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Abstract – In remote healthcare systems, the efficient, secure, and real-time transmission of biomedical signals such as 

ECG is critical. Traditional RF-based communication often suffers from interference, limited bandwidth, and security 

concerns. Visible Light Communication (VLC), particularly when combined with Orthogonal Frequency Division 

Multiplexing (OFDM), presents a promising alternative due to its high bandwidth, electromagnetic immunity, and inherent 

data security. However, VLC systems are highly sensitive to environmental dynamics like ambient light variation and 

patient movement, limiting their reliability. Previous research has explored AI-assisted VLC systems and modulation 

schemes, yet many suffer from static configurations, limited adaptability, high energy consumption, and lack of real-time 

optimization. This work introduces a novel Q-learning-optimized OFDM-VLC system tailored for remote health 

monitoring. The system leverages reinforcement learning to dynamically adjust modulation schemes, transmission power, 

and encoding strategies in response to environmental conditions (e.g., SNR, ambient light, mobility), enabling energy-

efficient and error-resilient data transfer. Using the MIT-BIH Arrhythmia dataset, ECG signals are preprocessed, digitized, 

modulated using adaptive QPSK or 16-QAM, and transmitted over a VLC channel. A Q-learning agent selects optimal 

actions in real time to minimize BER and energy use while maximizing throughput and SNR. MATLAB was employed 

for system design, simulation, and performance evaluation. Compared to static systems, the proposed method reduced BER 

from 0.078 to 0.015, improved SNR from 21.3 dB to 29.8 dB, increased throughput from 16.7 kbps to 22.4 kbps, and 

lowered latency from 14.6 ms to 9.0 ms. Energy consumption dropped from 1.35 J/bit to 0.89 J/bit, and ECG reconstruction 

accuracy rose from 85.3% to 96.7%. The integration of reinforcement learning with VLC-OFDM significantly enhances 

the reliability, efficiency, and adaptability of real-time biomedical data transmission in remote health monitoring.  

 

Keywords – VLC, OFDM, Q-Learning, Remote Health Monitoring, Reinforcement Learning. 

 

I. INTRODUCTION 

The increase in chronic diseases and the necessity for ongoing monitoring of patients have accelerated the evolution of 

remote health monitoring systems [1].  Conventional communication technologies based predominantly on radio frequency 

technologies are severely constrained in healthcare applications [2]. These include limited bandwidth, vulnerability to 

electromagnetic interference, and possible security risks, especially where confidentiality and integrity of medical 

information are paramount [3]. VLC, however, has emerged as an appealing alternative, with benefits of high data rate, 

immunity to RF interference, and intrinsic security advantages [4]. Such properties render VLC very versatile for hospital 

and home health care healthcare applications [5]. VLC system development has also been made feasible by the integration 

of Orthogonal Frequency Division Multiplexing (OFDM), which facilitates improved spectral efficiency and multi-

channel, high-speed data transmission [6]. Even as such advantages are realized, VLC systems are very sensitive to 

environmental scenarios such as variations in ambient light, device mobility, and signal loss, which have adverse effects 
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on transmission performance [7]. Static system configurations are typically unsuitable to such variability, leading to 

compromised quality of service, including high bit error rates (BER), low signal-to-noise ratios (SNR), and high energy 

consumption [8]. 

To address such challenges, recent research has focused on the incorporation of machine learning techniques into 

communication systems. Reinforcement learning (RL) more particularly, Q-learning, is a viable option by enabling 

adaptive system modification with environmental feedback [9]. Unlike traditional algorithms, Q-learning learns optimal 

policies via extensive exploration of the environment without the necessity for pre-defined system models [10]. This study 

puts forward a Q-learning-enhanced OFDM-VLC system for remote transfer of medical data that can improve flexibility, 

reduce errors, and maximize energy efficiency under fluctuating healthcare conditions. 

 

Research Gap 

Despite the advancements in VLC and AI-aided adaptive modulation for medical data transmission optimizing high-speed, 

real-time, and secure data transmission in dynamic health environments is still a challenge. Most of the existing research 

is devoid of end-to-end solutions combining energy-efficient modulation, multi-channel transmission, and efficient 

reinforcement learning for remote health monitoring [11], [12]. Privacy-preservation schemes and optimized physical layer 

algorithms are also not well-explored [13]. Therefore, the requirement is to carry out extensive research using OFDM-VLC 

with reinforcement learning to enhance medical data transmission efficiency, security, and flexibility in remote health 

monitoring systems. 

 

Research Motivation 

The motivation for this work arises from the growing need for secure, real-time, and dependable data transfer in medical 

remote monitoring systems. RF communication is not dependable in medical environments, while VLC offers a secure, 

interference-free solution. However, its performance is hindered by environmental dynamics. The incorporation of 

reinforcement learning offers an intelligent solution, where adaptive tuning of transmission parameters is enabled to 

optimize for high-quality, energy-efficient, and dependable transfer of medical data. 

 

Research Significance 

This research is of vital value in remote healthcare technology development with the combination of reinforcement learning 

and VLC-based OFDM. It addresses important issues of signal attenuation, energy inefficiency, and latency in real-time 

systems. With smart adjustment of communication parameters, the system enhances the efficiency and reliability of 

medical data transmission. This results in more secure, quicker, and more scalable medical IoT applications, which are of 

great value in real-time and efficient patient monitoring. 

 

Key Contribution 

• Designed a Visible Light Communication system using Orthogonal Frequency Division Multiplexing to support 

high-speed medical data transmission. 

• Applied a reinforcement learning (Q-learning) algorithm to dynamically optimize transmission parameters like 

power levels, subcarrier allocation, and modulation schemes. 

• Enabled real-time adaptation to changing conditions such as ambient light and device mobility, improving system 

reliability. 

• Achieved lower bit error rate, improved signal-to-noise ratio, reduced energy consumption, and better throughput 

compared to static systems. 

• Simulated the system using MATLAB and evaluated it using real biomedical datasets (e.g., MIT-BIH, MIMIC-IV) 

for practical health monitoring scenarios. 

 

Rest of Section 

In Section 2 literature review is provided, section 3 proposed method working is given. In section 4 findings and analysis 

and section 5 conclusion and further studies. 

