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Abstract – Precious metals price forecasting represents an intricate task owing to their elevated volatility and delicacy to 

global economic variations. Conventional time series forecasting approaches frequently attempt to account for the non-

linear and complex relationships that exist in commodity price movements, resulting in sub-optimal accuracy in price 

forecasting. Recently, the emergence of deep learning has provided outstanding modeling of such intricate patterns. This 

paper investigates the implementation of deep learning approaches, particularly One Dimensional Convolutional Neural 

Networks (1D-CNN), Long Short-Term Memory (LSTM), and the combination of 1D-CNN and LSTM, for precious 

metals prices forecasting. By drawing on the competitive unique capabilities of 1D-CNN in extracting essential features, 

LSTM in sequential data processing, and Hyperband optimization methodology in automatically optimizing hyper-

parameters, the proposed hybrid approach endeavors to improve forecasting accuracy compared to individual 

approaches. Extensive experiments are conducted to assess the performance of implemented approaches using three 

datasets traded at the Multi Commodity Exchange (MCX), and the attained accuracy exhibits the hybrid approach’s 

superiority over standalone architectures. Using the gold dataset as an example of a precious metal, the proposed hybrid 

approach results for the Absolute Error (MAE), Root Mean Squared Error (RMSE), and Rsquared were 0.0182, 0.1500, 

and 0.9616, respectively. The outcomes indicate that the proposed hybrid forecasting approach of 1D-CNN and LSTM 

can considerably enhance the capabilities of prediction in the precious metal price forecasting field, providing an 

encouraging architecture for analyzing the financial market. 

 

Keywords – Precious Metal Prices, 1D-CNN, LSTM, Hyperband Optimization Methodology, Hybrid Forecasting 

Approach, Multi Commodity Exchange (MCX). 

 

I. INTRODUCTION 

Precious metals are gaining increasing attention owing to their elevated economic values. Precious metals prices represent 

a leading indicator of inflation, which can express the purpose of monetary policy for the economy as a whole. Precious 

metals serve as vital hedging instruments in the financial market, particularly as safe-haven assets to mitigate risks during 

financial crises. Additionally, precious metals are essential raw materials in contemporary advanced technologies, and the 

price fluctuation of precious metals profoundly influences the operations of relevant enterprises [1]. Accurate price 

forecasting is of great importance to stable corporate operations, financial risk management, and economic policy making. 

However, the price fluctuation of precious metals is influenced by various factors (such as global geopolitical landscape, 

economic policy, dollar exchange rates, and crude oil prices), and the price series exhibit the traits of instability, non-

linearity, and extreme noise, hence, accurately forecasting metal prices represent a difficult task [2] [3]. 

Forecasting precious metal prices has long been a key focus of the scholarly community, with models continuously 

developing as research progresses. In the past years, academics relied on econometric approaches (such as vector error 

correction, vector autoregressive, autoregressive integrated moving average, and generalized autoregressive conditional 

heteroscedasticity) for forecasting prices of precious metals (such as gold, silver, platinum, palladium, and rhodium) [2]. 
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While these traditional econometric approaches perform well under linear assumptions, they struggle to capture more 

critical non-linear traits of time series data [4]. With advancements in computing technology, machine learning approaches 

have become more and more distinguished in forecasting metal prices. Nevertheless, these models face many drawbacks 

such as limited generalization capabilities, constrained feature extraction, and sub-optimal forecasting accuracy [5] [6] [7]. 

Deep learning approaches have revealed considerable improvements in financial time series forecasting (especially, in 

metal price forecasting), exceeding both econometric and machine learning approaches [8]. Across various applications, 

deep learning approaches surpassed in extracting essential features utilizing various types of data [9] [10] [11], and recent 

progressions in the use of hybrid mechanisms have further improved forecasting accuracy beyond basic approaches. 

Regarding hybrid deep learning approaches, the main concept is to handle the deficiencies of individual approaches and 

create a synergistic impact in metals price forecasting, which has recently become the mainstream scheme [6]. 

Among the diverse deep learning approaches, one-dimensional convolutional neural networks (1D-CNN) and long 

short-term memory (LSTM) are the dominant approaches to financial time series forecasting, including metal price 

forecasting. 1D-CNN is superlative for sequential data (such as time series signals) because it deals with one-dimensional 

data. It uses convolution filters applied across the data to extract local patterns effectively. LSTM represents a kind of 

recurrent neural network constructed to deal with sequential data of long-term dependencies. It conquers the issue of 

vanishing gradient present in conventional recurrent networks by inserting effective gating mechanisms [12]. 

Accurate precious metals price forecasting would significantly support account managers, investors, and metal 

institutions in producing sound market decisions and evaluations, whereas further progress in accurately forecasting such 

metals prices is challenging owing to their oscillatory and non-linearity characteristics. This work provides the following 

essential contributions to forecasting the precious metal prices: 

• Developing an optimized hybrid deep learning approach by combining 1D-CNN and LSTM with Hyperband 

optimization methodology, using 1D-CNN to extract essential features, LSTM to capture temporal dependencies in 

time series data, and hyper-parameter optimization to improve approach performance. This approach is particularly 

proposed for precious metals price forecasting, which can outperform standalone approaches. 

• Providing a systematic comparison of the forecasting accuracy of the proposed hybrid approach with the individual 

approaches, and offering an in-depth analysis of the merits and restrictions of each approach in the metal price 

forecasting, particularly, precious gold and silver metals, and basic copper metal. 

• Utilizing the Multi Commodity Exchange (MCX), a real-world dataset, to highlight the applicability of deep 

learning approaches and their performance in forecasting precious metals prices. Since the MCX dataset holds 

inherent volatility and market-driven patterns, it offers a suitable and challenging environment for approach testing. 

