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Abstract – In modern industrial environments, early and accurate machine fault diagnosis is crucial for minimizing 

downtime, reducing maintenance costs, and ensuring operational safety. This research presents a robust fault classification 

framework that combines Recursive Feature Elimination with Cross-Validation (RFECV) and Random Forest classifiers 

to address the challenges of high dimensionality, overfitting, and limited model generalization. The proposed approach 

begins with comprehensive data preprocessing, followed by RFECV to identify and retain the most relevant features, 

thereby enhancing model efficiency and accuracy. Subsequently, a Random Forest classifier is trained on this optimized 

feature set to classify four fault types: No Failure, Power Failure, Tool Wear Failure, and Overstrain Failure. By integrating 

feature selection with ensemble learning, the framework effectively mitigates high variance and improves robustness under 

varying operational conditions and data distributions. Experimental results demonstrate that the proposed methodology 

achieves a high predictive accuracy of 99.2% along with improved computational efficiency, making it highly suitable for 

real-time fault diagnosis applications in smart manufacturing systems. 

 

Keywords – Machine Fault Diagnosis, Random Forest, Recursive Feature Elimination, Feature Selection, Predictive 

Maintenance. 

 

I. INTRODUCTION 

In today’s rapidly evolving industrial landscape, the integration of intelligent manufacturing systems has become a 

cornerstone for achieving operational excellence and competitive advantage. As industries increasingly embrace 

automation, the deployment of embedded sensors and condition-monitoring technologies has revolutionized how machines 

are monitored and maintained [1]. Predictive maintenance and fault diagnosis have emerged as essential components within 

this paradigm, enabling organizations to anticipate equipment failures before they occur, thereby minimizing downtime, 

reducing maintenance costs, and enhancing safety standards [2]. This shift from traditional reactive or scheduled 

maintenance to proactive and condition-based approaches relies heavily on advanced data-driven methods capable of 

extracting meaningful insights from vast amounts of sensor data. Using machine learning, it is now possible to analyze 

historical equipment data and identify complex patterns that change the way fault diagnosis takes place [3]. Machine 

learning techniques are widely appreciated for their simplicity, reliability, and fast training capabilities, making them 

suitable for diagnosing relatively simple systems. Deep Learning approaches, on the other hand, offer powerful end-to-end 

solutions capable of managing complex systems and compound faults, especially when large training datasets are available. 

Transfer learning methods address the critical issues of data scarcity and sample imbalance by enabling knowledge transfer 

across different operating conditions, machines, or even application domains. Despite these advancements, the 
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implementation of machine learning in real-world fault diagnosis continues to face challenges, particularly as engineering 

systems grow in complexity [4]. When using knowledge from the past and typical situations, ML models become very 

accurate in detecting small errors and predicting potential malfunctions [5]. The Extreme Random Forest (ERF) method 

was introduced to enhance feature extraction capabilities while reducing computational complexity. In this approach, high-

dimensional data is projected into a lower-dimensional space using a randomly generated mapping matrix, effectively 

reducing dimensionality. This process not only lowers the computational burden but also improves classification 

performance after dimensionality reduction [6]. Predictive capabilities make it easier for manufacturing lines to change 

their maintenance processes and look after equipment more carefully. Even so, using fault diagnosis models in real factories 

is still very difficult. It is often necessary for those using older ML methods to have broad experience in the field and face 

problems with efficient computing [7][8]. Although deep learning is effective at dealing with difficult and complex data, 

it usually demands a lot of labelled samples, has severe computational needs, and remains unclear for users in terms of 

understanding how AI affects their operations. 

       In addition, industrial systems have many types of equipment, different working settings, and incomplete or noisy 

components. As a result of these factors, shifts in the data between how the model learns and its use in practice make the 

model perform poorly when it meets new or evolving errors. It is still an unsolved issue to maintain fault diagnostic models 

that are strong, expandable, and responsive on the spot even with these limitations [9]. Including a large number of 

instrument measurements in high-dimensional data can lead to redundant or irrelevant information, which may reduce the 

model’s accuracy and increase computational requirements [10]. For this reason, Random Forests and other ensemble 

methods are used widely since they put multiple trees together, manage data that contains thousands of features, and give 

feature importance scores. Yet, Random Forest models may still be affected by the problem of too many variables and 

some of these may not matter for spotting faults. For this reason, using RFECV enables you to find the best subset of 

features step by step, removing unimportant ones as it goes, and constantly checks its effects on the model to prevent it 

from overfitting [11]. Random Forest (RF) is a robust ensemble learning method that constructs multiple decision trees and 

combines their outputs to improve classification accuracy and model stability compared to a single decision tree. Although 

numerous techniques have been explored for fault diagnosis, RF remains a valuable and necessary approach due to its fast 

execution speed, ability to handle high-dimensional data, and consistently strong performance in machinery fault diagnosis 

tasks [12]. Based on what this research learns, it suggests a strong machine fault diagnosis framework that uses Random 

