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Abstract – Plant diseases continue to be one of the leading causes of reduced agricultural productivity worldwide, directly 

threatening food supply chains and the economic stability of farming communities. With the global population steadily 

increasing, the demand for intelligent, scalable, and highly accurate plant disease detection systems has never been more 

critical. Deep learning methods have shown promising results in this field; however, numerous conventional models cannot 

often generalize well across different crop species and unseen disease types. These limitations hinder their practical 

deployment in dynamic real-world agricultural environments. In this study, we propose a robust and generalized deep 

learning-based approach for cross-crop plant disease detection, using the comprehensive and diverse Plant Village dataset. 

Our model is built upon a custom-designed Convolutional Neural Network (CNN) architecture that incorporates a small 

Inception module. Unlike traditional CNNs, which primarily focus on the global features of a leaf. Our model detects and 

analyzes localized disease spread patterns, enhancing detection across diverse crops and adapting to novel conditions. The 

small Inception module plays a vital role in enabling multi-scale feature extraction from small disease-affected patches 

without adding excessive computational complexity. This architectural refinement allows the model to learn more 

discriminative features, resulting in faster convergence and higher classification accuracy. When trained and validated on 

the Plant Village dataset, our model achieved an impressive accuracy of 98.45%, outperforming many traditional 

approaches. Additionally, it demonstrated consistently high precision, recall, and F1-score, confirming its reliability and 

robustness. By addressing the challenges of overfitting and poor generalization, common pitfalls in many deep learning 

models, our method provides a scalable and effective solution for real-time agricultural disease monitoring. This work 

contributes to the growing field of precision agriculture by offering a model that is not only accurate but also generally 

efficient and practical for deployment in diverse agricultural settings. Ultimately, our research aims to support the 

development of smart farming technologies that ensure healthier crops and contribute to long-term global food security. 

 

Keywords – Plant Disease Detection, Deep Learning, Convolutional Neural Network (CNN), Inception Module, Cross-

Crop Classification, Plant Village Dataset, Image-Based Diagnosis, Disease Localization. 

 

I. INTRODUCTION 

Agriculture plays a vital part in all economic systems and is a basic source of food that sustains life.  Improving the 

agricultural industry is essential to increasing output and raising quality.  This enhancement necessitates establishing the 
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ideal environment for crops and plants to flourish healthily. Plant degradation is frequently caused by diseases.  According 

to the United Nations Food and Agriculture Organization, chronic illnesses cost the world economy some $220 billion a 

year.  They may cause serious harm to the crop or perhaps their total annihilation.  Plants can be attacked by bacteria, fungi, 

viruses, and microscopic animals, which can change their natural form and interfere with their essential processes[1]. Plants 

can be saved when infections are detected early and neutralized.  The crops are safeguarded, and losses are prevented to a 

greater extent, the sooner they are identified. The conventional disease detection methods, which mostly rely on human 

diagnosis, are time-consuming and inadequate because of a lack of expertise[2]. The diagnosis must be based on a more 

trustworthy technique because the data collection method and verification frequency are also insufficient.  Modern 

technologies have been provided as an automatic way to identify plant diseases for this aim [3]. Cutting-edge technologies 

like sensors, drones, and robots have drastically altered the way farmers manage their crops [4]. Although machine learning 

has opened up possibilities for studying data, several issues must be resolved. 

Plant disease identification using machine learning and deep learning approaches is a quickly developing subject with 

encouraging outcomes [5]. Yet since deep learning-based techniques rely on automatic feature extraction rather than human 

feature selection, they have outperformed other machine learning techniques, particularly in the area of image identification 

[6]. Deep learning-based techniques for the identification and detection of plant diseases have been proposed in a few 

research areas.  But there are a lot of barriers that keep this technology from being used more effectively.  The impossibility 

of gathering dataset photos for every illness across all leaf kinds is, in fact, one barrier.  Furthermore, a few diseases spread 

quickly, making it difficult to catch them on leave in time. Furthermore the model is impacted by the traits of the crop and 

the disease during the learning process [7]. This suggests that characteristics that can be extracted from one disease and 

crops cannot be applied to other diseases and crops. A dataset comprising pairs of distinct crops and diseases must be used 

to train the classification model to develop a generalized method for classifying plant ailments. Regretfully, there isn't a 

dataset like that, and making one is extremely challenging, if not impossible. The globe is home to millions of plants and 

crops, and these organisms are susceptible to millions of illnesses. However, no such dataset exists, and it is very difficult, 

if not impossible, to create one.   There are millions of plants and crops in the world, and millions of diseases may affect 

these plants and crops.   It takes time and effort to acquire data.   These problems directly affect the performance of deep 

learning-based systems due to the lack of data.   Lack of access to sufficient datasets hinders the deep learning system's 

capacity to generalize patterns learned in plant disease recognition [8]. 

Even though many deep learning models have been created for the identification of plant diseases, most of them are 

specialized for a single crop or dataset, which restricts their applicability to other plant species.  They are less useful in 

real-world settings where farmers might grow multiple crops at once because of their crop-specific concentration.  Creating 

a unified or generic deep learning model that can correctly classify illnesses across many crop kinds is a major challenge.  