• Conducting extensive experiments based on several assessment metrics (like Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), Median Absolute Error (Median-AE), and Determination Coefficient (Rsquared)) to 

rigorously evaluate and compare the performance of the approaches. 

• The outcomes provide practical insights for financial analysts and investors, depicting that the proposed hybrid 

approach can improve forecasting accuracy and provide a competitive advantage in the financial market. 

The remainder of the paper organization includes the following; an abbreviated description of the relevant systems is 

provided in the second section. The proposed system's general framework and construction are explained in detail in the 

third section. Experimental datasets, forecasting assessment metrics, experimental results, and comparison analysis with 

relevant systems are exhibited in the fourth section. Conclusions and some future directions are drawn in the final section. 

 

II. RELATED WORKS 

Precious metals, as unique commodities, have a distinguishing role in the global economy. In recent decades, increasing 

literature has concentrated on improving the accuracy of precious metal price forecasts relying on machine and deep 

learning approaches, providing valuable insights for monetary policy formulation, investment strategies, and mining 

production planning [13]. 

Alameer et al. [14] presented a hybrid system for gold price forecasting with several optimization algorithms for 

training a multilayer perceptron neural network. This system utilized a gold price dataset of 360 monthly observations, 

ranging from September 2013 to August 2017. The trained neural network with the Whale optimization technique 

surpassed other systems and revealed a significant reduction in MSE and RMSE and the highest generalization abilities, 

however, this hybrid system might need more computational resources in contrast to simpler systems. 

Du et al. [15] presented a hybrid system for metal price forecasting. This system combined an Extreme Learning 

Machine (ELM) with a Marine Predator optimization technique to improve forecasting accuracy. Before the dataset time 

series is fed into this combination, it is decomposed into modes using filter-based empirical mode decomposition with 

time-varying to preserve the characteristics of time-varying. In this system, gold and copper price datasets (acquired from 

the Investing website) are utilized, ranging from the second of January, 2013 to the end of January, 2020. The 

incorporation of the optimized ELM with superior pre-processing improved the attained accuracies, however, this requires 

a significant effort of computation. Additionally, it concentrates on point forecasting, which led to a lack of uncertainty 

quantification for price fluctuations. 

Elberawi and Belal [16] presented a hybrid deep learning system relying on the auto-encoder method and LSTM to 

predict daily gold and global other commodity prices. In this system, the recurrent variation auto-encoder was utilized for 
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extracting higher-level and latent features from time series, and LSTM was utilized for capturing temporal dependencies 

throughout multiple past time steps for a dataset acquired from Quand public repository (recorded since 1970). In addition, 

a Genetic Algorithm was incorporated to improve system hyper-parameters (like feature selection, learning and dropout 

rates, counts of layers, batch size, epochs, etc.). This system surpassed other baseline systems for next-day prediction. 

Although the error naturally increases with longer horizons, the system performed consistently over the two-, three-, and 

seven-day horizons, and showed inconsequential accuracy falls at specific points. However, genetic algorithm-based 

hyper-parameter search added more training time and complexity. 

Huang et al. [17] presented a hybrid system for forecasting the price of various non-ferrous metals such as gold, 

copper, aluminium, and zinc. In this system, the initial forecasting for each metal was implemented using the Prophet 

approach, and the differences between forecasted and actual values (non-linear residual sequences) were also extracted. 

These residual sequences were then decomposed using an enhanced complementary ensemble empirical mode to be 

broken into intrinsic mode functions (multiple simpler sub-sequences) to decrease complexity and address aliasing and 

noise issues in the data. After that, every decomposed sub-sequence was forecasted by implementing multi-approaches like 

non-linear auto-regressive network, back propagation neural network, ELMAN neural network, LSTM, and ARIMA, and 

the optimal predictions resulted from all sub-sequences were combined to constitute the last residual forecasting. 

Eventually, this last forecasting was added to the initial forecasting to attain the final forecasted values for non-ferrous 

metal prices. In this system, daily closing prices for gold and copper (obtained from the Investing website) were used, 

ranging from 2013 to 2015, and daily closing prices for aluminium and zinc (obtained from the London Metal Exchange 

(LME) dataset), ranging from 2008 to 2015 and 2011, respectively. This hybrid system achieved the highest performance 

across all datasets used compared to the individual approaches, however, it could be computationally expensive. 

Zhou and Xu [18] presented a multi-stage hybrid learning scheme for accurately forecasting the prices of platinum, 

palladium, and silver using data decomposition, optimized relevance vector machine, and error correction. In the first stage 

of this scheme, the input price series data is decomposed using complementary ensemble empirical mode, and these 

decomposed data are then passed to another decomposition and permutation entropy for minimizing noise and repetitive 

modelling. In the second stage, the resulting sub-sequences are fed into an optimized relevance vector machine predictor 

(utilizing African Vulture optimization technique) to attain the initial forecasting results and the error series. These error 

series are further decomposed and forecasted in the final stage to rectify the formerly forecasted prices of precious metals 

and attain the last forecasting outcomes. The hybrid learning scheme utilized the futures price datasets for platinum, 

palladium, and silver from the New York Mercantile Exchange (NYMEX), ranging from the first of January, 2018 to the 

end of December, 2021. This scheme provided high Squared and low error values across the three precious metals. 

However, it required more computational resources for optimization and multiple decomposition techniques. 