 

II. RELATED WORKS 

Li et al. [14] proposed ADDETECTOR, an IoT device-based privacy-preserving Alzheimer's detection system with topic-

based linguistic features, federated learning, and differential privacy in a three-layer framework. The system collects audio 

data from smart home IoT devices for enhancing detection with data confidentiality via an asynchronous privacy-

preserving aggregation framework. The system was evaluated on 1010 trials with 81.9% accuracy and 0.7-second time 

overhead. The paper, however, presumes that attackers do not possess any access to IoT device data, which may limit 

practical security resilience. Future work includes exploring better features and experiments on larger datasets. Similarly, 

Salem et al., [13] suggested a secure scheme for Internet of Medical Things (IoMT) to respond against Man-in-the-Middle 

(MitM) attacks that can replay typical data in emergency situations. The technique employs signal strength-based keys and 

sends a small signature along with a message authentication code in order to maintain privacy and minimize energy 

consumption. Results indicate accurate detection of emergencies with a very low rate of false alarms at 3%. But the research 
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does not consider jamming attacks or dynamic channel threats. Future research intends to investigate channel hopping with 

authentication keys as seeds for enhanced resilience. 

 

Table 1. Summary of Related Works on VLC and AI-Enhanced Medical Data Transmission. 

Author Proposed Method Results Limitations 

Li et al. [14] 

ADDETECTOR: Privacy-

preserving Alzheimer’s 

detection using IoT, 

federated learning, 

differential privacy 

81.9% accuracy, 0.7 s 

time overhead, 

privacy maintained 

No assumption of 

attacker injecting user 

network; limited 

dataset 

Salem et al., 

[13] 

MitM attack prevention 

framework using signal 

strength-based key and 

message authentication code 

High emergency 

detection accuracy, 

3% false alarm rate 

Did not address 

jamming or channel 

hopping 

Kavitha et al. 

[15] 

VLC medical data 

transmission using CNRS, 

BPSK with DCO-OFDM in 

WSN 

Improved routing 

efficiency, BER, and 

ETE delay 

No real-time 

validation; external 

interference not 

addressed 

Hasan et al. 

[16] 

Frequency-division multiple 

access with real-part signal 

transmission and asymmetric 

clipping for IR VLC 

35mW power saving 

for BER of 10⁻³; 

robustness to 

interference 

Lack of multi-AP 

synchronization; 

mobility not studied 

Rizi et al. [11] 

Adaptive modulation in 

VLC-based Medical Body 

Sensor Networks using 

supervised and 

reinforcement learning 

Spectral efficiency 

improved; Q-learning 

enables real-time 

adaptation 

Relies on quantization; 

lacks mobility tracking 

Xiang-Peng 

[17] 

High-speed VLC with OOK, 

WDM and PDM for multi-

channel medical data 

transmission 

Successful 6×10 

Gbps data 

transmission over 500 

m fiber + 200 cm 

VLC; BER ≈10⁻³ 

No real-time testbed 

implementation 

Niranga et al. 

[18] 

NeoCommLight VLC 

system for NICU; prototype 

and performance under 

varying conditions 

Max 3 Mbps at 5 cm; 

800 Kbps up to 2 m; 

analyzed delay, 

angle, diffraction 

impacts 

Limited range and data 

rate; performance 

drops under non-ideal 

conditions 

Antaki et al. 

[12] 

AI-driven VLC for MBSNs 

using ray tracing, Q-learning 

adaptive modulation, LSTM 

channel estimation 

Accurate SER control 

and channel 

estimation; RMSE as 

low as ~1 dB 

Added complexity; 

suboptimal spectral 

efficiency; future work 

on neural networks and 

RL models 

Shi et al. [19] 

OFDM-based TD-QGSM 

and TD-QGSMP MIMO 

schemes with IVC-OMP 

detection for VLC 

SE improved by 

56.5%–72.3%; BER 

reduced by 62.5% 

Complexity of 

detection; no real-

world testing 

Anitha 

Vijayalakshmi 

et al. [20] 

VLC with LED dimming via 

vDSM in hospitals; AI 

integration for safe patient 

monitoring 

Comfortable lighting; 

SNR evaluated; AI 

supports healthcare in 

radiation-free VLC 

environments 

lacks experimental 

validation; integration 

challenges 

 

Kavitha et al. [15] investigated VLC for indoor transmission of medical data using LEDs, with the incorporation of 

Wireless Sensor Networks (WSNs) to collect patient data. They suggested a Cluster Nodes Reinforcement Scheme (CNRS) 

to improve routing efficiency and network lifetime. The scheme involves Binary Phase Shift Keying (BPSK) in conjunction 

with DC-biased Optical OFDM (DCO-OFDM) to analyze Bit Error Rate (BER) and End-to-End (ETE) delay. Outcomes 

showed enhanced VLC-based data transmission performance. The experiment is deficient in real-time proof and does not 

cover external interference or scalability for larger deployments. Likewise, Hasan et al. [16] proposed a bandwidth- and 

energy-efficient multiple-access technique for infrared signal-based transmission of health data in frequency-division 

multiple access-based wireless sensor networks. They proposed a scheme that transmits only the real component of the 
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complex signal, reducing computational complexity. Simulation revealed that asymmetric clipping reduces transmit power 

by approximately 35 mW to achieve a 10⁻³ bit error rate. The scheme enhanced interference robustness. User mobility and 

synchronization for large indoor areas were not considered, and they state these as future work directions. 

Rizi et al. [11] explored adaptive modulation in Visible Light Communication (VLC)-based Medical Body Sensor 

Networks (MBSNs) through machine learning. Supervised and reinforcement learning algorithms, i.e., Q-learning, were 

validated to manage signal fluctuation due to movement of patients. Enhanced spectral efficiency and real-time tuning 

were noted, particularly for photodetectors on the shoulder and wrist because of augmented DC gain. Some drawbacks are 

quantization dependency and no user mobility tracking. In the future, research can use neural networks to remove 

quantization and utilize advanced reinforcement learning to deliver higher data rates with minimum delay. Moreover, 

Xiang-Peng [17] suggested a high-speed Visible Light Communication (VLC) system to bypass RF communication 

drawbacks like interference and latency in the transmission of healthcare data. The system can transmit six channels of 10 

Gbps each over 500 m of optical fiber and a VLC link of 200 cm using On-Off Keying (OOK) with hybrid Wavelength 

and Polarization Division Multiplexing. Results show successful data transfer with an acceptable BER of ≈10⁻³. However, 

the study lacks live testing and validation, suggesting that subsequent studies need to focus on actual testbeds for real-

world high-speed VLC performance verification in clinical environments. 

Niranga et al. [18] proposed NeoCommLight, a VLC-driven communication system for application in Neonatal 

Intensive Care Units (NICUs) to address RF limitations and spectrum scarcity. A functional prototype was implemented 

and tested under various scenarios including distance, angle, delay, and diffraction. Results showed up to 3 Mbps data rate 

at 5 cm and 800 Kbps at the maximum of 2 m. The system indicated stability under controlled environments. But it is 

plagued with short transmission range and degradation in performance due to non-ideal lighting or angles. Future 

improvements can be in range, data rate, and clinical robustness. Likewise, Antaki et al. [12] proposed a VLC-based AI 

system for Medical Body Sensor Networks (MBSNs) in hospitals utilizing ray tracing and machine learning for dynamic 

channel modeling. They employed an adaptive modulation scheme based on Q-learning and an LSTM estimator for path 

loss and delay spread. Simulations showed strong Symbol Error Rate (SER) control and efficient channel estimation with 

RMSE as low as 1.0652 dB. But higher system complexity and poor spectral efficiency were observed. The future includes 

improving quantization, neural network investigation, and utilizing high-level reinforcement learning to incorporate 

mobility-aware, high-data-rate environments. 