This calls for a robust architecture that can manage a great degree of variety in leaf forms, colors, textures, and illness 

signs, as well as a diverse and representative dataset. To address this issue, this study presents a deep learning-based 

approach that generalizes plant disease detection across different crops and disease kinds to overcome the drawbacks of 

crop-specific models.    Our method concentrates on precisely detecting the disease rather than depending only on the sight 

of damaged leaves. A generalized deep learning model is chosen for its scalability, efficiency, and adaptability through 

transfer learning. Using the PlantVillage dataset, we aim to enable early diagnosis, assist farmers in low-resource settings, 

and support sustainable agriculture. The following are the work's significant contributions:  

• Generalized Disease Detection Model, we develop a unified deep-learning model capable of accurately 

identifying plant diseases across multiple crop types, eliminating the need for separate models for each crop. 

• Our strategy places more emphasis on learning disease-specific patterns than existing approaches, which mostly 

rely on crop-specific visual cues. This improves the model's generalizability and practicality.  

• Scalable and Easy to Adapt for Real-World Use, our model uses transfer learning, which means it can quickly 

learn to detect diseases in new crops using very little additional data. This makes it a practical, low-cost solution 

that can be used in different farming environments and helps support sustainable agriculture. 

• A new version of the PlantVillage dataset was constructed by reprocessing existing images into labeled patches 

(healthy vs. unhealthy). This restructured dataset, consisting of over 1.8 million patches, enables scalable and 

flexible training of generalized models. 

• Our proposed model was evaluated alongside other state-of-the-art architectures such as EfficientNet-B0, 

ResNet-50, MobileNetV2, and Vision Transformer (ViT), providing a thorough comparative performance 

analysis regarding accuracy, loss, and generalization behavior. 

 

II. LITERATURE REVIEW 

With the world’s population growing and natural resources becoming limited, researchers are using various methods to 

monitor crops and seedlings, especially to detect diseases. Because deep learning has worked well in many areas, many 

studies now focus on using it to diagnose plant and crop diseases. However, researchers face several challenges when 

developing reliable and effective deep learning models for detecting diseases in plant leaves. 

However, Chowdhury et al. [9] proposed a CNN-based model for detecting diseases in plant leaves commonly grown 

in Bangladesh. They trained the model using online datasets, which were mainly collected from other countries, and 
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achieved an accuracy of 85.31%. Most existing research has similarly focused on plant data from different regions, not 

locally sourced samples.  

Table 1. Summary of Key Studies on Crop Disease Detection 

Reference Dataset Model Accuracy (%) Limitations 

[9] Plant-Village CNN 85.31 

The model struggles to detect multiple 

diseases affecting the same leaf 

simultaneously. 

[10] Plant-Village Slender-CNN 99.81 

Real-time learning features are not yet 

implemented, limiting its ability to 

improve continuously from new data. 

 

[11] self ResNet 94.00 

The model was only evaluated using 

preprocessed images, which may not 

reflect real-world conditions like poor 

lighting, background noise, or partially 

damaged leaves. 

[12] PlantVillage CNN-ResNet 99.24 

The model relies on pre-trained CNNs 

fine-tuned on ImageNet, which may limit 

its ability to fully capture specific disease 

features unique to certain crops 

[13] PlantVillage 
RTR_Lite_ 

MobileNet 
99.92  

Does not explore how the model 

performs in real-time field conditions 

with varying lighting and backgrounds. 

[14] MangoLeafBD InceptionV3 99.87 

Although the model shows high 

accuracy, its performance in real-time or 

field conditions is not evaluated. 

[15] PlantVillage DSDNN 99.00 

While the model performs well on the 

given dataset, its effectiveness in diverse 

agricultural settings with different crops 

and disease types remains uncertain. 

[16] self MaxViT 100.00 

Vision Transformers require significant 

computational resources, making real-

time deployment of low-power 

agricultural devices challenging. 

[17] PlantVillage 

Depthwise 

CNN + SE + 

Residual 

96.00 

Data imbalance affects model 

performance; it needs better 

augmentation and improved 

interpretability. 

[18] PlantVillage 
DenseNet201 

+ SVM 
99.82 

Scalability remains a challenge, as the 

model may not efficiently scale for large-

scale agricultural deployment across 

different farming regions. 

[19] Plant Village XI-CNN 100.00 

The model focuses on classification but 

does not provide insights into disease 

severity 

 

       A recent study, Baiju et al. [10]’s Slender-CNN detected key diseases in corn, rice, and wheat with 99.81% accuracy, 

but missed some less common diseases and crops. Its lightweight design suits mobile and drone use, and it has the potential 

to expand to other crops and real-time field data. Agriculture plays a vital role in any growing economy, but plant diseases 

threaten their sustainability, especially in crops like tomato and potato. Early detection is crucial, and this study, Kalaivani 

et al. [11], used machine learning (SVM) and deep learning (ResNet) to identify leaf diseases. After preprocessing and 

augmentation of the datasets, both models are tested. ResNet outperforms SVM with 94% accuracy and is recommended 

for real-time use, along with fertilizer suggestions based on disease type. Aboelenin et al. [12] combined a hybrid model, 

CNNs and Vision Transformers for plant leaf disease detection. Tested on apple and corn datasets from PlantVillage, it 

achieved accuracies of 99.24% and 98%. The model outperforms many existing methods and shows promise for broader 

agricultural and computer vision applications.  