Banerjee et al. [19] explored the responses of eight commodity futures (Gold, silver, copper, nickel, lead, zinc, natural 

gas, and crude oil) to propaganda indices during COVID-19, using several deep learning approaches. LSTM, Bidirectional 

LSTM, and Gated Recurrent Units (GRU) were implemented on the daily closing prices for eight commodities traded in 

the MCX and the National Commodity Exchange (from the first of January, 2020, to the end of May, 2021) and news 

sentiment indices from the RavenPack database. Among the implemented approaches, Bidirectional LSTM outperformed 

the others by achieving the lowest values for MAE and RMSE, especially in forecasting the precious gold and silver metal 

prices; however, it needs more computational resources in contrast to LSTM and GRU. 

Li et al. [20] utilized the futures price of copper derived from the NYMEX, and this dataset is dependent on 

comprehensive market and historical data that might not apprehend unforeseen economic shifts. This dataset was first 

normalized and then analyzed to choose the ten most correlated factors with copper prices using the Pearson correlation 

coefficient method. After that, split into a training set (from April 1996 to November 2015) and a testing set (from 

December 2015 to July, 2022). Initially, the price of copper was forecasted by implementing deep extreme learning, 

extreme Gradient Boosting, and LSTM approaches with various factors. The Sparrow search optimization algorithm was 

utilized to choose the optimal hyper-parameters for these approaches. The deep extreme learning exceeded the other 

approaches with an Rsquared value of 0.956. Moreover, these approaches were combined using a CNN with the ten 

correlated factors to present an ensemble approach to forecasting the price of copper. The presented ensemble approach 

significantly enhanced the forecasting accuracy and exceeded the other individual approaches with an Rsquared value of 

0.959. However, this combination of approaches increased the computational complexity. Regardless of high achieved 

accuracy, the ensemble approach, like CNN, lacks transparency in decision-making operations. 

Yang et al. [21] presented an ensemble deep learning-based prediction system incorporating LSTM, GRU, recurrent, 

and multilayer perceptron neural networks, improved via temporal fusion transformers and attention mechanisms to 

acquire ultimate interval-valued metal prices and enhance prediction performance. In this system, futures prices of silver 

(from the first of January, 2006, to the end of April, 2024) and copper (from the first of June, 2012, to the end of 

November, 2023) were obtained from the LME dataset. The proposed system achieved IRMSE values of 0.17496 and 

62.51197 for silver and copper prices, respectively, demonstrating error reduction and hence strong predictive accuracy. 

However, this system necessitates high-quality data and large training periods, and according to its complexity, it may 

require more computational costs. 

The most notable shortcomings determined in the previously mentioned related works are the limited ability of 

traditional approaches to extract essential features, dependency on intensive preprocessing stages that work on making 
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modelling complicated, and the insufficiency of processing spatial and sequential data synchronously. Also, many of these 

works have relied on decomposition or autonomous optimization techniques to address the inherent restrictions of the 

underlying neural networks, resulting in hybrid approaches that are expensive and computationally complex. In addition, 

many approaches, like multilayer perceptron neural networks and ELM, lacked strength in finding temporal dependencies 

and even local patterns inherent in metal price data. Moreover, most previously related works depend on manual tuning, 

which is ineffective and time-consuming. In our proposed architecture, the combination of 1D-CNN and LSTM addresses 

these shortcomings by effectively capturing local price fluctuations and the characteristics of long-term sequential 

dependencies, and utilizing the hyperband optimization methodology avoids manual tuning and prevents overfitting and 

underfitting through finding the best hyper-parameters. As a result, this simplifies the model structure, reduces 

computational complexity, improves interpretability, and enhances prediction accuracy, accordingly overcoming the major 

shortcomings mentioned in previous works. Table 1 summarizes the main techniques and datasets used, target metals, and 

the highest obtained results of the related works. 

 

Table 1. Comparison of Deep Learning-Based Metal Price Prediction Approaches 

Author(s), Ref. 

(Year) 

Deep Learning and Techniques 

Used 
Dataset Used 

Target 

Metals 
Obtained Results 

Alameer et al., 

[14] (2019) 

Multilayer perceptron neural 

network and Whale optimization 

technique 

Monthly gold price 

data 
Gold 

Optimized the accuracy of 

prediction (the results 

specifics were not detailed) 

Du et al., [15] 

(2021) 

ELM with a Marine predator 

optimization technique 

Gold and copper price 

datasets (acquired 

from the Investing 

website) 

Gold and 

Copper 

Optimized the accuracy of 

prediction (exact metrics 

were not demonstrated) 

Elberawi and 

Belal, [16] (2021) 

Recurrent variation auto-encoder 

method and LSTM with Genetic 

algorithm  

Global commodity 

prices (acquired from 

Quandl public 

repository) 

Gold, silver, 

iridium, and 

gas 

Achieved MAE of 15.7 and 

RMSE of 20.8 for the next 

day prediction of gold 

prices. 

Huang et al., [17] 

(2022) 

Hybrid system of Prophet model, 

improved complementary 

ensemble empirical mode, and 

multi-model optimization error 

correction utilizing ARIMA, 

LSTM, etc. 

Metal prices (obtained 

from LME dataset) 

Gold, copper, 

aluminum, 

and zinc 

The highest results 

obtained were for copper: 

RMSE=1.63, MAE=0.91, 

using the hybrid system 

Zhou and Xu, [18] 

(2023) 

A multi-stage hybrid scheme of 

complementary ensemble 

empirical mode, another 

decomposition with permutation 

entropy, and optimized predictor 

of relevance vector machine 

Precious metals price 

data (acquired from 

NYMEX) 

Platinum, 

palladium, 

and silver 

MAE of 3.7949, 21.1615, 

and 0.0714; RMSE of 

4.6599, 24.8232, and 

0.0884 for platinum, 

palladium, and silver 

prices, respectively. 