Shi et al. [19] proposed two OFDM-based quadrature generalized MIMO schemes, TD-QGSM and TD-QGSMP, to 

enhance receiver performance as well as spectral efficiency (SE) for band-limited VLC systems. By splitting constellation 

symbols into in-phase and quadrature components as well as spatial mapping of signals onto LEDs, 

the schemes achieve diversity and multiplexing gains. An illegal vector correction (IVC)-based orthogonal matching 

pursuit detection algorithm was proposed to reduce error propagation and noise amplification. 

Simulations offered SE improvement of at least 56.5% and 72.3% and bit error rate reduction by at least 62.5% compared 

to traditional detection methods. Similarly, Anitha  

Vijayalakshmi et al. [20] explored indoor lighting use by LEDs, highlighting their safety and environmental benefits 

over conventional lighting. They worked towards Visible Light Communication (VLC) using LED dimming by variable 

delta sigma modulation (vDSM) to offer hospital ambiance as well as patient data transmission. Performance was evaluated 

on Signal-to-Noise Ratio (SNR). The study emphasized the integration of AI with VLC for patients' and healthcare 

monitoring in lighting-free environments. However, the study is hypothetical in nature lacking experimental data and 

suggests further studies on real implementation and optimization of AI-VLC systems. Table 1, presents a comparative 

overview of recent studies focused on VLC, wireless medical systems, and AI-based enhancements for secure and efficient 

data transmission in healthcare environments. 

 

III. PROPOSED Q-LEARNING OPTIMIZED OFDM-VLC ARCHITECTURE FOR REAL-TIME DATA 

TRANSMISSION 

Using VLC, OFDM and RL, the approach aims to make ECG signal transmission reliable and save on energy. System 

architecture contains five basic layers: Data Acquisition, Encoding & Modulation, VLC Transmission, Intelligent 

Adaptation (RL Controller) and Receiver & Decoding. Number sequences called binary streams are formed from digital 

ECG information in real time. After cutting the data in bits, these are modulated using QPSK in good conditions and 16-

QAM when channel conditions are poor. OFDM is chosen and then a Cyclic Prefix is included to prevent symbols from 

interfering with each other. The signal is sent through a VLC channel and unexpected changes in the room’s light and noise 

might occur. The agent keeps track of SNR and BER as they change and then selects the most suitable modulation scheme 

(action) and updates its Q-table. When the signal gets to the receiver, the CP is removed, it is processed by FFT and it is 

demodulated using the picked demodulation scheme. The ECG waveform is built again using the binary code. In real time, 

the data rates, signal-to-noise ratio, delays and the energy usage in the system are used to improve learning and make sure 

it remains efficient. Using this dynamic strategy improves the security and accuracy of medical information, also reducing 

delays and extending how long the device functions between charges in remote health monitoring. Fig 1 displays proposed 

methodology architecture. 
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Data Collection 

Data for this work was gathered from a preprocessed edition of the MIT-BIH Arrhythmia Database. This set has 48 ECG 

recordings from 47 unique individuals, including two that are the same patient at different times (201 and 202). All ECG 

data is presented in CSV files and depicts heart activity for 30 minutes at a time. The signals used were obtained with two 

EMG channel pairs for every recording, and the sample rate of 360 Hz provided 360 pieces of data per second. Time-

domain analysis of the signal is supported by the inclusion of elapsed time, which is reported for each file in milliseconds. 

 

 
Fig 1. Proposed Framework. 

 

Data Preprocessing 

To ensure data integrity, OFDM-VLC encoding compatibility, and machine learning-based adaptation through 

reinforcement learning, a multi-stage preprocessing has been carried out as follows: 

 

Noise Filtering 

Raw ECG signals usually have different types of noise, like baseline shifts, power line noise, and muscle activity 

interference. To clean these up, a 4th-order Butterworth band pass filter is used. Let x(t) is the original ECG signal and y(t) 

is the filtered version. The filter is described in the frequency domain with its transfer function: 

 𝐻(𝑠) =
1

√1+(
𝑠

𝜔𝑐
)

2𝑛
    (1) 

 

In Eqn. (1) 𝑠 is the complex frequency variable,𝜔𝑐 is the cutoff angular frequency, 𝑛 is the filter order (here, n=4). For 

discrete signals, the filter is implemented using forward–backward filtering with the Butterworth coefficients (𝑏𝑖 , 𝑎𝑖) 

determined from the desired passband: 

 𝑦[𝑛] = ∑ 𝑏𝑖
𝑁
𝑖=0 . 𝑥[𝑛 − 𝑖] − ∑ 𝑎𝑗

𝑀
𝑗=1 . 𝑦[𝑛 − 𝑗]  (2) 

 

In Eqn. (2) 𝑁, 𝑀 are the filter orders, 𝑏𝑗 , 𝑎𝑗  are the filter coefficients computed from 𝑓𝐿 = 0.5 𝐻𝑧 and 𝑓𝐻 = 40 𝐻𝑧, 

Sampling frequency 𝑓𝑠 = 360𝐻𝑧. This preserves the QRS complex frequency range (5 − 15 𝐻𝑧) while eliminating low- 

and high-frequency noise. 

 

Normalization 

To ensure consistent amplitude scaling and support energy-efficient modulation, the ECG signal is normalized to the range 

[0, 1]. Let 𝑥[𝑛] be the filtered ECG signal and 𝑥𝑛𝑜𝑟𝑚[𝑛] the normalized output.  𝑥𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑛𝑥[𝑛], 𝑥𝑚𝑖𝑛 = 𝑚𝑎𝑥𝑛𝑥[𝑛]. 
This step ensures the dynamic range of the signal fits within the modulation constraints of VLC hardware (typically 0–1 

for LED intensity levels). 

 

Segmentation 

To simulate real-time ECG monitoring, it break the normalized ECG signal into separate chunks for OFDM encoding. 

