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Abstract – Inhaling formaldehyde a chemical that is widely used in many different industries can have serious health 

consequences. In order to precisely detect formaldehyde levels in industrial air quality environments, this study makes 

use of deep learning techniques. Using sensor data gathered from high-risk industrial areas the study focuses on variables 

like air quality index temperature and humidity. The data is processed by Convolutional Neural Networks (CNNs), which 

identify trends linked to increases in formaldehyde concentrations. To improve model accuracy preprocessing of the data 

is done including feature scaling and outlier elimination. The model's performance is assessed using evaluation metrics 

like Mean Squared Error (MSE), sensitivity, specificity, and prediction accuracy. Results show that when compared to 

conventional regression models the CNN-based model considerably lowers false positives while achieving a high 

prediction accuracy. Rapid reaction to hazardous formaldehyde levels is made possible by the deep learning frameworks' 

real-time monitoring capability which lowers possible health hazards. To improve long-term prediction accuracy and 

trend identification future research will investigate the use of recurrent neural networks (RNN) for time-series analysis.  

 

Keywords – Formaldehyde, Deep Learning, Air Quality Monitoring, CNN, Industrial Safety, Health Risks. 

 

I. INTRODUCTION 

Formaldehyde is a commonly used industrial chemical, particularly in sectors like textiles, plastics, wood products, and 

adhesives. Its toxicity poses significant concerns for air quality in industrial environments, as prolonged exposure can 

lead to serious health issues, including respiratory problems, skin irritation, and even cancer. Therefore, monitoring 

formaldehyde levels is crucial for ensuring workplace safety and adherence to regulatory standards. To accurately detect 

and quantify formaldehyde in industrial air, various advanced techniques have been developed. One prominent method is 

Fourier-transform infrared (FTIR) spectroscopy, which utilizes infrared light absorption to identify formaldehyde 

molecules. FTIR is effective for continuous and real-time monitoring, offering high sensitivity and specificity in 

detecting this compound. Another widely used technique is gas chromatography-mass spectrometry (GC-MS), which 

excels in separating and identifying volatile organic compounds, including formaldehyde. While GC-MS provides highly 

detailed analyses, it generally requires periodic sampling and laboratory processing, making it less ideal for continuous 

monitoring in real-time settings. 

Recent advancements in sensor technology have transformed the landscape of formaldehyde monitoring. 

Electrochemical sensors, appreciated for their portability and cost-effectiveness, are becoming more prevalent in 

industrial applications. These sensors generate electrical signals that correlate with formaldehyde concentration, allowing 
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for immediate data collection. Photoacoustic spectroscopy (PAS) is another emerging technique, known for its ability to 

accurately measure low concentrations of formaldehyde. This method involves using a modulated light source that 

excites formaldehyde molecules, generating a pressure wave detected as an acoustic signal. Additionally, innovations 

such as IoT-based sensor networks enable remote monitoring and data analytics, greatly improving industrial air quality 

management. These systems can automatically collect and transmit data to centralized platforms, facilitating trend 

analysis, early warnings, and compliance with occupational safety regulations. Fig 1 shows the architecture of 

Formaldehyde Detection in Industry 

 

 
Fig 1. Formaldehyde Detection in Industry. 

 

Various strategies to enhance the performance of semiconductor gas sensors specifically for formaldehyde detection 

have been discussed, highlighting advancements in material design, nanostructuring, and sensor configurations that 

improve sensitivity and selectivity [1]. The importance of integrating functional materials and optimizing sensor 

parameters to achieve high-performance detection is emphasized, along with recent trends and future directions in 

formaldehyde sensor technology. Polymer-based materials used in formaldehyde gas sensors, focusing on their synthesis 

and application, have been reviewed [2]. Various polymer composites and their properties that contribute to improved 

sensitivity and response times are discussed, along with challenges in developing stable and selective sensors and recent 

advancements in sensor performance. The review suggests potential areas for future research in polymer sensor 

technology. 

Recent advances in metal oxide semiconductor (MOS) materials for formaldehyde detection are explained, including 

the design and synthesis of various MOS materials, their structural, electrical, and gas-sensing properties [3]. Insights 

into the mechanisms of formaldehyde adsorption and detection, as well as the influence of doping and nanostructuring on 

sensor performance, are provided. Future perspectives on enhancing MOS gas sensors are also presented. Advancements 

in carbon nanotubes (CNTs) as gas sensors, including their unique properties that make them suitable for detecting 

various gases, including formaldehyde, are discussed [4]. Different functionalization techniques that enhance the 

sensitivity and selectivity of CNT-based sensors, along with the integration of CNTs into sensor devices and challenges 

associated with their practical applications, are explored. The review concludes with future trends in CNT sensor 

development. 

