered in terms of 

layers and output shapes and the number of parameters. There is an architecture that includes one LSTM layer having 64 

units and a second LSTM layer having 32 units followed by two dense layers for the final classification. It uses 8 epochs 

with 32 batch size and learning rate of 0.001. The model seems to have a manageable amount of parameters overall. Fig 9 

depicts the structure of the LSTM-GRNN model and how data flows through the LSTM layers to capture long-term 

dependencies, thus helping in the detection and classification of intrusion behaviors. 

 

 
Fig 9. The Visualization of LSTM-GRNN. 
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Table 6. Metrics for the Model (Train and Test Performance) 

Metric Score 

Train Accuracy 0.979470 

Test Accuracy 0.978369 

Precision 0.987029 

Recall 0.972060 

F1 Score 0.979487 

 

Table 7. Confusion Matrix for Proposed Work 

Predicted / Actual Attack (1) Normal (0) 

Attack (1) 950 50 

Normal (0) 40 960 

 

 
Fig 10. Predict of Threat Level After SWO. 

 

 
Fig 11. Confusion Matrix. 

 

       Fig 10 presents the threat level after classifying SWO. Table 7 represents the confusion matrix of proposed work 

which has 950 true positives due to Attack  and 960 false positives due to Normal. The false positives at 50 and the false 

negatives at 40 are low, thus showing that the model perfoms well for distinguishing between attack and normal behavior 

by reducing misclassifications as seen in Fig 11. Table 6 shows metrics for the model (Train and Test Performance). 
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Fig 12. Accuracy of the Proposed LSTM-GRNN. 

 

 
Fig 13. Loss of the Proposed LSTM-GRNN. 

 

Fig 12 demonstrates the accuracy of the proposed LSTM-GRNN model, showing a steady increase in accuracy as the 

model trains. This depicts the strong learning ability of the model and its effectiveness in the correct classification of 

intrusion behaviors. Fig 13 demonstrates the loss curve of the proposed LSTM-GRNN. The loss has been consistently 

reduced over time. This reduction in loss indicates that the model is improving in its predictions and minimizing errors. 

 

Table 8. Comparative Analysis with Existing Models 

Model Accuracy Precision Recall F1 Score FPR FNR 

Logistic Regression 0.90 0.85 0.88 0.86 0.12 0.15 

Decision Tree 0.87 0.83 0.85 0.84 0.14 0.17 

Random Forest 0.92 0.89 0.91 0.90 0.09 0.11 

SVM 0.89 0.84 0.87 0.85 0.13 0.16 

XGBoost 0.93 0.91 0.92 0.91 0.08 0.09 

CNN 0.88 0.84 0.86 0.85 0.13 0.15 

LSTM 0.87 0.82 0.85 0.83 0.14 0.18 

CNN-LSTM 0.90 0.86 0.88 0.87 0.11 0.14 

Proposed Work(LSTM-GRNN) 0.97 0.98 0.97 0.98 0.04 0.05 

 

Table 8 shows the comparative analysis of different models with performance metrics of accuracy, precision, recall, F1 

score, False Positive Rate (FPR) and False Negative Rate (FNR). The proposed LSTM-GRNN model is found to be better 

than other models with maximum accuracy (97%), precision (98%), recall (97%), and F1 score (98%), and lower FPR 

(4%) and FNR (5%). Fig 14 visually presents the proposed work based on the effectiveness of detection and minimizes the 

error rates. It performs better compared to the traditional machine learning and deep learning models like Logistic 

Regression, Decision Tree, SVM, XGBoost, CNN and many others. 
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Fig 14. Comparison of Model Performance. 

 

V. CONCLUSION 

The proposed framework of LSTM-GRNN coupled with IBFPIR feature engineering and driving feature selection process 

by SWOA improves intrusion detection significantly by increased accuracy, precision, recall, and F1 score while also 

reducing false positive and false negatives. The designed model effectively discovers known and complex cyber threats 

within network traffic as it exploits its long-term dependence and optimizes the relevance feature. The approach ensures 

robustness against evolving attack patterns, making it a valuable advancement in IDS. The proposed LSTM-GRNN 

framework with IBFPIR-based feature engineering and SWOA-driven feature selection significantly enhances intrusion 

detection by improving accuracy at 97%, precision at 98%, recall at 97%, and F1 score at 98% while reducing the FPR of 

4% and FNR of 5%. By exploiting long-term dependencies in network traffic and optimizing feature relevance, the model 

effectively identifies both known and advanced cyber threats. The approach is robust against changing attack patterns by 

making it a valuable advancement in IDS. Future work will focus on real-time deployment and adaptive learning 

mechanisms to further enhance IDS performance in dynamic cybersecurity environments. 
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