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Abstract — In this research, a fingerprint verification model, equipped with a Siamese Neural Network structure with
MobileNetV2 and ConvNeXt models, was established in developing a robust fingerprint verification system using transfer
learning. The algorithm is learned using a custom-made fingerprint database with image pairs dubbed as similar or different
that facilitates the model to recognize the discriminative characteristics of biometric comparison. The Siamese structure
enables the system to have generalization of unseen fingerprint classes without retraining again to be scalable and adaptable
during applications in the real world. This MobileNetV2 performed very well with an accuracy of 96.35 and F1-scores of
0.96 on both classes and was very capable of differentiating between similar and dissimilar fingerprints. However, it was
surpassed in accuracy (98.61% higher) and balanced F1-scores (0.99 higher) and on the generalization and classification
error superiority by ConvNeXt. The overall scores of the two models were 1.00 with an area under the receiver operating
characteristic curve, indicating that they were in a perfect state of class separability. ConvNeXt also demonstrated a cleaner
convergence curve during the training process, a fact that further confirmed its superiority in cases of dynamic biometric
verification. In general, the findings indicate the viability of deep learning based Siamese networks and elaborate
convolutional networks in terms of scalable and precise fingerprint crack verification solutions.

Keywords — Fingerprint Verification, Siamese Neural Network, MobileNetVV2, ConvNeXt, Transfer Learning, Biometric
Authentication.

I.  INTRODUCTION
Fingerprint verification is one of the most popular biometrics processes as it is quite reliable, unique and easy to obtain.
Fingerprints being an important element in the identity verification system forms a broad aspect of applications including
easy and secure access control as well as national identification systems [1][2]. The incorporation of machine learning and
especially deep learning has made a significant breakthrough in the fingerprint recognition sector since it allows for
automating feature analysis and their categorization. Nevertheless, older deep learning paradigms may depend on excessive
retraining in situations when new fingerprint classes appear, which does not allow them to scale in dynamic settings.

A solution to this problem is presented by Siamese Neural Networks (SNNs). Whereas in standard classification
models, a similarity function between two inputs is learned, SNNs do not require retraining on new classes and are allowed
to generalize existing approaches [3]. This property ensures that SNNs have wide application in those applications that
demand frequent state updates, including massive security systems. Moreover, the use of transfer learning in conjunction
with SNNs also contributes to the efficiency of the latter, as the pre-trained models extract the robust and discriminative
features of the fingerprint images [4].

Over the past few years, new types of architectures, including the MobileNetV2 and ConvNeXt ones, have become
potentially strong tools in using deep-learning solutions. MobileNetV2 is characterized by its lightweight and
computationally efficient model, so it is perfect to use in resource-constrained settings. Meanwhile, ConvNeXt has better
feature extraction capabilities and generalization; this is highly regarded as a solution for fingerprint verification tasks that
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require a high overall rate. These architectures in combination with SNNs have shown impressive results in the way they
improve the overall performance of the biometrics systems [5].

Preprocessing and construction of fingerprint datasets take a central position in the success of deep learning models.
SNN-based systems are based on labelled pairs of similar and dissimilar fingerprints, whereby the network learns the
similarity measure that has been underlying researchers. Preprocessing methods, such as feature fusion and pair generation
have been used to enhance the data quality and representativity of the training data. Besides data preparation, one important
aspect in biometric systems is scalability. Most of the traditional techniques necessitate retraining their models to adapt to
new classes and due to this; more calculation expenses are incurred and time is consumed. This challenge is what SNNs
overcome since they rely on comparing feature embeddings, which enables the system to classify new samples of
fingerprints on the fly. This capability has been known to be a major strength of this capability in contemporary biometric
usage. Transfer learning can be used to increase the power and flexibility of SNNs more. MobileNetV2 and ConvNeXt, as
examples of pre-trained models, allow the network to use already known information, making the network more
independent of large data and have a quicker convergence. This has been proven true with studies showing that the
fingerprint verification effectiveness and scalability increase with the help of transfer learning, thus making it a crucial part
of modern biometric systems [6].

