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Abstract – Mpox is a re-emerging zoonotic viral disease that attracted the attention of the whole world because of its 

spreading transmission and clinical similarity with other skin diseases. It is highly important that this identification is fast 

and accurate, even in remotely located areas or resource-limited settings. However, the conventional centralized deep 

learning models exhibit severe limitations regarding data privacy, modality variation, and scalability across varied clinical 

environments. To this end, this paper presents MetaFusion-FL, a new federated meta-learning framework that combines 

cross-modality image analysis based on a hybrid Transformer-Capsule model with Hierarchical Attention-Based 

Multimodal Fusion (HAMFM). The model can work on multi-source images as input, namely smartphone images, 

dermoscopic images, and clinical images, which are processed locally at edge hospitals without raw data transmission. 

Reptile federated meta-learning strategy guarantees quick personalization of models and global generalization. When 

evaluated on a wide dataset, MetaFusion-FL has a higher classification accuracy of 99.46%, precision of 99.52%, recall of 

99.40%, and F1-score of 99.46% compared to other current models, including ViT-RLXGBFL (99.12%) and ResViT-

FLBoost (98.78%). The framework is also resistant to image noise and is consistent and stable across federated clients. 

Besides, SHAP and Grad-CAM++ explanations are used to ensure interpretability in a clinical context. MetaFusion-FL is 

therefore a leap in the development of AI-based, privacy-preserving, and generalizable skin disease classification, 

particularly Mpox. 

 

Keywords – Mpox Detection, Cross-Modality, Federated Learning, Meta-Learning, Capsule Network, Transformer, 

Medical Imaging, Multimodal Fusion. 

 

I. INTRODUCTION 

Mpox (Monkeypox) is a viral zoonotic infection that has currently acquired global consideration after its re-emergence and 

the possibility of human-to-human spreading. Historically, the disease has been endemic to Central and West Africa, but 

recent outbreaks have occurred across the world, leading to questions of how quickly the disease can be diagnosed and 

contained [1] [2]. The diagnosis Early and proper diagnosis plays an important role during the management of an outbreak, 

decreases transmission, and provides proper clinical care. Although the traditional diagnostic techniques like PCR 

(polymerase chain reaction) and ELISA (enzyme-linked immunosorbent assay) are sensitive, they are time consuming, 

expensive, and need special laboratory conditions. The latter has spurred the desire to use artificial intelligence, in particular 

deep learning models, to perform swift, non-invasive Mpox detection based on images of skin lesions [3] [4]. With regard 

to medical image classification, deep learning, namely convolutional neural networks (CNNs) and transformer-based 

models, including ViT (Vision Transformer) and Swin Transformer have shown promise. Such models in Mpox could be 

used to process high-resolution images of skin lesions and differentiate between Mpox and other skin diseases that can 

exhibit similarly, including chickenpox or syphilis. The benefit of such models will be the presence of pattern recognition 

and possible decision support in real-time, both in the clinical and remote setting [5] [6]. In addition to that, the use of self-

supervised learning and data augmentation techniques helps to increase the resilience of the models despite the limited size 
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of the annotated dataset, and in case of an outbreak, when the speed of implementation is a priority, deep learning is an 

attractive suggestion [7] [8]. 

However, despite these promising results, there are several limitations to the use of deep learning in the detection of 

Mpox. One is the challenge of availability of massive, diverse, and quality annotated databank. The datasets used are 

mostly geographically or demographically limited which may reduce the applicability of the models to the populations of 

the world. Second, Mpox skin lesions may resemble other skin diseases, and with inadequately trained model, false positive 

or negative outcome will be obtained [9] [10] [11]. Third, most models would be deemed black boxes, i.e. there would be 

minimal interpretation of the prediction which could hinder clinical trust and adoption. 

The significant downside of deep learning models, in terms of Mpox detection, is the necessity in data quality and 

quantity. The inconsistency of the lighting systems, quality of the cameras, or resolution of the images can produce a 

significant effect on the accuracy of the predictions. Additionally, those models are computation-demanding both in 

training and inference, which may not be possible in resource-limited settings where Mpox is most prevalent [12] [13]. 

There exists also the problem of algorithmic bias: models trained on one cohort of individuals may underperform on other 

skin colors, ages, or clinical contexts, threatening to increase healthcare inequities even more. Lastly, deep learning models 

have earned the unenviable reputation of being non-transparent, meaning that a clinician would not easily be able to answer 

why a prediction was made, which can inhibit their use in the clinical workflow [14] [15]. Although deep learning models 

present a recent and potentially revolutionary solution to the detection of Mpox, a couple of limitations and weaknesses 

need to be addressed. Dataset standardization, model interpretability, and fair model deployment remain active areas of 

research to make sure such technologies can be used ethically and effectively in global public health response. Fig 1 shows 

the symptoms of Mpox. 

 

 
Fig 1. Symptoms of Mpox. 

 

In order to mitigate these shortcomings, this paper proposes MetaFusion-FL, a cross-modality federated meta-learning 

framework toward robust, accurate, and explainable Mpox detection. The model we propose brings together a few 

novelties: (1) we use Hierarchical Attention-Based Multimodal Fusion (HAMFM) to fuse features extracted from 

smartphone, dermoscopic, and clinical images; (2) we encode data using a hybrid Transformer-Capsule encoder to capture 

both long-range dependencies and morphological hierarchies in lesions; and (3) we use the Reptile federated meta-learning 

algorithm to guarantee fast adaptation and weight convergence across all clients without requiring data sharing. By 

combing these elements in a federated setting, each healthcare institution can train a local model locally, and contributes 

to a global model without sending sensitive patient information. 

 

Main Contribution of the Work 

• Cross-Modality Image Fusion Architecture: Proposed a new architecture that integrates dermoscopic, smartphone, 

and clinical imaging modalities with hierarchical attention mechanisms, which can reliably perform across image 

sources which are otherwise heterogeneous. 

• Hierarchical Attention-Based Multimodal Fusion (HAMFM): Presented a new fusion block with channel-wise, 

spatial, and modality-aware attention mechanisms to highlight the features of the lesion area and preserve the 

modality attributes. 

• Hybrid Transformer-Capsule Feature Encoder: Proposed an encoder layer to incorporate transformer blocks to 

represent global context and capsule network to part-to-whole lesion morphology to make the diagnosis more robust. 

• Federated Meta-Learning in Reptile Optimization: Introduced a privacy-preserving federated learning procedure 

founded on the Reptile optimizer, allowing client-level personalization without the centralization of the data. 

• Modality-Invariant Feature Weighting with XGBoost: Developed a modality-invariant feature importance 

enhancement mechanism XGBoost that enables final-stage classification and interpretability across modalities. 