Forest classification together with RFECV-based feature selection to enhance accuracy, make predictions clearer, and use 

resources more efficiently. In this system, we aim to separate four (No Failure, Power Failure, Tool Wear Failure, and 

Overstrain Failure) basic failure types that often come up in industrial machinery. First, it goes through careful 

preprocessing of the senses of vibration, torque, the time worked, and temperature. After that, the framework uses 

performance measures from cross-validation to help it remove unnecessary features as it progresses. Using the new tools 

in this feature set, the model is able to ensure accurate and prompt identification of faults. 

              Besides increasing the correctness of fault classification, the strategy also makes it easier to implement the model 

in real time since it cuts down on model complexity and processing power. That’s why intelligent manufacturing settings 

are excellent places to use it due to the quick decisions and ability to withstand changes in its surroundings. Our aim through 

this research project is to give industry a solid, scalable, and clear method for diagnosing machine faults, so industrial 

operations become both safer and more efficient than before. The proposed methodology aims to implement Recursive 

Feature Elimination with Cross-Validation (RFECV) to effectively select the most significant features from the available 

dataset, which helps reduce dimensionality and enhances both the efficiency and accuracy of the fault diagnosis model. 

Building on this, a Random Forest classifier is developed and trained using the optimally selected features to accurately 

classify machine fault types, including No Failure, Power Failure, Tool Wear Failure, and Overstrain Failure, while 

addressing issues such as overfitting and improving model generalization. Furthermore, this approach tackles the 

challenges of high variance and limited robustness found in existing machine fault diagnosis methods by integrating feature 

selection with ensemble learning techniques, thereby ensuring reliable fault prediction across diverse operating conditions 

and varying data distributions. 

 

II. LITERATURE REVIEW 

Zhao et al. [13] proposed a novel framework named Identification for Fault Diagnosis (I4FD) that integrates regularized 

data-driven modeling and frequency analysis for machinery fault diagnosis under nonlinear system identification. The 

framework is designed to mitigate the effects of external environmental changes and improve diagnostic accuracy. It 

introduces a fault diagnosis-oriented regularization (FDoR) technique that incorporates prior physical knowledge through 

a penalty parameter, making the model specifically tailored for fault diagnosis applications. Unlike traditional approaches, 

I4FD supports continuous dynamic modeling using updated data. After model identification, frequency analysis is applied 

to extract fault-sensitive features. The framework achieves an accuracy of 92% on simulation and real-world cases. The 

advantage of I4FD is its ability to adapt to dynamic environments and deliver high accuracy, while a technical gap lies in 

the computational complexity and potential tuning challenges of the regularization process. Bode et al. [14] proposed a 

data-driven Fault Detection Algorithm (FDA) for heat pump systems, addressing the issue of reduced energy efficiency 

and potential system failures due to undetected faults in building heating and cooling systems. The model leverages big 

data approaches and AI techniques, using features extracted from a comprehensive fault dataset provided by the National 
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Institute of Standards and Technology (NIST). The FDA is trained on this lab-generated data and then applied to a real-

world air-water heat pump system without system modifications. The model achieved an accuracy of 85% on the NIST 

dataset. The advantage of this approach lies in its cost-efficiency and use of detailed fault feature analysis from long-term 

monitoring data, which avoids the need for expensive custom setups. However, the model performs poorly on real-world 

data, highlighting a technical gap in generalizability due to domain shift, data incompleteness, and inadequate fault labeling 

in practical applications. Brito et al. [15] proposed a novel unsupervised framework for fault detection and diagnosis in 

rotating machinery, addressing the challenge of limited labeled data and the need for model interpretability. The approach 

consists of three main modules: feature extraction (from vibration signals in time and frequency domains), anomaly-based 

fault detection, and fault diagnosis using SHAP for model explainability. 

To diagnose faults, the model leverages feature importance scores from SHAP explanations, enabling unsupervised 

classification and root cause analysis. The proposed methodology demonstrated its effectiveness on three rotating 

machinery datasets, achieving a maximum unsupervised classification accuracy of 96.72%, particularly with Ensemble, 

kNN, and CBLOF algorithms. The advantages of the proposed model include modularity in algorithm selection, 

interpretability using SHAP, and high accuracy without requiring labeled data. Nevertheless, the weak points in the area 

are that usefulness of the tool depends on the quality of the features, and methods such as SHAP and Local-DIFFI are 

computationally demanding. 