Banerjee et al., 

[19] (2024) 

LSTM, Bidirectional LSTM, and 

GRU 

Eight commodities 

traded in the MCX 

and the National 

Commodity Exchange 

Gold, silver, 

copper, nickel, 

lead, zinc, 

natural gas, 

and crude oil 

Bidirectional LSTM 

outperformed alternatives 

with MAE of 0.0057 and 

RMSE of 0.0072 for gold 

metal prices 

Li et al., [20] 

(2024) 

Optimized deep extreme learning, 

extreme Gradient Boosting, and 

LSTM 

Copper futures price 

(acquired from 

NYMEX) 

Copper 

Ensemble approach 

outperformed single 

approaches with MAE of 

253.033 and RMSE of 

385.005 

Yang et al. [21] 

(2025) 

Two-stage ensemble learning 

system 

Metal prices (obtained 

from LME dataset) 

Silver and 

copper 

Achieved IRMSE of 

0.17496 for silver prices, 

and IRMSE of 62.51197 

for copper prices 

 

 

III. PROPOSED ARCHITECTURE  

In this section, the precious and basic metal prices datasets with the main preprocessing steps and several deep learning 

approaches (1D-CNN, LSTM, hybrid 1D-CNN and LSTM, and the overall proposed optimal hybrid framework using 

hyper-parameter optimization methodology) will be described in detail. Fig 1 depicts a detailed description of each stage 

in the proposed architecture. In this architecture, the closing prices of the input metal datasets are first preprocessed over 
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many steps, and time-series data are then formed (using sliding windows) to be passed to the deep learning approaches. 

Eventually, the optimally configured standalone and hybrid approaches were implemented, and their forecasting 

performance was compared. 

Datasets 

Datasets were returned from the first of January, 2014, to the end of August, 2024, for two precious metal prices of Gold, 

Silver, and one basic metal price of copper traded at MCX India, and downloaded through the Kaggle data science 

platform (https://www.kaggle.com/). Each dataset includes closing, opening, high, and low prices. The implemented 

baseline and hybrid forecasting approaches utilized the closing daily prices (which reflect the final traded price of each 

day). According to the correlation matrices depicted in Fig 2, the closing price feature is chosen since it demonstrates a 

high correlation with other significant features. The shapes of the closing prices for the metal’s datasets are demonstrated 

in Fig 3, and the descriptive statistics for the selected price features are depicted in Table 2. It's worth noting that these 

closing prices have fluctuated irregularly, particularly since 2020, and lack an obvious pattern, making it difficult for any 

single forecasting approach to extract complicated features. 

 

Table 2. Outline of Descriptive Statistics for Gold, Silver and Copper Closing Prices 

Precious 

and Basic 

Metals 

Count Mean Std. Min 25% 50% 75% Max 

Gold 

Prices 
2760 40133.79 13227.64 24597 28959 32314.5 50379.5 74367 

Silver 

Prices 
2759 51137.16 14921.93 33170 38689.5 44281 64875 96162 

Copper 

Prices 
2758 521.61 165.51 291.9 402.46 445 709.53 936.5 
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Fig 1. Workflow of Proposed Architecture. 

   
                                                 (a)                                                                                         (b)  

 
(c) 

Fig 2. Correlation Matrices For (A) Gold, (B) Silver and (C) Copper Metal Prices in The MCX Datasets. 

 

Regarding the gold dataset, closing prices include 2,760 data points, averaging approximately 40,134, which is very 

close to the average opening price, signifying price stability at market opening. The range (from low to high) is between 

24,451 and 74,731, and the standard deviation is greater than 13,200, signifying high price fluctuations. And in the silver 

dataset, the closing prices include 2,759 data points and average around 51,137, which is very close to the average opening 

price, indicating that the markets open at the previous closing price. The range (from low to high) is between 32,600 and 

96,000, and the standard deviation is larger than 14,900, signifying high price fluctuations. While the copper dataset 

includes 2,758 records, averaging approximately 521.6 points, which is too close to the opening prices. Prices fluctuate 

significantly, with a standard deviation of approximately 165, indicating moderate volatility. 

Missing Data Imputation 

Handling missing values is a key part of data preprocessing for these metal price datasets. Because the datasets are 

relatively well-behaved (i.e., they do not contain extreme or highly skewed values), calculating the arithmetic mean 

represents the optimal and most efficient process for processing these datasets. The mean imputation replaces the missing 

values with the mean of the closing price column. This preprocessing stage helps enhance the quality of the dataset and 

prepare it for the approach training. 

 

Interquartile Range (IQR) Detector 

It is common to notice extreme values when dealing with closing prices. These are caused by data entry errors, abrupt 

market fluctuations (especially during wars), or abnormal trading circumstances. These extreme values significantly 

impact descriptive statistics and the accuracy of predictive modeling. Therefore, implementing an outlier detector on 

closing prices will guarantee that the metal datasets remain representative and accurate. 

The interquartile range (IQR) represents the most accurate and typical outlier detector for financial data. In this 

detector, the quartiles (Q1 and Q3, which denote 25% and 75%) of closing prices are first computed, and the value of IQR 
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is then obtained by subtracting these quartiles (IQR=Q3-Q1). After that, the upper and lower outlier boundaries (𝑈𝑏𝑎𝑛𝑑 

and 𝐿𝑏𝑎𝑛𝑑) are established using the following formulas: 

 

 

 

Fig 3. A Series of Original Closing Prices for Gold, Silver and Copper Closing Prices. 

