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Abstract – Accurate evaluation of innovative financial performance, primarily Operating Cash Flow (OCF), is crucial for 

informed decision-making. While Data Envelopment Analysis (DEA) is commonly used for efficiency evaluation, it 

challenges computational inefficiencies, data integrity problems, and a lack of transparency. This study proposes a DEA + 

Blockchain Technology that integrates DEA + BT to ensure data integrity, Tamper Detection (TD), and transparency 

through decentralized validation and cryptographic methods. Evaluated on the Securities and Exchange Commission 

(SEC)-Financial Statement Data Set and the Kaggle Financial Data Set, the DEA + BT achieves higher transaction Network 

Throughput (NT) (up to 1253 TPS), lower End-to-End Delay (EED) (as low as 120 ms), and superior technical efficiency 

accuracy (95.2%). This work proved enhanced security effectiveness with a 99.9% Consensus Rate (CR) and TD rates. 

Compared to traditional methods, the model provides higher ranking consistency (Spearman's correlation of 0.864 and 

0.857). This DEA-BT proposes a robust, secure, and transparent method for enterprise OCF ranking, addressing key 

limitations of DEA and advancing financial performance evaluation methodologies. 

 

Keywords – Network Security, Blockchain Technology, Operating Cash Flow, Data Envelopment Analysis, Tampering 

Detection. 

I. INTRODUCTION 

In recent years, analyzing and evaluating enterprise financial performance have become critical for stakeholders, including 

investors, management, and regulatory bodies [1-3]. One of the key metrics in assessing financial health is Operating Cash 

Flow (OCF), which reflects a company’s ability to generate cash from its core business activities [4]. The ranked list of 

OCF performance is vital to determining financial decisions, finding Money invested, and developing approaches [5]. 

Computational analysis failure, security risks, and opaqueness are problems with traditional methods. 

The technique that can be implemented to evaluate the impact of Decision-Making Units (DMUs) is referred to as Data 

Envelopment Analysis (DEA), a non-parametric method of analysis [6]. Because it depends on the ratio of weighted inputs 

to balanced results, it can be applied to algorithms that are used for measuring financial results [7]. The examination of 

company performance is performed in this approach. The computational speed of the DEA, on the other hand, presents 

problems, especially when it comes to maintaining large data sets. For developing properly informed choices regarding 

finances, it is necessary to have results that are both accurate and easily accessible [8]. New hybrid approaches that combine 

DEA with contemporary innovations are currently being studied by researchers. Several instances of these hybrid methods 

include DEA + BT and centralized security systems. In order to guarantee data integrity, transparency, and availability 
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through Consensus Mechanisms (CM) and security using digital encryption, these techniques are being used to enhance 

the confidence and openness of the outcomes of the Drug Enforcement Administration (DEA). When BT and DEA are 

combined, it is feasible to ensure the validation and storage of efficiency rankings, which results in accurate findings [9-

10]. 

The study recommends a process that combines DEA and BT, with the security of network functions serving as the 

primary motivation for the approach. The technique aims to improve the efficiency, security, and integrity of business OCF 

rankings. By applying this model, data integrity is improved, transactions are accelerated, EED is reduced, and the 

decentralized validation and encryption methods implemented by DEA + BT provide protection [11]. 

The contributions of this work are threefold.  

• This research work combines DEA + BT distributed network technology to improve OCF ranking accuracy. 

• This study also uses CM and TD detection to verify the DEA's findings. 

• This model is compared to traditional DEA, DEA with centralized security, and Stochastic Frontier Analysis 

(SFA) with BT using real-world financial datasets, such as the SEC Financial Statement Data Set and Kaggle 

Financial Data, which comprise over 4,400 public sector companies. 

The proposed DEA + BT outperforms existing methods in terms of transaction speed, EED, security effectiveness, and 

technical efficiency accuracy. It also achieves higher Spearman correlation, improved data integrity, and optimized 

resource efficiency, indicating its probability for robust and transparent enterprise performance evaluation. 

The following is the summary for the rest of the paper. The recommended system, describing the proposed DEA + BT, 

is provided in Section 2. Datasets, BT setup, and DEA configuration are provided in Section 3, which includes the 

experimental setup. The analysis of the performance and results of the experiments is addressed in Section 4. Finally, the 

work is concluded, and future research directions are presented in Section 5. 

 

II. METHODOLOGY 

Overview of the Proposed DEA + BT Model 

The proposed DEA + BT to improve transparency, data integrity, and security in enterprise OCF ranking Fig 1. Traditional 

methods are criticized for data manipulation, lack of verifiability, and insecure storage [12]. By combining DEA's 

efficiency analysis capabilities with BT's decentralized ledger system, the proposed model enhances the reliability and 

trustworthiness of the OCF ranking process. 

 

 
Fig 1. The Proposed DEA + BT Model. 