• Artifact-Robust Preprocessing Pipeline: Designed a standardized preprocessing pipeline, Image modality-wise, of 

CLAHE, adaptive thresholding, hybrid noise filtering, and Z-score normalization. 
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The rest of the paper is structured as follows. Section 2 thoroughly describes related works involving Mpox detection, 

federated learning on medical images, and multimodal fusion strategies, revealing the drawbacks of the current 

frameworks. Section 3 elaborates the proposed MetaFusion-FL methodology, explaining the cross-modality fusion 

pipeline, Transformer-Capsule encoding, hierarchical attention designs, and federated meta-learning plan. Section 4 reports 

the experimental findings, performance analysis and comparison with benchmark models. Lastly, Section 5 concludes the 

paper, summing up the essential findings and providing the prospect of the real-world implementation, extension to 

multiple diseases, and adapting to changing clinical conditions. 

 

II. RELATED WORK 

In a narrative review, the association of Mpox virus (MPXV) infection and the diagnosing ability of saliva was noted. The 

MPXV replicated with the aid of endoplasmic reticulum, ribosomes as well as cytoplasmic proteins of the host cell. Lesions 

on the oral mucosa were frequent prior to skin rashes and the conventional diagnostic methods were unable to identify the 

virus early. A transmission medium, Saliva, was promising as a non-invasive diagnostic fluid [16]. In small-scale studies, 

up to 100 percent sensitivity in detecting MPXV DNA in saliva was identified. Transcriptomics, proteomics, lipidomics 

and metabolomics are OMICs technologies that enhanced the discovery of biomarkers. Saliva diagnostic platforms were 

supported by proteomic variations in saliva and plasma through mass spectrometry. 

Mpox virus (MPXV), genus Orthopoxvirus, family Poxviridae was initially identified in monkeys in Denmark in 1959 

and in humans in Congo in 1970. It first appeared in the U.S. in 2003 and 2017 and then rocketed around the world, with 

more than 92.000 cases by November 2023. The natural reservoir was thought to be African rodents, and international 

travel and the pet trade were thought to have helped spread it [17]. MPXV fell into Central and West African clades. There 

was cross-protection in the small pox vaccination. The clinical manifestations were fever, headache and skin vesicular 

lesions. The review highlighted united global responses to control future outbreaks. 

Mpox infected more than 110 countries causing the fear of another pandemic. Diagnostic instruments were still costly 

and time-consuming, so the effort was made to develop automated detection systems. One study proposed a multi-class 

deep learning framework using transformer architectures to distinguish Mpox and other skin diseases using lesion images 

[18]. The model used mechanisms like self-supervised learning and shifted window mechanisms. It has been trained on 

Mpox Skin Lesion Dataset Version 2.0 (2024). Compared to other models, such as ViT, MAE, DINO, and 

SwinTransformer, the latter demonstrated the best accuracy of 93.71%, which is almost 8% higher than the rivals. The 

findings indicated high-accuracy classification that can be applied to low-resource healthcare settings. 

A targeted review was used to investigate how Mpox had affected surgery three years after the outbreak. PubMed and 

Scopus literature was reviewed with the help of keywords, including Mpox, Monkeypox, and Surgery, and ten studies were 

selected. The review discussed operative treatment of Mpox complications and infection control in operative practice. 

Although the impact of Mpox on surgical services was minimal, the early stages of the outbreak were similar to those of 

COVID-19 [19]. Nonetheless, statistics were still scanty. The results highlighted the significance of surgeon participation 

in the diagnosis, increased infection precautions, and the awareness of the overlap of Mpox with other sexually transmitted 

infections. Availability of reconstructive procedures was deemed as vital in alleviating related stigma. 

The historical development, virology, epidemiology, diagnostics, and treatment of Mpox were reviewed in detail. 

Originally, Mpox was a zoonotic disease in Africa, but it managed to adjust to new ways of transmission and impact wider 

population groups. Genomic investigation supported the viral adaptability, which makes vaccine invention and diagnostic 

specificity challenging. The epidemiology pattern changed to an extent that the rural sporadic cases were changed to 

extended outbreaks in urban populations among the high risk populations [20]. Due to the detection and treatment progress, 

worldwide access was still insufficient. The review highlighted the importance of effective surveillance mechanisms, 

collaboration on an international level and research as urgent measures to be undertaken. It was concluded that 

strengthening global health infrastructure would play a central role in responding to Mpox and other infectious threats. 

 

III. METHODOLOGY 

The suggested methodology, MetaFusion-FL, is a cross-modality federated meta-learning method that aims at detecting 

Mpox across imaging modalities, such as smartphone photographs, dermoscopic scans, and clinical images. The system 

starts by standardized preprocessing that consists of CLAHE, adaptive thresholding, and hybrid noise filtering to bring 

uniformity in the quality of input. Features across modalities are then fused using a novel Hierarchical Attention-Based 

Multimodal Fusion (HAMFM) module. A hybrid Transformer-Capsule Network encodes these features, along with global 

spatial relationships and fine-grained lesion architectures. With the help of the Reptile meta-learning algorithm, federated 

learning makes it possible to drive decentralized training without exchanging raw data. A final prediction is done using an 

XGBoost classifier to provide robust and modality-invariant classification results. 

 

Dataset Compilation and Cross-Modality Integration 

Compiling and aligning a diverse set of skin lesion images related to Monkeypox (Mpox) is one of the initial steps made 

in the creation of MetaFusion-FL. The dataset is deliberately built across varied image acquisition modalities, namely 

smartphone photography, dermoscopic images, and clinical imaging systems, to facilitate generalization, robustness, and 

diagnostic performance. Such modalities are highly diverse in resolution, lighting condition, scale, and diagnostic details, 
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thus has made available a heterogeneous dataset, reflecting real-world applications in diverse healthcare scenarios. Such 

multi-source images are important to integrate in order to construct the models that can surpass the imaging source 

limitations. It all starts with the ethically acquired publicly accessible and institutionally gathered image data that are all 

manually curated and verified by trained dermatologists regarding consistency in the labeling of the lesions. The images 

are labeled with metadata indicating the source modality, anatomical location, lighting quality and severity score. In order 

to reach the modalities alignment, a harmonization protocol is used in several steps. Normalization of color space is done 

through perceptual color models (e.g. CIELAB) in order to reduce chromatic difference caused by the use of different 

imaging devices. This procedure will make the features of color (lesion pigmentation and adjacent skin tones) comparable 

between sources. Additional domain adaptation is then performed through histogram matching as well as adversarial 

domain alignment to minimize the impact of modality-induced bias on feature representation. 
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𝑌𝑛
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Fig 2. MetaFusion-FL Architecture. 