Instead, this work assesses the results of SNNs that are combined with MobileNetV2 and ConvNeXt to use on
fingerprint verification. A dataset consisting of pairs of labelled fingerprints was created and pre-processed in order to
allow successful training and testing of the models. The main aim was to understand the scalability of these models and
how accurate they were, and the remarkable evaluation was whether they could dynamically add new classes without
retraining. The results showed that ConvNeXt was better performing than MobileNetV2, having better generalization,
precisions, and recalls and convergence-free training. The results in this paper provide evidence of the SNN-based systems
as a scalable robust system to perform fingerprint verification even in dynamic applications. More so, the combination of
SNNs with transfer learning to create flexible and efficient biometric systems is an active stride forward with regard to
meeting the changing needs of real time deployment.

The organization of this paper is as follows: Section Il covers related studies. Section Ill details the proposed
methodology. Section IV discusses results and comparisons. The paper ends with essential results alongside possible future
research in Section V.

Il. LITERATURE SURVEY
The paper provides a review of the latest discoveries of deep learning models, especially MobileNetV2, ConvNeXt and
Siamese networks, used to solve various tasks within the framework of image classification, biometric recognition, and
medical counterproposal. It focuses on the betterment of precision, speed and feasible implementation and puts an emphasis
on any mode of transfer learning, data augmentation and lightweight structures in the context of real-world applications.

MobileNetV2-Based Image Classification Models

MobileNetV2 has become a widely used lightweight convolutional neural network structure; it has become commonly
used in the domain of image classification because of its efficiency and accuracy in resource-constrained environments. A
model of fruit images classification by past researcher, which is built on the framework of a modified MobileNetV2
architecture augmented with deep transfer learning, or TL-MobileNetV2. With a massive data set containing 26,149 images
and 40 classes of fruit, the model swapped out the classification head of MobileNetV2 in favor of five unique layers, as
well as delivering an impressive 99 percent accuracy and beating the mean of the previously existing traditional
architectures such as AlexNet, VGG16, InceptionV3, and ResNet. This paper describes the efficiency of transfer learning
and dropout layers in diminishing overfitting and also increasing generalization. In the same way, researchers used
MobileNetV2 to classify household waste into four categories with an accuracy of 82.92%, 15.15% better than a baseline
CNN. Through their work, they showed that MobileNetV2 could implement lightweight, real time classification systems
on mobile devices, like a WeChat applet, and yet some areas of concern were identified in situations where the waste is
highly deformed or contaminated [7]. Researchers MobileNetV2 [8] further into the applicability range with the
background of the classification of agricultural products, supplementing it with a Res-Inception module and an Efficient
Multi-scale cross-space Attention (EMA) mechanism. The specified hybrid model performed better in comparison with
the original MobileNetV2 on the Fruit-360 dataset by 1.86 percent especially in correct recognition of similar subcategories
[9]. Future developments represented in the study also included augmenting images in the network and parameter
optimizing the network to increase scalability and efficiency. In addition to agriculture, researchers applied MobileNet\/2-
based model to classify melanoma images into benign and malignancy. The model used transfer learning and a user-defined
classification head to extract features and identified up to 85 percent accuracy on the ISIC-Archive dataset, superior to
other heftier networks like ResNet50V2 and InceptionV3 [10]. The low weight of MobileNetV2 facilitated a possible
development of early melanoma detection on the mobile, but there were still issues with the imbalance of data. Researches
in face mask detection during the COVID-19 pandemic applied MobileNetV2 transfer learning and Deep Convolutional
Neural Networks (DCNN) to record high accuracies of 98-99 percent in two different datasets. MobileNetV2 performed
better as compared to DCNN, which further highlights that the model can be used to deploy real-life solutions in mitigating
the pandemic. In totality, these results confirm the versatility of MobileNetV2 in a wide range of fields starting with
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agriculture, healthcare, and ending with the public security realms, primarily, when transferred and embedded in with a
transfer learning framework and a tailored classifier head [11]. The stable improvement in accuracy in various domains
confirms the flexibility and effectiveness of the MobileNetV2 to work in tandem with its transfer learning. Table 1
summarizes some important literature applicable to the study with attention to relevant datasets and accuracy values to
show the overall effectiveness of this method and such a base.

