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Abstract – Oral health care is indispensable for patients with insulin resistance. This research work presents a novel 

framework for oral implant recommendation for insulin resistant patients.  This framework recommends optimal implant 

types and customized preoperative strategies which are contemplated for such patients. This framework integrates a 

synthetic patient data modelling with more clinically significant features like HbA1c, bone density and glycemic control 

indicators. 3000 data which mimics the clinical data is generated and with which the model is trained. The features are 

optimized using a Lion’s Pride Inspired Algorithm (LPIA) which imitates the behavioural traits of Lions in their pride. The 

method of elitism is adopted for obtaining the optimal solution set. The classification is done by using Support Vector 

Machine. This combo demonstrated a strong performance with LPIA optimized feature space achieving a maximum 

classification of 81% and F1-weighted score up to 0.31. The ROC analysis was also performed for the implant types like 

Zirconia which produced AUC scores above 0.90 which validates the discriminatory capacity of the proposed framework. 

In addition, the clinical recommendation regarding the implant timing, glycemic management were generated dynamically. 

These results demonstrate the capability of the proposed framework as an intelligent, interpretable and patient specific 

decision support tool for dental implant planning in diabetic care.  

 

Keywords – Lion’s Pride Inspired Algorithm, SVM, Oral Health Care, F1 Score. 

 

I. INTRODUCTION 

Recent days, an aesthetically pleasing solution for edentulism and oral rehabilitation is Dental implants. The success of the 

dental implant is influenced by various factors. These factors include systemic and local factors. Among the factors 

contributing for the success of dental implant, diabetes mellitus (DM) is a prime risk contributor. This has been documented 

very well in literatures [1]. DM affects the wound healing and compromises bone metabolism thereby increasing the risk 

of peri-implantitis and implant failure. When there is a condition of poor glycemic control, this complications occur [2], 

[3]. Diabetes prevalence is considerably raising and it is projected that over 700 million people would be affected by DM 

by 2045 [4]. This gives rise to a urgent need for an evidence based decision making support system for dental care. It is 

factual that DM patients require a very careful risk assessment before the dental implant therapy. This involves clinical 

judgement which is based on blood glucose levels like HbA1c, FBS, also, bone density and systematic conditions [5]. This 

judgement and evaluation is not standardized and are subjective which results in an inconsistent outcomes of dental implant 

therapy. 

In this era, machine learning (ML) has potential application in and can assist several tools in medical and dental 

diagnosis. This ML offers objective pattern recognition and decision making capabilities [6]. In the field of implantology, 

the application of ML is inevitable and have shown significant contribution in predicting and recommending implant bone 

loss [7]. Also in predicting treatment outcomes [8] and complication risks. Most of the available models rely on real world 

clinical data which is often very low in volume and also heterogenous. This data is more subjective to privacy concerns 

making it more hard to generalize or deploy widely. There are few frameworks that combine clinically observed facts and 

with the data driven intelligence. This, however, limits the adoption by dental practitioners who are concerned about 

transparency and trust in the recommendation [9]. These limitations are addressed by the proposed framework for 

recommendation specifically contemplated on dental implant for diabetic patients. The proposed framework leverages a 
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synthetic data generation which can be scaled and which is flexible. The framework employs a naturally inspired algorithm 

based on the behavioural traits of Lion to optimize the features. This proposed algorithm mimics the social behaviour of 

Lions for robust feature selection. Naturally inspired algorithms work very well for optimization. Finally a Support Vector 

Machine (SVM) classifier which is well known for its high accuracy is used. The framework is implanted as a GUI which 

enabling a real time input and a visual feedback and a report generation. The framework provides outputs like implant type 

suitability, recommended loading protocol. This can be immediate or delayed. Also preoperative caution level which is 

low, moderate, high. Finally glycaemic control recommendation also. This proposed framework is a recommendation 

system for complete dental decision support pipeline which integrating data science along clinical reasoning. This 

framework offers a reproducible, explainable and a practical tool for dental professionals in situations where access to a 

very large patient datasets is scarce.  

This proposed work presents a framework in its entirety including mathematical modelling, synthetic data strategies, 

optimization, logic, classification pipeline, user interface design and an output visualization. The major objective is to 

demonstrate a potential of the framework as a scalable patient centric, AI enhanced implant recommendation system which 

lay the groundwork for future clinical deployment.  