 

Where 𝑋, 𝑌, 𝑍 are tristimulus values in CIE color space, 𝑋𝑛, 𝑌𝑛 , 𝑍𝑛 are reference white values, 𝑓(⋅) is the transformation 

for non-linearity, and 𝐿∗, 𝑎∗, 𝑏∗ are lightness and chromaticity components in the CIELAB color space.After normalizing 

and harmonizing images, metadata-based indexing takes effect. A modality label is provided on each image, necessary to 

train the fusion model to learn the context and source of each input. The labels also route the images through modality-

specific preprocessing pipelines, and to provide information to attention-based fusion mechanisms. The resulting data is 

formatted into triplets of matched samples across modalities where feasible, and consistency in lesion representation among 

the various imaging methods. This triplet scheme is found to be particularly important to supervised contrastive learning 

at the attention based fusion step. MetaFusion-FL establishes a foundation of federated generalization and multimodal 

learning by constructing a large annotated and modality-aligned dataset. Fig 2 illustrates the proposed MetaFusion-FL 

architecture. 

 

Preprocessing and Standardization 

After compiling the datasets, a powerful preprocessing and standardization protocol is used to make the inputs consistent 

and prominent as far as the diagnostics are concerned. There is a wide variety of imaging modalities and capture conditions, 

making preprocessing modality-aware and adaptive to the quality and granularity of the visual information depending on 

the type of images. To this purpose, every image is processed with a dashboard-specific enhancement pipeline, but using 
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a global scheme of input normalization. The initial important improvement procedure is carrying out Contrast Limited 

Adaptive Histogram Equalization (CLAHE). CLAHE re-distributes pixel intensities in localized areas of the image, it 

enables the clearer viewing of boundaries of the lesion as well as skin textures, without excessively enhancing noise. The 

method is especially useful in dermoscopic and smartphone images in which lighting inhomogeneities and shadows hide 

fine-grained structure of the lesions. Applied selectively to the luminance component (converted to a suitable color space, 

e.g. YCbCr or Lab*) CLAHE is used to preserve chromatic information, so that contrast enhancement does not introduce 

artifacts that can be diagnostically misleading. 

 

 𝐻𝑐(𝑖) = min(𝐻(𝑖), 𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡)  (4) 

 

Where 𝐻(𝑖) is the histogram bin count for gray level 𝑖, 𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡 is the upper limit for histogram bin height and 𝐻𝑐(𝑖) 

is the clipped histogram value at intensity level 𝑖.Adaptive Thresholding is a preprocessing step that is segmentation 

oriented. This technique allows the reliable separation of the foreground and background, having different lighting 

conditions in each situation, by calculating pixel-wise thresholds using local neighborhood statistics. Adaptive 

Thresholding can create segmentation, which is used to simplify subsequent localization of lesions in images by making 

lesion areas more visible and reducing background noise a critical procedure in training attention models and capsule 

networks. Also, the Adaptive Thresholding can be used to automatically crop region-of-interest (ROI) patches to compute 

efficiently. 

 

 𝑇(𝑥, 𝑦) =
1

𝑁
∑ 𝐼(𝑖, 𝑗) − 𝐶(𝑖,𝑗)∈𝑁(𝑥,𝑦)   (5) 

 

Where 𝑇(𝑥, 𝑦) is the threshold at pixel (𝑥, 𝑦), 𝑁(𝑥, 𝑦) is the local neighborhood around pixel, 𝑁 is the number of pixels 

in neighborhood, 𝐼(𝑖, 𝑗) is the intensity at neighbor (𝑖, 𝑗) and 𝐶 is the constant to fine-tune thresholding.All images are 

resized to 224 224 pixels (using bilinear interpolation) to ensure consistent input dimensions throughout the neural 

architecture. This standardization makes them compatible with backbone feature extractors such as Transformers and 

Capsule Networks and maintains spatial hierarchies. Since resizing cause distortion, aspect ratio preservation and border 

padding techniques are applied selectively to assure that the shapes of lesions are not distorted. Further, pixel intensities 

are Z-score normalized to achieve zero-mean unit variance distribution across input batches, which expedites model 

convergence and minimizes effects of imaging inconsistencies. 

 

 𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝐼(𝑥,𝑦)−𝜇

𝜎
  (6) 

 

Where 𝐼(𝑥, 𝑦) is the pixel intensity at (𝑥, 𝑦), 𝜇 is the mean of pixel intensities, 𝜎 is the standard deviation and 

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) is the normalized intensity. A hybrid median-Gaussian filtering method is used to suppress the remaining 

modality-specific artifacts. This algorithm has the speckle and scanner noise reducing properties of median filtering, edge-

preserving qualities of Gaussian blurring. This high-quality preprocessing allows recovering high-quality features even 

using low-resolution or low-quality sources, and all modalities are fairly represented at training time. 

 

Hierarchical Attention-Based Multimodal Fusion (HAMFM) 

At the heart of the MetaFusion-FL framework lies the Hierarchical Attention-Based Multimodal Fusion Module 

(HAMFM), which is responsible for learning a rich, unified representation from the modality-diverse input images. Unlike 

traditional concatenation-based fusion approaches, HAMFM employs a multi-level attention mechanism to preserve 

modality-specific information while aligning semantically relevant features across modalities. The fusion process begins 

with modality-specific branches, where input images from each modality are passed through lightweight convolutional 

encoders to extract modality-specific features. These initial encoders are shallow yet expressive, preserving unique spatial 

characteristics of each imaging technique. Channel-wise attention is applied within each branch to weigh the importance 

of different feature maps. For example, in dermoscopic images, pigmentation and vasculature features may receive higher 

attention, whereas in smartphone images, edge gradients and texture contrast may be emphasized. The channel attention 

scores are derived using global average pooling followed by a sigmoid-based weighting function, ensuring that only 

diagnostically significant channels are propagated forward. 

 

 𝛼𝑐 = 𝜎 (𝑊𝑐 ⋅ 𝛿(𝑊1 ⋅ 𝐺𝐴𝑃(𝐹𝑐)))  (7) 

 

Where 𝐹𝑐 is the feature map for channel 𝑐, 𝐺𝐴𝑃 is the Global Average Pooling, 𝑊1, 𝑊2 are learnable weight matrices, 

𝛿 is the ReLU activation, 𝜎 is the sigmoid function, and 𝛼𝑐 is the attention weight for channel 𝑐.After intra-modality 

emphasis, the outputs from all modality branches are passed to a central fusion module containing Modality-Aware 

Attention Blocks (MAAB). These blocks perform cross-attention operations wherein the query, key, and value components 

are derived from different modalities. This cross-attentional design enables the model to identify and align semantically 
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consistent lesion features across image types, effectively learning a modality-invariant feature space. Positional encodings 

are preserved to maintain spatial integrity during attention operations, especially important in aligning lesions across fields 

of view and angles. 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉  (8) 

 

Where 𝑄, 𝐾, 𝑉 are Query, Key and Value matrices, 𝑑𝑘 are dimension of key vectors, and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 are normalized for 

attention weights. Along with the channel and modality attention, the spatial attention is applied to emphasize lesion-centric 

areas. The feature maps are average over channel and then applied through convolutional layer and sigmoid activation to 

produce a spatial attention map. This map is applied to enhancement of lesion areas and the biting of irrelevant background 

information such as hair, reflections or the surrounding tissue. These attention maps are combined with the modality-fused 

feature maps in a multiplicative manner, the result is a hierarchically weighted representation which is modality-rich and 

lesion-focused. 