 

The DMU uses the DEA to evaluate the efficiency of multiple enterprises. The DEA employs a linear programming 

method to consider multiple inputs and outputs, including operating expenses, capital costs, and working capital. The 

efficiency score is determined by solving an optimization problem that maximizes the weighted sum of outputs to the 

weighted sum of inputs [13]. 

This score is denoted as 𝐸𝑗 for the 𝑗-th enterprise, is expressed as Eq. (1). 

 𝐸𝑗 = max (
∑  𝑠

𝑟=1  𝑢𝑟𝑦𝑟𝑗

∑  𝑚
𝑖=1  𝑣𝑖𝑥𝑖𝑗

),  (1) 

 

Subject to the constraint that the efficiency score of any other enterprise ′𝑘′, represented by ′𝐸𝑘′, does not exceed 1, i.e., 

Eq. (2). 

 
∑  𝑠

𝑟=1  𝑢𝑟𝑦𝑟𝑘

∑  𝑚
𝑖=1  𝑣𝑖𝑥𝑖𝑘

≤ 1,  ∀𝑘 = 1,2, … , 𝑛.  (2) 

Where: 

• 𝑥𝑖𝑗→ The 𝑖-th input for enterprise 

• 𝑗, 𝑦𝑟𝑗→ The 𝑟-th output for enterprise  
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• 𝑗, while 𝑢𝑟 and 𝑣𝑖 d→ The weights assigned to outputs and inputs.  

The enterprises are ranked based on their efficiency scores, with higher scores indicating superior performance in OCF 

efficiency. 

The DEA phase generates efficiency scores and rankings, which are securely recorded on a blockchain (BT) using a 

decentralized, tamper-proof ledger: cryptographic hashing and CM-secure BT data. Input-output data, information called 

metadata, and the performance scores generated by DEA are all included with every BT transaction. As a safety measure 

during testing, the BT prevents users from updating those findings provided all in the network accept [14]. 

Asymmetric encryption and SHA-256 hashing are two examples of the cryptographic methods implemented by the 

model's BT module to secure data and prevent tampering. To prevent illegal activity and data tampering, consensus 

methods such as Practical Byzantine Fault Tolerance (PBFT) and Proof of Work (PoW) validate and verify DEA results 

[15]. 

The DEA + BT integration is reduced by systematic data flow. The DEA module determines efficiency scores from 

Business financial data and presents them into transactions for validation. Smart contracts in the BT automate DEA result 

verification, reducing human error and improving system efficiency [16]. This improves system efficiency. The proposed 

model improves business OCF ranking with DEA + BT security and transparency. It ensures accurate, verifiable, and 

unmanipulated economic tests, thereby enhancing the credibility of the ranking process and providing users with a reliable 

tool for informed decision-making [17]. 

 

DEA for OCF Ranking 

The proposed model evaluates companies by OCF performance using the DEA, a non-parametric linear programming 

method. This method, which can manage multiple inputs and outputs without a practical relationship, is appropriate for 

financial efficiency evaluations in businesses with distinct scenarios and resource constraints [18]. 

 

Input-Output Model for Ranking Enterprises  

The OCF ranking ranks each organization as a DMU based on inputs (Resources) and outputs (Financial Gains). Table 1 

provides typical OCF efficiency inputs and outputs. The DEA measures an enterprise's input-to-output efficiency to others 

in the dataset. Each business's efficiency score indicates how effectively it maximizes outputs while minimizing inputs. 

 

Table 1. Parameters of Inputs and Outputs 

Class Variable Description 

Inputs 

OPEX Operating Expenses 

CAPEX Capital Expenditure 

Working Capital Working Capital Management 

Outputs 

Cash Inflow Net Operating Cash Inflow 

Growth Revenue Growth 

Profitability Profitability Ratio 

 

Mathematical Formulation of DEA  

The competence score of an enterprise, signified as 𝐸𝑗 For the 𝑗-th enterprise (DMU ′𝑗′), it is computed by solving an 

optimization problem. The DEA employed here is the input-oriented Charnes, Cooper, and Rhodes (CCR), which assumes 

Constant Returns-to-Scale (CRS) [19]. The efficiency score is defined as the ratio of the weighted sum of outputs to the 

weighted sum of inputs, Eq. (3) and Eq. (4). 

 𝐸𝑗 = Max (
∑  𝑠

𝑟=1  𝑢𝑟𝑦𝑟𝑗

∑  𝑚
𝑖=1  𝑣𝑖𝑥𝑖𝑗

),  (3) 

subject to: 

 
∑  𝑠

𝑟=1  𝑢𝑟𝑦𝑟𝑘

∑  𝑚
𝑖=1  𝑣𝑖𝑥𝑖𝑘

≤ 1,  ∀𝑘 = 1,2, … , 𝑛  (4) 

 

Where: 

• 𝑦𝑟𝑗→ The 𝑟-th output for enterprise ′𝑗′. 