Recent advancements in formaldehyde sensors, transitioning from small molecules to polymeric probes, are 

reviewed, highlighting the development of various sensing mechanisms and materials that improve detection capabilities 

[5]. The effectiveness of different polymeric materials and their potential for real-world applications are discussed, along 

with challenges in sensor performance, stability, and selectivity. Suggestions for future research directions are also 

provided. The recent progress in organic chemosensors for formaldehyde detection is summarized, discussing various 

organic materials, including small molecules and polymers, that exhibit high sensitivity and selectivity towards 

formaldehyde [6]. Innovative sensing mechanisms and fabrication techniques used in developing these sensors are 

highlighted. Future challenges and potential improvements in organic sensor technologies are discussed. 

A detailed examination of microfabricated formaldehyde gas sensors is presented, focusing on their design, 

fabrication processes, and performance metrics [7]. Various microfabrication techniques that enhance sensor sensitivity 

and miniaturization are described, along with the integration of sensors into electronic devices for real-time monitoring. 

Future prospects for microfabricated sensor technologies are outlined. The design and optimization strategies of metal 

oxide semiconductor nanostructures for advanced formaldehyde sensors are explored, analyzing how different 

nanostructures can influence gas sensing performance and sensitivity [8]. The role of surface modification and doping in 
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enhancing sensor capabilities is emphasized. Future challenges and research directions in metal oxide sensor 

development are also highlighted. 

The use of graphene-based structures for the trace-level detection of gaseous formaldehyde is presented, discussing 

the unique properties of graphene that contribute to its superior sensing potential, including high surface area and 

electron mobility [9]. Various sensing mechanisms and the integration of graphene into sensor platforms are highlighted. 

The review concludes with insights into the future of graphene-based gas sensing technologies. Recent progress in 

fluorescent probes for detecting carbonyl species, focusing on formaldehyde, is reviewed [10]. Various probe designs and 

mechanisms for fluorescence detection are discussed, emphasizing their sensitivity and selectivity. Advancements in 

small molecule probes and their potential applications in environmental monitoring are highlighted. Future directions in 

probe development and detection strategies are also considered. 

Trends in sensors and methods for measuring atmospheric formaldehyde gas concentration, focusing on the patent 

landscape, are examined [11]. Various sensor technologies, including electrochemical, optical, and semiconductor-based 

methods, are analyzed, along with advancements and challenges faced by different sensing techniques in real-world 

applications. The importance of innovation in sensor design for improved performance is highlighted. The development 

of organic small-molecule and functional material fluorescent probes for formaldehyde detection is reviewed, exploring 

various probe architectures and their fluorescence response mechanisms [12]. Recent advancements in sensitivity, 

selectivity, and real-time imaging applications are emphasized. Challenges in developing robust and efficient probes are 

discussed, along with future research opportunities. 

Recent progress in fluorescent formaldehyde detection using small molecule probes is discussed, highlighting various 

chemical strategies that enhance the selectivity and sensitivity of these probes [13]. The importance of molecular design 

in developing effective fluorescent sensors is emphasized. Future challenges and research directions in fluorescent probe 

technology for formaldehyde detection are also presented. The use of CdO–ZnO nanorices for enhanced and selective 

formaldehyde gas sensing applications is investigated, discussing the synthesis of these nanorices and their unique 

structural properties that contribute to improved sensing performance [14]. The mechanisms of formaldehyde interaction 

with the nanorices and the factors influencing sensitivity are highlighted. Future prospects for these materials in sensor 

applications are outlined. 

A formaldehyde gas sensor with a remarkable detection limit of 1 ppb based on an In-doped LaFeO3 porous structure 

is presented, describing the synthesis and characterization of the sensor and highlighting its excellent sensitivity and 

rapid response [15]. The mechanisms underlying the sensor’s performance are discussed, focusing on the role of doping 

and porous structure. Future research directions for enhancing sensor performance are also suggested. UV-activated 

semiconductor gas sensor response measurement for formaldehyde detection is investigated, discussing the advantages of 

using UV activation to enhance sensor sensitivity and response times [16]. The experimental setup and results are 

detailed, emphasizing the effectiveness of this approach. The review also considers the implications of UV activation for 

future sensor designs and applications. 

Multi-wall carbon nanotube gas sensors modified with amino groups for low-concentration formaldehyde detection 

are explored, discussing the synthesis and functionalization of CNTs and highlighting their improved sensing capabilities 

[17]. The mechanisms of gas adsorption and detection are analyzed, showing how modifications enhance performance. 