        Chen et al. [16] designed a machine learning model to detect and diagnose faults in real time in brushless motors, 

Support Vector Machines (SVM), Neural Networks (NN), and Random Forests are used (RF). It collects and combines 

information from numerous sensors to spot faults and check their degree of severity. offering ideas on how to counter the 

effects. Experiments prove that NN comes out on top in terms of success rate. SVM and RF performed very similarly, each 

having an accuracy of 95% and 92% respectively, while the best performance was given by NB with 97%. The main benefit 

of this method is that it improves the reliability, efficiency, and maintenance conditions. The use of brushless motors in 

industries. Still, there is a gap in technology when it comes to joining these the need to rapidly implement models in 

industries, considering they have to work continuously adapting to new types of faults as they happen. Tang et al. [17] 

proposed an intelligent fault detection system that uses DL for rotating speeds. Machinery that involves bearings, gears 

and gearboxes, and pumps. The framework tries to find ways to overcome the major problems linked to expert-dependent 

traditional faults diagnosis methods finding solutions by using only knowledge and manual work. With the help of deep 

learning, the framework lets users the automatic discovery of useful features and accurate recognition of types of faults. 

The model manages to reach an accuracy of 97.75%. It is an effective way to do extract features, since it reduces the amount 

of manual work. An intervention makes diagnostics more reliable and improves their consistency. However, it faces 

challenges in generalization, real-time application, and adaptability to unseen fault types, which are highlighted as areas 

for future research. Gonzalez-Jimenez et al. [18] proposed a machine learning-based fault diagnosis strategy for detecting 

power connection failures in induction machines, such as high resistance connections (HRC), single phasing faults, and 

opposite wiring connections. The model is designed to aid maintenance personnel in identifying these faults, particularly 

those caused by human errors during assembly. Due to the scarcity of real-world failure data, a simulation-driven approach 

using Software-in-the-Loop (SiL) simulations was adopted to generate synthetic training data. The proposed system 

achieved an accuracy of 98.5%. Using this approach, it’s possible to identify a range of faults even without using real data. 

Its disadvantage is its dependence on simulations, which may decrease its effective use in real industries. 

        Tran et al.  [19] proposed an IoT-based architecture integrated with machine learning algorithms to enhance 

cybersecurity in cyber-physical systems (CPS) for industrial electrical machines. The architecture focuses on monitoring 

induction motor status and detecting cyber-attacks in real time. The system uses the Random Forest algorithm for fault 

detection due to vibration and cyber-attack recognition, achieving an accuracy of 99.03%, which outperforms other ML 

models in industrial conditions. The infrastructure leverages the CONTACT Element IoT platform to visualize motor faults 

and fake data signals triggered by detected cyber-attacks on a dashboard. The advantage of this model lies in its high 

detection accuracy, low latency, and clear visualization, making it suitable for cost-effective and secure remote monitoring. 

However, technical gaps remain in terms of scalability across diverse industrial networks and robustness under varying 

attack types. Shubita et al. [20]   proposed a machine learning-based fault diagnosis system that uses acoustic emission 

(AE) signals for early fault detection in rotating machines. The system is implemented on an embedded device with IoT 

connectivity, enabling real-time fault detection and classification. It achieved an accuracy of 96.1% using a fine decision 

tree model. The advantage of this approach is its ability to provide accurate and real-time monitoring with minimal latency, 

making it suitable for industrial deployment. However, the technical gap lies in the limited exploration of model robustness 

under varying operational or noisy conditions, which may affect real-world generalization. 

         Siyuan et al. [21] proposed a duplet classification model combining two 1-D Convolutional Neural Networks (CNNs) 

for fault diagnosis in rotating machinery involving both rotor and bearing components. The idea involved through the 

model was constructed by working on a dataset of 48 machine health problems created by different faults different levels 

and types of these two parties. CNN architecture has been created to distinguish between rotor and having the ability to 

respond to various external problems without getting damaged. It was possible to achieve the model. A high rate of 

identifying mixed faults at 95.93% proves that the results are highly reliable. Moreover, a single-vs-rest approach was built 

based on CNN information to catch known diseases. Four new fault categories, including those that go unnoticed, were 

tested by this study. Its usefulness comes from the fact that it is felt in many parts of society the ability to work in 



 
ISSN: 2788–7669              Journal of Machine and Computing 5(3)(2025) 

 

1703 

complicated environments and recognize new types of faults. However, there is a technical challenge as using different 

models for each type of fault may increase the overall model. Real-time situations can cause major challenges due to lots 

of calculations involved.  Shao et al. [22] introduced a fault diagnosis method that depends on deep learning (DBN) to 

detect the main status of induction motors by examining the distribution of their vibration signals. The model is made by 

putting several Restricted Boltzmann Machines (RBMs) on top of each other and training it in layers. It combines the steps 

of extracting features and doing the classification into one approach, so you do not have to engineer features manually. On 

data from the machine fault simulator, the accuracy of the classification is 99%. 