•  𝑥𝑖𝑗→The 𝑖-th input for enterprise ′𝑗′. 

• 𝑢𝑟→ The weight assigned to output ′𝑟′. 
•  𝑣𝑖→ The weight assigned to input ′𝑖′. 
•  𝑠→ The number of outputs. 

•  𝑚→ The number of inputs. 

• 𝑛→ The number of enterprises (DMU). 

The weights 𝑢𝑟, 𝑣𝑖 are determined through the optimization process to maximize the efficiency score for each enterprise. 

The constraint ensures that the efficiency score of any other enterprise ′𝑘′ does not exceed 1, maintaining the relative 

efficiency evaluation [20]. 
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Dual Formulation for Computational Efficiency 

The above fractional program can be converted into a linear programming problem (Dual Form) to facilitate computation. 

The input-oriented CCR dual model for DMU 𝑗 is assumed by Eq. (5). 

 

 Min𝜃𝑗 (5) 

Subject to, Eq. (6) 

 

 

∑  𝑛
𝑘=1  𝜆𝑘𝑥𝑖𝑘 ≤ 𝜃𝑗𝑥𝑖𝑗 ,  𝑖 = 1,2, … , 𝑚

∑  𝑛
𝑘=1  𝜆𝑘𝑦𝑟𝑘 ≥ 𝑦𝑟𝑗 ,  𝑟 = 1,2, … , 𝑠

𝜆𝑘 ≥ 0,  ∀𝑘 = 1,2, … , 𝑛

  (6) 

Where: 

• 𝜃𝑗→ The efficiency score of DMU ′𝑗′. 

•  𝜆𝑘→ The weights of the peer enterprises that form the reference set for DMU ′𝑗′. 
An enterprise is considered efficient if 𝜃𝑗 = 1 and inefficient if 𝜃𝑗 < 1. Efficient enterprises operate on the DEA 

efficiency frontier, while inefficient enterprises lie below this frontier and can improve their efficiency by optimizing their 

input-output combinations. 

 

Efficiency Scores and Ranking 

Once the DEA is solved for each enterprise, the resulting efficiency scores are used to rank them. Enterprises with higher 

efficiency scores are ranked higher, reflecting their superior ability to generate OCS relative to their resource expenditure. 

For example, an efficiency score of 1 indicates that an enterprise is operating efficiently, whereas a score of 0.85 proposes 

that the enterprise is operating at 85% efficiency and has room for improvement. 

The DEA results provide valuable insights for financial analysts, enterprise managers, and investors by identifying 

which enterprises perform efficiently and which require strategic interventions to enhance their OCF performance. This 

ranking process forms the basis for secure recording and verification in the subsequent BT phase of the proposed 

framework, ensuring that efficiency evaluations are transparent, immutable, and resistant to manipulation. 

 

 
Fig 2. BT Class Diagram. 

 

BT Design 

The proposed BT Fig 2 ensures the security, integrity, and transparency of DEA-generated OCF rankings by leveraging a 

decentralized and robust network security model. The model is designed around a network of nodes as 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝑝}, 

where each node ′𝑛𝑖′ maintains a complete copy of the BT ledger. Distributed design enhances resilience by ensuring 

multiple redundant data copies across the network, with each node validating transactions and maintaining consensus, 

thereby reducing the risks associated with centralized storage systems. 

A block 𝐵𝑡  In the BT, it is defined as Eq. (7). 

 

 𝐵𝑡 = {𝐻(𝐵𝑡−1), 𝑇𝑡 , TS𝑡}  (7) 

Where: 
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•  H(Bt−1)→ The cryptographic hash of the previous block Bt-1 ensures immutability and continuity in the BT. 

• Tt→ The set of transactions recorded in the current block. 

• TSt→ The timestamp when the block was created. 

Each transaction 𝑇𝑡
𝑗
 records the DEA results for an enterprise ′𝑗′ and can be expressed as Eq. (8). 

 

 𝑇𝑡
𝑗

= {ID𝑗, 𝐸𝑗 , 𝐷𝑗 , Sig𝑗 , TS𝑡}  (8) 

Where: 

•  ID𝑗→ The unique identifier for enterprise ′𝑗′. 

• 𝐸𝑗→ The DEA efficiency score for enterprise ′𝑗′, computed as Eq. (9). 

 

 𝐸𝑗 = max (
∑  𝑠

𝑟=1  𝑢𝑟𝑦𝑟𝑗

∑  𝑚
𝑖=1  𝑣𝑖𝑥𝑖𝑗

),  (9) 

Subject to Eq. (10). 

 

 
∑  𝑠

𝑟=1  𝑢𝑟𝑦𝑟𝑘

∑  𝑚
𝑖=1  𝑣𝑖𝑥𝑖𝑘

≤ 1,  ∀𝑘 = 1,2, … , 𝑛  (10) 

Where: 

•  𝐷𝑗→ The dataset used for the DEA computation for enterprise 'j' includes both input and output data. 