Future challenges and the potential for further improvements in CNT-based sensors are also addressed. 

 

II. MATERIALS AND METHODS 

Data Collection  

Data from several industrial areas in India that are known to have high formaldehyde usage and air pollution issues were 

gathered for this study. Two important sites were Ankleshwar which is known for producing chemicals and Gujarats 

Vapi industrial area which is among the most severely polluted areas because of heavy chemical industries. Additionally, 

information was obtained from Bhopal which focuses on areas surrounding the chemical industries for thorough data on 

air quality parameters and the Manali Petrochemical Industrial Area in Tamil Nadu which deals extensively with 

chemical processes. Fig 2 shows the study area of this research. 

High-precision sensors were installed to track formaldehyde levels and real-time data was recorded every minute for 

six months. The air quality index (AQI) which highlights spikes in formaldehyde concentrations and acts as a stand-in for 

overall pollution levels was one of the parameters that was continuously monitored along with temperature and humidity. 

Within each industrial zone, each sensor node was positioned strategically at several points to guarantee both data 

accuracy and wide coverage.  

 

Data Measurement 

To guarantee the validity and dependability of formaldehyde detection, the data needed to be precisely measured after it 

was gathered. Using parts per billion (ppb) units the high-resolution sensors measured formaldehyde concentrations 

offering a fine-grained level of measurement for even the smallest changes. A thorough dataset covering different 

seasons changes in industrial activity and variations in environmental factors was ensured by the raw data sets which 

contained thousands of data points from various times and conditions. These exacting measurements offered a strong 

basis for assessing how well the deep-learning model predicted formaldehyde concentrations. 
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Fig 2. Data Collection Locations. 

 

Data Preprocessing 

Processing the data was a crucial step in improving the predictive power of the model. Feature scaling was done during 

the preprocessing stage to standardize all variables and enhance model convergence during training. By scaling 

temperature humidity AQI and formaldehyde levels to a range between 0 and 1, a Min-Max normalization technique was 

used to ensure that each feature had an equal impact on the model.  Fig 3 demonstrates the molecules of formaldehyde. 

 

 
Fig 3. Air Pollution Molecules of Chemical Formaldehyde. 

 

The Interquartile Range (IQR) approach was used to find and eliminate outliers. Any data points that were more than 

1 or 5 times, the IQR were filtered out in order to remove anomalies that might distort the results. In order to preserve 

continuity missing data was imputed using linear interpolation taking advantage of patterns in the current dataset. The 

dataset was artificially expanded using data augmentation techniques such as small changes to temperature and AQI 

values to replicate real-world conditions and improve training accuracy.  

 

III. PROPOSED TECHNIQUE 

Deep Learning Technique 

Convolutional Neural Network 

The suggested method uses a Convolutional Neural Network (CNN) architecture which was created especially to find 

formaldehyde patterns in data on air quality. Each layer of the CNN has three-layer architecture, which consists of 

convolution pooling and activation functions optimized to detect minute changes in formaldehyde concentrations in the 

face of shifting environmental conditions. Fig 4 provides the architecture of CNN. The input matrix denoted by X 

contains variables such as temperature (T) humidity (H) and AQI (A). The convolution process is described as follows in 

equation (1).  

  (1) 
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where X is the input matrix, K is the kernel matrix, M, NM, NMN are kernel dimensions and F(ij) is the filtered 

output. This method is used to find local patterns linked to elevated formaldehyde levels. The feature maps are down-

sampled using max pooling after convolution which lowers dimensionality while preserving important information.  

 

 
Fig 4. CNN Architecture. 

 

The Rectified Linear Unit (ReLU) activation function: f(x)=max (0, x) 

Several metrics were used to assess the CNN model's performance offering a thorough examination of its predictive 

power. One important metric of overall model performance was prediction accuracy which quantifies the percentage of 

correctly predicted data points among all observations. For evaluating the CNN's dependability sensitivity the model's 

capacity to precisely identify true positives and specificity and the capacity to accurately identify true negatives were also 

essential. The prediction errors were also quantified using the Mean Squared Error (MSE) where a lower MSE denotes a 

better model fit.  