      By incorporating attention mechanisms, Duhan et al. [13] RTR_Lite_MobileNet improve upon MobileNetV2, 

increasing accuracy on plant disease datasets by up to 99.92%.  Because of its efficiency and portability, it allows for low-

latency real-time detection on devices such as the Raspberry Pi.  Additionally, the model shows potential for real-world 
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agricultural applications by performing well on complex, real-world data. Mango cultivation plays a vital role in food 

security and the economy of tropical regions, but it is vulnerable to various leaf diseases that impact yield and quality. 

Early detection is essential for sustainable farming. In recent studies, Varma et al. [14] have applied deep learning models 

such as VGG19, InceptionV3, ResNet152V2, DenseNet121, and others to detect mango leaf diseases. Among them, 

InceptionV3 achieved the highest accuracy of 99.87%, demonstrating its effectiveness compared to other models.  

In other studies, Kaushik et al. [15] proposed a deep-wise separable-based adaptive neural network (DSDNN) for plant 

disease detection, particularly in potatoes. Using the PlantVillage dataset, the model integrates Gaussian filtering, Enthalpy-

based graph clustering, and advanced feature extraction techniques. The approach achieved 99% accuracy, outperforming 

previous methods. Despite its success, the model's performance is only validated on the PlantVillage dataset, which may 

limit its effectiveness in real-world scenarios. Early detection of corn leaf diseases is essential to prevent crop loss. While 

CNNs have been widely used for disease detection, recent Vision Transformer (ViT) models perform better. This study 

Pacal and Ishak et al. [16] used ViT models (MaxViT, DeiT3, MobileViT, MViTv2) alongside CNNs (VGG, ResNet, 

DenseNet, Xception) with data augmentation and transfer learning. 

An ensemble method further improves accuracy. Tested on PlantVillage and a new CD&S dataset, the models achieved 

up to 100% accuracy, outperforming previous methods. This approach offers a reliable, automated solution for corn disease 

diagnosis. Ashurov et al. [17] introduced a Depthwise CNN model with SE blocks and skip connections, achieving 96% 

accuracy for plant disease detection. This study, Bhola and kumar et al. [18]  presented a hybrid model using DenseNet201 

and SVM to detect diseases in Corn, Wheat, and Rice. It achieves high accuracy up to 99.82% with a lightweight design, 

making it effective for real-time crop disease detection. Furthermore, Shafik et al. [19] introduced a hybrid IX-CNN model 

combining Inception and Xception layers for plant disease detection. It achieved up to 100% accuracy on multiple datasets, 

such as PlantVillage and Turkey Disease, and over 98% on others. The model uses SVM, DT, and RF classifiers and 

supports real-time platform applications. Table 1 summarizes several studies on crop disease detection. 

While the works above have significantly contributed to plant disease detection, several vital gaps remain: 

• Generalization Across Crops: The inability of current deep learning models to reliably identify diseases in a 

variety of plant species restricts their applicability in a range of agricultural contexts. 

• Dataset Limitations: The PlantVillage dataset does not include real-world changes like ambient noise, lighting 

variances, and mixed cropping scenarios. The resilience of the model is weakened by this lack of variance. 

• Computational Restrictions: Deep learning models have high resource requirements, making it difficult to 

deploy them on mobile and edge devices, limiting farmers' access. 

 

III. METHODOLOGY 

This section outlines the presented methodology for detecting abandoned objects in various weather conditions. The 

approach utilizes a hybrid model and DAWN dataset for object detection and a weather enhancement module to handle 

adverse situations.  

 

Dataset Description 

In this work, we fetched an open-access dataset released through the online platform named PlantVillage, which is widely 

recognized in the domain of agricultural image analysis and is primarily used for classifying and recognizing plant leaf 

diseases [20]. It was selected for its diversity, comprehensiveness, high-quality annotations, benchmark status in plant 

pathology research, accessibility, and strong relevance to real-world agricultural challenges. The PlantVillage dataset 

comprises 54,305 RGB images, including healthy and diseased leaves. These images span 14 crop species and cover 20 

distinct disease types, categorized into 38 classes, 12 healthy leaf classes, and 26 diseased leaf classes. All images were 

captured under controlled laboratory conditions with a uniform background and standardized to a resolution of 256 × 256 

pixels, ensuring consistency and ease of processing for deep learning models. 

 

 
Fig 1. Examples From the Plantvillage Dataset: (Left) Original Images with Uniform Backgrounds and (Right) 

Corresponding Images with Segmented Backgrounds. 

 

For this study, we utilize an enhanced version of the PlantVillage dataset introduced in [21], in which the leaf regions 

are segmented from the background to better emulate real-world scenarios and improve the model's robustness in field 
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conditions. This preprocessed version reduces background noise and enables the learning algorithms to focus solely on the 

relevant leaf features. Fig 1 illustrates comparative examples of the original images with uniform backgrounds and the 

segmented images with backgrounds removed. 