Given the sampling rate 𝑓𝑠 = 360 𝐻𝑧 and a window duration 𝑇 = 5𝑠𝑒𝑐𝑜𝑛𝑑𝑠, the number of samples per window 𝑁𝑤. Let 

the full ECG signal be 𝑥𝑛𝑜𝑟𝑚[𝑛]  of length N. Then, the signal is divided into 𝑘 = ⌊
𝑁

𝑁𝑤
⌋ segments:  
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Digitization 

Every ECG segment gets turned into a binary format so it can be used in the OFDM-VLC system. An 8-bit quantizer 

takes the amplitude values between [0, 1] and converts them into whole numbers from [0,255] is 𝑥𝑞[𝑛] = ⌊255. 𝑥𝑘[𝑛]⌋. 

Then, each value 𝑥𝑞[𝑛] ∈ {0,1, . . . ,255} is converted into an 8-bit binary representation as shown in Eqn. (3). 

 

 𝑥𝑏[𝑛] = 𝑏𝑖𝑛(𝑥𝑞[𝑛]) (3) 

 

This results in a binary matrix of size [1800,8] per segment, which is flattened to form the input bitstream for OFDM 

symbol mapping. 

 

Binary Conversion 

With the signals having been filtered, normalized and segmented, along with being digitized from the MIT-BIH Arrhythmia 

Database, the process then moves to changing them from analog to binary form. As a result of this step, the data can be 

formatted using schemes such as Quadrature Amplitude Modulation (QAM) for Orthogonal Frequency Division 

Multiplexing and sent via VLC. Binary conversion aims to change the preprocessed and digitized ECG values into a digital 

stream listed as 𝑏[𝑛] which is ready for digital modulation. Let the analyzed ECG segment take the form of a plain, real-

valued time series with fixed scale and zero value. The real-valued signal 𝑥[𝑛] ∈ [−1, +1] is uniformly quantized into 𝐿 

discrete levels: 

 

 𝑄(𝑥[𝑛]) = 𝑟𝑜𝑢𝑛𝑑 (
𝑥[𝑛]−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
. (2𝐵 − 1) (4) 

 

In Eqn. (4) B is the number of bits per sample (e.g., 8 or 10 bits) and 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 are the minimum and maximum of 

normalized ECG segment (typically -1 and +1). 𝑄(𝑥[𝑛]) ∈ {0,1, . . . , 2𝐵 − 1}: quantized integer value. Each quantized 

value is converted to a binary representation of fixed bit length 𝐵. The binary values are flattened into a 1D bitstream for 

transmission. 

 

 𝑏[𝑚] = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑞𝑏[0], 𝑞𝑏[1], … … … 𝑞𝑏[𝑁 − 1]),          𝑚 = 0,1, … … … 𝑁. 𝐵 − 1 (5) 

 

In Eqn. (5) 𝑏[𝑚]𝜖{0,1} refers as a bit at position 𝑚 in the complete binary sequence. The binary representation during 

this phase makes sure that ECGs, among other bodily measurements, are suitable for the latest types of communication 

technology. Converting the analog signal into bits allows remote health monitoring to be flexible, use less bandwidth and 

resist loss of information. 

 

Orthogonal Frequency Division Multiplexing 

A good communication system will ensure that ECG signals are properly sent by giving priority to fast data transfer, noise 

resistance and efficient use of the frequencies it can access. Visible Light Communication (VLC) is proposed in this study 

to use Orthogonal Frequency Division Multiplexing (OFDM) as its main modulation technique. Bit transmission over 

many parallel channels makes OFDM more efficient in the use of the radio spectrum. Because OFDM has a cyclic prefix, 

it provides dependable results when distracting noise and nearby symbols make other systems less effective in a crowded 

medical environment. OFDM supports the fast and secure transmission of medical data related to ECG, SPO2, and blood 

pressure in real-time. Methods such as DC-biased Optical OFDM (DCO-OFDM) allow VLC to work by making sure the 

LED signal matches its modulation standards. This research is significant because it applies OFDM to sending medical 

data which is not a common focus for VLC. Q-learning is used in the study to adjust OFDM settings in real time, data is 

encoded in OFDM for biomedical purposes and reinforcement learning methods reduce the error rate, power required and 

data delay during communication. Let the binary data stream after digitization and binary conversion be: 𝑏[𝑚]𝜖{0,1}, 𝑚 =
0,1, … . . , 𝑀 − 1.    

    

Serial-to-Parallel Conversion 

The binary output of the medical signal (e.g., ECG) is separated into symbols in batches 𝑏[𝑚]𝜖{0,1} of 𝑀 bits each. First, 

long serial data is divided into parallel channels which supports sending more data at once for higher data throughput. 

Every symbol contains 𝑙𝑜𝑔2(𝑀)  number of binary bits. Also, for 16-QAM modulation (with 𝑀 = 16), every symbol 

consists of 4 bits. 𝑠𝑘 = 𝑏 ⌊𝑚: 𝑚 + 𝑙𝑜𝑔2(𝑀) − 1⌋; 𝑠𝑘  refers to the symbol corresponding to the 𝑘𝑡ℎ subcarrier, 𝑀 means 

Modulation order (e.g., 16, 64), 𝑏[𝑚] is the binary data stream and 𝑙𝑜𝑔2(𝑀) refers as bits per symbol. 

 

M-QAM Modulation 

The complex number 𝑋𝑘 is created from the 𝑠𝑘 by using M-QAM (Quadrature Amplitude Modulation). Changes digital 

data into waveforms that look like analog modulation which can be combined in the frequency domain using different 

subcarriers. 
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 𝑋𝑘 = 𝑓𝑄𝐴𝑀(𝑠𝑘) (6) 

 

In Eqn. (6) 𝑋𝑘 refers complex-valued signal representing amplitude and phase. 𝑓𝑄𝐴𝑀  means modulation function 

converting binary symbol into constellation point. 𝑠𝑘  are the symbol at 𝑘𝑡ℎ subcarrier. The 16-QAM system uses a 

constellation with 16 points and each point represents a certain 4-bit grouping such as 1010 or 1100 which is mapped to a 

certain (I, Q) coordinate in the complex plane. 

 

IFFT – OFDM Signal Generation in Time Domain 

The time domain signal is calculated by applying the IFFT to the modulated 𝑋𝑘 which exists in the frequency domain. 

Manages all the subcarriers, each with a QAM-modulated symbol, to produce a single composite waveform. This allows 

the subcarriers to be separate so different data streams won’t overlap. 

 

Cyclic Prefix Addition 

A cyclic prefix (CP) is added to every OFDM symbol to address Inter-Symbol Interference (ISI) induced by multipath 

delays and maintain the subcarriers orthogonal. Therefore, L samples at the end of the time-domain OFDM symbol are 

moved to the start prior to transmission. Mathematical models represent this as 𝑥𝑐𝑝[𝑛] = 𝑥[𝑛 + 𝑁 − 𝐿] for 𝑛 =

−𝐿, . . . , −1where N is the subcarrier number. An OFDM symbol is then succeeded by a cyclic prefix. 𝑥′[𝑛] =
[𝑥𝑐𝑝[𝑛], 𝑥[0], 𝑥[1], . . . , 𝑥[𝑁 − 1]]. Usually, the cyclic prefix length 𝐿 is set to a proportion of N, e.g., 𝐿 =  𝑁/8. Since 

medical environments experience multipath propagation, the cyclic prefix enhances transmission's immunity by enabling 

the receiver to remove the first, corrupted portion of each received symbol. 