IV. RESULTS 

Prediction Accuracy 

The CNN model prediction accuracy for identifying formaldehyde levels in four main industrial zones in India—Vapi, 

Ankleshwar, Manali, and Bhopal is shown in Table 1. These regions were selected because of the substantial presence of 

the chemical industry which frequently leads to high levels of formaldehyde. Each location's formaldehyde level range 

(in parts per billion) and the CNN model's prediction accuracy are displayed in the table. For example, the industrial zone 

of Vapi reported formaldehyde levels between 50 and 200 ppb, with a prediction accuracy of 92.5 % high sensitivity 

of 94.2 %, and a specificity of 90.8 %, which are given in Table 1 and Fig 5. By minimizing false predictions these 

metrics show that the model successfully detects true positives and negatives.  

 

Table 1. Prediction Accuracy Across Different Industrial Locations 

Industrial Zone 
Formaldehyde 

Level (ppb) 

Prediction 

Accuracy (%) 

Sensitivity 

(%) 

Specificity 

(%) 
MSE 

Vapi Industrial Area 50-200 92.5 94.2 90.8 0.012 

Ankleshwar 

Chemical Zone 
100-300 89.7 91.4 88.2 0.017 

Manali 

Petrochemical Area 
150-400 91.3 92.8 90.1 0.015 

Bhopal Chemical 

Industrial 
75-250 93.1 95.0 91.3 0.011 

 

      The industrial area of Bhopal demonstrated the highest sensitivity of 95.0%, which is noteworthy because it shows 

that the model can accurately detect even small amounts of formaldehyde. However, Ankleshwar's prediction accuracy 

was marginally lower which might be because industrial emissions vary more. The CNN model accuracy in real-world 

settings with a range of pollution conditions is demonstrated by the Mean Squared Error (MSE) values which range from 

0. 011 to 0. 017 and show a slight difference between expected and actual values. 
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(a) (b) 

Fig 5. Humidity Across Regions. 

 

Sensitivity and Specificity Across Seasons 

Table 2 compares the sensitivity and specificity of the CNN model in the summer, monsoon and winter seasons. It is 

vital to test the model's resilience in a variety of environmental settings because seasonal variations in temperature 

humidity and industrial activity patterns can have a substantial impact on air quality. The CNN model demonstrated its 

highest sensitivity (94. 2 %) and comparatively strong specificity (89. 3 %) during the summer indicating that it is highly 

responsive to detect true positives during periods of high temperature and peak industrial emissions. Fig 6 and Table 2 

give the values of the sensitivity and specificity values in different seasons. 

 

Table 2. Sensitivity and Specificity Across Seasons 

Season Summer Monsoon Winter 

Sensitivity (%) 94.2 91.8 90.5 

Specificity (%) 89.3 92 88.7 

Formaldehyde Mean (ppb) 180 210 160 

Temperature Mean (°C) 35 28 22 

Humidity Mean (%) 65 78 70 

 

 
Fig 6.  Sensitivity And Specificity in Various Seasons. 

 

Monsoon season displayed balanced sensitivity (91.8%) and specificity (92.0%), indicating the model’s stability in a 

humid environment, where formaldehyde may behave differently due to moisture interactions. In winter, while the 

sensitivity remained strong (90.5%), a slight dip in specificity (88.7%) was noted, possibly due to cooler temperatures 

causing fluctuations in emission rates and dispersion patterns. The seasonal analysis reveals that while the model 

maintains high detection accuracy throughout the year, it is slightly more sensitive to environmental variations, which 

may influence formaldehyde behavior. 

 

Vapi Industrial

Area

Ankleshwar

Chemical Zone

Manali

Petrochemical Area

Bhopal Chemical

Industrial

88

89

90

91

92

93

94

95

A
cc

u
ra

cy

Industrial Zone

 Prediction Accuracy (%)

 Sensitivity (%)

 Specificity (%)

50-200 100-300 150-400 75-250

0.011

0.012

0.013

0.014

0.015

0.016

0.017

M
S

E

Formaldehyde Level (ppb)

Sensitivity

(%)

Specificity

(%)

Formaldehyde

Mean (ppb)

Temperature

Mean (°C)

Humidity

Mean (%)

0

50

100

150

200

250

Se
as

on

 Summer

 Monsoon

 Winter



 
ISSN: 2788–7669           Journal of Machine and Computing 5(3)(2025) 

1718 

Air Quality Index (AQI) Variability Impact 

Table 3 and Fig 7 shows how different AQI levels affect the CNN model's detection accuracy. As a composite metric 

that offers information on pollution levels and general air quality, the AQI is an essential tool for determining 

formaldehyde concentrations in industrial areas. The CNN model demonstrated a remarkable 93. 2 % prediction accuracy 

for identifying formaldehyde levels between 50 and 200 ppb in Vapi, which has an AQI range of 150-300 ppb. The 

model's dependability is demonstrated by its high accuracy even in moderately polluted air.   