 

 𝑈𝑏𝑎𝑛𝑑 = 𝑄3 − ℎ × 𝐼𝑄𝑅   (1) 

 

 𝐿𝑏𝑎𝑛𝑑 = 𝑄1 − ℎ × 𝐼𝑄𝑅   (2) 
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Where ℎ denotes a practical threshold selected empirically (equal to 1.5) to discriminate between typical variation and 

extreme anomaly. The closing prices above 𝑈𝑏𝑎𝑛𝑑 and below 𝐿𝑏𝑎𝑛𝑑  are detected as outliers, and replaced with the median 

value, which is a central value of the sorted metal closing prices and is favored owing to its strength against outliers. 

 

Data Normalization 

Closing metal prices have been observed to be highly variable, and without normalization, the deep learning approach 

applied can assign disproportionate significance to higher values due to the influence of large differences in price 

magnitudes, which may lead to biased or inaccurate predictions. Therefore, another preprocessing technique (called data 

normalization) is applied, which is accomplished using Min-Max scaling to transform the closing prices data into a 

regulated range (between one and zero), ensuring data points are within the same scale to be comparable. This scaling 

technique can improve the approach's performance and achieve more stable and faster convergence throughout training. 

The scaled closing prices 𝑃𝑠𝑐𝑎𝑙𝑒𝑑  can be calculated as follows: 

 

 𝑃𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑃−𝑃𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

𝑃𝑚𝑎𝑥𝑖𝑚𝑢𝑚 −𝑃𝑚𝑖𝑛𝑖𝑚𝑢𝑚 
     (3) 

 

Where 𝑃 denotes the original closing price data, 𝑃𝑚𝑎𝑥𝑖𝑚𝑢𝑚 and 𝑃𝑚𝑖𝑛𝑖𝑚𝑢𝑚 denote the maximum and minimum values 

in the closing prices, respectively. 

 

Data Partitioning 

Each dataset is eventually partitioned into 90% training and 10% testing sets and reformed to a compatible shape for input 

into the baseline and hybrid deep learning approaches. The incipient analysis involves a window of 30-day periods (each 

30 reads) that are selected as inputs. 

 

1D-CNN Approach 

1D-CNN can be utilized for handling sequential or time-series data by passing a convolutional filter over it to obtain local 

patterns. Its typical architecture encompasses various layers. 

• The first is an input layer, which consists of a series of data points arranged as a one-dimensional vector for each 

time step. 

• The second is a convolution layer which works on applying learnable filters or weight matrices ℒ over the input 

series for producing essential local feature maps ℱ. This operation can be given as follows: 

 

 ℱ(𝑖) = ∑ 𝑠𝑖+𝑗−1 ∙ ℒ𝑗
𝑁
𝑗=1   (4) 

 

• Where ℱ(𝑖) denotes the produced feature map at ith position, 𝑠𝑖+𝑗−1 denotes the elements of input sequence, and 

ℒ𝑗  denotes the weigh at jth position in the filter. 

• The third is a layer of activation called Rectified Linear Unit (ReLU), which provides nonlinearity. 

• The maximum pooling layer, which decreases dimensionality and reserve the most appropriate features. 

For metal prices forecasting, 1D-CNN approach works on extracting local patterns over a specified window (30 days) 

of closing price sequence data, which is advantageous in perceiving irregularities and short-term trends. 

 

LSTM Approach 

LSTM approach represents a variation of Recurrent Neural Networks (RNNs) formed for time-series data modeling. Its 

units can learn and recall (long-term) dependencies, solving the vanishing gradient issue that plagues conventional RNNs 

[22] [23]. The unit of LSTM can be formed from: a forget gate, which is responsible for determining which information 

should be ignored from the cell state; an input gate, which is responsible for updating the cell state with the newest 

information; and an output gate, which specifies the subsequent hidden state. Every unit accepts the former hidden 

state 𝑑𝑛−1, the former cell state ℓ𝑛−1, and the present input 𝑥𝑛, and calculates the subsequent hidden state 𝑑𝑛 and the 

subsequent cell state ℓ𝑛. Generally, for each step of time n, the LSTM can carry out the succeeding activities: 

• The first activity involves determining information to throw out from the cell state using the forget gate. This gate 

exploits a sigmoid layer to produce an output 𝑓𝑛, ranging between one and zero for every number in the cell 

state ℓ𝑛−1. 

 

 𝑓𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑀𝑓 ∙ [𝑑𝑛−1, 𝑥𝑛] + 𝐵𝑓)    (5) 

 

Where 𝑀𝑓 and 𝐵𝑓  denote the matrix of weights and bias for the forget gate, respectively. 

• In the second activity, the input gate works on updating the cell state with the newest information, including two 

layers: a sigmoid layer to determine which values should be updated, and a hyperbolic tangent layer (𝑡𝑎𝑛ℎ) to 

create the latest candidate values to potentially be included in the cell state ℓ̌𝑛. The main goal of the sigmoid 
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function is to make the model differentiable, while the tanh function aims to distribute the gradients due to its 

central zero (range from negative one to one), which alleviates the issue of vanishing gradients and allows cell 

information to flow for a longer period. 

 

 𝑖𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑀𝑖 ∙ [𝑑𝑛−1, 𝑥𝑛] + 𝐵𝑖)  (6) 

 

  ℓ̌𝑛 = 𝑡𝑎𝑛ℎ(𝑀ℓ ∙ [𝑑𝑛−1, 𝑥𝑛] + 𝐵ℓ   (7) 

 

Where 𝑖𝑛 denotes the output of this gate, and 𝑀𝑖 , 𝑀ℓ and 𝐵𝑖 , 𝐵ℓ denote the matrices of weights and biases for the input 

gate, respectively. 

• The third activity involves updating the cell state  ℓ𝑛 via incorporating forget and input gates. 