 𝑀𝑠 = 𝜎 (𝐶𝑜𝑛𝑣(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝐶𝑜𝑛𝑣(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)))  (9) 

 

Where 𝐹 is the input feature map, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 are channel-wise pooling, 𝐶𝑜𝑛𝑣 is the 2D convolution layer, 

𝑀𝑠 is spatial attention mask and 𝜎 is the Sigmoid activation.The ultimate result of the HAMFM is a concatenated 3D 

feature tensor which is the input to downstream feature encoding. This representation captures discriminative information 

of every modality but removes the redundancy and noise. The integration of attention with channels, modalities, and spatial 

positions makes the HAMFM provide MetaFusion-FL with the ability to deal with complicated dermatological information 

in a huge variety of input sources and clinical situations. 

 

Hybrid Feature Encoder 

The resulting fused multimodal representation is then fed through a hybrid feature encoder which consists of the principles 

of both Vision Transformers (ViTs) and Capsule Networks. Such a hybrid encoder aims at encoding both global context 

and hierarchy of skin lesions, which is necessary for accurate and explainable Mpox detection. The Transformer part of 

the encoder is in charge of learning long-range spatial connections in the picture. The fused featurs tensor is initially split 

into non-overlapping patches which are then flattened and embedded into a high-dimensional space. The spatial 

information that is lost due to flattening is captured by the addition of positional encodings. These embedded patches then 

go through a sequence of self-attention layers, where each patch attends to all the others, and relationships across the entire 

lesion, and neighboring tissue are learned. This feature is essential when detecting Mpox as some of the lesions appear 

with halo effects, radiating patterns, or clusters, which need to be understood in the context of areas beyond the localized 

areas.  

 𝑧0
𝑖 = 𝐸 ⋅ 𝑥𝑝

𝑖 + 𝑝𝑖  (10) 

 

Where 𝑥𝑝
𝑖  is the flattened image patch 𝑖, 𝐸 is the learnable linear projection matrix, 𝑝𝑖 is the positional encoding for 

patch 𝑖 and 𝑧0
𝑖  is the input token for transformer. Although Transformers offer world knowledge, they are deficient in part-

whole relationships that are inherent in dermatological lesions. To this end, Capsule Networks would be implemented into 

the hybrid encoder to study the compositional structure of lesions. The capsules in contrast to the traditional neurons 

encapsulate the existence of the features and their spatial orientation. Capsule layers can deduce higher-level patterns such 

as lesion shape, convexity, regularity of boundaries and texture gradients within a capsule when subjected to dynamic 

routing mechanisms. Such characteristics are frequently connected with the severity of lesions, the stage of progression, or 

differentiation of the disease. 

 𝑣𝑗 =
||𝑠𝑗||

2

1+||𝑠𝑗||
2 ⋅

𝑠𝑗

||𝑠𝑗||
  (11) 

 

Where 𝑠𝑗 is the input vector to capsule 𝑗, 𝑣𝑗  is the output vector of capsule 𝑗 and ||⋅|| is the vector norm. 

 

 𝑠𝑗 = ∑ 𝑐𝑖𝑗 ⋅ 𝑢̂𝑗|𝑖𝑖 ,                 𝑢̂𝑗|𝑖 = 𝑊𝑖𝑗𝑢𝑖  (12) 

 

Where 𝑢𝑖 is the output of lower-level capsule 𝑖, 𝑊𝑖𝑗 is the weight matrix between capsule 𝑖 and 𝑗, 𝑢̂𝑗|𝑖 is the predicted 

output, 𝑐𝑖𝑗  is the routing coefficient, and 𝑠𝑗 is the weighted input to capsule 𝑗.Integration is done by taking the output of the 

last Transformer layer as an input to a capsule layer. The output of this layer is vector capsules with the amplitude of each 

capsule vector representing the likelihood of presence of a lesion and the orientation carrying morphological information. 

Such dual-encoding paradigm achieves a huge boost in diagnostic power and interpretability. Further, the capsule network 

provides invariance to affine transformations and occlusions, which frequently occur in real-world medical images. This 

Transformer-Capsule hybrid network designs a synergetic feature encoding pipeline that combines abstract contextual 
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awareness with concrete structural analysis, which constitutes the main intelligence of MetaFusion-FL lesion 

understanding. 

 

Federated Meta-Learning Strategy 

Since medical data is highly sensitive, and healthcare systems are highly decentralized, MetaFusion-FL uses a Federated 

Meta-Learning approach to learn its model on several institutions without needing to centralize the data. Such a solution 

would help diagnostic models to take advantage of a large population of patients but with stringent privacy assurances.In 

this case, each participating healthcare center, also called a client, trains a local variant of the MetaFusion-FL model on 

their own subset of multimodal lesion data. Such datasets differ in modalities availability, sample diversity, and label 

quality, which is a high level of heterogeneity. In order to allow generalization of the model under such diverse conditions, 

the Reptile Algorithm is used as the inner meta-learning technique. Reptile consists of first-order optimization which 

estimates the capability of the model to adjust to novel tasks with just a couple of gradient steps. Within the federated 

setting, every client makes numerous inner-loop updates to its local data and transmits the updated parameters (rather than 

the data itself) to a central server. 

 𝜃 ← 𝜃 + 𝜖(𝜃′ − 𝜃)  (14) 

 

Where 𝜃 is the current model parameters, 𝜃′ is the adapted local parameters, and 𝜖 is the meta learning rate. The global 

model is then updated at the server with FedMeta-Aggregation, which averages the weights of all the clients but considers 

both data size and the magnitude of the update. Such aggregation will be fair and prevent skewing of the models by bigger 

clients. In contrast to conventional federated averaging, the approach introduces meta-gradient information to put more 

emphasis on the clients whose updates result in superior generalization. The global model is updated in subsequent 

communication rounds to learn an initialization that can quickly adapt to the local data of any client, including those with 

underrepresented modalities or uncommon presentations of Mpox. 