 

Table 3.  Air Quality Index (AQI) Variability Impact 

Industrial Zone AQI Range Formaldehyde Level (ppb) Model Accuracy (%) 

Vapi Industrial Area 150-300 50-200 93.2 

Ankleshwar Chemical Zone 200-400 100-300 90.5 

Manali Petrochemical Area 250-500 150-400 91.7 

 

 
Fig 7. Impact of AQI Variability on Model Accuracy. 

 

The presence of several pollutants interfering with the detection process may be the reason for the slight decrease in 

prediction accuracy to 90. 5 % for the Ankleshwar industrial zone where the AQI was higher (200–400 ppb). Even 

though the AQI in the Manali region ranged from 250 to 500, the CNN model was able to maintain a strong prediction 

accuracy of 91.7 % demonstrating its ability to function well in highly polluted environments. These findings imply that 

the CNN model adjusts well to different pollution scenarios even though high AQI levels can present difficulties for 

conventional approaches.  

 

CNN Model Prediction Errors by Parameter 

The impact of various environmental factors on predicting formaldehyde levels is broken down in detail in Table 4 and 

Fig 8. With an MSE of 0. 011 the highest error rate at 6. 3 % and a significant contribution to prediction error at 39 2%. 

The data indicate that the Air Quality Index (AQI) is the most important factor influencing prediction accuracy. A vital 

role for AQI in capturing changes in air quality that impact formaldehyde levels is suggested by the fact that it also 

exhibits the strongest correlation with formaldehyde concentrations (0. 75). Next in line temperature has a marginally 

lower MSE of 0. 012 which accounts for 32. 1 % of prediction errors.  

 

Table 4. CNN Model Prediction Errors by Parameter 

Parameter Temperature Humidity AQI 

MSE 0.012 0.014 0.011 

Error Rate (%) 5.5 4.8 6.3 

Contribution to 

Prediction Error (%) 
32.1 28.7 39.2 

Correlation with 

Formaldehyde 
0.68 0.72 0.75 

Standard Deviation 2.3 1.9 3.1 

Weight in Model (%) 29.5 27 43.5 

90.0

90.5

91.0

91.5

92.0
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93.5

AQI
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Fig 8. Prediction Errors. 

 

Temperature variations have a moderate impact on formaldehyde levels as evidenced by its moderate correlation of 0. 

68 and standard deviation of 2. 3. With a 4. 8 % error rate and an MSE of 0. 014 % humidity accounts for 28. 7 % of 

prediction errors. It has a significant but smaller impact than AQI as evidenced by its correlation of 0. 72 with 

formaldehyde. The model's weight assignments highlight the intricacy of how environmental factors interact to predict 

formaldehyde concentrations further validating AQI dominance at 43. 5 % followed by Temperature at 29. 5 % and 

Humidity at 27. 0 %.  

 

Layer-Wise Contribution Analysis for Formaldehyde Detection in CNN Architecture 

Table 5 breaks down each layer’s contribution in a CNN model specifically tailored for detecting formaldehyde in 

industrial air quality monitoring. Each layer, starting from the input layer to the output layer, contributes uniquely to 

detection accuracy and efficiency. For example, Convolution Layer 2 enhances accuracy by refining feature extraction, 

raising the detection accuracy to 93.1% while maintaining a manageable false positive rate of 6.3%. Pooling layers, 

especially Max Pooling Layer 2, are instrumental in reducing memory usage (43.8 MB), showing their importance in 

minimizing computational load without compromising accuracy. 

 

Table 5. Analysis for Formaldehyde Detection in CNN Architecture 

Layer Type 
Filter 

Size 

Activation 

Function 

Detection 

Accuracy 

(%) 

False 

Positives 

(%) 

Processing 

Time (ms) 

Memory 

Usage 

(MB) 

Input Layer 
Image 

Input 
N/A N/A N/A N/A 2 10.5 

Convolution 

Layer 1 
Conv2D 3x3 ReLU 91.2 7.4 3.1 50.3 

Max Pooling 

Layer 1 

Max 

Pooling 
2x2 N/A 92.4 6.8 2.8 40.7 

Convolution 

Layer 2 
Conv2D 3x3 ReLU 93.1 6.3 3.3 55.2 

Max Pooling 

Layer 2 

Max 

Pooling 
2x2 N/A 93.8 5.9 2.9 43.8 

Fully 

Connected 1 
Dense N/A Sigmoid 94.5 5.5 3.5 60.1 

Dropout 

Layer 
Dropout 

0.5 

Rate 
N/A 93 6.2 2.7 42.5 

Output Layer Dense N/A Softmax 94.8 5.3 3 58 

 

By integrating features across the network, the fully connected (dense) layers greatly increase detection accuracy, 

peaking at 94.5%. This enables the CNN to identify complex patterns linked to the presence of formaldehyde. Although 

it somewhat reduces accuracy, the dropout layer reduces overfitting by introducing regularization, illustrating the trade-

off between precision and model robustness. The model is appropriate for real-time applications since the final output 
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layer, which uses softmax activation, completes classification with a high accuracy of 94.8% and a decreased false 

positive rate of 5.3%.  