 

Real-Signal Conversion for VLC Transmission 

In Visible Light Communication, all information must be positive since LED intensity is always non-negative. Hermitian 

Symmetry: The frequency-domain signal is made conjugate symmetric to guarantee the output of the IFFT is real-valued 

(without imaginary parts). 𝑋𝑘 = 𝑋𝑁−𝐾
∗ : This guarantees that the time-domain output 𝑥[𝑛] ∈ 𝑅, which is essential for 

intensity modulation in VLC. DC Biasing for Unipolarity in the IFFT output may still contain negative amplitudes. It 

Makes OFDM signal compatible with LED hardware for VLC transmission, preserving waveform fidelity while avoiding 

signal clipping. Since LEDs only emit light for positive voltages, a DC bias 𝛽 is added. 

 

 𝑥′′[𝑛] = 𝑥′[𝑛] + 𝛽 (7) 

 

In Eqn. (7) β: DC bias voltage (e.g., 1.2 V to 2.0 V), 𝑥′′[𝑛] means final VLC-transmittable OFDM signal. This change 

guarantees real-valued signal (following Hermitian symmetry) and non-negative amplitude (following DC biasing). OFDM 

offers a strong, high-speed modulation scheme necessary for safe VLC-based remote healthcare monitoring. Its 

combination with Q-learning enables real-time adjustment of subcarrier number, power distribution, and QAM order 

according to environmental feedback. The whole pipeline converts biosignals such as ECG into energy-saving, error-

tolerant, real-time transmissible signals via light. 

 

Visible Light Communication 

With VLC, data is transmitted wirelessly using visible light (400–700 nm) emitted by LEDs. It increases or decreases light 

to represent data which is then caught by a photodiode or image sensor. An LED array is responsible for sending the 

ultrasonic waves. The LED light intensity is changed by OFDM-generated signal  𝑥′′[𝑛], after Hermitian symmetry and a 

DC bias are applied. 

 ILED(t) = A. x′′[n]   (8) 

 

In Eqn. (8) 𝐼𝐿𝐸𝐷(𝑡) means instantaneous light intensity and 𝐴 amplification factor. The light signals move through an 

indoor VLC setup, either directly in a straight line or by bouncing off surfaces, creating a wireless connection. 𝑦(𝑡) =
ℎ(𝑡) ∗ 𝑥′′(𝑡) + 𝑛(𝑡) where, ℎ(𝑡): VLC impulse response, 𝑥′′(𝑡): transmitted OFDM-VLC signal, 𝑛(𝑡): additive white 

Gaussian noise (AWGN) or shot noise. This study uses a Visible Light Communication (VLC) system with OFDM 

modulation to transmit ECG signals in real-time. To make a Hermitian-symmetric signal compatible with optical devices, 

it is DC-biased and modulates an LED for output. Photodiode detects light and after CP removal, FFT and QAM 

demodulation, recovers the ECG data. VLC is selected because it provides security, high data transfer speeds and is not 

affected by electromagnetic interference, so it is a secure, economical and highly effective option for sending biomedical 

data in hospital settings. 

 

Reinforcement Learning Optimization Layer 

Since ECG data is sent in frequently moving and uncertain conditions, the typical work of static networks isn’t suitable. 

This issue was solved by using Q-Learning, a model-free reinforcement learning (RL) method, to optimize transmission 

parameters in real time. The purpose is to achieve a lower Bit Error Rate, a higher Signal-to-Noise Ratio, less delay and 
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better energy efficiency which are important for fast and efficient remote healthcare in hospital settings. In this system, the 

environment refers to the VLC transmitting signals digitized from an ECG over an OFDM-based optical link. It includes a 

learning agent (VLC transmission controller), an environment (comprising light conditions and movement of the patient 

in the room), states (variables like brightness, motion and SNR), actions (power, modulation types and subcarrier settings) 

and a reward function (responding to BER, energy used and transmission rate). Changes in the environment as well as 

patient activity can disturb the channels which reduces how clearly messages are transferred. Medical devices are typically 

powered by small or limited batteries which means energy must be used wisely. Using Q-learning, controllers can choose 

the right strategy on the fly by learning from their surroundings, not requiring a set channel description. This method 

guarantees optimum performance of the system; sustained quality of data receives and reliable delivery of critical 

biomedical information in many healthcare situations. Q-learning is a model-free, value-based RL algorithm, which tries 

to learn an optimal policy for selecting actions. It approximates the action-value function 𝑄(𝑠, 𝑎),  defined as the expected 

cumulative reward for taking action in state 𝑠 and thereafter following the optimal policy. Q-value update rule is presented 

in Eqn. (9). 

 Q(st, at) ⟵ Q(st, at) + α [rt + γ max
a′

Q(st+1 , a′) − Q(st, at)] (9) 

 
Where s𝑡 means current state, a𝑡 means action taken, 𝑟𝑡 means immediate reward, 𝛼: Learning rate (0 < α ≤ 1), 𝛾: 

Discount factor (0 ≤ γ ≤ 1) and max
𝑎′

𝑄(𝑠𝑡+1 , 𝑎′) are the estimated future reward from next state. In the suggested VLC-

OFDM system, the agent (VLC controller) deals with changes from ambient light, background noise and patient 

movements. The RL agent wants to achieve the best transmission quality with the least energy use and the greatest possible 

data rate. The state space is created using information about ambient light, channel SNR and mobility in the form of tuples 

for easy interpretation of channel conditions. An accurate model of the state helps the Q-learning agent choose the right 

actions for transmitting information, leading to more reliable and effective communication. State Definition is given Eqn. 

(10). Each state 𝑠 ∈ 𝑆 is defined as a triplet combining three key environmental observations: 

 

 s = (Lambient, SNR, Mpatient) (10) 

 

 
Fig 2. Q-Learning Architecture. 