Table 1. Transfer-Learning & Advanced CNN Classification

Architecture / Approach Dataset Accuracy (%)
TL-MobileNetV2 [9] 26 149 fruit images (40 classes) 99
DCNN + MobileNetV2 [10] 2 500 + mask images 98-99
MobileNetV2 [11] Fruit-360 (4 waste category) 82.92
Mf&ﬂaggweaNcgf\s/szi;‘i([:f;i]on ISIC-Archive (benign vs. malignant) 85
LSMSC (1D spectral + HIASPP) PaviaU / Salinas / Indian Pines 99.22 (PaviaU)

[13]

ConvNeXt and Advanced CNN Architectures for Specialized Classification

Although MobileNetV2 has entirely and successfully made use of lightweight application performance, newer current
developments use deeper and more intricate designs such as ConvNeXt to be applied to special tasks in classification.
Researchers developed a semi-supervised learning method of weeds recognition in the form of a ConvNeXt-based encoder
and a custom decoder. Their model, through the use of consistency regularization, was able to exploit plentiful unlabeled
data, as well as a few labelled ones, to outdo state of the art supervised and semi-supervised baselines on agricultural weed
datasets [12][13][14]. The scheme tries to address the practical issues of high cost of data labelling in precision farming.
Researchers proposes a high-accuracy method of classifying cervical precancerous lesions on a basis of ConvNeXt. They
used data augmentation (self-supervised) and ensemble learning method (random forests) that improved the accuracy of
the previous models by 8.85 percent on the DCCL cytology dataset. The authors confirmed effectiveness of augmentation
and ensemble techniques with the help of many ablation experiments which are indicative of clinical diagnostic assistance.
According to these studies, ConvNeXt and its updated convolutional architecture based on transformer structures are
impressive in medical imaging and farming situations, especially when combined with complex data augmentation and
learning planning [15]. These illustrations show that ConvNeXt and other sophisticated backbones provide high
performance and generalization in medical or agricultural classification. Table 2 gives a contrasting overview of these
designs and the documented performance of the related architectures in recent studies.

Table 2. Multimodal & Behavioral Biometric Systems

Modality / Task Dataset Accuracy (%)
FP + face fusion (SVM) [16] 500 fingerprint+face pairs 96.2
Microscopic palmprint (MRELBP . 97.20 (1ITD), 96.60
+ KNN) [17] IITD / CASIA palmprint sets (CASIA)
12-lead ECG Siamese CNN [18] INCART (175 844 beats) 95.9
. ) Web & mobile interaction (100 99.80 (mobile), 90.80
Behavioral (few-shot) [19] k+) (web)
Finger-vein (LPQ + GWO-SVM) HKPU (2 460 images) 98

[20]

.  METHODOLOGY

The work proposes as in Fig 1 a powerful system structure in fingerprint verification with Siamese Neural Networks (SNN)
two recent convolutional backbones, such as MobileNetV2 and ConvNeXt. This system starts by loading data in the form
of fingerprints which is then loaded and processed nicely after it has been well provisioned. The key of this strategy lies in
the actual creation of paired images labeled either as similar or different and required to train Siamese networks. Such pairs
of images are then fed into parallel SNN architectures, with one based on the efficiency of MobileNetV2 and the other
based on the high representational capacity of ConvNeXt. Both models are trained to compute the degree of similarity
between pairs of fingerprints and provide a similarity score. The last point is the intense analysis of the results and their
comparison by essential performance rates, which are accuracy, precision, recall, F1-score, ROC curve, and confusion
matrix. This architecture forms a basis to the subsequent sections and it starts by preprocessing of the datasets and creation
pairs then progressing to the stages of model implementation, training strategy and evaluation all geared towards the
creation of a highly accurate and generalizable fingerprint verification system.
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Finger print Dataset
SNN
l MobileNetV2
Data lodaing & Pre-Processing
J’ SNN
ConvNeXt

— Generating Paired Images —

Result Analysis & Comparative analysis

™ Similar Pairs Different Pairs o Accuracy, Precision, Recall, F1 Score, ROC Curve, l—

| Classification Report & Confusion Matrix

Fig 1. Proposed System Architecture.