Because this way works with raw information, the model can learn to structure the data and make the process of finding 

issues automatic and smart. Still, getting the right performance from the model requires careful selection of scale and depth, 

due to which tuning hyperparameters and running the model can be difficult. 

      Sohaib et al. [23]   proposed a fault diagnosis method that combines a two-layer bearing with a hybrid set of data, along 

with SAEDNN. The model deals with finding patterns of faults and measurements of crack sizes from vibration signals 

that change with changing conditions and various fault levels in machines. It is more accurate than SVMs and BPNNs with 

an accuracy of 99.10%. Its real benefit is that it helps find more important features in the vibration data, making it easier 

to classify sounds under changing conditions. Kafeel et al. [24] proposed a fault detection method for rotating machines by 

studying the vibration signals. This system performs empirical mode decomposition (EMD) to filter noise from the signals 

and does multi-domain feature extraction to find both the time and frequency features of vibration data collected from 

healthy and bad induction motors. The extracted features are classified using multiple algorithms including SVM, KNN, 

Decision Tree, and Linear Discriminant Analysis, with the support vector machine using a Gaussian kernel achieving the 

best performance of 98.2% accuracy. 

The advantage of this method lies in the hybrid use of time and frequency features, which enhances the fault discriminative 

capability of the model. However, a technical gap remains in the generalization of the system across different machine 

types and operational conditions, which could affect its applicability in broader industrial settings. Hung et al. [25] proposed 

a system-on-chip (SoC)-based tool wear detection model that leverages deep learning with sensor fusion techniques. The 

system was trained using vibrational and acoustic signals collected from a three-axis CNC machine operating under various 

spindle speeds and torque conditions. The inputs to the deep learning model were frequency spectrum representations of 

signals from a MEMS microphone and a three-axial accelerometer, with tool flank wear measured via a camera, adhering 

to ISO 8688-2:1989 standards. The model achieved detection accuracies of 99.7% for the single-sensor model and 87.75% 

for the fused model when deployed on a Pocket Beagle SoC. 

The advantage of this system lies in its real-time detection capability, high accuracy, and cost-efficient embedded 

implementation. However, it shows reduced performance in the fused model, possibly due to signal integration complexity 

or variability in machining conditions, indicating a need for more robust fusion strategies. Orrù et al. [26] proposed a simple 

and easy-to-implement machine learning (ML) model for early fault prediction of centrifugal pumps in the oil and gas 

industry. The model is based on real-life sensor data including temperature, pressure, and vibration readings, which are 

pre-processed and denoised before training. Two algorithms—Support Vector Machine (SVM) and Multilayer Perceptron 

(MLP)—were implemented using the KNIME platform. The model achieved an accuracy of 98.1%, successfully detecting 

system deviations and issuing fault prediction alerts. The advantage of this approach lies in its practical simplicity and 

effective performance using real industrial data, supporting maintenance decision-making. However, the model is still in a 

preliminary stage, and potential technical gaps include the need for broader validation across different operating conditions 

and scalability for more complex fault scenarios. 

 

Table 1. A Review of Research on Machine Fault Diagnosis Techniques 

Author Proposed Model Findings Challenges 

Zhao et al. [13] 

 

Identification for 

Fault Diagnosis 

(I4FD) 

Achieved 92% accuracy in 

machinery fault diagnosis by 

integrating regularized NARX 

modeling and frequency analysis; 

incorporates physical knowledge 

via FDoR for continuous 

dynamic modeling. 

Computational complexity 

and tuning difficulties in 

regularization parameters. 

Bode et al. [14] 

Data-driven Fault 

Detection 

Algorithm (FDA) 

Achieved 85% accuracy in 

detecting faults in heat pump 

systems using AI-based FDAs 

trained on NIST laboratory data; 

enabled transfer to real-world 

systems without hardware 

modifications; leveraged big data 

and feature extraction for energy-

efficient building climate 

systems. 

Poor generalization to real-

world data due to domain 

shift, incomplete data, and 

fault labeling issues. 
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Brito et al. [15] 

Unsupervised 

Framework for 

Fault Detection and 

Diagnosis in 

Rotating Machinery 

Achieved 96.72% accuracy in 

unsupervised classification using 

Ensemble, kNN, and CBLOF; 

employs SHAP-based 

explainability for root cause 

analysis; effective across three 

real-world rotating machinery 

datasets. 