• Sig𝑗→ The digital signature is generated by the enterprise's private key to guarantee its authenticity. 

• TS𝑡→ The timestamp of the transaction. 

The BT uses a cryptographic hash function 𝐻 (e.g., SHA-256) to secure the contents of each block. The hash of a block 

′𝐵𝑡’ is computed as Eq. (11) 

 

 𝐻(𝐵𝑡) = SHA − 256(𝐻(𝐵𝑡−1)∥∥𝑇𝑡∥∥TS𝑡),  (11) 

Where: 

• ||→ Concatenation.  

This hash serves as the block's unique identifier, ensuring that any data modification results in a different hash, thereby 

preserving data integrity. PoW, or Practical Byzantine Fault Tolerance (PBFT), is implemented as a consensus mechanism 

to add only valid blocks to the BT in the proposed framework. In PoW, nodes solve a computational puzzle by finding a 

nonce Noncet such that Eq. (12). 

 

 𝐻(𝐵𝑡 ∥ 𝑁𝑜𝑛𝑐𝑒𝑡 ) <  Target   (12) 

Where: 

• The Target is a predefined difficulty threshold.   

PBFT utilizes voting rounds to achieve consensus, making it energy-efficient and suitable for efficient financial 

validation. Smart Contracts (SC) improve BT automation and security. SC = Eq. (13). 

 

 𝑆𝐶: { If valid (𝑇𝑡
𝑗
) then record 𝑇𝑡

𝑗
 on BT }  (13) 

 

To reduce human intrusion and error risk, the SC automates DEA result validation to meet predefined measures before 

recording on the BT. Data transmission is secured by asymmetric encryption using Public Key Infrastructure (PKI) from 

BT. Each enterprise uses a private key 𝐾𝑗
Priv  to sign the transaction, and other network users use the corresponding public 

key 𝐾𝑗
Pub to verify it, Eq. (14). 

 Sig𝑗 = Sign (𝐾𝑗
priv 

, 𝑇𝑡
𝑗
),  Verify (𝐾𝑗

pub 
, 𝑇𝑡

𝑗
, Sig𝑗)  (14) 

 

This mechanism ensures that only authorized entities can submit DEA results, and any tampering with the transaction 

will render the signature invalid. Transport Layer Security (TLS) secures data interception, firewalls, IDS, and DDoS to 

prevent malicious attacks on the BT. DEA-based OCF rankings are secure, transparent, and tamper-proof due to 

decentralization and a permanent state. 

 

Integration Mechanism 

The DEA + BT idea secures and provides business OCF rankings. Data integrity, transparency, and tamper-proofing are 

ensured. DEA efficiency scores are verified by BT nodes and securely recorded on the BT. BT results cannot be altered 

due to its decentralized and immutable nature. The business name, efficiency result, input-output data, timestamps, and 

digital signature for authenticity are in DEA transactions. A transaction for enterprise 𝑗 can be represented as Eq. (15). 

 

 𝑇𝑗 = {ID𝑗 , 𝐸𝑗 , {𝑥𝑖𝑗 , 𝑦𝑟𝑗}, TS𝑗 , Sig𝑗}.  (15) 
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Where: 

• ID𝑗→ The unique identifier for enterprise 𝑗. 

• 𝐸𝑗→ The DEA efficiency score for enterprise 𝑗. 

• 𝑥𝑖𝑗→ The set of inputs, such as operating costs 

• 𝑦𝑟𝑗→ The outputs, such as net cash inflow or revenue growth. 

• TS𝑗→ The timestamp indicates when the transaction was created. 

• Sig𝑗→The digital signature, ensuring authenticity, computed as Eq. (16). 

 

 Sig𝑗 = Sign (𝐾𝑗
priv 

, 𝑇𝑗).  (16) 

 

The signature is generated using the enterprise's private key 𝐾𝑗
priv 

 and can be verified using the corresponding public 

key 𝐾𝑗
pub

 with the verification function, Eq. (17). 

 

 Verify (𝐾𝑗
pub

, 𝑇𝑗 , Sig𝑗)  (17) 

 

The BT broadcasts a transaction, which is verified by nodes through digital signatures and data integrity. If successful, 

the transaction is considered valid and grouped with other verified transactions to form a block, referred to as ‘Bt’. Each 

block contains a set of transactions, timestamps, and previous block hash, as shown in Eq. 18. 

 

 𝐵𝑡 = {𝐻(𝐵𝑡−1), 𝑇𝑡 , TS𝑡}  (18) 

Where:  

• 𝐻(𝐵𝑡−1)→ The cryptographic hash of the previous block is used to link the new block to the BT. 

The hash for the current block is generated using the SHA-256 hashing function, Eq. (19).  