Dataset and Preprocessing

The data used in the SocoFing Real Saudi Arabian dataset comprises 6,000 grayscale images of fingerprints of shape
90*90*1 each matched by a unique label id. But with the help of NumPy, these images are loaded into memory and two
arrays are returned: x_real of dimension (6000, 90, 90, 1) and y_real of dimension (6000,4). In preparation of data for the
training of the model, there are 4,800 samples in the training set 600 samples and 600 samples in the validation (Testset),
in total 1200. As the RGB inputs of backbone CNNs (MobileNetV2 and ConvNeXt) have dimension 128 128 3, the
grayscale images are replicated through channels with the same size reduction.

Siamese Pair Generation

Siamese architecture necessitates a model to discover associations between and among pairs of inputs. During training, an

in-house data generator is used to dynamically generate 4,800 image pairs per epoch. These are equally divided into 2,400

similar pairs (same identity, labelled 1) and 2,400 different pairs (different identities, labelled 0). Mathematically, this
binary label y is:

_ (1, if x; and x, belongtothesameperson 1

Y= {0, if x; and x, arefromdif ferentpersons @

Pairs composed of 32 positives and 32 negatives are trained, i.e. There are 16 combinations of pairs in each training
batch. This will bring about non discriminative learning in the two classes.
Data Augmentation
In order to simulate the distortions and variations that are present in real-world acquisition of fingerprints (e.g., rotations,
translations, smearing), augmentation of training pairs using imgaug is performed. Some of the mathematical definitions
of the transformations are:

e Gaussian Blur with standard deviation o ~ U (0.0,0.5)

o Affine Scaling with factors s,, s, ~ U(0.9,1.1)

e Rotation by angle 8 ~ U(—30°,30°)

e Translation within £10% of image dimensions: t,, t, ~ U(—0.1W,0.1W)

Such augmentations enhance generalization and promote stability in the model’s predictions.

Siamese Neural Network Architecture

Siamese Neural Networks (SNN) is a neural network of a category that aims to identify the similarity between two inputs
using a learned feature representation. With regards to fingerprint recognition techniques, SNNs are especially effective in
comparison with the experience in their ability to match fingerprint pairs and determine whether the patterns belong to the
same person. The architecture is usually characterized by two sub networks that are completely identical in terms of weight
and parameters. The subnetworks receive single input fingerprint image and yield a feature vector. The similarity between
the vectors is then quantified by a distance metric which is usually informed by a contrastive or triplet loss functions. SNNs
can be applied in situations where only a few samples of each class are inputted, that is, few shot learning. They contribute
to reduced requirements for manual retraining of users whenever new classes of fingerprints are added, thereby suitable in
scalable authentication systems. SNNs address this problem well through the exploitation of the relational aspect of the
data and hence form a powerful solution to the verification of fingerprint identities with a higher degree of accuracy, even
in real world settings where the intra-class variability is high and inter-class similarity high. This has found SNNs as an
effective method of robust and dynamic biometric authentication systems.

30



ISSN: 2788-7669 Journal of Machine and Computing 6(1)(2026)

Each fingerprint pair (x;,x;) is passed into two identical feature extraction sub-networks that share weights. The
extracted features f; = f(x;) andf, = f(x,)are concatenated and used to compute a similarity score.

MobileNetV2 Feature Extractor
MobileNetV2 is an efficient sequential architecture of a deep learning infrastructure that is meant to work in resource-
constrained devices in the execution of image classification. It presents inverted residuals and linear bottlenecks to decrease
the computational burden but it does not compromise accuracy. Compared to other alternatives such as LightNet,
MobileNetv2 is the preferred option for real-time applications because of its speed and light memory consumption in
biometric systems, which include recognition by fingerprints. The image may seem small but can still learn detailed texture
and shape information so may be used as an embedded authentication system or a mobile based verification platform.
In this setup:

e [nput: 128x128x3

e Output: 1280-dimensional feature vector via GlobalAveragePooling2D

e Total parameters: 2,585,921 (with 2,257,984 frozen and 327,937 trainable)