 

The Refined PlantVillage Dataset 

The updated PlantVillage dataset consists of 1,860,316 image patches divided into 1,014,154 unhealthy and 846,162 

healthy samples [21].  Table 2 visualization of the disease name with healthy and unhealthy patches. The dataset's labeling 

was guided by the nature and spread of specific plant diseases. Notably, diseases such as Huanglongbing (citrus greening), 

leaf blight (Isariopsis leaf spot), and powdery mildew are known to affect the entire surface area of infected leaves 

uniformly. Based on this characteristic, all patches extracted from leaves exhibiting these diseases were consistently labeled 

as unhealthy, as the presence of the infection was assumed to extend across the entire image region. This labeling strategy 

ensured the dataset's integrity and enhanced the training process's robustness by reducing label noise, particularly for 

disease types that manifest across full-leaf surfaces. Using this carefully selected dataset, a generalized plant disease 

detection model that can reliably differentiate between healthy and diseased leaf sections, irrespective of the crop type, 

may be trained.  Table 3 displays the Number of Samples and Patches per Crop. 

Table 2. Visualization Of the Disease Name with Healthy and Unhealthy Patches 

Disease Name 
Unhealthy 

Patches 
Healthy Patches 

Healthy (All crops) 0 647614 

Bacterial spot 97506 72307 

Black rot 23749 38096 

Cedar apple rust 5831 2273 

Cercospora leaf spot/Gray leaf spot 22738 2400 

Common rust 56887 2911 

Early blight 35947 31302 

Esca (Black measles) 27737 19499 

Haunglongbing (Citrus greening) 194626 0 

Late blight 45011 38440 

Leaf mold 14596 7774 

Leaf blight (Isariopsis leaf spot) 43106 0 

Leaf scorch 39752 1310 

Northern leaf blight 40987 5782 

Powdery mildew 119279 0 

Septoria leaf spot 34377 16983 

Spider mites (Two-spotted spider mite) 15110 26823 

Target spot 6086 38714 

Tomato yellow leaf curl virus 155739 0 

Tomato mosaic virus 5209 2175 

Scab 10998 11986 

Total 1014154 846162 

Table 3. Number Of Samples and Patches Per Crop 

Crop Name 
Number of 

Samples 

Number of 

Patches 

Apple 3171 97269 

Blueberry 1502 38080 

Cherry (incl. sour) 959 64287 

Corn (maize) 2857 158735 

Grape 3639 127516 

Peach 2657 67970 

Pepper, bell 2475 91126 

Potato 352 76541 

Raspberry 371 12723 

Soybean 5090 190448 

Strawberry 1565 57966 

Tomato 23060 625250 

Orange 5507 194626 

Squash 1835 83457 



 

 

 

ISSN: 2788–7669                                                                                          Journal of Machine and Computing 5(3)(2025) 

1597 

Proposed Method 

This section explains the method used to build a general-purpose system for identifying plant diseases from leaf images. 

Once trained, the system can recognize signs of infection without needing prior details about the type of plant or the specific 

disease. A notable feature of this system is its ability to estimate how much of the leaf is affected by the disease. Fig 2 

gives a clear overview of the entire process, showing each key step involved in the system's work. 

 

 
Fig 2. Overview of the Proposed Convolutional Neural Network (CNN) Workflow. 

 

Generalization of the Process of Crop Disease Detection  

To promote generalization across diverse crop types, we introduce a novel approach that removes dependence on crop-

specific features and focuses exclusively on disease-related visual cues. Rather than training the model using full leaf 

images, which inherently contain the crop's identifying characteristics, we decompose each image into small, uniform 

patches. These patches are sufficiently small to eliminate structural clues related to the crop species, allowing the model to 

concentrate solely on patterns associated with disease symptoms. 

Each input image, denoted as I, is split into square patches, referred to as S1, S2,…,Sn, where each patch has fixed 

dimensions of 32 × 32 pixels. This resolution was carefully selected to be compatible with lightweight convolutional neural 

network (CNN) architectures, enabling efficient training and inference. To accommodate any image dimension, we resize 

each image to the nearest multiple of 32 pixels along both height H and width W, then divide it into a grid of patches. The 

total number of patches per image Ns can be calculated as: 

 

 𝑁𝑠  =  [
𝐻

𝑃ℎ
]  × [

𝑊

𝑃𝑤
] (1) 

 I = {𝑆1, 𝑆2,.......,𝑆𝑁𝑠
} (2) 

 

where, H and W are the height and width of the resized image, and, 𝑃ℎ  and 𝑃𝑤 are the patch height and width (set to 32 

pixels). 

When a 256 × 256-pixel image is split into an 8 by 8 grid, for example, the following is produced: 

 

 

 𝑁𝑠  =  
256

32
 ×  

256

32
 =  64 𝑝𝑎𝑡𝑐ℎ𝑒𝑠  (3) 

 

We applied a filtering mechanism to eliminate irrelevant or empty patches based on the proportion of black pixels in 

each patch. A pixel is black if its Red, Green, and Blue (RGB) values are all zero. The percentage of black pixels in a given 

patch S is computed as: 

 

 𝐵%  =  (
1

𝑃
 ∑ 𝛿𝑃

𝑖=1  (𝑅𝑖  =  0 ∧  𝐺𝑖  =  0 ∧  𝐵𝑖  =  0)  ×  100 )  (4) 
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where, P is the whole number of pixels in the patch, 𝑅𝑖,𝐺𝑖,𝐵𝑖 are the RGB values of the 𝑖𝑡ℎ pixel and δ (⋅) is an indicator 

function producing 1 if the condition is true and 0 otherwise. 