 

 𝐻(𝐵𝑡) = SHA − 256(𝐻(𝐵𝑡−1)∥∥𝑇𝑡∥∥TS𝑡)  (19) 

 

To ensure the validity of new blocks, the BT deploys a consensus mechanism, such as PoW or Practical Byzantine 

Fault Tolerance (PBFT). In PoW, nodes solve a computational challenge by finding a nonce Nonce  𝑡 that satisfies the 

condition, Eq. (20). 

 𝐻(𝐵𝑡 ∥  Nonce 𝑡) <  Target.   (20) 

 

PBFT involves consensus-building by voting, validating blocks if the majority agrees, adding them to BT, and updating 

ledger copies among nodes. Each node in the BT decentralized system maintains a similar record of DEA results, ensuring 

tamper-proof results. Data exchanged between the DEA module and BT nodes is encrypted using TLS. This integration 

mechanism provides a robust, secure, and transparent enterprise OCF ranking solution that ensures confidential, secure, 

and interception-free data transmission, boosting financial evaluation trust and accountability. 

 

III. EXPERIMENTAL SETUP 

Enterprise Data 

The research study utilizes the SEC Financial Statement Data Sets and Kaggle Financial Data, comprising more than 4,400 

publicly held companies, to rank businesses based on OCF using DEA. The SEC Financial Statement Data Sets provide 

statistics derived from US corporate financial reports encoded in eXtensible Business Reporting Language (XBRL). For 

ease of comparison, they have been reduced and include core financial statement footnotes. Applications up until the last 

business day of the previous financial year are included in quarterly datasets. Informational fields for businesses are 

included in the Standard Industrial Classification (SIC) framework. Financial data, including sales, profits, and employee 

counts, for over 4,400 publicly listed companies can be attained on Kaggle. For industry analysis, economic investigation, 

and developing business strategies, this data provides operational and financial insights. After maintaining and normalizing 

the datasets, they are aligned with financial periods to ensure data consistency and quality. To ensure that the DEA and 

OCF rankings accurately reflect the business's true financial results, these steps are essential. 

 

BT Network Configuration 

Enterprise OCF rankings data are stored and verified securely using the proposed model's BT, which ensures data integrity, 

transparency, and security against tampering. Identifying key factors, selecting suitable elements, and implementing 

security measures are all essential steps in the setup procedure to ensure the system's reliability. Only authorized users can 

validate transactions and maintain the transaction register on the BT, as it is a network that requires permission. It's suitable 

for trust- and confidentiality-sensitive applications related to finances. Ten to twenty nodes make up the network. Some 
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nodes, known as "full nodes," are responsible for maintaining the entire blockchain and participating in the validation 

process. Other nodes, referred to as "light nodes," store a subset of the blockchain and rely on full nodes for verification. 

The BT uses PBFT for consensus, which is ideal for permissioned BT due to its low End-to-End Delay (EED) and high 

Network Throughput (NT). It can process up to 1,000 Transactions Per Second (TPS). Nodes vote on transaction validity, 

ensuring only legitimate transactions are added, reducing malicious activities, and improving network reliability Table 2 

shows BT Configuration Parameters. 

The BT uses an immutable chain model with each block containing transaction data, a timestamp, and a cryptographic 

hash. It uses SHA-256 for data integrity and generates unique hashes for each block. Transactions are secured using Public 

Key Infrastructure (PKI), with digital signatures ensuring the authenticity of data. Enterprises sign transactions with their 

private keys, and network nodes verify these signatures using public keys. The BT utilizes Hyperledger Fabric for 

permissioned blockchain development, offering features such as smart contracts (SC), identity management, and secure 

communication. SC, written in Go or JavaScript, automates verification and recording of DEA results, ensuring only 

verified DEA efficiency scores and rankings are recorded on the BT. The network configuration features a 1 MB block 

size for multiple DEA transactions and a 10-second block time, optimizing transaction speed and validation efficiency. 

TLS encrypts data transmissions, while firewalls and IDS protect the network from unauthorized access and potential 

cyber-attacks. The network utilizes tools such as Prometheus and Grafana to monitor node performance, transaction rates, 

and system health. Regular updates ensure security and efficiency. This BT network configuration offers a transparent 

platform for storing and validating DEA-generated OCF rankings, enhancing the integrity of enterprise financial 

evaluations. 

Table 2. BT Configuration Parameters 

Parameter Description Value / Range 

Consensus Mechanism 
The protocol used to achieve agreement on the 

BT. 
PBFT, PoW 

Block Size 
The maximum size of data that a block can 

hold. 
1 MB 

Block Time The time interval for creating new blocks. 10 Seconds 

Transaction Throughput 
The number of transactions the network can 

process per second. 
1,000 TPS 

Number of Nodes The total number of nodes in the BT network. 10 to 20 nodes 

Cryptographic Hashing 
The algorithm is used to generate unique 

hashes for blocks. 
SHA-256 

Digital Signature 

Algorithm 

The method used for signing and verifying 

transactions. 