 

 𝜃𝑡 = ∑
𝑛𝑘

𝑛
𝜃𝑡

𝑘𝐾
𝑘=1   (15) 

 

Where 𝜃𝑡
𝑘 is the parameters from client 𝑘, 𝑛𝑘 is the sample size of client 𝑘, 𝑛 = ∑𝑛𝑘 is the total samples and 𝜃𝑡 is the 

updated global model.Secure Aggregation protocols are also applied to further ensure privacy, where Model updates are 

encrypted before being sent to the server, and the server learns no information specific to any client. Such an approach 

causes MetaFusion-FL to be exceptionally HIPAA, GDPR, and other privacy laws-compliant across the globe, thus being 

a brilliant choice to be utilized in thedelicate healthcare settings. 

 

Classification and Prediction 

The last step is done after the global model is trained and locally adjusted, which is the lesion classification and prediction. 

The hybrid Transformer-Capsule encoder output is fed to an XGBoost classifier that is minimally fitted to the fused feature 

space. The specific model is XGBoost, which is a gradient-boosted decision tree model due to its robustness, 

interpretability, and high-dimensional correlated features (as typically found in multimodal representations). 

 

 𝐿(𝑡) = ∑ 𝑙 (𝑦𝑖 , 𝑦̂𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡)𝑖   (16) 

 

Where 𝑙 is the loss function, 𝑦𝑖  is the true label, 𝑦̂𝑖
(𝑡−1)

 is the previous prediction, 𝑓𝑡 is the tree added in iteration 𝑡, and 

Ω is the regularization term.Every feature to the classifier is multiplied by an attention-derived modality weight, and thus 

modality-relevant features are not overwhelmed by more influential but less informative modalities. The classifier yields 

one of three labels: Mpox, Other Rash Conditions, or Uncertain. The Uncertain class gives the model the freedom not to 

make a forced prediction when the input features are below a confidence threshold or when there is an overlap in features 

between Mpox and clinically similar illnesses such as measles or chickenpox. The importance of features mapping and 

attention-based explanation assist in complementing the final classification decision, and thus, the rationale of the model 

is explainable to clinicians. Their explanations are especially useful in the setting of telemedicine, when remote experts 

can evaluate the prediction of the AI along with the visual evidence, helping to make more assertive diagnostic decisions. 

 

Algorithm: Meta Fusion-FL for Robust Cross-Modality Mpox Detection 

Input:𝐷𝑘 = {(𝑥𝑖
𝑘 , 𝑦𝑖

𝑘 , 𝑚𝑖
𝑘)}

𝑖=1

𝑛𝑘
:  Local dataset at client 𝑘 

  𝑦𝑖
𝑘 ∈ {𝑀𝑝𝑜𝑥, 𝑂𝑡ℎ𝑒𝑟𝑠}, 𝑚𝑖

𝑘is modality label (e.g., dermoscopic, clinical, smartphone). 

  𝐾: Number of clients (healthcare institutions) 

  𝑇: Total federated training rounds. 

  𝜃: Global model parameters initialized randomly 

 

Output: Final global model 𝜃∗capable of robust, privacy-preserving Mpox detection across modalities. 
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Data Harmonization and Preprocessing 

 Convert each RGB image to CIELAB color space using: 

  𝐿∗ = 116̇𝑓 (
𝑌

𝑌𝑛
) − 16, 𝑎∗ = 500 ⋅ (𝑓 (

𝑋

𝑋𝑛
) − 𝑓 (

𝑌

𝑌𝑛
)) , 𝑏∗ = 200 ⋅ (𝑓 (

𝑌

𝑌𝑛
) − 𝑓 (

𝑍

𝑍𝑛
)) 

 𝐻𝑐(𝑖) = min(𝐻(𝑖), 𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡)    // Clip the histogram 

 𝑇(𝑥, 𝑦) =
1

𝑁
∑ 𝐼(𝑖, 𝑗) − 𝐶(𝑖,𝑗)∈𝑁(𝑥,𝑦)    // Adaptive Thresholding for segmentation 

 𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝐼(𝑥,𝑦)−𝜇

𝜎
     // Normalize images using Z-score normalization 

 𝐼(𝑥, 𝑦) = (1 − 𝑎)(1 − 𝑏)𝐼00 + 𝑎𝑏𝐼11 + 𝑎(1 − 𝑏)𝐼10 + (1 − 𝑎)𝑏𝐼01  // Resize all images 

Modality-Aware Feature Fusion (HAMFM) 

 𝛼𝑐 = 𝜎 (𝑊𝑐 ⋅ 𝛿(𝑊1 ⋅ 𝐺𝐴𝑃(𝐹𝑐)))    // Apply Channel-wise Attention per modality 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉  // Perform Modality Cross-Attention Fusion 

 𝑀𝑠 = 𝜎 (𝐶𝑜𝑛𝑣(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝐶𝑜𝑛𝑣(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹))) // Generate Spatial Attention Maps 

 Fuse and weight all modality-specific representations into unified tensor 𝐹𝑓𝑢𝑠𝑒𝑑 

Hybrid Feature Encoding 

 𝑧0
𝑖 = 𝐸 ⋅ 𝑥𝑝

𝑖 + 𝑝𝑖      // Patch Embedding via Vision Transformer 

 Capsule Routing for Morphology Encoding 

  𝑣𝑗 =
||𝑠𝑗||

2

1+||𝑠𝑗||
2 ⋅

𝑠𝑗

||𝑠𝑗||
     //  Squash function 

  𝑠𝑗 = ∑ 𝑐𝑖𝑗 ⋅ 𝑢̂𝑗|𝑖𝑖 ,                 𝑢̂𝑗|𝑖 = 𝑊𝑖𝑗𝑢𝑖   // Routing 

Local Training and Meta-Learning at Each Client 

 For each client 𝑘 ∈ {1, … , 𝐾} 

  Perform local training using SGD on fused encoder: 

   Update local weights 𝜃𝑘 

 Meta-Learning Update using Reptile Algorithm 

  𝜃 ← 𝜃 + 𝜖(𝜃′ − 𝜃) 

Federated Aggregation (FedMeta-Averaging) 

 Aggregate client updates using sample-weighted FedAvg: 

  𝜃𝑡 = ∑
𝑛𝑘

𝑛
𝜃𝑡

𝑘𝐾
𝑘=1  

Classification and Explainable Decision 

 Final feature vector is passed to XGBoost classifier 

  𝐿(𝑡) = ∑ 𝑙 (𝑦𝑖 , 𝑦̂𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡)𝑖   // Loss function 

  𝐺𝑎𝑖𝑛(𝑗) =
1

2
[

𝐺𝐿
2

𝐻𝐿+𝜆
+

𝐺𝑅
2

𝐻𝑅+𝜆
−

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+𝜆
] − 𝛾  // Feature gain for interpretability 

Return: Final global model 𝜃∗capable of robust multimodal Mpox classification across distributed clients. 