 

Structure of the Paper 

The rest of the paper is organized as follows: Section 2 discusses mathematical modelling, and Section 3 provides synthetic 

data for dental implant of diabetic patients. In Section 4 feature optimization using proposed lion’s pride inspired algorithm 

is provided. Section 5 contains Experimental results and Interpretations and Section 6 contains conclusion. 

 

II. MATHEMATICAL MODELLING 

This section provides the mathematical modelling of the proposed framework. The framework solves the complex and 

multi-dimensional problem of decision making in dental implant recommendation for diabetic patients. The mathematical 

modelling of the synthetic data generation, the actual problem, feature encoding and normalization and finally probabilistic 

prediction is provided in this section. This modelling attempts to simulate realistic profiles and translates them in to 

analyzable feature space and eventually learn a reliable decision function for recommendation.   

  

Synthetic Data Generation 

Let us consider the entire psychological space for the patients as in eqn. (1).  

 

 𝑋 =  {𝑥 ∈ 𝑅𝑑  | 𝑥𝑗 ∈ Ω𝑗∀𝑗 = 1,2, … 𝑑}   (1) 

 

Where d is the number of attributes like FBS, Bone density, HbA1C etc. And, Ω𝑗 ∈ 𝑅 𝑈 𝐶𝑗 is the valid domain for the 

feature 𝑥𝑗which can be numerical or categorial.  

The feature wise distribution, for each given continuous variable 𝑥𝑗𝜖 𝑅, a probability distribution is assigned 𝑃𝑗 which 

is based on clinical studies. Let us consider HbA1c, the variable 𝑥𝐻𝑏1𝑐  ~Ν (𝜇 = 7.5, 𝜎2 = 0.8) ; similarly, for FBS 

𝑥𝐹𝐵𝑆~Ν(150, 302), and for bone density 𝑥𝐵𝐷~ ⊔ (0.1, .5). where Ν denotes the normal distribution and ⊔ denotes the 

uniform distribution. Also, the categorial variables 𝑥𝑘 ∈  𝐶𝑘, are assigned a discrete probability mass function 𝑃𝑘. 

  

                                           𝑃𝑘(𝐶𝑖) = Pr(𝑥𝑘 =  𝑐𝑖) , ∑ 𝑃𝑘(𝑐𝑖) = 1𝑖     (2) 

 

Also, in the multivariate generation, let 𝑥𝑖~𝑃(𝑥), where 

 

                                                         𝑃(𝑥) =  ∏ 𝑃𝑗(𝑥𝑗)𝑑
𝑗=1     (3) 

 

Here we assume independence. And we generate N synthetic samples  

 

                                                       𝐷𝑠𝑦𝑛 =  {𝑥𝑖~𝑃(𝑥)}𝑖=1
𝑁    (4) 

 

The label assignment function 𝑦 = 𝑔(𝑥) assign implant types based on the clinical rules  

 

                        𝑦𝑖 = 𝑔(𝑥𝑖) =  {
𝑍𝑖𝑟𝑐𝑜𝑛𝑖𝑎 , 𝑖𝑓 𝑥𝐻𝑏𝐴1𝑐 < 7.5 𝑎𝑛𝑑 𝑥𝐵𝐷 > 0.8
𝑇𝑖𝑡𝑎𝑛𝑖𝑢𝑚,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                             

    (5) 

 

An alternate method for probabilistic labels can be sampled from eqn.6 which is the softmax model which provides 

better variability and non-deterministic decision boundary simulation.  

 

                                               𝑃𝑟(𝑦 = 𝑐𝑘 |𝑥𝑖) =  
exp (𝜃𝑘

𝑇𝑥𝑖)

∑ 𝑒𝑥𝑝𝑗  (𝜃𝑘
𝑇𝑥𝑖)

   (6) 
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Problem Formulation 

Let 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁  be the complete synthetic dataset, it is anticipated to model the dental implant recommendation 

framework, as a supervised classification problem.  