 

  ℓ𝑛 = 𝑓𝑛 ∙  ℓ𝑛−1 + 𝑖𝑛 ∙  ℓ̌𝑛  (8) 

 

• In the last activity, the hidden state 𝑑𝑛 is controlled using the output gate, and it is given to the subsequent unit of 

LSTM and the output layer. Ultimately, the output depends on the output of this gate 𝑜𝑛 and the updated cell 

state ℓ𝑛. 

 

 𝑜𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑀𝑜 ∙ [𝑑𝑛−1, 𝑥𝑛] + 𝐵𝑜)   (9) 

 

  𝑑𝑛 = 𝑜𝑛 ∙ 𝑡𝑎𝑛ℎ(ℓ𝑛)  (10) 

 

Where 𝑀𝑜 and 𝐵𝑜 denote the matrix of weights and bias for the output gate, respectively. 

A Stacked LSTM approach represents an expansion of the original LSTM approach [24], which comprises multiple 

hidden layers of LSTM stacked on each other. Owing to its higher depth and complexity contrasted with the single 

approach, this sophisticated approach allows us to capture higher-level temporal patterns within the input data, providing 

higher efficiency in modeling complicated sequential data and achieving more accurate predictions. In this stacked 

approach, the output of one LSTM layer is used as the input for the succeeding LSTM layer. Considering the mth layer 

(here we use, m=1, 2, 3), the input to the mth LSTM layer is 𝑑𝑛−1
𝑚−1 from the former layer (or input sequence for the 1st 

layer), and the output of the mth LSTM layer is 𝑑𝑛
𝑚, which will be approved as input to the subsequent layer. 

 

Hybrid Forecasting Approach 

The proposed hybrid approach incorporates 1D-CNN and LSTM layers. In this approach, the 1D-CNN layer assist in 

extracting essential features from input metal prices, and the LSTM layer seize temporal dependencies in time series data. 

Then, there are two dense layers that reduce the dimensions of the extracted features and produce the final prediction. 

• The first 1D-convolution layer encompasses (32, 64, or 128) filters (of size 3) applied over the input data to learn or 

obtain (32, 64, or 128) various feature maps. And to make the network learn more complicated patterns, the 

activation function ReLU is applied.  

• Maximum Pooling is added to decrease the data dimensionality via downsampling, decreasing the cost of 

computations and complexity of the approach. This process preserves the principal features via choosing the 

maximum value within the window (of size 2). 

• The Batch Normalization layer is utilized for speeding up and stabilizing training via normalizing activations in the 

previous layer throughout the batch. 

• LSTM layer is utilized to model long-term sequential data dependencies. This layer is capable of learning from 

previous information and maintaining a memory of previous states, which is beneficial for time series prediction. It 

contains (64, 128, 192, or 256) neurons (units) and produces the entire sequence of outputs.  

• A dropout layer is utilized after the LSTM layer with a dropping (between 0.3 and 0.5) to decrease overfitting by 

randomly selecting between 3% and 5% of the layer's output units to be zero throughout training without changing 

the data shape and having any parameters, making the approach more generalizable and robust. 

• Dense Layers (fully connected layers) conduct the last output transformation, relying on the underlying features 

extracted via the previous 1D-convolutions and LSTM layers. The first dense layer with (32, 64, 96, or 128) 

neurons is utilized to decrease the data dimensionality gradually and ReLU is then utilized to present non-linearity, 

succeeded by a dropout layer with a dropping (between 0.1 and 0.4) to attain further regularization. The last dense 

layer is utilized to output a single value for time series forecasting. 

 

Hyperband Optimization Methodology 

The presence of multiple hyper-parameters can significantly impact an approach's predictive performance, so determining 

the approach's parameters is a critical process in its training. There are several fundamental methodologies for deciding 

hyper-parameters, such as grid search, random search, optimization algorithms, and so on. In particular, the Hyperband 
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optimization methodology is more efficient for tuning deep learning approaches in which the training process is expensive 

and the hyper-parameter space is vast. This methodology integrates a random search through configuring hyper-parameters 

and a strategy of early-stopping to assign more resources for promising approaches (called successive halving). 

• The hyperband optimization methodology attempts to use multiple combinations to reach the optimal hyper-

parameter configuration (𝑓(ℋ) → 𝑀𝑖𝑛𝑖𝑚𝑢𝑚), where ℋ denotes a hyper-parameter configuration, by trying to use 

(32, 64, 128) filters in the 1D-CNN layer, (64, 128, 192, 256) units in the LSTM layer, (32, 64, 96, 128) units in 

dense layer, (between 0.3 and 0.5, and between 0.1 and 0.4) rates of dropouts, and (0.0001, 0.001, 0.01) rate of 

learning, and  𝑓(ℋ) denotes a validation loss after training within a budget. 

• The maximum brackets "𝐵𝑚𝑎𝑥" and reduction factor "ℛ" should be specified, and the total budget "ℬ" should also 

be computed, which depends on 𝐵𝑚𝑎𝑥  and maximum resources "𝑅𝑚𝑎𝑥", (here we utilize maximum 30 epochs), and 

the formulas are as follows:  

 

 𝐵𝑚𝑎𝑥 = ⌊logℛ(𝑅𝑚𝑎𝑥)⌋  (11) 

 

 ℬ = (𝐵𝑚𝑎𝑥 + 1) ∙ 𝑅𝑚𝑎𝑥   (12) 

 

• Hyperband assigns a few initial epochs (resources) to a substantial count of configurations. Then, it discards 

underachieving approaches and reassigns resources to the superior configurations. The early stopping guarantees 

that epochs are not wasted on underachieving configurations. ً When no improvement in validation loss is achieved 

over several epochs, training will be stopped early. In each bracket i, Hyperband activates successive halving, as 

follows: 