Patches with a black pixel percentage of 100%, indicating a complete absence of leaf content, are discarded. Among 

the remaining patches, we retain only those whose black pixel percentage is less than or equal to that of the original image 

(empirically determined to be approximately 50%). This selection ensures fidelity to the original dataset distribution while 

removing noise. 

The filtered patch set for a given image is then defined as: 

 

 Í =  {𝑆𝐾  ∊  𝐼 | 𝐵% (𝑆𝑘)  ≤  𝐵𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}  (5) 

where, 𝐵𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  ≈ 50%. 

 

Generalization Across Disease Types 

Our proposed strategy shifts the focus from identifying individual diseases to a more foundational task: detecting whether 

a leaf is infected regardless of the disease type. We achieve this by training the model to distinguish between healthy and 

infected patches without classifying the exact disease. Specifically, we aggregate healthy patches across all crop types to 

build a robust feature representation for healthy leaf tissue. In parallel, we gather infected patches from all disease 

categories to learn the distinguishing characteristics of unhealthy leaves. This setup enables the model to generalize disease 

detection, even for previously unseen disease types. To construct this binary classification framework, all patches derived 

from the PlantVillage dataset were visually labeled by agricultural experts over three months. Each patch was labeled as 

either: 

This binary labeling process is formally represented as: 

 

 Í =  {𝑆𝑗  | 𝑆𝑗 ∊  𝐼 |  ∧  ℎ𝑒𝑎𝑙𝑡ℎ𝑦 } 𝑈 {𝑆𝑘| 𝑆𝑘 ∊  𝐼 |  ∧  𝑢𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦}  (6) 

 

Using this approach, we created a new dataset version, organized into two categories where: 

• H: The set of all healthy patches, 

• U: The set of all unhealthy patches. 

This restructured dataset can be defined as: 

 

 H = ∑ ∑ {𝑆𝑖
𝐶|𝑆𝑖

𝐶 ∊ 𝐼𝑖
𝑐  

𝑁𝑐
𝑖=1

𝐶
𝑐=1 ∧  ℎ𝑒𝑎𝑙𝑡ℎ𝑦}  (7) 

 

 U = ∑ ∑ {𝑆𝑖
𝐶|𝑆𝑖

𝐶 ∊ 𝐼𝑖
𝑐  

𝑁𝑐
𝑖=1

𝐶
𝑐=1 ∧  𝑢𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦} (8) 

 

where, C is the number of crop-disease classes in the dataset, 𝑁𝑐 is the number of images in class c, 𝐼𝑖
𝑐 is the ith image 

in class c, 𝑆𝑖
𝐶  is a patch extracted from 𝐼𝑖

𝑐. 

 

Detection and Quantification of Disease Spread 

Once the model is trained to distinguish healthy from unhealthy leaf patches, it can be applied to analyze new leaf images. 

Following the same patching approach, each test image is divided into non-overlapping 32 × 32-pixel patches, and 

irrelevant patches are discarded. The remaining patches are fed to the classifier, which predicts whether each patch is 

healthy or diseased. This patch-wise prediction not only facilitates disease detection but also enables the quantification of 

the disease’s spatial extent on the leaf. 

To compute the disease prevalence across the entire leaf, we count the number of patches predicted as unhealthy NU 

and healthy NH. The percentage of diseased area 𝐷% is then calculated as: 

 

 𝐷% = (
𝑁𝑈

𝑁𝐻 + 𝑁𝑈
) × 100  (9) 

 

where, 𝑁𝑈 𝑖𝑠 The number of unhealthy (infected) patches and 𝑁𝐻 𝑖𝑠 Healthy patches. 

This metric provides a direct, interpretable measure of disease severity on each leaf, enabling more informed 

agricultural assessments and interventions.  

 

CNN Architecture 

The convolutional neural network (CNN) for classifying the extracted leaf patches is based on the small Inception model, 

a lightweight variation of the original GoogLeNet Inception architecture. GoogLeNet's demonstrated conquest in plant 

disease detection tasks motivated the selection of this architecture. The smaller variant offers improved computational 

efficiency and is better suited for small input sizes, such as 32 × 32-pixel patches. 

The small Inception architecture comprises three primary building blocks: 

• Conv Module: A standard convolutional layer followed by batch normalization and activation. 
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• Inception Module: A simplified version of the original Inception block, which includes multiple parallel 

convolution operations with different kernel sizes to capture multi-scale features. 

• Downsample Module: A module that combines convolution and pooling operations to reduce spatial dimensions 

while preserving feature richness. 

Fig 3 illustrates a schematic overview of the small Inception architecture, illustrating how these modules are 

organized within the network. 

 

 
Fig 3. The Architecture of the Small Inception Model.  

 

IV.  EXPERIMENTAL SETUP AND EVALUATION 

This section thoroughly evaluates the proposed disease detection method, emphasizing its generalization capacity and 

resilience across various crop species and disease kinds while our core model is a convolutional neural network (CNN), 

we also incorporate several advanced architectures—namely Efficientnet-b0, Resnet-50, Mobilenetv2, and Vision 

Transformer (ViT)—to conduct a comparative performance analysis. This multi-model approach ensures a thorough 

assessment of our method's efficacy by benchmarking it against both traditional and cutting-edge deep learning models. 