ECDSA (Elliptic Curve Digital 

Signature Algorithm) 

Network Type The type of BT deployment. Permissioned 

Smart Contract Language The programming language used to write SC. Go, JavaScript 

Ledger Database The database is used to store the BT state. LevelDB, CouchDB 

Encryption Protocol 
The protocol is used for secure 

communication between nodes. 
TLS 

Block Validation Time The time taken by nodes to validate a block. 2 to 5 seconds 

Fault Tolerance 
The proportion of faulty nodes the network 

can handle. 
Up to 33% (for PBFT) 

Monitoring Tools 
Tools used to monitor network health and 

performance. 
Prometheus, Grafana 

 

IV. RESULTS AND ANALYSIS 

DEA Effectiveness 

The experimental results prove the superior performance of the proposed DEA + BT in terms of Technical Efficiency 

Accuracy (TEA) Fig 3 and Ranking Consistency (RC) Fig. 4 across two comprehensive datasets. Analysis of the TEA 

reveals that the proposed model achieves significantly higher accuracy rates of 94.7% and 95.2% for the SEC and Kaggle 

datasets, respectively, compared to the traditional DEA, which generates accuracy rates of 85.3% and 84.9%. This 

represents an average improvement of approximately 10% over conventional methods. 

The DEA with the Centralized Security Model (CSM) shows moderate improvement over the traditional method, 

achieving accuracy rates of 87.8% and 88.1%, indicating that enhanced security measures contribute to improved accuracy. 

However, the SFA with BT proves slightly lower accuracy (83.2% and 82.7%), signifying that the stochastic approach, 

despite BT integration, may not be as practical for OCF ranking as the proposed deterministic DEA. 

In terms of RC, measured using Spearman's Correlation coefficient, the proposed model exhibits superior performance 

with correlation values of 0.864 and 0.857 for the respective datasets. This represents a significant improvement over the 

traditional DEA (0.751 and 0.748) and the CSM (0.783 and 0.775). The higher correlation coefficients indicate more 
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substantial rank agreement and a more reliable assessment of enterprise performance. Notably, the SFA with BT shows the 

lowest ranking consistency (0.728 and 0.715), further supporting the superiority of the DEA for this application. 

The proposed hypothesis is robust because the results remain similar across both datasets; however, they display distinct 

features and encompass different periods. Results from an extensive range of financial contexts, including the SEC and 

Kaggle, indicate that the proposed approach is robust and reliable. Additionally, there is minimal variation in metrics across 

datasets, demonstrating that the model's efficacy is not dependent on the specific datasets used. According to the research, 

the recommendation for DEA + BT enhances consistency, accuracy, and efficiency in ratings by making the ranking 

process more secure and transparent. This is because a more reliable basis for enterprise OCF ranking developed when 

DEA's analytical skills and BT's secure data handling were combined. 

 

 
Fig 3. Analysis of TEA. 

 

 
Fig 4. Analysis of RC (Spearman's Correlation). 

 

BT Performance 

The proposed DEA + BT is compared against alternative models, including Traditional DEA, DEA with CSM, and 

Stochastic Frontier Analysis with BT, using SEC + Kaggle financial data from over 4,400 public companies. Results show 

significant improvements in transaction NT, EED reduction, and security effectiveness. 

Fig 5 shows TPS and EED for each model across datasets, with Traditional DEA achieving an average TPS of 954 for 

SEC and 920 for Kaggle. However, the EED for Traditional DEA is relatively high, with values of 252 ms for the SEC and 

260 ms for Kaggle. These results indicate that while Traditional DEA can handle a moderate volume of transactions, its 

higher EED limits real-time processing efficiency. 

The DEA with CSM shows slight improvements, with an average TPS of 980 for the SEC and 967 for the Kaggle and 

peak TPS values of 1212 and 1150. EED is reduced to 208 and 218 ms. This improvement can be attributed to the enhanced 

security mechanisms, though the centralized nature still poses a bottleneck for scalability and real-time performance. 

The SFA with BT performs better than the previous models, achieving an average TPS of 1050 for the SEC and 1020 

for the Kaggle, with peak TPS reaching 1300 and 1251, respectively. EED is significantly reduced to 187 and 190 ms. The 

integration of BT helps decentralize the security processes, improving NT and reducing EED by ensuring faster consensus 

and validation times. 
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Fig 5. Transaction Speed (TPS-Transactions Per Second). 

 

The Proposed DEA + BT outperforms all other models, achieving the highest average TPS of 1253 for the SEC and 

1207 for the Kaggle. The peak TPS values reach 1500 and 1450. The EED is the lowest among all models, recorded at 120 

ms for the SEC and 125 ms for the Kaggle. These improvements stem from the decentralized nature of BT, optimized CM, 

and the efficiency of the DEA in processing financial data. The reduced EED ensures real-time validation and recording 

of DEA results, making the system highly efficient for large-scale enterprise evaluations. 