 

Visible Light Communication systems are affected by the surrounding light, the Signal-to-Noise Ratio and how mobile 

the patient is. Different amounts of ambient luminosity are called low (below 100 lux), medium (100 to 500 lux) and high 

(above 500 lux). They affect how photodetectors perform. Channel SNR which measures how reliable a signal is, is divided 

into low (below 15 dB), medium (ranging from 15 to 25 dB) and high (above 25 dB). Whether patients remain static or 
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move about in their bedframe can block or allow a clear sightline. Due to these factors, there are 18 unique environmental 

states and each one is identified by a pair of values (e.g., (Medium, High, Low)). Based on how the environment changes, 

the Q-learning agent updates the transmission process via actions that improve communication performance. Action 

Representation is given in Eqn. (16). Each action 𝑎 ∈ 𝐴 is a vector defined as: 𝑎 = (𝑃𝑡𝑥 , 𝑀𝑠𝑐ℎ𝑒𝑚𝑒)  where 

𝑃𝑡𝑥𝜖{𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ} means transmit power level and 𝑀𝑠𝑐ℎ𝑒𝑚𝑒 ∈ {QPSK, 16 − QAM}  Modulation scheme. While the 

number of subcarriers is constant at 64 in this implementation (for simplicity in initial modeling), future development could 

make it a variable parameter to enhance spectral efficiency flexibility. Fig 2 shows the working of Q-learning in the 

proposed study. 

The action space of the VLC system is characterized by two key parameters: transmit power level (𝑃𝑡𝑥) and modulation 

scheme 𝑀𝑠𝑐ℎ𝑒𝑚𝑒 . Transmit power is quantized into three modes—Low, Medium, and High—each providing a compromise 

between energy efficiency and signal robustness. Low power saves energy but can elevate the BER, whereas High power 

provides good signal quality with increased energy expenditure. Medium power is a balanced default for steady state. 

Modulation scheme impacts data rate and BER, with QPSK (2 bits/symbol) being stronger in noisy or mobile channels, 

and 16-QAM (4 bits/symbol) having greater rate but needing a cleaner channel. With three power levels and two 

modulation schemes, the overall action space is six distinct actions. For example, action 𝑎1 = (𝐿𝑜𝑤, 𝑄𝑃𝑆𝐾)  would be 

appropriate in bad channel conditions and action 𝑎6 = (𝐻𝑖𝑔ℎ, 16 − 𝑄𝐴𝑀)  for maximum performance in high-quality 

channels. The reward function in the VLC-Q-learning system checks actions by trying to reduce the bit error rate and 

energy use while boosting throughput, helping the agent find the best ways to transmit. 

 

 R(s, a) = α ⋅ (SNR) − β ⋅ (BER) − γ ⋅ (Energy) − δ ⋅ (Latency) (11) 

 
In Eqn. (11) 𝛼, 𝛽, 𝛾, 𝛿 are weighting constants. 𝑤1, 𝑤2, 𝑤3 refers as user-defined weights to prioritize objectives, 𝐵𝐸𝑅 

means Bit Error Rate, measured post-demodulation, 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∶ Bits/sec, determined by modulation and channel 

quality and 𝐸𝑛𝑒𝑟𝑔𝑦_𝑐𝑜𝑠𝑡: Derived from the LED power usage and 𝑃𝑡𝑥. A multi-objective reward function that looks at 

BER (Bit Error Rate), throughput and energy cost is built into the proposed VLC system. BER describes how well messages 

are sent and a higher BER means decreased rewards; including (1 − 𝐵𝐸𝑅) in the system rewards accuracy. For a given bit 

error rate (BER), the throughput of a UMTS signal is  𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑅𝑠 ⋅ 𝑙𝑜𝑔 2(𝑀) ⋅ (1 − 𝐵𝐸𝑅). Energy cost is set up 

as 𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑠𝑡 = α ⋅ 𝑃𝑡𝑥, with α being related to the hardware, so that more efficient power use is promoted. The entire 

system’s objectives decide the final weights (𝑤1 , 𝑤2, 𝑤3): battery-friendly apps look for low-energy consumption (higher 

w_3), while critical data systems stress reliability and speed (higher 𝑤1 and 𝑤2). Making sure the operation is well balanced, 

typical values for the weights are: 𝑤1 = 0.4, 𝑤2 = 0.4, 𝑤3 = 0.2. With this method, VLC parameters can be fine-tuned in 

real-time for reliable, fast and efficient data transfer, helping mobile or wearable healthcare devices the most. Optimize the 

VLC transmission policy 𝜋(𝑠)is denoted in Eqn. (12). 

 

 π∗(s) = arg max
a

Q(s, a) (12) 

 

Observe current state 𝑠, choose action 𝑎, perform action, observe reward 𝑅, and create new state 𝑠′, update 𝑄(𝑠, 𝑎) and 

repeat. 

 

Receiver and Decoding Layer 

It is the Receiver and Decoding Layer that ensures reliable ECG signal recovery after transmission over the VLC channel. 

In the beginning, cyclic prefix (CP) removal is used to control the inter-symbol interference that comes from many paths 

for the radio waves. When CP length is 𝐿𝑐𝑝, the actual OFDM symbol is found in 𝑌𝑡𝑜𝑡𝑎𝑙[ 𝐿𝑐𝑝: 𝑁 + 𝐿𝑐𝑝], , where N is the 

number of subcarriers. Then, a Fast Fourier Transform is used to change the signal from its time representation to the 

frequency domain, where the modulated symbols on each subcarrier can be recovered. The system uses action-adaptive 

demodulation which adjusts between QPSK and 16-QAM according to the reinforcement learning agent’s 

recommendations to maintain both data rate and error resistance. Demodulated information lines are converted into binary 

by mapping, turned into integers, undergo digital filtering and then are reformed into ECG waveforms for medical use. 

Specific metrics such as the BER, SNR, and time required and overall power consumption are checked. BER looks at how 

reliable data is transmitted, SNR shows how clear the signal is, latency ensures that data updates are up-to-date and monitors 

energy to check if the network runs efficiently. With this setup, ECG data can be transferred safely, promptly and with 

little energy from VLC-based systems. When Q-learning comes together, Q-value changes (𝛥𝑄  <  𝜀), are smaller than ε, 

usually 𝜀  =  10⁻⁴ and the BER and throughput stop changing. Should no significant changes happen during several 

episodes, early stopping will be applied. Recording up to 2000 episodes allows the system to run more efficiently. When 

performance stays at a high level and rewards are received regularly, it means that learning is finished. The system meets 

these criteria to work well in changing environments, give low error rates, save energy and deliver optimal throughput in 

remote health care. Algorithm 1 shows the proposed methods working. 
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Algorithm 1. Proposed Q-learning based OFDM-VLC  

Input 

    Initialize VLC System Parameters: Power Level ∈ {Low, Medium, High},  

                           Modulation Scheme ∈ {QPSK, 16-QAM},  

                           Subcarrier Count = 64 (fixed) 

    Q-learning Parameters: α (learning rate), γ (discount factor), ε (exploration rate) 

    Reward Weights: w1 (BER), w2 (Throughput), w3 (Energy Cost) 

Start 

   Step 1. Data Acquisition Layer 

     ECG data = acquire real-time ECG () 

     Binary stream = digitize (ECG data) 