We begin by testing all models on a newly curated dataset to verify their accuracy in distinguishing between healthy and 

diseased leaf regions across different crops. To further the effectiveness of our approach, we compare our results with state-

of-the-art methods that used the PlantVillage dataset. The evaluation employs a range of standard classification metrics, 

including accuracy, precision, recall, F1-score, loss, and confusion matrix, presenting a holistic view of each model's 

strengths and limitations. 

 

Experimental Setup 

Python and the TensorFlow framework were used to train the CNN model from the ground up. Extensive experimentation 

with various combinations was conducted to determine the hyperparameter configuration that produced the best 

classification accuracy while preserving generalization capability and avoiding overfitting.  The optimization algorithm 

used was Adam, which was applied with its default parameters. Training and evaluation were conducted on Google Colab, 

leveraging GPU acceleration for improved computational speed and performance. Table 4 presents the hyperparameter 

configuration. The dataset was partitioned as follows: 

• Training Set: Comprising 80% of the data from each class: 

- 676,929 healthy patches 

- 811,323 unhealthy patches 

• Validation & Test Set: Comprising the remaining 20% of each class: 

- 169,233 healthy patches 

- 202,831 unhealthy patches 

This balanced and comprehensive dataset division ensured sufficient representation of both classes across the training 

and evaluation phases. This study adopts a deep learning-based approach using a custom Inception-based CNN to identify 

plant diseases through leaf patch classification.  
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Table 4. Hyperparameter Configuration 

Hyperparameter Values 

Batch size 32 

Epochs 300 

Learning rate  0.001 

Optimizer  Adam 

 

Evaluation Metrics 

In our study, we employed several standard evaluation metrics to evaluate the performance of our deep-learning models 

for plant disease detection.  

 

Accuracy 

Accuracy represents the proportion of correctly classified patches (healthy and unhealthy) out of the total patches. It 

provides an overall measure of classification effectiveness: 

 

 Accuracy = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
  (10) 

 

Precision 

To reduce false positives, precision evaluates the proportion of patches that are truly unhealthy compared to those that 

were projected to be unhealthy.  

 Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (11) 

 

Recall 

Recall measures how well the model detects all critical patches to minimize false negatives.  

 

 Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12) 

 

F1-Score 

When the class distribution is unbalanced, the harmonic means of accuracy and recall, or F1-score, provides a balanced 

evaluation of both metrics.  

 F1-score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (13) 

 

Loss 

Loss quantifies the difference between the predicted labels and the actual labels. We used categorical cross-entropy 

loss, which is standard for multi-class classification problems. Lower values indicate better performance. 

 

Confusion Matrix 

The confusion matrix thoroughly analyzes prediction outcomes, displaying the proportion of patches accurately or 

inaccurately categorized as healthy or unhealthy. were, 

• TP: True Positives (unhealthy patches correctly classified) 

• TN: True Negatives (healthy patches correctly classified) 

• FP: False Positives (healthy patches misclassified as unhealthy) 

• FN: False Negatives (unhealthy patches misclassified as healthy) 

Performance Analysis 

Assessing testing and training accuracy, together with associated loss values, provides important information about how 

well each model learns and generalizes. A model that maintains low and tightly matched loss values while achieving high 

accuracy on training and testing datasets indicates strong generalization without overfitting or underfitting. Fig 4 depicts 

the training loss and accuracy curve. In this study, these metrics serve as a foundation to assess the robustness and 

adaptability of each deep learning architecture when applied to patch-based plant disease detection, as displayed in                  

Table 5. 

Among all evaluated models, the CNN-based Small Inception architecture stands out distinctly, achieving the highest 

test accuracy (98.45%) with minimal loss (0.0400), closely trailing its training performance (99.10%, loss 0.0250). An 

optimally regularized model is characterized by a near parity between training and test performance, demonstrating its 

capacity to generalize effectively over unknown data without learning the training set. Adapted to localized input patterns, 

its compact architecture works incredibly well for extracting discriminative features from heterogeneous leaf patches.  On 
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the other hand, broader or more profound structures have other drawbacks. Vision Transformer (ViT) showed a little 

performance difference between training and test loss (0.0500 vs. 0.1200), indicating modest overfitting despite its strength 

in modeling long-range relationships. Its performance reflects high learning capacity but reduced resilience to patch-level 

noise, likely due to its dependency on extensive pretraining or larger datasets for full effectiveness. 

 

Table 5. Performance Analysis of Testing and Training Accuracy Along with Their Loss  

Model Train Accuracy Test Accuracy Train Loss Test Loss 

CNN (Small Inception) 0.9910 0.9845 0.0250 0.0400 

EfficientNet-B0 0.9624 0.9395 0.0750 0.1100 

ResNet-50 0.9411 0.9023 0.0950 0.1400 

MobileNetV2 0.9189 0.8782 0.1400 0.1800 

Vision Transformer (ViT) 0.9758 0.9420 0.0500 0.1200 

 

EfficientNet-B0 achieved a respectable balance (train: 96.24%, test: 93.95%) with moderate loss values (0.0750 and 

0.1100), showing stable learning yet slightly less confident predictions under variability. ResNet-50, while structurally 

deep, underperformed with a notable gap between training and testing accuracy (94.11% vs. 90.23%), suggesting it may 

not effectively adapt to the fine-grained texture and shape variations present in disease-infected patches. MobileNetV2, 

optimized for efficiency, exhibited the most evident signs of overfitting. Although its training accuracy reached 91.89%, 

the drop in test accuracy to 87.82%, paired with the highest loss values (train: 0.1400, test: 0.1800), indicates difficulty in 

generalizing to new samples. 