The two feature vectors f;, f, € R'28% are concatenated into a 2560-dimensional vector ZThis is passed through:
o Dense (128, activation="relu’)
e Dense (1, activation="sigmoid') — Similarity score Y € [0,1]

ConvNeXt Feature Extractor
ConvNeXt is an up-to-date architectural convolutional neural network filling the gap between CNNs and Transformer-
based architectures since it uses principles of Vision Transformers idea in the construction yet remains purely a
convolutional design. It enhances ordinary CNNs by the usage of depth wise convolutions, large kernel sizes and
normalization such as LayerNorm. When it comes to biometric identification applications like the classification of
fingerprints, ConvNeXt achieves a new level of state-of-the-art performance through grasping intricate spatial hierarchies
and high representational power. The refinement used in its architecture permits it to be used in applications that require
high accuracy including the extraction of detailed information and efficient execution. It involves larger kernel sizes, fewer
activations and layer normalization and has greater capacity and performance. In this implementation:

e Output: 1024-dimensional vector per image

e Concatenated vector: 2048 dimensions

o Total parameters: 87,705,985 (with 87,566,464 frozen and 139,521 trainable)

Both models use the same Siamese layout, differing only in feature extractor depth and capacity.

Similarity Score and Loss Function
The concatenated feature vector z is passed through a sigmoid neuron to predict the similarity score Y:

~ 1

y=0(Wz+b)=m (2
wherelW and b are trainable weights and bias in the final layer. The model minimizes Binary Cross-Entropy Loss,

defined as:

L(Y, ) = ~[Y log(F) + (1 = Y) - log(1 - J)] ©)
This loss punishes confident misclassifications, pushing the model toward accurate and calibrated similarity outputs.

Training and Optimization
Both models are compiled with:
e Optimizer: Adam with learning rate 1 x 10~*
e Loss: Binary cross-entropy
e Metric: Accuracy
Training is performed for 20 epochs, 150 steps per epoch, with 32 pairs per batch.

Evaluation Metrics
To assess the model performance beyond accuracy, several evaluation metrics are computed:

TP+TN

Accuracy = ——— 4
TP+TN+FP+FN
.. TP
Precision = —— (5)
TP+FP
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Recall = —— (6)

TP+FN

Fl=2x Prec'is.ion ‘Recall (7)

Precision+Recall
Where TP: True Positives, similar pairs correctly identified, TN: True Negatives, different pairs correctly identified,
FP: False Positives, different pairs misclassified as similar, FN: False Negatives, similar pairs misclassified as different.
These metrics are computed per class and averaged to assess both the discriminative power and balance of the classifiers.

IV. RESULT ANALYSIS
Result Analysis for MobileNetV2
The following section shows in detail the analysis of the MobileNetV2 model trained on fingerprint classification with 20
epochs. The efficiency of the MobileNetV2 model (96.35%) indicates the great generalization capacity and stability in the
classification of the fingerprints of different individuals as being in categories Different or Similar. Classification metrics,
a confusion matrix and training-validation performance curves are being used to assess the effectiveness of the model.

Table 3. Classification report of MobileNetV2 and ConvNeXt

Category Metric MobileNetV2 ConvNeXt
Precision 1.00 1.00
Class: Recall 0.93 0.97
Different F1-Score 0.96 0.99
Support 288 288
Precision 0.93 0.97
. Recall 1.00 1.00

Class: Similar

F1-Score 0.96 0.99
Support 288 288
Accuracy 0.96 0.99
Precision 0.97 0.99
'\’E\fgro Recall 0.96 0.99
Overall F1-Score 0.96 0.99
Metrics . Precision 0.97 0.99
Wi?/gfed Recall 0.96 0.99
F1-Score 0.96 0.99
Total Support 576 576