Computational cost of 

interpretability methods 

(e.g., SHAP, Local-DIFFI); 

performance sensitivity to 

the quality of extracted 

vibration features. 

 

 

Chen et al. [16] 

ML-based fault 

diagnosis using 

SVM, NN, and RF 

Achieved 97% accuracy with 

NN, 95% with SVM, and 92% 

with RF; effectively analyzes 

fault severity and suggests 

countermeasures using sensor 

data. 

Real-time integration 

challenges and limited 

adaptability to evolving fault 

patterns. 

The model faces a high 

variance issue as it struggles 

to validate on unseen faults 

Tang et al. [17] 

Deep Learning-

Based Intelligent 

Fault Diagnosis 

Framework 

Achieved 97.75% accuracy in 

fault classification for rotating 

machinery components 

(bearings, gears, pumps) by 

enabling automatic feature 

learning and reducing reliance on 

manual feature extraction. 

Generalization issues, real-

time implementation 

constraints, and difficulty 

adapting to unseen fault 

types. 

The model might lead to 

overfitting with increased 

epochs 

Gonzalez-Jimenez 

et al. [18] 

ML-Based Fault 

Diagnosis for 

Power Connections 

in IMs 

Achieved 98.5% accuracy in 

diagnosing power connection 

faults (HRC, single phasing, and 

opposite wiring) using Software-

in-the-Loop (SiL) simulation-

generated training data. 

Dependency on simulated 

data may limit real-world 

generalizability; lacks 

validation with field 

datasets. 

Tran et al. [19] 

IoT-based 

architecture with 

integrated ML 

(Random Forest) 

for CPS security 

and motor fault 

detection 

Achieved 99.03% accuracy in 

detecting induction motor faults 

and cyber-attacks using Random 

Forest; leverages CONTACT 

Element IoT platform for real-

time visualization of motor status 

and cyber-attack data; offers low 

latency, high detection accuracy, 

and clear dashboards. 

Scalability across 

heterogeneous industrial 

networks and robustness 

under diverse attack 

scenarios remain open 

issues. 

Shubita et al. [20] 

ML-based Fault 

Diagnosis System 

using AE on IoT-

Enabled Device 

Achieved 96.1% accuracy in 

early fault detection of rotating 

machines using AE signals; 

implemented on embedded IoT 

device for real-time monitoring. 

Limited robustness under 

varying operational/noisy 

conditions; lacks 

generalization to real-world 

environments. 

Chen Siyuan et 

al.[21] 

Duplet Classifier 

using two 1-D 

CNNs 

Achieved 95.93% accuracy in 

diagnosing mixed faults in 

rotating machinery; utilizes two 

parallel CNNs to diagnose rotor 

and bearing faults separately; 

validated on 48 machine health 

conditions and four new fault 

types. 

Increased model complexity 

due to separate CNNs; 

computational overhead 

during real-time 

deployment. 

Shao et al. [22] 

Deep Belief  

Network (DBN)-

based Fault 

Diagnosis 

Achieved 99% accuracy in fault 

diagnosis of induction motors by 

automatically learning features 

from vibration signal frequency 

distributions. Combines feature 

extraction and classification in a 

unified deep learning framework 

using stacked RBMs. 

Model performance depends 

heavily on architecture scale 

and depth; introduces 

challenges in 

hyperparameter tuning and 

computational complexity. 
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Kafeel et al. [24] 

Fault detection 

system based on 

Hybrid machine 

learning models 

The hybrid use of time and 

frequency features, which 

enhances the fault discriminative 

capability of the model 

Generalization of the system 

across different machine 

types and operational 

conditions 

Hung et al. [25] 
Deep learning with 

sensor fusion 

This system provides real-time 

detection capability. 

This model faces integration 

capability issues 

Orrù et al. [26] 
Support Vector 

Machine (SVM) 

Detecting system deviations and 

issuing fault prediction alerts" 

This model faces challenges 

in broader validation across 

different operating 

conditions and in scaling to 

more complex fault 

scenarios 

 

As shown in table 1, the existing fault diagnosis models face several technical challenges, including high computational 

complexity and difficulties in tuning regularization and hyperparameters. Many models struggle with generalization issues, 

particularly when validating on unseen fault types or transferring from simulated or laboratory data to real-world scenarios, 

often due to domain shifts and incomplete or noisy data. Real-time implementation and integration remain problematic, 

especially for deep learning and ensemble methods with increased model complexity and computational overhead. Industry 

experts are also very concerned about the ability to scale these networks in many settings and how they will handle ever-

changing threats. Furthermore, knowing how the AI model works is helpful, but it contributes to the model’s complexity, 

and there are usually difficulties for models to maintain their results as faults evolve and work in more types of 

environments. This research addresses the technical gaps of high variance and overfitting commonly observed in machine 

fault diagnosis models, focusing on improving robustness and generalization in Random Forest-based predictive 

maintenance. 