 

 
Fig 4. Training Loss and Accuracy Progression. 

 

In essence, the Small Inception CNN surpasses other models in predictive accuracy and exemplifies architectural 

alignment with the problem's unique demands of compact, patch-level feature extraction from agricultural data. Its better 

results highlight the value of creating context-specific models rather than just modifying generic deep networks, 

particularly in fields with high inter-class similarity and localized patterns.  

 

Table 6. Performance Analysis of the Models  

Model Accuracy Precision Recall F1-Score 

CNN (Small Inception) 0.9845 0.9852 0.9838 0.9862 

EfficientNet-B0 0.9395 0.9410 0.9372 0.9375 

ResNet-50 0.9023 0.8945 0.8987 0.8994 

MobileNetV2 0.8782 0.8505 0.8641 0.8768 

Vision Transformer (ViT) 0.9420 0.9383 0.9307 0.9398 

 

In this study, we compared the performance of five deep learning models CNN with Small Inception modules, Vision 

Transformer (ViT), EfficientNet-B0, ResNet-50, and MobileNetV2 using standard classification metrics such as accuracy, 

precision, recall, and F1-score which shown in Table 6. Among these the CNN model incorporating Small Inception 

modules outperformed all others, achieving an impressive accuracy of 98.45%, precision of 98.52%, recall of 98.38%, and 

an F1-score of 98.62%. This exceptional performance can be attributed to the architectural design of the Small Inception 

module, which allows the network to process image features at multiple scales simultaneously. Instead of using a single 

convolutional kernel size, the Inception module combines convolutions in parallel, enabling the model to extract fine details 

as well as broader contextual patterns in one pass. Convolutions reduce dimensionality while adding nonlinearity, allowing 

the model to learn complicated representations more effectively.  
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In contrast, the Vision Transformer (ViT), which achieved the second-best results with 94.20% accuracy and an F1-

score of 93.98%, relies on self-attention mechanisms to model global relationships between image patches. While ViT has 

shown great success on large-scale datasets, it lacks certain inductive biases such as locality and shift invariance that are 

naturally present in CNNs. This makes ViT less effective when the dataset is relatively small or lacks sufficient diversity, 

which could explain its slightly lower performance in this case. Moreover, ViT requires more data and training time to 

generalize well, which can be a limiting factor for smaller or medium-sized real-world datasets like ours. 

EfficientNet-B0 showed competitive performance with 93.95% accuracy and 93.75% F1-score. It benefits from a 

compound scaling method that optimally balances depth, width, and resolution. However, B0 is the smallest and most 

lightweight version in the EfficientNet family, and while it's efficient, it may not have had enough representational capacity 

to capture the subtle and complex features of mango leaf diseases as effectively as our custom CNN. A larger variant such 

as EfficientNet-B0 might have yielded better results but at the cost of increased training time and resources. 

 

 
Fig 5. Accuracy Analysis of the Models. 

 
Fig 6. Performance Measurement of the Models. 

 

ResNet-50, known for its deep architecture and residual learning capabilities, achieved 90.23% accuracy and an F1-

score of 89.94%. Its performance, although respectable, was likely limited by its complexity relative to the dataset. Deep 

models like ResNet-50 can suffer from overfitting if the dataset size is not sufficiently large, as they may memorize training 

patterns rather than generalize to new, unseen data. This trade-off between depth and generalization becomes particularly 

evident in moderately sized image datasets were simpler, more efficient models may perform better. 

MobileNetV2 recorded the lowest performance among the five, with 87.82% accuracy and an F1-score of 87.68%. 

Designed for mobile and embedded systems, MobileNetV2 uses depth wise separable convolutions to minimize 

computation and model size. While this makes it fast and resource-efficient, the downside is a significant reduction in 

learning capacity. This limitation led to underfitting where the model was unable to fully learn the complex patterns needed 

for accurate classification of various mango leaf conditions. We chose the CNN with Small Inception modules for several 

important reasons. First, it offers a balanced trade-off between accuracy and computational efficiency. The architecture is 

not as deep or parameter heavy as ResNet or ViT making it easier to train on a modest dataset without the risk of overfitting. 
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Second, the multi-scale feature extraction capability of the Inception module is particularly effective for plant disease 

classification tasks, where symptoms vary in size, shape, and color. Some disease spots are very small, while others cover 

larger leaf areas making a model that can detect both local and global patterns extremely valuable. Fig 5 shows accuracy 

analysis of the models. Third, the reduction in parameters through 1×1 convolutions before applying larger filters allows 

the model to remain lightweight while maintaining high performance, which is ideal for scalable, real-world applications 

such as mobile disease detection tools. Fig 6 Shows the performance measurement of the models. 