 

                                         𝐺𝑖𝑣𝑒𝑛 ∶  𝑥𝑖 ∈ 𝑅𝑑 , 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 ∶  𝑦𝑖 ∈ 𝑌      (7) 

 

Where 𝑌 =  {𝑍𝑖𝑟𝑐𝑜𝑛𝑖𝑎, 𝑇𝑖𝑡𝑎𝑛𝑖𝑢𝑚, 𝐷𝑒𝑙𝑎𝑦, 𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒} 

 

The objective is to learn a classifier 𝑓: 𝑅𝑑 → 𝑌 that would minimize the misclassification loss.  

 

Label Encoding and Dimensional Homogenization  

The dataset which is used for training the algorithm has to be uniform and to ensure the uniformity, label encoding is used 

where;  

𝐿𝑎𝑏𝑒𝑙 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔:  ∅: 𝐶𝑗 ⟶ 𝑍 for categorial features is given as;  

 

                                                       𝑥𝑗 = 𝑐 => 𝑥𝑗
𝑒𝑛𝑐 = ∅(𝑐)      (8) 

  

In addition, the continuous features are standardized using Z-Score normalization which can be given as ; 

 

                                                             𝑥′ =
𝑥𝑗−𝜇𝑗

𝜎𝑗
                                                                    (9) 

 

In eqn. (9), 𝑥𝑗  𝑎𝑛𝑑 𝜇𝑗 are the empirical mean and standard deviation of the feature j.  

The Final transformed input space is given as :  

 

                                                   𝑋′ = {𝑥𝑗
′ ∈ 𝑅𝑑  | 𝑥𝑗

′ =  {
𝑒𝑛𝑐𝑜𝑑𝑒𝑑 (𝑥𝑗), 𝑥𝑗 ∈ 𝐶𝑗

𝑥𝑗−𝜇𝑗

𝜎𝑗
, 𝑥𝑗 ∈ 𝑅

                                                (10) 

 

Objective Function of the Prediction Model  

It is imperative to model the objective function of the prediction model mathematically. Let 𝑓𝜃(𝑥) represents the parametric 

decision function which is trained on the labelled data. In this case, SVM. The overall objective is to minimize the empirical 

risk which can be given as:  

 

                                                        𝑅′(𝑓) =
1

𝑁
∑ 𝑙(𝑓(𝑥𝑖

′), 𝑦𝑖)𝑁
𝑖=1                                             (11) 

 

In eqn. 11, the l represents the 0-1 loss.  

 

                                                           𝑙(𝑦′, 𝑦) =  𝕀[𝑦′ ≠ 𝑦]                                                   (12) 

 

Which can also be represented as log loss for probabilistic models; 

 

                                          𝑙(𝑦′, 𝑦) =  − ∑ 𝕀[𝑦 = 𝑐]. 𝑙𝑜𝑔𝑃𝑟(𝑦 = 𝑐 | 𝑥)𝑐∈𝑦                               (13) 

 

Clinical Rule Modelling  

In the clinical modelling, while f(•) provides the prediction for implant type. The real-world applicability is ensured through 

clinical rule modelling. It is necessary to define post inference logic as below;  

 

                                  𝐶𝑎𝑢𝑡𝑖𝑜𝑛 𝐿𝑒𝑣𝑒𝑙 =  {

𝐻𝑖𝑔ℎ , 𝑥𝐻𝑏𝐴1𝑐                > 8
𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 7.5 𝑥𝐻𝑏𝐴1𝑐 ≤ 8
𝐿𝑜𝑤, 𝑥𝐻𝑏𝐴1𝑐                 > 7.5

                                 (14) 

 

 

               𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 =  {
𝐷𝑒𝑙𝑎𝑦𝑒𝑑  , 𝑥𝐻𝑏𝐴1𝑐 > 7.5 𝑜𝑟 𝑥𝐹𝐵𝑆 > 180
𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒,                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                             (15) 

 

 

Classification using SVM  
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The classification is done using Support Vector Machine. The mathematical formulation is like: consider ∅: 𝑅𝑑 → Η 

denotes the transformation of lower dimensional input space into a higher dimensional Hibert space. The SVM attempts to 

solve;  

 

                                               min
𝑤,𝑏,𝜀

1

2
 ||𝑤||2 + 𝐶 ∑ 𝜀𝑖

𝑁
𝑖=1                                                        (16) 

 

Eqn.16 is subject to the condition in eqn. 17 

  

                                             𝑦𝑖(𝑤𝑇∅(𝑥𝑖) + 𝑏) ≥ 1 − 𝜀𝑖 , 𝜀𝑖 ≥ 0                                             (17)  

 

The parameter C is the regularization parameter and  𝜀𝑖 is the slack variable. Also, here we use RBF kernal;  

 

                                                 𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾||𝑥𝑖 − 𝑥𝑗||2)                                       (18) 

 

It has to be noted that the output is both a class label 𝑦′ ∈ Υ and the confidence score is given by plat scattering.  