III.     PROPOSED METHODOLOGY 

This section describes the proposed methodology illustrated in the Fig 1, which presents a structured methodology for 

machine fault classification using a machine learning approach. The process begins with data preprocessing, which includes 

steps such as dropping irrelevant columns, label encoding of categorical data, feature and target separation, and finally, a 

train-test split to prepare the dataset for modelling. Following preprocessing, a feature selection technique is applied using 

Recursive Feature Elimination with Cross-Validation (RFECV) to identify and retain only the most significant features, 

thereby improving both model efficiency and accuracy. The selected feature set is then used to train a Random Forest 

Classifier, a robust ensemble learning algorithm known for its accuracy and resilience to overfitting. The classifier is trained 

to predict different types of equipment failures. For any new input instance, the model predicts one of the four possible 

outcomes: No Failure, Power Failure, Tool Wear Failure, or Overstrain Failure, thus enabling proactive maintenance and 

minimizing operational downtime. 

 

Preprocessing 

The initial phase prepares the raw input dataset for subsequent analysis. 

 

Input Dataset 

Let the raw input dataset be represented by Equation (1) 

 

  D = {(x1, x1), (x2, x2), … , (x𝑁 , x𝑁)}  (1) 

 

where xi is a vector of features for the ith instance, and yi is its corresponding label. The dataset has N instances and M 

initial features. 

 

Dropping Irrelevant Columns 

As shown in equation (2). This step aims to remove features that do not contribute to the predictive power of the model. 

denote the set of irrelevant feature indices. After removing these columns, the dataset is transformed into a new feature set, 

as represented in Equation (2). 

 

 Frelevant = {j ∣ j ∈/Firrelevant}    (2) 

  

 D′ = {(x1′, x1), (x2′ , x2), … , (x𝑁′, x𝑁)}    (3) 

where xi′ is xi with columns in Firrelevant removed. As shown in Equation (3), the updated dataset D′ consists of input-output 

pairs where each xi′ is derived from the original feature vector xi by excluding the features indexed in Firrelevant . This results 

in a reduced-dimensional representation that retains only the most relevant features for model training. 
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Fig 1. Architecture of the proposed model RFRFECV. 

 

Label Encoding 

If the target variable is categorical, it needs to be converted into numerical representations. Let  Y =
{y1, y2 , y3 , … , y𝑁         (4)  be the set of original categorical labels. As represented in equation (4) , the label encoding maps 

these to numerical values: L:Y→{0,1,2,3} (e.g., "No Failure" →0, "Power Failure" →1, etc.).  

The transformed dataset now has numerical labels: 

 

 D′′ = {(x1
′′, l1), (x2

′′, l2), … , (x𝑁
′′ , l𝑁)}   (4) 

 where li=L(yi). 

 

Feature and Target Separation 

The preprocessed dataset is split into features (X) and the target variable (y). X={x1′′,x2′′,…,xN′′} (matrix of features) y={l1

,l2,…,lN} (vector of target labels) 

 

Train-Test Split 

The dataset is divided into training and testing sets. Let Dtrain′′ and Dtest′′ be the training and testing sets. Dtrain′′=(Xtrain,ytrain) 

Dtest′′=(Xtest,ytest) 

 

Feature Selection 

This stage identifies the most relevant subset of features. 

 

Recursive Feature Elimination with Cross-Validation (RFECV) 

RFECV recursively fits a model and removes the weakest features until the optimal number of features is reached based 

on cross-validation performance. Let Mmodel be the base machine learning model. Let K be the number of folds for cross-

validation. The process can be described as follows: 

Step 1: Initialization  

        Start with the full set of P features, F={f1,f2,…,fP}. 

Step 2: Iteration  

The model is trained on the current feature set FFF using K-fold cross-validation applied to the training data Xtrain. During 

this process, the model's performance measured using metrics such as accuracy or F1-score—is evaluated on each fold. Let 

Sk represent the score obtained on fold k, and the average score across all folds is calculated as represented in equation (5). 