   Step 2. Observe Environment 

    statist ← observe_channel_state (BER, SNR, mobility, light conditions) 

   Step 3. Action Selection using Reinforcement Learning 

     IF random () < ε: 

                    action_t ← select_random_action ()     // Exploration 

     ELSE: 

                  action_t ← argmax (Q (state_t, A))       // Exploitation  

   Step 4. Encoding & Modulation Layer 

     modulated_symbols = modulate (binary_stream, modulation_scheme) 

     ofdm_signal = OFDM_modulate (modulated_symbols, subcarrier_count) 

     ofdm_signal_with_CP = add_cyclic_prefix (ofdm_signal) 

    Step 5. VLC Transmission Layer 

     transmit_signal_VLC (ofdm_signal_with_CP, power_level) 

    Step 6. Receiver & Decoding Layer 

     received_signal = receive_VLC () 

     signal_no_CP = remove_cyclic_prefix (received_signal) 

     freq_signal = FFT (signal_no_CP) 

     demodulated_bits = demodulate (freq_signal, modulation_scheme) 

     reconstructed_ECG = reconstruct_ECG (demodulated_bits) 

   Step 7. Performance Metrics Calculation 

     BER = compute_BER (binary_stream, demodulated_bits) 

     SNR = compute_SNR (received_signal) 

     Latency = compute_latency () 

     Energy = compute_energy (power_level) 

   Step 8. Reward Calculation 

     𝑅(𝑠, 𝑎) = α ⋅ (SNR) − β ⋅ (BER) − γ ⋅ (Energy) − δ ⋅ (Latency)    

   Step 9. RL Agent: Update Q-values 

     state_t_plus_1 = observe_next_state () 

     Q (state_t, action_t) = Q (state_t, action_t) + η * [reward_t + λ * max_a' Q (state_t_plus_1, a') - Q 

(state_t, action_t)] 

   Step 10. Output and Feedback 

     display (reconstructed_ECG) 

     log_metrics (BER, SNR, latency, energy) 

End 

Output 

Learned dynamic VLC-OFDM configuration policy for real-time medical data transmission 

 

IV.  RESULTS AND DISCUSSION 

This section presents performance evaluation of the proposed Q-VLOE framework against the existing ones. Metrics 

include BER, SNR, latency, throughput, and energy efficiency. The results demonstrate that reinforcement learning 

optimizes VLC-OFDM-based ECG transmission to be more reliable, data-rate efficient, and power-efficient under dynamic 

channel conditions. 

 

Table 2 lists the key simulation parameters considered for performance evaluation of the RL-OFDM-VLC system for 

remote health monitoring. The system transmits the MIT-BIH Arrhythmia dataset over a VLC channel with adaptive 

modulation schemes (QPSK, 16-QAM) fixed 64 subcarriers. The Q-learning agent selects power levels and modulation 

depending on ambient light, SNR, and patient mobility. Channel conditions are taken into account using Lambertian 

patterns with AWGN noise. Reinforcement learning parameters are tuned for convergence within 500 episodes. MATLAB 

tools are used for simulation and verification of system performance, with BER<0.05 as the objective. 
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Table 2. Simulation Parameters 

Parameter Value 

Modulation Schemes QPSK, 16-QAM 

Subcarrier Count 64 

VLC Transmitter Power Levels Low (35 mW), Medium (65 mW), High (90 mW) 

Ambient Light Levels Low, Medium, High 

Channel SNR <15 dB (Low), 15–25 dB (Medium), >25 dB (High) 

Patient Mobility Static, Mobile 

Learning Algorithm Q-learning 

Learning Rate (α) 0.1 

Discount Factor (γ) 0.9 

Exploration Rate (ε) 1 → 0.01 (decayed) 

Episodes 500 

VLC Channel Model Lambertian + AWGN 

BER Target <0.05 

Simulation Tool MATLAB 

 

ECG Signal Analysis 

This section analyzes the ECG signals to be transmitted with regard to their quality and integrity before and after denoising. 

Visual comparisons depict how the preprocessing mechanisms are successful in suppressing noise, providing cleaner 

signals appropriate for modulation and transmission over the VLC channel with less distortion. 

 

 
Fig 3. Simulated ECG Signal. 

 

Fig 3 displays a sample ECG signal over time, the electrical activity of the heart. It has time on the x-axis and signal 

amplitude on the y-axis. The waveform is periodic heartbeats with added noise, common in real-time medical data 

transmission and ideal for signal processing system testing. 

 

 
Fig 4. ECG Signal Before and After Denoising. 

 

Fig 4 demonstrates the effectiveness of signal denoising in the proposed OFDM-VLC system for remote health 

monitoring. The blue line is the raw ECG signal contaminated with noise, and the orange line is the signal after filtering 

out the noise. This verifies that the system can improve signal quality, which is vital in precise medical data transmission. 

 

Q-Learning Performance 

This section analyzes the training dynamics and decision-making behavior of the reinforcement learning agent. Q-learning 

convergence plots illustrate the agent's capacity for transmission parameter optimization across episodes, whereas the Q-
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table heatmap illustrates state-action mappings. These outcomes verify the effectiveness of Q-learning in improving 

communication reliability and efficiency 

Fig 5 shows the episode reward performance of the Q-learning agent used in the proposed OFDM-VLC system to send 

medical information. Blue denotes single-episode rewards, and red denotes the trend of the average reward, which describes 

learning progress. With time, the agent gets more stable higher rewards, which describes the effective optimization of 

transmission parameters. 

 
Fig 5. Q-Learning Convergence. 

 

 
Fig 6. Heatmap of Q-values. 

 

Fig 6 represents Q-value heatmap of state-action pairs qualitatively depicts the learning results of the Q-learning 

algorithm in the novel VLC system. Every cell indicates the expected cumulative reward for a particular state-action pair. 

Larger Q-values (in lighter colors) suggest more rewarding actions in respective states, directing optimal choices to 

improve throughput, minimize BER, and save energy. 

 

Performance Evaluation 

This section provides important communication performance metrics, such as BER, throughput, and latency. Comparative 

analysis with current methods identifies the proposed OFDM-VLC + Q-Learning as superior in terms of having lower BER 

under noise, greater throughput, and lower latency under different transmission distances—proving efficient for real-time 

biomedical applications. BER shows how reliable a transmission is, and SNR expresses how strong the signal is compared 

to the background noise. Latency is just the delay between sending and receiving data, which is really important for things 

that need to happen in real time. Throughput refers to how much data gets successfully sent, which points to how well the 

system is working and how effectively it uses the available bandwidth. Mostly, higher numbers usually mean clearer 

signals.  