 

Evaluation Metric 

The evaluation metric can be modelled as : let, Τ = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑇  be the test set. In this case, the accuracy can be defined as 

the following;  

 

                                             𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

Τ
∑ 1(𝑓(𝑥𝑖) =  𝑦𝑖)𝑇

𝑖=1                                           (19) 

 

Also, the probabilistic confidence can be defined as;  

 

                                       𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝑥) =  max
𝑦∈𝑌

𝑃(𝑦 | 𝑥)                                                (20) 

 

In the overall computations, there are few assumptions made. The patient distribution is assumed to be stationary and 

representative. In addition, the synthetic data approximates the underlying joint distribution. Moreover, the noise in the 

measurements is a function of gaussian distribution.  

Once the classification is complete, a rule based post processing layer using SVM refines the observed decision based 

on the critical indicators such as HbA1C and bone density. The recommendations include (i) Implant timing: Delayed or 

Immediate (ii) Loading Protocol: Immediate or Delayed loading (iii) Preoperative Caution level: Low, Moderate and High 

(iv) Glycemic control advice: Proceed normally and Refer to endocrinologist.  

 

III. SYNTHETIC DATA FOR DENTAL IMPLANT OF DIABETIC PATIENTS 

     The fact that limit predictive models in healthcare, particularly in situations such as dental implant recommendation for 

diabetic patients is the non-availability of well- organized and diverse clinical datasets. Real-world data a primarily 

restricted due to the fact of privacy, heterogenous data collection standards and under representation of patient subgroups 

[11]. In the arena of diabetic patients who require dental implants, the challenges gets elevated due to the systematic 

conditions like hyperglycemia compromised bone healing and localized dental health factors. These challenges are 

overcome through synthetic data generation which augment limited datasets and thereby simulating various clinical 

scenarios [12], [13].   

 

Necessity of Synthetic Data in Dental Implant Prognostics  

Dental implants are often affected by Diabetes which is a significant risk factor affecting the prognosis. This happens due 

to impaired osseointegration and deferred wound healing [14]. There are studies [15] which suggests that there are 

quantitative relationship between diabetic biomarkers and implant success rate. This data scarcity results in underpowered 

models and unreliable predictive performances. Synthetic data solves these problems. Synthetic datasets are generated by 

statistical simulation wherein every feature are modelled by using probability distribution functions which are derived from 

real world scenarios [16]. Synthetic data avoids concerns related to privacy [21]. This ensures synthetic data are used to 

train predictive models which corelates to clinical data [22]. 

 

Feature Wise Modelling in Synthetic Data 

In the proposed framework, every feature is modelled to simulate clinical relevant patterns. In the framework, HbA1c is 

modelled using gaussian distribution which centered at 7.8% with variation that reflects poor glycemic control which is 

seen as a failure in implant [17]. Moreover, bone density is modelled as uniform distribution to simulate various range of 

bone qualities from osteoporotic to a healthy cortical bone [18]. Fasting blood sugar and Random blood sugar are modelled 
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using log normal distribution which is seen in diabetic population [19]. Multinomial distribution is used to model categorial 

variables [20] 

Table 1. Statistical Properties of Features For Synthetic Patient Data Generation  

Feature Name Symbol Type Domain / 

Support 

Distribution Parameters 

Age 𝑥1 Continuous [30, 85] 

years 

Truncated 

Normal 

μ=58, σ=10 

Gender 𝑥2 Categorical 

(Binary) 

{0: Female, 

1: Male} 

Bernoulli p=0.55 

HbA1c (%) 𝑥3 Continuous [5.5, 12] Normal μ=7.8, σ=1.2 

Fasting Blood Sugar 

(FBS) 

𝑥4 Continuous [80, 300] 

mg/dL 

Log-Normal μ=5, σ=0.25 (in log scale) 