Confusion Matrix

250

Different

200

- 150

Actual

- 100

Similar

- 50

I
Different Similar
Predicted

Fig 2. Confusion Matrix for MobileNetV2.
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Table 3, the classification report, bespeaks the predictive ability of the two fingerprint classes. In the cases where the
model was not applied to all images, in other words, in the case of the "Different" class, the precision was 1.00, the recall
was 0.93, and the F1-score was 0.96 with a total of 288 images. In the case of the similar class, it grasped a precision of
0.93, recall of 1.00 and F1- score of 0.96, again using 288 images. These findings show that the model is very accurate in
detecting the class of "Different" and very keen in detecting the class of the "Similar". The overall accuracy is 0.96 and
was estimated on 576 fingerprint samples. Both macro average and weighted average of precision, recall and F1-score are
0.97, 0.96, and 0.96 respectively showing that the performance is balanced and same in both categories. In Fig 2 the
predictions made by MobileNetV2 are shown on a confusion matrix. The model was correct in "Different" images that are
268 out of 288 with a 20-mischaracterization rate as "Similar". It, in turn, successfully predicted 287 out of 288 images
matching a description of "Similar" and 1 was assigned to the category "Different". It is a slight misclassification speaks
highly of the class separation accuracy, particularly in the case of the Similar class where the error is almost an insignificant
one.

Accuracy Plot

The Accuracy plot in Fig 3 presents the model accuracy with respect to the number of epochs (20 epochs). The training
accuracy at epoch 0 was 0.61 and the validation accuracy was 0.75. The accuracy during training continued to get better
over the various epochs thus: 0.76 at epoch 1, 0.81 at epoch 2, 0.83 at epoch 3, and 0.87 at epoch 4. This trend went upwards
with training accuracies of 0.88 (ep 5), 0.89 (ep 6), 0.91 (ep 7), and 0.92 (ep 8). After epoch 9, the accuracy of the train
was reasonably high all the way through-19: 0.93 (epoch 9), 0.94 (epoch 10), 0.94 (epoch 11), 0.95 (epoch 12), and 0.94
at epochs 13 and 14 and 0.95 at epochs 15-18. The level of validation accuracy was also great with an initial figure of 0.75
dropping drastically to 0.82 (epoch 1), 0.86 (epoch 2), and 0.96 occurred in epochs 10, 11, and 18. This stability indicates
that MobileNetV2 does not overfit.

Model Accuracy

—&— Train Accuracy

0.95 Validation Accuracy Hﬁ_!_'_._',‘
__./r"

0.20
0.85

0.80 +

Accuracy

0.75 4

0.70 +

0.65

0.60 +

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epochs

Fig 3. Accuracy Plot of MobileNetV2.

Loss Plot

The respective loss curves in Fig 4 graph. The loss suffered during training started at 0.65 (0 epoch) and decreased regularly
0.65 (1 epoch), 0.54 (2 epoch), 0.47 (3 epoch), and 0.41 (4 epoch). This trend continued to 0.35 (epoch 5), 0.33 (epoch 6)
0.31 (epoch 7), 0.30 (epoch 8), to 0.29 (epoch 9) and steadily declining to 0.26 at epoch 18. The validation loss, in turn,
began with 0.58 and had a sharply downward slope: 0.48 (epoch 1), 0.40 (epoch 2), 0.36 (epoch 3), and 0.33 (epoch 4) and
then 0.30 (epoch 5), 0.28 (epoch 6), 0.26 (epoch 7), and finally at 0.14 (epoch 18). That the training and validation loss
curve closely fits a downward trend shows that the model was learning effectively and it was not over-fitting.

Model Loss

—&— Train Loss
WValidation Loss

0.5

Loss

0.2 4 A NS

0.1 4

T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epochs

Fig 4. Loss Plot for MobileNetV2.
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As illustrated in Fig 5, the ROC curve shows a great performance of the MobileNetV2 in differentiating between the
class "Similar" and the class "Different" in fingerprints. The AUC score for both classes was high (0.99), which means that
they had almost no errors in classification. The curves increase steeply at the top-left corner, thus showing high true positive
rates and very few negative ones. This also helps to make a stronger case for the accuracy of the model and how it is useful
in the process of fingerprint-based identification.