The impact of each component is better understood because to this layer-by-layer analysis, which enables focused 

optimization techniques to improve detection speed even more while efficiently controlling resource usage. 

 

Formaldehyde Detection Performance at Different Concentrations 

The CNN model's detection ability is examined in Table 6 and Fig 9, across a range of formaldehyde concentrations, 

demonstrating its accuracy in a variety of situations. The examination of formaldehyde detection over a range of 

concentrations reveals that accuracy decreases with increasing formaldehyde levels. The model obtains a high detection 

accuracy of 93.5% at lower concentrations (50-150 ppb), with a minimal false positive rate of 7.5% and a true positive 

rate of 92.8%. The accuracy marginally drops to 91.4% when the concentration increases to 150–300 ppb, however, the 

true positive rate remains high at 91.0%. At concentrations between 300 and 450 ppb, the trend continues, with accuracy 

dropping to 88.6% and false positives rising to 9.8%. 

 

 
Fig 9. Formaldehyde Detection at Different Concentration. 

 

Table 6. Formaldehyde Detection Performance at Different Concentrations 

Formaldehyde Range 

(ppb) 

Detection 

Accuracy (%) 

True Positives 

(%) 

False Positives 

(%) 

50-150 93.5 92.8 7.5 

150-300 91.4 91 8 

300-450 88.6 87.9 9.8 

450-600 86.2 85.5 11.1 

600-750 83.7 83 12.6 

750-900 80.9 80.1 13.9 

900-1050 78.5 77.8 15.2 

 

Accuracy decreases to 86.2% and 83.7% for mid- to higher ranges (450-600 ppb and 600-750 ppb), but false positives 

noticeably increase to 11.1% and 12.6%, respectively. False positives increase dramatically to 13.9% and 15.2% in the 

higher concentration ranges (750-900 ppb and 900-1050 ppb), while detection accuracy further decreases to 80.9% and 

78.5%. These findings show that although the model does a good job of identifying lower formaldehyde levels, its 

efficacy decreases as concentrations rise, most likely as a result of the complexity and unpredictability that greater 

pollution levels bring. 

 

Optimized Feature Contribution for Formaldehyde Detection Model Performance 

The contribution of each parameter to the formaldehyde detection model optimization is shown in Table 7. Particulate 

matter (35 %) and AQI (30 %) are essential for increasing detection accuracy because they have the greatest impact on 

lowering Mean squared Error (MSE) and raising true positive and sensitivity rates. Lower-contributing elements such as 

solar radiation have little effect indicating that formaldehyde detection models can perform noticeably better when high-

contribution parameters are optimized.  
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Table 7. Feature Contribution for Formaldehyde Detection Model Performance 

Parameter 
Optimal 

Weight 

(%) 

Contribution 

to 

Detection (%) 

MSE 

Reducti

on 

True 

Positive 

Impact 

(%) 

False 

Positive 

Reductio

n (%) 

False 

Negative 

Reduction 

(%) 

Sensitivi

ty 

Increase 

(%) 

Specificity 

Increase 

(%) 

Temperatur

e 
25 32.2 0.008 6.5 4.8 3.9 7 6.4 

Humidity 20 28 0.01 5.9 4.1 3.7 6.3 5.7 

AQI 30 37.5 0.006 7.2 5.5 4.4 7.9 7.1 

Wind Speed 15 21 0.011 5.2 3.8 3.4 5.6 5.2 

Particulate 

Matter 
35 39.2 0.005 7.8 6.1 4.9 8.3 7.6 

Pressure 18 23.5 0.009 5.7 4.4 3.6 6.2 5.8 

VOCs 22 27.1 0.007 6 4.2 3.8 6.5 6 

Solar 

Radiation 
12 19.3 0.012 4.5 3.2 3.1 4.9 4.6 

 

Impact of Environmental Factors on Formaldehyde Detection Accuracy Using CNN 

Table 8 shows how different environmental factors such as temperature humidity and air quality index (AQI) levels 

affect a CNN-based models ability to detect formaldehyde. Model performance varies significantly when AQI levels are 

combined with different temperature and humidity ranges. For instance a stable indoor environment has the lowest 

processing time (2. 7 ms) the highest detection accuracy (96.2 %) and the lowest false positive and false negative rates 

(4. 3 % and 2. 5 % respectively). This stability represents ideal circumstances where the CNN model can function 

efficiently without outside interference.  