 

 𝐶 = ⌈
ℬ

𝑅𝑚𝑎𝑥
∙

ℛ𝑏

𝑏+1
⌉  (13) 

 

 𝑅𝑚𝑖𝑛 =
𝑅𝑚𝑎𝑥

ℛ𝑏    (14) 

 

Where 𝐶 denotes initial count of configurations, and 𝑅𝑚𝑖𝑛 denotes minimum resource assigned per configuration, ℛ is 

assigned to 3. For 𝑖 = 0, 1, … , 𝑏, every round trains 𝐶𝑖 = ⌊𝐶 ∙ ℛ−𝑖⌋ configurations, each for 𝑅𝑚𝑖𝑛𝑖 = 𝑅𝑚𝑖𝑛 ∙ ℛ𝑖 resources. 

Once the optimization process is complete, the optimal approach (based on the minimal validation loss) is chosen and 

can be utilized for future forecasts. 

The Hyperband methodology was utilized to optimize the accuracy of forecasting metal prices using standalone and 

hybrid approaches. This optimization methodology effectively searches the hyper-parameter space to obtain the optimal 

configuration for these approaches, improving performance with lower computational cost.  

 

IV. EXPERIMENTAL ANALYSIS 

In order to depict the efficiency of the proposed optimized forecasting architecture, several approaches were applied. 

These approaches involve standalone 1D-CNN, stacked LSTM, and a hybrid 1D-CNN and LSTM. 

 

Evaluation Measures 

The evaluation measures like 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸, 𝑀𝑒𝑑𝑖𝑎𝑛 − 𝐴𝐸, and 𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑 are employed in this proposed architecture to 

determine the most appropriate approach. Lower values for these metrics (except 𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑), denote better approach 

performance [25]. 

𝑀𝐴𝐸 is used as a regression measure to find the average absolute errors (differences) between actual ‘A’ and 

forecasted ‘F’ price values of precious metals. The formula for this metric is given as follows: 

 

 𝑀𝐴𝐸 =
1

𝑙
∑ |𝐴𝑖 − 𝐹𝑖|

𝑙
𝑖=1   (15) 

 

Where 𝑙 denotes the series length.  

𝑅𝑀𝑆𝐸 is more interpretable than MAE in penalizing larger errors, in other words, it is beneficial when required to 

minimize large errors. The formula of this metric is given as follows: 

 

 𝑅𝑀𝑆𝐸 = √
1

𝑙
∑ (𝐴𝑖 − 𝐹𝑖)

2𝑙
𝑖=1   (16) 

𝑀𝑒𝑑𝑖𝑎𝑛 − 𝐴𝐸 is also used as a regression measure to find the median of all absolute errors (differences) between the 

actual and forecasted price values. The formula for this metric is given as follows: 
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 𝑀𝑒𝑑𝑖𝑎𝑛 − 𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝐴𝑖 − 𝐹𝑖|) (17) 

 

𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑 is used to measure how well forecasts agree with actual data. The formula for this metric is given as follows: 

 𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑 = 1 −
∑(𝐴𝑖−𝐹𝑖)2

∑(𝐴𝑖−�̅�)2   (18) 

 

Where �̅� denotes the mean of actual price values of precious metals. 

 

Results and Comparison 

To evaluate the proposed architecture, an extensive comparison between optimally configured deep learning approaches is 

conducted to verify the forecasting performance of these approaches. 

In this proposed architecture, various hyper-parameters are considered for optimization utilizing the hyperband 

methodology (such as Filters, LSTM Units, Dense Units, Dropouts, Learning Rate, and Epochs). Table 3 demonstrates the 

optimal combination of hyper-parameters for the optimized approaches attained using the hyperband methodology.  

 

Table 3. Optimal Hyper-Parameters for The Approaches by Hyperband Methodology 

Approaches Filters 
LSTM 

Units 

Dense 

Units 

1st 

Dropout 

2nd 

Dropout 

Learning 

Rate 

No. of 

Epochs 

1D-CNN 128 - - 0.3 - 0.001 30 

Stacked LSTM - 
128, 64, 

and 32 
- 0.4 0.4 0.001 30 

Hybrid 

Approach 
64 256 128 0.3 0.2 0.001 30 

 

The choice of the above hyper-parameters directly influences the capability of approaches to learn and fit the data, 

which in turn affects the accuracy of the forecasting results, as depicted in Tables 4, 5, and 6. 

Table 4. Forecasting Results of The Optimally Configured Approaches for Gold Prices 

Approaches MAE RMSE 𝑴𝒆𝒅𝒊𝒂𝒏 − 𝑨𝑬 𝑹𝒔𝒒𝒖𝒂𝒓𝒆𝒅 

1D-CNN 0.0456 0.1547 0.0414 0.7821 

Stacked LSTM 0.0244 0.14207 0.0169 0.9144 

Hybrid Approach 0.0182 0.1500 0.0164 0.9616 

 

Table 5. Forecasting Results of The Optimally Configured Approaches for Silver Prices 

Approaches MAE RMSE 𝑴𝒆𝒅𝒊𝒂𝒏 − 𝑨𝑬 𝑹𝒔𝒒𝒖𝒂𝒓𝒆𝒅 

1D-CNN 0.0388 0.1410 0.0253 0.7874 

Stacked LSTM 0.0194 0.1579 0.0124 0.9427 

Hybrid Approach 0.0159 0.1719 0.0121 0.9682 

 

Table 6. Forecasting Results of The Optimally Configured Approaches for Copper Prices 