 

 
Fig 7. Confusion Matrix of the Presented Model. 

 

The confusion matrix in Fig 7 offers a detailed visualization of the predictive performance of the proposed CNN-based 

Small Inception model on the test dataset, which was balanced across healthy and unhealthy leaf patches. The matrix 

reveals powerful classification capability, with True Positives (TP) and True Negatives (TN) dominating the grid. 

Specifically, a substantial proportion of unhealthy patches were correctly identified as unhealthy (TP), and likewise, the 

model demonstrated high fidelity in detecting healthy patches (TN). The count of False Positives (FP)—healthy samples 

misclassified as unhealthy—and False Negatives (FN)—unhealthy samples mistaken as healthy—remains minimal. These 

accurate classifications highlight the model's resilience and most minor diagnostic errors. The confusion matrix also 

demonstrates the model's accuracy in detecting the presence of illness, which is essential in agricultural diagnostics because 

false negatives can cause severe crop loss and unnoticed disease spread. 

The confusion matrix confirms that the proposed CNN achieves near-optimal classification across categories, reflecting 

its strong generalization and discriminative power when applied to real-world plant pathology data. 

 

Comparative Analysis 

To thoroughly evaluate the effectiveness of the proposed CNN-based Small Inception model, we conducted a comparative 

analysis against several state-of-the-art architectures on the widely used PlantVillage dataset presented in Table 7. 

 

Table 7. Compare Our Proposed Model with Existing Works  

Dataset Model Accuracy Precision Recall F1- score 

 LeafDiseaseNet[8] 97.68 97.50 97.20 97.30 

 MXception[20] 98.65 98.27 98.04 98.63 

Plant Village CNN+MLP[21] 95.06 95.00 95.00 95.00 

 CBSNet[21] 92.04 91.58 90.24 90.71 

 Proposed Model 98.45 98.52 98.38 98.62 

 

 LeafDiseaseNet [20] reported an accuracy of 97.68%, supported by balanced precision (97.50%) and recall (97.20%). 

While this model performs well, its design primarily focuses on disease classification with relatively limited adaptability 

to patch-based or fine-grained feature variations, which are crucial for early-stage disease identification. MXception [21], 

an extension of the Xception architecture adapted for agricultural applications, achieved a higher accuracy of 98.65%. Its 

depthwise separable convolutions improve parameter efficiency, contributing to a strong F1-score of 98.63%. However, 

despite its remarkable results, MXception’s complexity and computational requirements make it less suitable for real-time 

or embedded applications, especially in resource-constrained agricultural environments. Though simple and 

computationally light, the CNN+MLP hybrid model [21] lagged with an accuracy of 95.06%. Its low capacity to generalize 

across many crop-disease scenarios was caused by its flat design, which lacks deeper hierarchical feature extraction. 

Similarly, CBSNet [21] fared poorly while being designed for crop health monitoring, attaining an accuracy of only 

92.04%. Its relatively low F1-score (90.71%) and recall (90.24%) suggest difficulties in reliably detecting sick patches, 

which an excessive dependence on handmade characteristics and inadequate spatial encoding might cause.  
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Our proposed model demonstrates a compelling balance between accuracy (98.45%) and computational efficiency. 

Leveraging a Small Inception architecture effectively captures localized and abstract features within patch-level leaf 

images. With a precision of 98.52% and a recall of 98.38%, the model maintains exceptional consistency across all metrics, 

resulting in a robust F1 score of 98.62%, as illustrated in Fig 8. In contrast to deeper networks like ResNet or MXception, 

our architecture was developed with optimal generalization and inference speed in mind, guaranteeing excellent 

performance without needless parameter overhead or overfitting. 

 

 
Fig 8. Comparison with Existing Models. 

 

V. CONCLUSION 

This study introduces a robust, generalized approach for plant disease detection across multiple crop types, grounded in 

constructing an updated version of the widely used Plant Village dataset. Traditional disease classification methods often 

suffer from limited generalizability, as they tend to be crop-specific or reliant on large quantities of disease-specific labeled 

data. To address this limitation, we reformulated the detection problem by shifting focus from identifying individual disease 

types to distinguishing between healthy and unhealthy leaf regions—regardless of the crop or pathogen. We selected the 

Small Inception CNN architecture due to its proven balance between computational efficiency and high representational 

power, particularly in scenarios involving small patch-based inputs. Its modular structure effectively captures localized 

features of healthy and diseased tissue across various crops. This design choice was guided by the need for a scalable and 

generalizable model to perform accurately across heterogeneous agricultural data. The proposed model demonstrated 

outstanding capability in learning cross-disease and cross-crop representations by systematically curating a new binary-

labeled dataset from the PlantVillage corpus and training on visually annotated leaf patches. This foundation enables more 

inclusive and universal plant health monitoring systems less dependent on specific disease annotations. 

Future directions include refining the detection pipeline to incorporate multi-stage learning for disease identification 

after infection detection, extending the framework to accommodate real-world, noisy field data, and deploying the model 

in edge-based environments for real-time, in-field diagnostics. This generalized approach lays the groundwork for more 

adaptable and intelligent agricultural systems, supporting farmers and agronomists in disease prevention and yield 

protection on a global scale. 
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