End Algorithm 

 

Novelty of the Work 

The proposed MetaFusion-FL framework is novel because it is, to the best of our knowledge, the first to simultaneously 

combine cross-modality learning, federated meta-learning, and morphology-aware feature representation in the context of 

Mpox detection, which has received little attention in the literature. As opposed to the traditional approaches based on 

single-modality image data or centralized dataset, this study proposes a Hierarchical Attention-Based Multimodal Fusion 

(HAMFM) approach to effectively fuse the lesion-specific features of smartphone, dermoscopic, and clinical images 

sources. This makes the model resistant to changes in image quality, illumination, and device types as occur in practical 

teledermatology applications. The second important innovation is a hybrid Transformer-Capsule Network used as feature 

encoder. The architecture is the first to achieve a long-range awareness of space transformers, combined with the part-

whole modeling of structure capsule networks. Consequently, the model learns contextual and morphological features of 

Mpox lesions- a high-resolution and clinically interpretation that achieves state-of-the-art results compared to purely CNN 

or transformer-based architectures. Regarding privacy and scalability, the use of the model in a federated meta-learning 

scheme reduces two critical drawbacks of the existing medical AI systems: data centralization and personalization. The 

model followed by the Reptile algorithm in a federated scenario quickly adapts to the client-specific data distribution 

without travelling raw images. This helps to maintain patient privacy as well as improving generalization in geographically 

and demographically different institutions. Besides, the last classification step uses modality-invariant feature weighting 

through XGBoost, making irrelevant modality-specific noise irrelevant to the predictions. This translates to a very precise, 

flexible and explainable system that can be implemented both in urban hospitals and remote clinics. Therefore, MetaFusion-

FL is novel not only in terms of its architecture but the comprehensive synergy of multi-source data integration, privacy-
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preserving learning, and clinically informed feature encoding, which makes it a paradigm-shift towards intelligent Mpox 

diagnosis. 

IV. RESULTS AND DISCUSSIONS 

The implementation processor MetaFusion-FL framework was determined through a high-performance computing system 

with an NVIDIA RTX A6000 GPU (48 GB VRAM), 256 GB of RAM, and an Intel Xeon Gold 6338 processor on Ubuntu 

22.04 LTS working setup. Python 3.10 was used to code the experimental pipeline with essential libraries, including 

PyTorch to run deep learning modules, Scikit-learn and XGBoost to perform classification, and OpenCV to preprocess the 

images. The federated learning operations were implemented with the Flower framework, whereas the meta-learning 

functionality, such as the Reptile algorithm, was integrated personally with the PyTorch ecosystem. Each of the models 

was trained on the Adam optimizer, an initial learning rate of 0.0001, a batch size of 32, and an early stopping patience of 

20 epochs to avoid overfitting. MetaFusion-FL framework is a cross-modality, federated meta-learning-based framework 

designed towards accurate, robust, and explainable detection of Monkeypox (Mpox) skin lesions. It works by combining 

visual information across a variety of imaging modalities, i.e., smartphone images, dermoscopic images, and clinical-

quality skin images into a single learning framework that can operate in privacy-preserving, decentralized settings. 

MetaFusion-FL has the working principle of a multi-stage pipeline, including dataset harmonization, modality-specific 

preprocessing, hierarchical attention-based fusion, hybrid deep encoding, federated meta-training, and ensemble 

classification with explainability. All these steps play a distinct role in seeing to it that not only does the system have high 

diagnostic accuracy, but it is also clinically transparent as well as globally adaptable. Fig 3 shows the sample Mpox images. 

 

  
Fig 3. Sample Mpox Images. 

The suggested methodology started with a pre-process of acquiring Mpox skin lesion images that were obtained in 

different sources, had varying resolutions, lighting, and modality. To facilitate comparisons, color space normalization 

methods including CIELAB transformation were employed, and metadata labelling was used to indicate image modality, 

anatomical region, and acquisition conditions. Preprocessing comprised CLAHE to improving the visibility of lesion 

textures and adaptive thresholding to segment foreground lesion areas. The images were all resized to 224 224 with bilinear 

interpolation and standardized through Z-score normalization. A Hierarchical Attention-Based Multimodal Fusion Module 

(HAMFM) was then used to process the preprocessed images, where channel-wise, modality-aware, and spatial attention 

were used to highlight diagnostic features. The output of HAMFM was subsequently channeled to a hybrid encoder 

constituted by Vision Transformers (ViT) and Capsule Networks to encode contextual and structural lesions encoding, 

respectively. This two-encoder enabled the model to acquire global representation and local morphological features. 

MetaFusion-FL model trained in a federated meta-learning regime with the Reptile algorithm, clients trained local models 

(without sharing raw data) and the server performed parameter aggregation with weighted FedMeta-Aggregation. Lastly, 

fine features were categorized with XGBoost, and the model gave outputs of Mpox or other rash or uncertainty. Grad-

CAM++ and SHAP took interpretability a step further and visualized important regions of the lesions and feature 

contributions towards clinical validation. 

 

Table 1. Accuracy Comparison Across Models 

Model Accuracy (%) 

MetaFusion-FL 99.46 

ViT-RLXGBFL 99.12 

ResViT-FLBoost 98.78 

SA-PSO 98.5 

EfficientNet-B0 94.55 

MobileNetV3 96.8 

MRpoxNet 98.9 

SwinTransformer 93.71 

DenseNet201 95.62 

Xception 94.3 
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Table 1 and Fig 4 shows thecomparative study of the model accuracy on different deep learning architectures and 

fusion strategies. MetaFusion-FL model achieves the best accuracy of 99.46 percent, surpassing all the others, and 

demonstrating the usefulness of state-of-the-art feature-level fusion strategies in federated learning settings. ViT-

RLXGBFL and ResViT-FLBoost are close competitors with accuracies of 99.12% and 98.78%, respectively, 

demonstrating the power of Vision Transformers (ViT) and ensemble learning techniques such as XGBoost and boosting-

based frameworks. In terms of competitive performance, the MRpoxNet model also shows accuracy of 98.9% that 

outsmarts traditional architectures.  

 

 
Fig 4. Accuracy Comparison Across Models. 

 

Swarm intelligence model SA-PSO is next with 98.5%, which indicates a prospect of optimization-based methods. In 

the meantime, MobileNetV3 (96.8%) and DenseNet201 (95.62%) show moderate accuracy, sacrificing neither 

performance nor computational efficiency. EfficientNet-B0 and Xception obtain accuracies of 94.55 and 94.3 percent, 

respectively, which is lower than SwinTransformer, maybe because of architectural limitations or the limitations with the 

dataset. In general, the fusion and ensemble models demonstrate better accuracy on this comparison. Fig 5 shows the Mpox 

lesion images. 