 

Table 8. Impact of Environmental Factors on Formaldehyde Detection Accuracy Using CNN 

Environmental 

Factor 

Temperature 

Range (°C) 

Humidity 

Range 

(%) 

AQI 

Level 

Formaldehyde 

Detection 

Accuracy (%) 

False 

Positives 

(%) 

False 

Negatives 

(%) 

Processing 

Time (ms) 

High 

Temperature & 

Low Humidity 

35-45 20-30 
Moderate 

(101-150) 
90.3 8.2 4.5 3.1 

Moderate 

Temperature & 

Moderate 

Humidity 

25-35 40-50 
Good (0-

50) 
94.7 5.4 3.1 2.8 

Low 

Temperature & 

High Humidity 

15-25 60-70 
Unhealthy 

(151-200) 
88.6 9 5.7 3.3 

High 

Temperature & 

High Humidity 

35-45 60-70 
Unhealthy 

(151-200) 
87.1 9.8 6.1 3.5 

Low 

Temperature & 

Low Humidity 

15-25 20-30 
Moderate 

(101-150) 
92.4 6.7 4 3 

Stable Indoor 

Environment 
22-25 40-45 

Good (0-

50) 
96.2 4.3 2.5 2.7 

Outdoor 

Industrial Zone 
30-40 50-60 

Very 

Unhealthy 

(201-300) 

85.4 10.5 7.3 3.6 

Urban 

Residential 

Area 

25-30 35-45 
Moderate 

(101-150) 
93.1 6.1 3.7 2.9 

 

These findings highlight the difficulties that high AQI levels and changing environmental conditions present for 

precise formaldehyde detection. Combinations of high temperatures and high humidity in settings with unhealthy AQI 

levels also lead to decreased accuracy (87. 1 % accuracy) and longer processing times highlighting the impact of 

combined environmental extremes on model effectiveness. Understanding the CNN model's resilience in various 

environmental conditions is made easier with the help of this analysis which will help with the development of focused 
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strategies to increase detection accuracy in difficult situations, especially in outdoor industrial settings where there is a 

high risk of formaldehyde exposure.  

 

Comparative Analysis of CNN Model Variations for Formaldehyde Detection 

In order to demonstrate how changes in layer number, kernel size, activation function, and dropout rate affect 

performance, this table (Table 9) compares various CNN model modifications for formaldehyde detection. Although it 

requires a longer training time of 160 seconds, the Optimized CNN with 8 layers, a dropout rate of 30%, and ReLU 

activation obtains the maximum detection accuracy of 94.1% with low false positives (5.5%) and false negatives (3.9%). 

Deeper and more optimized CNN architectures are more successful for formaldehyde detection in complex situations, as 

evidenced by the Basic CNN with few layers and no dropout, which shows lower accuracy (88.2%) and greater error 

rates. The accuracy and training time trade-offs of each variation help choose the best model for a given deployment, 

especially for real-time monitoring applications. 

 

Table 9. Comparative Analysis of CNN Model Variations 

Model 

Variation 

Number 

of 

Layers 

Kernel 

Size 

Activation 

Function 

Dropout 

Rate 

(%) 

Detection 

Accuracy 

(%) 

False 

Positives 

(%) 

False 

Negatives 

(%) 

Training 

Time 

(seconds) 

Basic CNN 5 3x3 ReLU 0 88.2 9.1 7.2 120 

CNN with 

Dropout 
5 3x3 ReLU 20 90.8 7.3 5.9 125 

CNN with 

Batch 

Normalization 

6 3x3 ReLU 0 91.6 6.9 5.2 130 

Deeper CNN 8 3x3 ReLU 20 92.7 6.3 4.8 145 

Wider CNN 6 5x5 ReLU 20 91.9 6.8 5 140 

CNN with 

Sigmoid 

Activation 

6 3x3 Sigmoid 20 89.4 7.8 6.1 135 

Optimized 

CNN 
8 3x3 ReLU 30 94.1 5.5 3.9 160 

CNN with L2 

Regularization 
6 3x3 ReLU 20 92.3 6.1 4.5 138 

 

V. DISCUSSION 

Comparative Performance  

The comparison of prediction models for formaldehyde detection reveals that deep learning techniques, particularly 

CNNs and ANNs, outperform traditional methods in accuracy and error minimization. CNN achieves the highest 

prediction accuracy (92.3%) with a low MSE (0.013), indicating its strength in handling complex air quality data. ANNs 

follow closely with 91.1% accuracy and an MSE of 0.016, reflecting robust predictive capabilities. Advanced machine 

learning models like XGBoost and GBM also perform well, with accuracies of 90.8% and 89.5%, and relatively low false 

detection rates, leveraging ensemble techniques to reduce errors.  Fig 10 and Table 10 give the results of comparative 

analysis. 