 

                                                ṡ =
1

𝐾
∑ S𝐾

𝐾
𝑘=1   (5) 

 

 After evaluating performance, the feature with the lowest importance, denoted as fweakest, is identified and removed from 

the feature set F. This iterative process continues to refine the model by eliminating the least significant features. 

Step 3: Recursion  

Repeat step 2 until an optimal performance is observed or a minimum number of features is reached. 

Step 4: Optimal Feature Set Selection 

 Select the feature set Fselected that yields the highest average cross-validation score. The dataset is then projected onto this 

selected feature set: Xtrain′=Xtrain[Fselected] Xtest′=Xtest[Fselected] 



 
ISSN: 2788–7669              Journal of Machine and Computing 5(3)(2025) 

 

1707 

      Step 5: Feature Set 

      The output of the feature selection phase is the reduced set of features, Fselected. 

 

Random Forest Classifier 

The selected features are fed into a Random Forest Classifier for predicting the failure type. 

 

Random Forest (RF): An ensemble learning method that constructs a multitude of decision trees. 

Let T be the number of decision trees in the forest. Each tree t∈{1,…,T} is trained as follows: 

Step 1 : Bootstrap Aggregating (Bagging) 

   A random subset of the training data Xtrain′ (with replacement) is sampled to train each tree. Let this sample be                                

Dt′ =(Xtrain,t′,ytrain,t). 

Step 2: Random Feature Subspace 

  At each node of the decision tree, only a random subset of m features is considered for splitting. 

Step 3: Tree Construction A decision tree Tt is grown on Dt′. 

Step 4: Training 

  The Random Forest model, denoted as RF, is trained on the selected features of the training data: RF=fit(Xtrain′,ytrain) 

Step 5: Prediction  

  For a new, unseen instance xnew from Xtest′ (with features corresponding to Fselected), each tree t in the forest predicts a class 

y^t. The final prediction for xnew is the mode of the predictions from all trees: y^new=mode(y^1,y^2,…,y^T) 

Step 6 : Output Classes 

  The model outputs one of the four predefined failure types: "No Failure", "Power Failure", "Tool Wear Failure", 

"Overstrain Failure". 

 

IV.  RESULTS AND DISCUSSION 

Dataset Description 

The dataset used in this study contains detailed information related to engine performance and failure analysis. It includes 

variables such as vibration levels, torque, process temperature, air temperature (in Kelvin), engine speed (in RPM), and 

operational hours. Each entry is uniquely identified by a UDI (Unique Identifier) and is associated with a specific Product 

ID and engine type, where the type may denote categories such as motor (M) or liquid (L). The dataset also records the type 

of failure (if any), including specific classifications such as rotational failures, across a total of 500 machines. These attributes 

enable a comprehensive analysis of engine behavior under varying operational conditions. It can be used in many ways, for 

example, spotting reasons for engine failure, checking for engine temperature, speed, and torque, examining various engine 

types, and making forecasts for maintenance. The dataset is available at the following source link: 

https://www.kaggle.com/datasets/nair26/predictive-maintenance-of-machines. The dataset is split into 75% training and 

25% testing. 

 

 
Fig 2. Confusion Matrix of The Proposed Model. 

 

     The Fig 2 represents the prediction results of Random Forest classifier with Recursive Feature Elimination and Cross-

Validation (RFRFECV) on multi-class machine failure problems. The four labels tested in the model were No Failure, 

Overstrain Failure, Power Failure, and Tool Wear Failure. It classified 115 instances as No Failure and just one was ruled as 

Tool Wear Failure. All three cases of Overstrain Failure were grouped under the correct class with 100% correctness. No 

errors happened in the prediction of Power Failure, as all two instances were accurately classified, and although four 
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instances of Tool Wear Failure were found, the model misclassified one as being from the No Failure class. On the whole, 

the confusion matrix confirm that the main class is classified very accurately and that all failure categories are detected well. 

The findings prove that choosing the right features and training the model correctly worked well. The slight number of cases 

that were wrongly classified implies that some failure groups may have traits in common with others. Therefore, RFRFECV 

was a dependable choice for handling data from many types of machinery and for recognizing faults in machines with 

preventive measures. 

 

 
Fig 3. Feature Importance Analysis Using RFRFECV. 

 

      The Fig 3 illustrates how a Random Forest classifier worked well when it was trained using RFRFECV to predict multiple 

machine failure conditions. There were four categories used in this classification problem: No Failure, Overstrain Failure, 

Power Failure, and Tool Wear Failure. This model was able to identify 115 of the instances in the “No Failure” category and 

just one case was wrongly marked as involving “Tool Wear Failure.” When it comes to the “Overstrain Failure” category, 

the system did not make any mistakes and identified all the instances correctly. Thus, the model has the ability to tell between 

routine conditions and certain types of failures. Consequently, the RFRFECV method allowed the team to pick the right 

features, and this improved the model’s precision in spotting and classifying different machine failures. 