ROC Curve - Both Classes

1.0+ — =7

0.8 | e
z .
& rel
= 0.6 - —
= g
‘i -
o
a s
E -~
2 0.4 e

0.2 4 -

e —— Different (AUC = 0.99)
| .~ similar (AUC = 0.99)
0.0 f : : . .
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig 5. ROC of MobileNetV2.

Result Analysis for ConvNeXt

In this part, the analysis of the fingerprint classifier using ConvNeXt model is given in detail after training the model over
20 epochs. The model ConvNeXt has an accuracy of 98.61% which proves its great generalization performance on the
training set. The measures of good performance include classification, confusion matrix analysis, training-validation
accuracy and loss curves that give detailed information about the effectiveness of the model. The model is proven to be
effective by its classification report in Table 4. In the case of the class of Different, the model managed to create a precision
of 1.00, recall of 0.97, and the F1-score of 0.99, an number of supported samples being 288. In the case of with the class
Similar, the model indicated a precision of 0.97, the recall of 1.00, and the F1-score of 0.99 and also had a support of 288
samples. In general, the model has a significant accuracy of 0.99 on a test set which contains 576 samples. The macro
average as well as weighted average of precision, recall and F1-score were all 0.99, meaning that the performance is the
same between the two classes without class bias due to imbalanced classes. The confusion matrix provided in Fig 6
elucidates the performance of the ConvNeXt model as correctly classifying 280 out of 288 set of images labeled as being
different with 8 of them being misclassified as being labeled as being similar, and accurately classifying all 288 of the set
of images labeled as being similar without making any misclassifications. This shows the good performance of the model
in distinguishing between fingerprint classes, with an absolute accuracy of the classification of the type Similar and a very
poor misclassification of only 17 samples out of 20 in the type Different.

Confusion Matrix

250

Different

200

- 150

Actual

- 100

Similar

-50

I
Different Similar
Predicted

Fig 6. Confusion Matrix for ConvNeXt.
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Accuracy Plot

The accuracy plot in Fig 7 shows the comparative consistency of the ConvNeXt model performance over 20 epochs. The
training accuracy was recorded to be 0.5799 at epoch 0, but the validation accuracy was high already at 0.9691. The
continuation of the accuracy of training was thereafter the same: 0.8021 in epoch 1, 0.8559 in epoch 2, and 0.8889 in epoch
3. It could note that training accuracy was 0.8993 and 0.9097 by epoch 4 and 5 respectively whereas by epoch 5, validation
accuracy was maintained within 0.9691 and 0.9733. This positive movement has persisted throughout the epochs, with the
accuracy of the training increasing, gradually, to the level of 0.9222 (epoch 6), 0.9315 (epoch 7), and 0.9361 (epoch 8).
Validation accuracy was always between 0.9710 and 0.9802 even with slight variations after a certain epoch. In epoch 18
the maximum training accuracy level was 0.9633 and the maximum validation accuracy was at 0.9802 showing very good
generalization accuracy.

Model Accuracy

1.0 4

0.9 §

0.8 §

Accuracy

0.7 1
0.6 —&— Train Accuracy
validation Accuracy
T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Epochs

Fig 7. Accuracy Plot of ConvNeXt.

Loss Plot

The loss plot on the left side of Fig 8 indicates the efficiency of convergence of the model. Initially, the training and
validation loss were equal to 0.6542 and 0.5719 at epoch 0. Training Loss continued to decrease as training went along: at
epoch 1, training loss and validation loss became 0.3736 and 0.1875 respectively, and at epoch 2 it became 0.2995 and
0.1190. The trend remained stable through to the 5th epoch whereby training loss decreased to 0.2607, 0.2414, 0.2220 and
similarly validation loss decreased to 0.0934, 0.1033 and 0.0765. Training loss continued to decrease up to 0.1996 (epoch
6) 0.1883 (epoch 7) 0.1743 (epoch 8) and finally dropped at 0.1280 on epoch 18. Similarly, validation loss was always
minimal and did not arouse much attention, reaching its goal of 0.0631 at the last epoch (epoch 19). The proximity of the
training and validation loss in this case is a good indicator that there is no overfitting of the model and the training is well
regularized.