Table 3. Performance Comparison – Static vs RL-Optimized OFDM-VLC System 

Metric Static VLC RL-Optimized VLC  

Bit Error Rate  0.078 0.015 

Signal-to-Noise Ratio  21.3 dB 29.8 dB 

Throughput 16.7 kbps 22.4 kbps 

Latency 14.6 ms 9.0 ms 

Energy Consumption 1.35 J/bit 0.89 J/bit 

ECG Reconstruction Accuracy 85.3% 96.7% 
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The comparison between Static VLC and the proposed OFDM-VLC + Q-Learning shows that Q-VLOE mitigates BER 

and latency in great measure, while the SNR, throughput, and ECG reconstruction accuracy are considerably improved is 

shown in Table 3. Energy consumption is also considerably lowered, meaning that the efficiency is better. Proposed 

OFDM-VLC + Q-Learning dominates in the domain of reliability, speed, energy performance, in real-time ECG 

transmission. 

Table 4. Performance Comparison Latency Vs Throughput 

Method Throughput Latency 

PSO [21] 15.8 16.8 

FL-SDUAN [22] 17.5 14.9 

OFDM-Greedy Algorithm [23] 18.3 12.7 

OFDM-UWA [24] 19.1 11.5 

Proposed OFDM-VLC + Q-Learning 22.4 10.2 

 

Table 4 shows the throughput and latency for different methods, including the new OFDM-VLC with Q-Learning. The 

new method delivers the best performance, hitting 22.4 Mbps for throughput and just 10.2 ms for latency. It does a much 

better job than the older PSO, FL-SDUAN, and OFDM-based methods in terms of efficiency and speed. 

 

 
Fig 7. BER Vs SNR. 

 

Fig 7 Bit Error Rate performance against different transmission techniques and Signal-to-Noise Ratio. The new OFDM-

VLC with Q-learning (black line) is revealed to have the least BER, leaving the conventional QPSK, static OFDM, and 

other optimized schemes such as GA and PSO far behind. This validates that Q-learning greatly improves transmission 

reliability, particularly in environments with noise, which is very significant in precise medical data transmission for remote 

health monitoring systems. 

 

 
Fig 8. Throughput Comparison. 

 

Fig 8 shows a throughput comparison between different optimization techniques for medical data transmission. The 

highest throughput of 22.4 Mbps is achieved by the proposed OFDM-VLC using Q-learning, followed by PSO, FL-

SDUAN, OFDM-Greedy, and OFDM-UWA. This clearly indicates the strength of Q-learning in achieving maximum data 
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rate, which is very important for efficient transmission of high-volume real-time medical data in remote health monitoring 

applications. 

Fig 9 reveals how latency and transmission distance interrelate within the OFDM-VLC system for remote healthcare 

monitoring. As the transmission distance varies from 1 to 30 meters, latency increases in a non-linear fashion, reflecting 

higher transmission delays at longer distances. This indicates the value of adaptive parameter adjustment such as by Q-

learning to preserve low latency and achieve real-time performance under changing healthcare environments. 

 

 
Fig 9. Latency Vs Transmission Distance. 

 

 

ECG Reconstruction Accuracy 

This section considers the fidelity of reconstructed ECG signals following transmission. Visualization compares the 

original ECG, noisy static VLC reconstruction, and improved RL-VLC reconstruction. Results demonstrate considerable 

improvement in quality using reinforcement learning, preserving clinical signal integrity and establishing the efficacy of 

the proposed system for accurate remote health monitoring. 

 

 
Fig 10. ECG Reconstruction – Before vs After. 

 

Fig 10 compares the reconstruction of ECG signal in three situations: the original waveform (a), reconstruction by static 

VLC (b), and clear ECG using RL-VLC (c). The static VLC result is clearly noisy and distorted, but the RL-VLC strategy 

significantly improves clarity and nearly replicates the original. This proves the power of reinforcement learning in 

preserving signal integrity in wireless biomedical transmission over visible light communication. 

 

Discussion 

The proposed system performing OFDM-VLC with Q-Learning boosts performance across important communication and 

signal reconstruction factors more than other available methods. In BER versus SNR analysis, it is apparent that the 

proposed system can perform better than QPSK, OFDM without RL and optimization-based GA and PSO. The model's 



  

ISSN: 2788–7669                                                                                          Journal of Machine and Computing 5(3)(2025) 

 

1929 

throughput was measured at 22.4 Mbps which exceeds all other approaches and its latency is kept at 10.2 ms, ensuring that 

it is well suited for quick clinical needs. ECG analysis also shows that the RL-VLC-based signal is less noisy and better 

reconstructed than the signal obtained with static VLC, keeping its waveform intact. With each episode, the Q-Learning 

convergence plot proves that learning is stable and rewards keep increasing and the Q-table heatmap shows effective 

learning of state-action values. Unlike regular systems, the proposed method improves efficiency and adds the ability to 

adapt, supplying a stable way to send wireless health data. Yet, there are some difficulties, like extra time and memory 

required for fast updates in changing situations and requiring suitable hardware for widespread use. Potentially, future 

improvements could involve simpler versions of Q-Learning or approaches that mix existing strategies to be more efficient 

and flexible within multiple clinical and remote health settings. 

 

V. CONCLUSION AND FUTURE SCOPE 

The proposed work suggests a new, efficient, and intelligent method that uses OFDM-based VLC with Q-learning to 

guarantee reliable real-time delivery of biomedical data, mainly ECG signals. Using reinforcement learning in the VLC-

OFDM channel, the suggested approach changes transmission parameters based on changing surroundings, which leads to 

marked improvements in how signals are sent and received. Results from various experiments indicate that the new 

approach performs better than PSO, FL-SDUAN, and greedy-based OFDM in metrics like BER, throughput, and latency. 

Especially, it delivers a BER below a certain level at high SNR, reaches a peak transfer rate of 22.4 megabits per second, 

and achieves a latency of 10.2 milliseconds, proving it is well-suited for medical jobs that need quick response. The ECG 

signal's reconstruction from noise shows high performance, as seen in the original and reconstructed signals' similarities. 

The graphs and heatmap also indicate that the environment is learned well and the right decisions are made, proving that 

the intelligent system does its work effectively. 

Still, some problems persist; for example, the system is not always fast enough in very dynamic or changing 

circumstances. Because of these difficulties, lightweight adaptive methods or hardware acceleration are needed for real-

world use in devices like monitors for health checks. To improve the framework in the future, one can add hybrid 

approaches like Deep Q-Networks, combine different types of biosignals (for example, EEG and EMG), and introduce 

blockchain-dependent authentication to protect privacy. Using devices and simulators in the loop or testing directly with 

prototype systems can make the transition between modelling and practical use smoother. Essentially, the research makes 

a strong case for effective, adaptable, and efficient biomedical communication systems in advanced healthcare and 

telemedicine systems. 
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