 

 
Fig 5. Preprocessed Mpox Lesion Images. 
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Table 2. Precision, Recall, and F1-Score 

Model Precision (%) Recall (%) F1-Score (%) 

MetaFusion-FL 99.52 99.4 99.46 

ViT-RLXGBFL 99.2 99 99.1 

ResViT-FLBoost 98.85 98.7 98.77 

SA-PSO 98.6 98.4 98.5 

EfficientNet-B0 94.7 94.4 94.55 

MobileNetV3 96.9 96.5 96.7 

MRpoxNet 99 98.8 98.9 

SwinTransformer 93.8 93.6 93.7 

DenseNet201 95.8 95.5 95.65 

Xception 94.5 94.1 94.3 

 

Table 2 and Fig 6 reveals a comparison of different models in terms of Precision, Recall, and F1-Score. Once more, 

MetaFusion-FL gets the best results according to all the metrics with 99.52 precision, 99.4% recall, and 99.46 F1-Score, 

showing its well-rounded strong performance. ViT-RLXGBFL and ResViT-FLBoost also perform quite well, with F1-

Scores of 99.1% and 98.77%, respectively, indicating the potential of Vision Transformers combined with ensemble 

methods. MRpoxNet is competitive having an F1-Score of 98.9%, showing precision and recall. SA-PSO comes next with 

a balanced performance (98.5%), indicating the effectiveness of optimization based techniques. 

 

 
Fig 6. Precision, Recall, and F1-Score. 

 

MobileNetV3 and DenseNet201 provide moderate scores (96.7% and 95.65%), which balance between accuracy and 

light computation. EfficientNet-B0 and Xception have slightly Lower F1-Scores of 94.55 and 94.3, respectively, and 

SwinTransformer has the lowest at 93.7 as expected based on its lower accuracy in Table 1. In general, the fusion-based 

models significantly outclass the standard architecture in terms of all considered metrics. 

 

Table 3. Inference Latency Comparison (ms) 

Model Latency (ms) 

MetaFusion-FL 48 

ViT-RLXGBFL 53 

ResViT-FLBoost 56 

SA-PSO 60 

EfficientNet-B0 30 

MobileNetV3 27 

MRpoxNet 51 

SwinTransformer 65 

DenseNet201 58 

Xception 55 

 

Table 3 and Fig 7 emphasizes Inference latency, in milliseconds (ms), of different deep learning models which is 

crucial in real-time and resource-constraint applications. MobileNetV3 and EfficientNet-B0 have the lowest latency of 27 

ms and 30 ms, respectively, which once again justifies their fame as lightweight and efficient models, suitable to be 

deployed on edge devices. MetaFusion-FL, although supreme in terms of accuracy (observed in Tables 1 and 2), offers 
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relatively efficient latency of 48 ms and thus is a well-balanced choice. MRpoxNet and ViT-RLXGBFL have a little higher 

latency of 51 ms and 53 ms, respectively, which is acceptable in most applications. 

 
Fig 7. Inference Latency Comparison. 

 

On the larger side, SwinTransformer exhibits the highest latency of 65 ms, possibly because of the complicated design. 

DenseNet201, Xception, and ResViT-FLBoost are also located in the high latency group (55 58 ms), and SA-PSO obtains 

60 ms. In general, lightweight models have better response time, whereas fusion-based models provide a trade-off between 

latency and good performance. 

Table 4. Training Time per Epoch (Seconds) 

Model Training Time/Epoch (s) 

MetaFusion-FL 105 

ViT-RLXGBFL 112 

ResViT-FLBoost 108 

SA-PSO 115 

EfficientNet-B0 75 

MobileNetV3 63 

MRpoxNet 110 

SwinTransformer 123 

DenseNet201 117 

Xception 111 

 

Table 4 and Fig 8 shows the comparison of training time per epoch (in seconds) of different deep learning models, 

which is one of the main components when evaluating the scalability of a model and its computing efficiency. However, 

MobileNetV3 is the fastest in training time, taking only 63 seconds, which is extremely efficient in fast training loop and 

resource-limited scenarios, compared to other models. EfficientNet-B0 is not lagging behind in this aspect as well since it 

takes 75 seconds per epoch. Conversely, SwinTransformer requires the longest training time of 123 seconds, maybe 

because of complicated attention mechanisms and deeper design.  

 

 
Fig 8. Training Time Per Epoch. 



 

ISSN: 2788–7669                                                                                          Journal of Machine and Computing 5(3)(2025) 

1799 

The training time of MetaFusion-FL, ViT-RLXGBFL, ResViT-FLBoost, and MRpoxNet is moderately high, between 

105 and 112 seconds, because these are composite models and ensemble-based. SA-PSO and DenseNet201 require 115 

and 117 seconds respectively, which implies higher computational complexity. Xception is close behind at 111 seconds. 

In general, the lightweight models are faster to train, and the most precise models (as presented in Tables 1 and 2) are 

much slower (in terms of training time per epoch). 

 

Table 5. Robustness to Noise (Accuracy %) Under Perturbation 

Model Gaussian Noise Speckle Noise 

MetaFusion-FL 97.85 97.6 

ViT-RLXGBFL 96.9 96.7 

ResViT-FLBoost 96.4 96.1 

SA-PSO 95.7 95.4 

EfficientNet-B0 88.1 87.9 

MobileNetV3 90.25 89.85 

MRpoxNet 96.1 95.8 

SwinTransformer 87.3 86.9 

DenseNet201 89.8 89.2 

Xception 88.4 88 

 

Table 5 and Fig 9 investigates the stability of different models to two kinds of noise disturbances, i.e., Gaussian and 

Speckle noise, which models real world data degradation channels. MetaFusion-FL is the most resilient, with the accuracy 

of 97.85% in the presence of Gaussian noise and 97.6% in the presence of Speckle noise, which points to its high 

generalization and stability. ViT-RLXGBFL and ResViT-FLBoost are close behind, and the accuracy of these models 

under both settings is above 96 percent, which underlines the strength of transformer-based fusion models.  

 

 
Fig 9. Robustness to Noise (Accuracy %) Under Perturbation. 

 

The performance of MRpoxNet is also good with over 95% in both types of noise. On the contrary, older and lighter 

versions such as EfficientNet-B0, MobileNetV3, and Xception experience significant accuracy reduction, especially 

EfficientNet-B0 with 88.1% and 87.9%. SwinTransformer, regardless of its architecture depth, achieves the worst results, 

with 87.3% and 86.9%, which could be explained by sensitivity to high-frequency perturbations. By large, the fusion-based 

and ensemble models are more robust to noise and thus can be deployed in noisy or uncertain conditions, e.g., in medical 

imaging or in real-time surveillance. 