 

 
Fig 10. Comparative Analysis. 
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Table 10. Comparison Between CNN and Traditional Regression Models 

Model 
Prediction 

Accuracy (%) 

False Positives 

(%) 

False Negatives 

(%) 
MSE 

CNN 92.3 6.8 4.2 0.013 

Linear Regression 78.5 12.9 8.6 0.045 

Support Vector 

Machine (SVM) 
84.7 10.2 6.1 0.033 

Decision Tree 81.4 11.5 7.3 0.038 

Random Forest 87.9 9.3 5.7 0.026 

k-Nearest Neighbors 

(k-NN) 
80.6 12.2 7.9 0.041 

Gradient Boosting 

Machine (GBM) 
89.5 8.5 5.1 0.021 

XGBoost 90.8 7.9 4.8 0.018 

Artificial Neural 

Network (ANN) 
91.1 7.3 4.6 0.016 

Lasso Regression 76.9 13.5 9.1 0.048 

Ridge Regression 79.2 12.1 8.2 0.043 

 

On the other hand, conventional methods such as Decision Trees and Linear Regression show greater MSEs and 

lower accuracies (78.5% and 81.4%, respectively), underscoring their shortcomings in handling non-linear data patterns. 

These results highlight how well deep learning works for precise formaldehyde identification, especially in settings with 

fluctuating pollution levels. 

 

VI. CONCLUSION 

This study analysis highlights the effectiveness and dependability of using Convolutional Neural Networks (CNNs) to 

detect formaldehyde in industrial air quality environments across various Indian regions. The model has proven to have a 

high prediction accuracy greatly surpassing conventional regression-based techniques. CNNs are well-suited for 

managing the intricacies of air quality data which frequently entail non-linear relationships between multiple 

environmental parameters given the consistent and reliable detection rates demonstrated by industrial zones such as Vapi, 

Ankleshwar Manali, and Bhopal. The CNN model is particularly adaptable to changing environmental conditions and 

pollution patterns as evidenced by its ability to maintain high sensitivity and specificity across different seasons and AQI 

levels. Because pollutants like formaldehyde can behave differently depending on temperature humidity and other local 

factors this flexibility is essential for areas with dynamic weather and industrial activity. The model's overall accuracy is 

still strong even though each of the individual parameters such as temperature humidity and AQI contributes to 

prediction error according to a thorough analysis of each one. Because it encompasses a variety of pollutants AQI in 

particular proved to be the most difficult factor to handle but the CNN model did so with impressive accuracy. The study 

also demonstrated how formaldehyde concentrations affect detection performance showing that extreme pollution 

conditions present particular difficulties as accuracy slightly declines as levels rise. However, the CNN-based detection 

system has shown strong predictive capabilities maintaining a high true positive rate even at higher formaldehyde levels 

improving safety in industrial settings where accurate air quality monitoring is essential for worker health. This deep 

learning framework's real-time monitoring capability allows for quick detection and reaction to dangerous formaldehyde 

levels which may lower health risks and allow for preventative safety measures in high-risk industries. These results lend 

credence to the continuous advancement of AI-powered air quality monitoring systems as a superior substitute for 

conventional techniques. By incorporating Recurrent Neural Networks (RNNs) to capture temporal patterns and improve 

long-term prediction accuracy future research will concentrate on improving the model to address issues seen in higher 

pollution ranges. The applicability of the model will also be further generalized by enlarging the dataset to encompass a 

wider range of industrial environments and seasonal conditions. A solid basis for the wider implementation of AI-

powered formaldehyde detection systems is provided by the success of this study opening the door to safer and more 

effective industrial operations.  

 

Abbreviation 

DL  – Deep Learning 

SVM  – Support Vector Machine 

ML  – Machine Learning 

ROC  – Receiver Operating Characteristic 

AUC  – Area Under the Curve 

API  – Application Programming Interface 

RMSE  – Root Mean Square Error 

WSN  – Wireless Sensor Network 
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ANN  – Artificial Neural Network 

HAP  – Hazardous Air Pollutant 
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