 

 
Fig 6. Security Effectiveness. 

Fig 6 highlights the security effectiveness of each model, focusing on metrics such as Consensus Rate (CR), Tampering 

Detection (TD), and Failed Transaction Rate (FTR). The Traditional DEA lacks a consensus mechanism and achieves a 

TD rate of only 72.5% for the SEC and 71.8% for the Kaggle. The FTR is relatively high at 2.5% and 2.8%, reflecting data 

integrity and security vulnerabilities. 

The DEA with CSM demonstrations improved TD rates to 85.3% for the SEC and 84.1% for Kaggle, with lower FTRs 

of 1.8% and 2.0%. However, the absence of a decentralized consensus mechanism still poses risks, as the centralized 
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system remains susceptible to single points of failure. The SFA with BT demonstrates a significant leap in security, 

achieving a consensus rate of 98.5% for the SEC and 98.2% for the Kaggle. TD rates improve to 95.8% and 92.9%, with 

FTR dropping to 1.2% and 1.4%, respectively. BT integration enhances data integrity by ensuring that all transactions are 

verified and recorded transparently. 

The proposed DEA + BT achieves near-perfect security performance. The SEC and Kaggle have a high CR of 99.9% 

and 99.9% for TD. This performance is attributed to a decentralized validation process, robust cryptographic methods, and 

the immutability of the BT ledger. The low FTR indicates high reliability in recording and verifying DEA results. 

 

Integration Efficiency 

The proposed DEA + BT's integration efficiency is assessed by comparing System Response Times (SRT) and data 

integrity metrics with other models, including Traditional DEA, DEA with CSM, and SFA with BT, using two datasets: 

the SEC Financial Statement Data Set and Kaggle Financial Data, showing significant improvements in SRT, processing 

overhead, and data integrity. 

 

 
Fig 7. Analysis of SRT. 

 

Fig 7 displays the SRT for each model across two datasets. Traditional DEA has the highest SRT (4.1 Sec) and peak 

time (7.2 Sec) for the SEC, while Kaggle has an average SRT (5.6 Sec) and peak time (8.3 Sec). Both models have high 

processing overheads (858 and 822 ms). These results indicate inefficiencies in handling large datasets, resulting in slower 

processing and higher EED. 

The DEA with CSM shows moderate improvements over the Traditional DEA. The average SRT for the SEC is 3.3 

Sec, with a peak time of 6.1 Sec. For the Kaggle, the average response time is 4.6 Sec, with a peak time of 7.2 Sec. Due to 

improved security measures, the processing overhead is reduced to 721 and 635 ms. However, the centralized architecture 

still introduces bottlenecks, affecting scalability and real-time performance. 

The SFA with BT performs better, achieving an average SRT of 2.8 Sec and a peak time of 4.2 Sec for the SEC. The 

Kaggle shows an average SRT of 5.8 Sec and a peak time of 6.8 Sec. Processing overhead is reduced to 586 and 683 ms. 

The integration of BT enhances processing efficiency by decentralizing validation, though the stochastic nature of SFA 

introduces variability in processing times. 

The Proposed DEA + BT achieves the best performance among all models. For the SEC, the average response time is 

just 1.7 Sec, with a peak time of 2.8 Sec and a processing overhead of 320 ms. The Kaggle shows an average SRT of 1.5 

Sec, a peak time of 2.5 Sec, and a processing overhead of 412 ms. These results reflect the efficiency of the decentralized 

BT combined with the streamlined DEA computations. The lower SRT and reduced processing overhead enable faster data 

validation and recording, making the system highly efficient for large-scale enterprise evaluations. 
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Fig 8. Data Integrity. 

 

Fig 8 evaluates data integrity using three key metrics: Verification Rate (VR), Data Consistency (DC), and Error 

Detection Rate (EDR). The Traditional DEA shows the weakest performance, with VRs of 77.8% for the SEC and 74.8% 

for Kaggle. DC is 81.2% and 81.9%, respectively, while EDR is relatively low at 69.4% and 77.5%. These figures highlight 

the vulnerabilities of traditional systems in maintaining data integrity. 

The DEA with CSM improves upon Traditional DEA, achieving VR of 81.2% for the SEC and 83.7% for the Kaggle. 

DC is enhanced to 89.6% and 87.9%, while EDR increases to 83.6% and 85.8%. The centralized security measures help 

detect errors more effectively, though the lack of decentralization poses risks of single points of failure. 

The SFA with BT demonstrates further improvements, with VR of 88.9% for the SEC and 93.9% for the Kaggle. DC 

reaches 91.2% and 90.6%, while EDR rises to 89.6% and 93.2%. The BT integration enhances the integrity and consistency 

of the data by ensuring that all transactions are validated and recorded transparently. 