 

Table 6. Feature Importance Contribution by Modality 

Modality Importance Score (%) 

Clinical Imaging 20.3 

Dermoscopy 18.6 

Smartphone 12.5 

Texture Features 10.1 

Color Histogram 8.5 

Edge Map 7.3 

CLAHE Enhancement 6.7 

Metadata 6.2 

Segmentation Mask 5.4 

Attention Map 4.4 
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Table 6 and Fig 10 shows how each data modality contributes to the total feature importance or its relative influence 

on model performance. Clinical Imaging has the most importance points of 20.3% highlighting how this element is vital 

in proper diagnosis and analysis. Close behind is dermoscopy at 18.6%, demonstrating its importance in the close 

assessment of skin lesions. Smartphone images are at 12.5%, and it indicates the increased applicability of mobile-captured 

data to accessible diagnostics. Texture Features and Color Histogram take 10.1% and 8.5% respectively which means that 

the texture and color information are valuable in differentiating subtle difference.  

 

 
Fig 10. Feature Importance Contribution by Modality. 

 

Edge Map and CLAHE Enhancement show 7.3 % and 6.7 % respectively and it indicates that the edge detection and 

contrast enhancement methods are important. Metadata and Segmentation Mask contribute 6.2 and 5.4 percent respectively, 

which indicates the advantage of context and region-based information. Finally, the Attention Map has 4.4% with a 

reflection of how concentrated attention mechanisms can offer additional knowledge. On the whole, this allocation 

underlines the importance of multi-modal data integration in order to ensure the highest possible model accuracy and 

robustness 

Table 7. Client-wise Accuracy in Federated Learning Setup 

Client ID Local Accuracy (%) 

Hospital-1 99.42 

Hospital-2 99.37 

Hospital-3 99.35 

Hospital-4 99.5 

Hospital-5 99.48 

Hospital-6 99.45 

Hospital-7 99.46 

Hospital-8 99.41 

Hospital-9 99.44 

Hospital-10 99.43 

 

Table 7 and Fig 11 shows the client-wise accuracy on a federated learning configuration on ten hospitals. These 

accuracies are consistent impressively with a small range of 99.35% to 99.5%, and this indicates the efficiency and strength 

of the federated learning framework. Hospital-4 got the best local accuracy of 99.5%, with Hospital-5 right behind with 

99.48% and Hospital-7 with 99.46%. The least accuracy obtained was 99.35 percent at Hospital-3, which is already very 

high. This uniformity among geographically and demographically varied clients indicates that the federated learning model 

has a good generalization ability and also protects the privacy of data.  

It emphasis on the fact that the model can efficiently learn using decentralized data without communicating the data 

directly. This consistency in performance is essential in secure areas such as healthcare, where data privacy is vital, and 

model faithfulness has to be upheld cross-institutionally. In general, the federated method provides collaborative learning 

without much sacrifice on local performance. 
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Fig 11. Client-wise Accuracy in Federated Learning Setup. 

 

V. DISCUSSION 

The overall experimental outcomes of the MetaFusion-FL framework highly confirm its efficiency and can be used in 

practice in Mpox detection. The given model demonstrates superiority over the current architectures on the various 

evaluation measures, such as precision, recall, and F1-score, and provides exceptional classification accuracy of 99.46%. 

The combination of the cross-modality features through the Hierarchy Attention-Based Multimodal Fusion (HAMFM) 

module makes the model robust to differences in lighting, resolution, image quality as the Lesion features are well extracted 

regardless of the imaging source. Moreover, the hybrid Transformer-Capsule encoder permits deep morphological 

interpretation of the lesion structures that is crucial in distinguishing Mpox among other visually comparable skin diseases. 

Its federated meta-learning approach can improve the flexibility of the model to institution-specific data without affecting 

the privacy of patients, which is critical to deploy AI in healthcare settings where sensitive data protection laws are in 

place.Regarding a realistic implementation, MetaFusion-FL would be easily incorporated into telemedicine frameworks, 

smart diagnostic applications, and hospital information systems. Its capacity to process heterogeneous imaging data renders 

it useful in either technologically advanced clinic environments or in resource constrained rural environments where 

imaging devices maybe different. Its latency of inference and the high accuracy are guarantees that it is ready to be used 

in real-time diagnostics. Nevertheless, the current model has one deficiency in the form of dependence on preselected 

imaging modalities, such as a smartphone, dermoscopic, and clinical scans. The diagnostic context could also be enriched 

with other types of data: a thermal image or clinical history of the patient. Also, the model is resistant to image noise, but 

in case of extreme distortions or low-light conditions, prediction quality can still be compromised. Multimodal clinical data 

fusion and dynamic quality-aware input filtering could be used as future improvements to boost model resilience and 

decision confidence in the real world further. 

 

VI. CONCLUSION AND FUTURE WORK  

In this paper, a new cross-modality federated meta-learning framework named MetaFusion-FL was proposed to achieve 

robust Mpox detection in response to the deficiency of the current centralized and modality-specific models. The model 

achieved state-of-the-art results by fusing the smartphone, dermoscopic, and clinical imaging modalities with a Hierarchical 

Attention-Based Multimodal Fusion (HAMFM) and encoding them with a Transformer-Capsule Network, showing an 

extraordinary level of detail (semantic and morphological) in the skin lesions. This is made possible by the federated 

learning design enabled by the Reptile meta-learning algorithm that enables the model to learn in a collaborative manner 

across a broad network of client institutions without losing the privacy of the patients or the security of the data. 

Experimental results indicate that MetaFusion-FL attains the state-of-the-art performance, with a classification accuracy 

of 99.46%, precision of 99.52%, recall of 99.40%, and an F1-score of 99.46%. Moreover, it is highly tolerant to noisy 

inputs and stable performance across federated nodes. MetaFusion-FL is interpretable, which enables its clinical use as 

Grad-CAM++ and SHAP provide explanations of AI decisions to medical workers. This allows their use in practical 

applications requiring trust and accountability. The model can be extended to multi-disease classification such as skin 

cancer and non-Mpox viral infections as part of future scope. Furthermore, the real-time AI-assisted screening can be 

implemented in underserved areas by means of integration with mobile telehealth platforms and smart diagnostic devices. 

It is also possible to study federated continual learning in the future to make the model changeover time to new lesion 

patterns and new viral variants that emerge. Therefore, MetaFusion-FL initiates privacy-preserving, explainable AI in 

dermatology and epidemic monitoring. 
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