Approaches MAE RMSE 𝑴𝒆𝒅𝒊𝒂𝒏 − 𝑨𝑬 𝑹𝒔𝒒𝒖𝒂𝒓𝒆𝒅 

1D-CNN 0.0158 0.1268 0.0093 0.9375 

Stacked LSTM 0.0186 0.1257 0.0162 0.9436 

Hybrid Approach 0.0107 0.1358 0.0096 0.9816 

 

As depicted in previous Tables, the optimally configured hybrid approach provides superior results among all the 

approaches with the highest 𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑 values, reaching 0.9616, 0.9682, and 0.9816, accompanied by minimal MAE values, 

reaching 0.0182, 0.0159, and 0.0107, RMSE values, reaching 0.1500, 0.1719, and 0.1358, and 𝑀𝑒𝑑𝑖𝑎𝑛 − 𝐴𝐸 values, 

reaching 0.0164, 0.0121, and 0.0096 for gold, silver, and copper price data, respectively. This indicates that the variability 

of data is effectively captured by the optimized hybrid approach, which is well-generalized and likely to perform similarly 

with other precious metal prices.  

For the optimized single approaches, the stacked LSTM results outperformed the 1D-CNN approach by a large margin. 

Additionally, stacked LSTM results were somewhat close to those of the optimized hybrid approach, with 𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑 values, 

reaching 0.9144, 0.9427, and 0.9436, MAE values, reaching 0.0244, 0.0194, and 0.0186, RMSE values, reaching 0.14207, 
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0.1579, and 0.1257, and 𝑀𝑒𝑑𝑖𝑎𝑛 − 𝐴𝐸 values, reaching 0.0169, 0.0124, and 0.0162 for gold, silver, and copper price data, 

respectively. However, the standalone 1D-CNN approach provided reasonable performance by exploiting its ability to 

capture short-term features in the metal price data. 

Fig 4 depicts the actual and predicted values for each optimized approach on the testing data. It is noticeable that the 

curves in this figure, which represent price predictions using the optimized hybrid approach, are very close to reality. 

Furthermore, for a more visual comparison of actual and predicted values for the metal prices data, scatter plots are 

depicted in Fig 5. It is noticeable from these plots, especially for the optimized hybrid approach, that the points are almost 

closely spaced around the diagonal, indicating that the predicted values are very close to the actual values. In the other 

approaches, the dispersion is minimal, indicating that the hybrid model is capable of providing accurate and consistent 

predictions. 

 

 
 (a) 1D-CNN  (b) Stacked LSTM  (c) Hybrid approach 

 

 
           (d) 1D-CNN  (e) Stacked LSTM  (f) Hybrid approach 

 

 
(g) 1D-CNN   (h) Stacked LSTM (i) Hybrid approach 

 

Fig 4. Approaches Performances Over the Testing Set For (A-C) Gold, (D-F) Silver, And (G-I) Copper Price Data. 
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                         (a) 1D-CNN (b) Stacked LSTM (c) Hybrid approach  

 

 
                         (d) 1D-CNN  (e) Stacked LSTM  (f) Hybrid approach  

 

 
                         (g) 1D-CNN  (h) Stacked LSTM  (i) Hybrid approach  

Fig 5. Scatter Plots of The Actual and Predicted (A-C) Gold, (D-F) Silver and (G-I) Copper Price Data. 

  

To visualize how well the optimized hybrid approach’s predictions match the actual data, all prediction results are 

depicted in Fig 6. This comparison confirmed that the optimized hybrid approach has minimal prediction error, robust 

prediction stability, and high curve-fitting accuracy. 

Fig 7 and Fig 8 depict the performance assessment results of all optimized approaches for metal price forecasting. 
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Fig 6. Visualization Comparison of The Predicted Values Against the Actual Prices Using the Optimal Hybrid Approach. 

 

 
Fig 7. Comparison of Error Measures Results for All Optimized Approaches. 
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Fig 8. Comparison of Accuracy Measure Results for all Optimized Approaches. 

 

Based on the previous comparisons, we conclude that the single-prediction approaches exhibit a notable weakness in 

making accurate predictions for high-complexity sequences. On the contrary, the hybrid approach could mutually 

compensate for the weaknesses of the single-prediction approach. Furthermore, the utilization of the Hyperband 

methodology proved to be highly efficient for tuning hyper-parameters in all approaches. 

 

V. CONCLUSION 

Accurate forecasting of time series, like precious metal prices, represents a significant challenge due to the fluctuating and 

dynamic nature of the price data. Conventional approaches often face numerous obstacles in effectively obtaining long-

term dependencies and short-term fluctuations. Therefore, the proposed architecture works on optimizing and comparing 

the performance of various deep learning approaches for price metal forecasting, utilizing an effective optimization 

methodology to fine-tune hyper-parameters and enhance the performance of these approaches. Applying the hyperband 

optimization methodology to 1D-CNN, stacked LSTM, and hybrid 1D CNN and LSTM approaches showed that the 

hybrid approach attained superior results in loss reduction and validation accuracy. Since the standalone 1D-CNN was 

capable of effectively capturing short-term features, and the stacked LSTM was adept at modeling long-term 

dependencies, combining the two approaches in a hybrid architecture exploited their abilities, making it more suitable for 

forecasting metal prices. Moreover, the hyper-parameter methodology enabled effective exploration of the hyper-

parameter space, resulting in optimal performance. 

In future work, the architecture could be expanded to handle further features such as sentiment data and external 

incidents, enabling approaches to obtain additional factors affecting the time series and enhancing the accuracy of their 

predictions. Additionally, we will concentrate on real-time forecasts rather than batch forecasts, so that the approaches can 

continuously update their predictions as new data appears. It is particularly beneficial for applying to the global 

commodities markets, where prices change rapidly. 
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