The Proposed DEA + BT achieves the highest data integrity metrics. The VR is 96.3% for the SEC and 97.8% for the 

Kaggle. DC reaches 99.7% and 96.9%, while error detection rates are 98.6% and 98.9%. These results demonstrate the 

robustness of the decentralized validation process, the cryptographic security, and the immutability of the BT ledger. The 

high VR ensures that all recorded data is accurate and verifiable, while the low error rates indicate minimal discrepancies 

during data processing. 

 

Resource Efficiency 

The resource efficiency of the proposed DEA + BT is evaluated by comparing its computational overhead Fig 9 and storage 

optimization Fig 10 with those of other models: Traditional DEA, DEA with CSM, and SFA with BT. The analysis utilizes 

the SEC Financial Statement Data Set and Kaggle Financial Data, which includes over 4,400 public companies. The results 

prove how the proposed DEA + BT efficiently utilizes computing resources and optimizes storage requirements. 

 

 
Fig 9. Computational Overhead. 

The Traditional DEA shows the lowest CPU and Memory Usage (MU), with 47.3% CPU usage and 1.4 GB of memory 

for the SEC and 42.8% CPU usage and 1.1 GB for Kaggle. However, despite low Resource Consumption (RC), the 

Execution Times (ET) of 3.5 and 2.8 Sec. highlight inefficiencies due to the lack of integrated security and decentralized 

validation. 
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The DEA with CSM increases CPU and MU slightly, with CPU usage at 53.6% and MU of 1.6 GB for the SEC. ET 

increased to 4.2 and 4.0 seconds on Kaggle. The added security processes generate higher RC and slower ET than 

Traditional DEA. 

The SFA with BT increases CPU usage to 58.5% and MU to 1.8 GB for the SEC, with ET of 4.1 Sec. For the Kaggle, 

CPU usage reaches 56.2%, and MU is 1.7 GB, with ET of 4.5 Sec. While BT integration improves security, the stochastic 

nature of SFA contributes to higher RC and slightly longer ET. 

The Proposed DEA + BT shows the highest CPU and MU due to BT’s decentralized processing and cryptographic 

operations. For the SEC, CPU usage is 63.4%, and MU is 2.1 GB, with the fastest ET of 3.2 Sec. For the Kaggle, CPU 

usage is 61.8%, MU is 2.0 GB, and ET is 4.1 Sec. The efficiency gains from BT’s optimized CM offset the increased RC, 

resulting in faster ET despite higher RC. 

 

 
Fig 10. Storage Optimization. 

 

The Traditional DEA has the most minor storage requirements, with 2.5 GB for the SEC and 2.2 GB for the Kaggle. 

However, it proposes no compression and shows a high Data Redundancy Rate (DRR) of 25.5% and 24.8%. This 

redundancy indicates inefficiencies in data storage. 

The DEA with CSM increases storage size to 3.2 GB and 2.9 GB, with a compression ratio of 1.2:1 and a reduced DRR 

of 22.3% and 21.5%. The added security layers contribute to higher storage needs but slightly improve data redundancy. 

The SFA with BT requires significantly more storage, with 4.8 GB for the SEC and 4.5 GB for the Kaggle. The 

compression ratio improves to 1.5:1, and DRR is reduced to 15.8% and 15.2%. BT's distributed ledger and cryptographic 

validation increase MU demand but enhance data integrity. 

The Proposed DEA + BT has the highest storage requirements, with 5.2 GB for the SEC and 4.9 GB for the Kaggle. 

However, it achieves the best compression ratio of 2:1 and the lowest DRR of 12.4% and 11.8%. This improvement is 

attributed to BT’s efficient storage mechanisms, including transaction compression, deduplication, and decentralized 

validation, which optimize storage without compromising data integrity. 

 

V. CONCLUSION AND FUTURE WORK 

The objective of the present study was to develop a novel network to enhance the openness, security, and accuracy of 

business OCF rankings by combining DEA and BT, driven by network security. There are three dimensions in which 

conventional DEA models are lacking: computational efficiency, data integrity, and operational transparency. The use of 

BT in the model ensures decentralized validation, the implementation of cryptographic security, and the storage of 

permanent records. The proposed model achieved better results than standard DEA, DEA with CSM, and SFA with BT 

when evaluated on the SEC Financial Statement Data Set and the Kaggle Financial Data, which encompassed over 4,400 

public companies. It secured the system with a 99.9% CR and TD, reduced EED to 120 ms and boosted transaction speed 

to 1253 TPS. Better technical efficiency accuracy (up to 95.2% of the time) and higher RC (Spearman's value of 0.864) 

were additionally verified by the model. To solve some of the problems with the previous methods of doing enterprise 

OCF ranking, this integration provides an improved approach that is secure, transparent, and robust. 

It can be achieved that future work will be focused on improving scalability, optimizing the operational efficiency of 

BT, and applying Deep Learning (DL) in order to improve the accuracy of ranking further. 
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