 

 
Fig 4. Feature Relationships of Failure Types in the Proposed Model. 

      The Fig 4 presents Feature Relationships that are coloured by the type of failure that occurs. Scatter plots in the matrix 

display the connection between two variables in the data, and the diagonal plots indicate how each variable is spread. No 
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Failure is depicted as blue, Power Failure in orange, Tool Wear Failure in green, and Overstrain Failure in red on every 

graph. The way operational and environmental features are related, color-coded according to the ‘Failure Type’. Seeing the 

results makes it possible to spot connections between various features and the different forms of failure. KDE estimates are 

drawn in the diagonal figures, offering views of the distributions of the features individually. Each scatter plot in the off-

diagonal plots shows the trend between two features. The analysis using pair plots explains the features’ distributions alone 

and their relationships with one another, as well as the significant patterns spotted for each failure case. The feature called 

'Type' is a category, with 'Type 1' occurring most often, while both 'Air Temperature' and 'Process Temperature' are narrowly 

distributed and only take values inside certain ranges, but 'Air Temperature' sometimes drops below these ranges. 'Rotational 

Speed' displays multiple peaks, suggesting varied operating regimes, whereas 'Torque' and 'Vibration Levels' demonstrate 

unimodal distributions concentrated at lower values with a tail extending to higher levels. 'Operational Hours' presents a 

broader distribution, with a noticeable peak at lower values potentially indicating newer units or shorter operational cycles. 

In terms of bivariate relationships, a strong inverse correlation exists between 'Rotational Speed' and 'Torque', where 

increased rotational speed generally corresponds to decreased torque, a typical characteristic of mechanical systems with 

constant power output. No direct linear relationship is evident between 'Operational Hours' and either 'Torque' or 'Rotational 

Speed across the entire dataset, although specific failure types might exhibit localized clustering. 'Air' and 'Process 

temperatures' show an expected correlation with each other, but their relationships with other operational parameters like 

'Torque' or 'Rotational Speed' are less pronounced linearly. Similarly, 'Vibration Levels' show scatter with other features, but 

no strong linear correlations are immediately apparent across the dataset. Crucially, the coloring by 'Failure Type' illuminates 

key patterns: 'No Failure' instances, representing the majority, are broadly distributed across all features, forming the primary 

clusters. 'Power Failure' instances are fewer and tend to cluster in specific regions, such as higher torque values at varying 

operational hours, or lower rotational speeds combined with higher torque, potentially indicating overload conditions. 'Tool 

Wear Failure' events are sparse but more prominent at higher operational hours, consistent with accumulated wear, and also 

appear at higher 'Vibration Levels', a common symptom of tool degradation. Finally, 'Overstrain Failure' events are very rare 

and consistently occur at extremely high 'Torque' values, aligning with the definition of overstrain. 

       The Fig 5 visually illustrates the accuracy performance of each fault diagnosis model, with each bar uniquely colored 

to distinguish between different techniques. The RFRFECV Classifier, proposed in this study, achieves the highest accuracy 

of 99.20%, o[utperforming all other existing approaches. Notably, models such as the IoT-based architecture with integrated 

machine learning (99.03%), Deep Belief Network (99%), and Hybrid ML models (98.20%) also demonstrate strong 

performance, reflecting a clear trend toward the adoption of hybrid and deep learning-based solutions for fault diagnosis. 

 

 
Fig 5. Accuracy Comparison of the Proposed Method. 

 

V. CONCLUSION 

This study presents a comprehensive machine fault diagnosis framework that effectively combines Recursive Feature 

Elimination with Cross-Validation (RFECV) and Random Forest classification to enhance predictive accuracy and model 

robustness. By systematically selecting the most significant features, the proposed approach reduces dimensionality, 

mitigates overfitting, and improves computational efficiency. The Random Forest classifier trained on the optimized feature 

set demonstrated exceptional performance, achieving an accuracy of 99.2% in classifying multiple fault types, including 

No Failure, Power Failure, Tool Wear Failure, and Overstrain Failure. This validates the effectiveness of integrating feature 
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selection with ensemble learning in addressing common challenges such as high variance and poor generalization. The 

framework’s robustness and reliability make it well-suited for real-time fault diagnosis applications in smart manufacturing 

environments, ultimately contributing to improved operational safety and reduced maintenance costs. Future work may 

focus on extending this approach to other industrial domains and exploring adaptive methods to handle evolving fault 

patterns. 
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