Model Loss
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Fig 8. Loss Plot of ConvNeXt.
The ROC curve presented in Fig 9 verifies the outstanding discriminatory ability of ConvNeXt model concerning the

fingerprint question in a visual manner. The Receiver Operating Characteristic (ROC) diagram demonstrates the
relationship between the false positive rate (FPR) and true positive rate (TPR) of the class differences (Different) and the
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similarities (Similar). The particularity is that both curves are close to the top-left corner which signifies the high sensitivity
and specificity. In numeric terms, the Area Under the Curve (AUC) values for both the classes are 1.00, which indicates
total and no ambiguity in the classification boundaries. This implies that between the model can effectively distinguish the
classes of fingerprints of the types of Different and Similar with 100 percent accuracy in terms of learned features. The
almost straight up and down trace of (0,0) to (0,1) and then a straight left to (1,1) on the two curves also exemplifies the
lackfrom the false positive and almost absolute detection of a true positive.

ROC Curve - Both Classes

1.0 =
0.8 - e
o o~
2
o 067 -
= -
E ’,/
£ -
g
2 0.4- e
0.2 e
L —— Different (AUC = 1.00)
L — = Similar (AUC = 1.00)
0.0 - T T t t
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig 9. ROC of ConvNeXt Comparative Analysis.

The ROC curve presented in Fig 10 verifies the outstanding discriminatory ability of ConvNeXt model concerning the
fingerprint question in a visual manner. The Receiver Operating Characteristic (ROC) diagram demonstrates the
relationship between the false positive rate (FPR) and true positive rate (TPR) of the class differences (Different) and the
similarities (Similar). The particularity is that both curves are close to the top-left corner which signifies the high sensitivity
and specificity. In numeric terms, the Area Under the Curve (AUC) values for both the classes are 1.00, which indicates
total and no ambiguity in the classification boundaries.
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Fig 10. ROC of ConvNeXt.

This implies that between the model can effectively distinguish the classes of fingerprints of the types of Different and
Similar with 100 percent accuracy in terms of learned features. The almost straight up and down trace of (0,0) to (0,1) and
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then a straight left to (1,1) on the two curves also exemplifies the lack from the false positive and almost absolute detection
of a true positive.

Table 4. Comparative Accuracy Analysis with Existing Study

Model Reported Accuracy (%)

MobileNetV2 (Melanoma) 85
Embedded Siamese NN 92

TL-MobileNet (Contactless FP) 94.74
Siamese CNN (ECG) 95.9
SNN-MobileNetV2 95.8

FP + Face Fusion (SVM) 96.2
Palmprint (MRELBP + KNN) 97.2

SNN-ConvNeXt 98.61

Comparative study as shown in Table 4 indicates that the proposed ConvNeXt model has the most accurate result
(98.61%) among the chosen peer research studies compared to other deep learning models in fingerprint and other similar
biometrics tasks.

V. CONCLUSION AND FUTURE SCOPE

In this paper, it has been found that Siamese Neural Network architecture using MobileNetV2 and ConvNeXt as backbone
networks are very robust and perform adequately well in fingerprint verification applications. MobileNetVV2 had an
accuracy of 96.35 percent, F1-scores of 0.96 on both classes, and an AUC of 1.00. However, even better results were
achieved by ConvNeXt as it scored 98.61% of accuracy and F1-scores 0.99 with an AUC of 1.00. The number of
misclassifications against the “Different” category was also significantly decreased (20 vs. 8) and so, this model allowed
better discrimination within classes. Moreover, the final validation loss of ConvNeXt was 0.0653, which is lower than that
of MobileNetV2 0.1325 meaning superior generalization and convergence properties. These measures validate the fact that
ConvNeXt has the ability to learn more discriminative features to be used in matching fingerprints. And by noting that the
two models confirm the effectiveness of Siamese Networks in the area of biometric verification, ConvNeXt is a significant
step up in terms of performance, especially in situations where it is required to work in high accuracy and precision. Also,
it is possible to enhance the robustness and flexibility without sacrificing the most essential features of the given framework
by incorporating such complementary biometric characteristics as palmprint or iris recognition.
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