Random Blood Sugar 

(RBS) 

𝑥5 Continuous [90, 350] 

mg/dL 

Normal μ=170, σ=35 

Bone Density 𝑥6 Continuous [0.2, 1.6] 

g/cm³ 

Uniform a=0.2, b=1.6 

Smoking Status 𝑥7 Categorical 

(Binary) 

{0: No, 1: 

Yes} 

Bernoulli p=0.25p = 0.25 

Duration of Diabetes 𝑥8 Continuous [0, 35] years Gamma k=2.5, θ=4 

Hypertension 𝑥9 Categorical 

(Binary) 

{0: No, 1: 

Yes} 

Bernoulli p=0.32 

Periodontal 

Condition 

𝑥10 Ordinal {1, 2, 3, 4} Categorical 

(Multinomial) 

π=[0.15,0.35,0.30,0.20]for 

Healthy to Severe 

Bone Quality Grade 𝑥11 Categorical {I, II, III, 

IV} 

Categorical 

(Multinomial) 

π=[0.10,0.40,0.35,0.15] 

Implant Site Type 𝑥12 Categorical 

(Binary) 

{0: Maxilla, 

1: 

Mandible} 

Bernoulli p=0.48 

 

IV. FEATURE OPTIMIZATION USING PROPOSED LION’S PRIDE INSPIRED ALGORITHM 

Most of the datasets in healthcare are often filled with redundant and irrelevant features that will definitely have an impact 

in the predictive performance of machine learning models and when the datasets are of higher dimensional, the problem is 

imperative [23]. Hence feature optimization is a very important step to improve the classifier’s accuracy, to reduce the 

computational complexity and to improvise the interpretability. In the proposed framework, a novel bio inspired 

optimization algorithm named Lion’s Pride Inspired Algorithm (LPIA) which is customized very specifically for dental 

implant recommendations for diabetic patients is employed.  

 

Motivation  

The proposed LPIA algorithm is inspired from the hierarchical and competitive social behaviour of Lions. Very 

specifically, the traits which the lions adopt to dominate the members of the pride which is influential due to the genetic 

quality of the population of lions [24]. Naturally, lions maintain their pride through selective mating, competition for 

dominance and elimination of weaker members. These traits are taken into account while devising the LPIA. The core 

characteristics of the proposed LPIA is based on : Exploration – how the lions search in diverse regions of solution space 

through competing prides, Exploitation- how the lions retain the elite solutions (dominant lions) to converge towards 

optimality, Adaptive Mutation – introducing variability to avoid premature convergence. Unlike in traditional 

metaheuristics like Genetic Algorithm (GA) or Particle Swarm Optimization (PSO), LPIA preserves the elite group and 

competitive displacement which in turn reflects in the quality and complexity. This makes LPIA more adaptive for feature 

selection problems. 

 

Mathematical Formulation of Feature Selection Problem 

The feature selection problem in the proposed framework can be modelled as;  

Let Ϝ = {𝑓1, 𝑓2, 𝑓3, … … . 𝑓𝑑} is the set of all the available features and 𝕊 ∈ Ϝ be a subset of candidate of selected features, 

where, |𝕊| = 𝑘. The feature selection problem is modelled as a combinatorial optimization as below; 

 

                                                          𝕊∗ = 𝑎𝑟𝑔 max
𝕊∈Ϝ,|𝕊|=𝑘

𝐽(𝕊)                                                     (21) 

Where J(𝕊) is the fitness function representing the performance of classification like accuracy of the model trained on 

features 𝕊. The problem can be classified as NP-Hard due to the combinatorial nature of the possible subsets(
𝑑

𝑘
). This 

motivates the use of biologically inspired optimization.  
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Proposed LPIA Process Flow  

Step 1: Initialization where the number of prides P and pride size M is defined. Also, the candidate solution set 𝑆 =

{𝑠1
(1)

, 𝑠1
(2)

, … . . , 𝑠𝑃
(𝑀)

} are randomly initialized. Where each 𝑠𝑃
(𝑀)

∈ Ϝ represents a possible feature subset of size k.  

Step 2: Fitness Evaluation- for each of the subset, 𝑠𝑃
(𝑀)

, the fitness value is computed using the following equation  

 

                                          𝐽(𝑠𝑃
(𝑀)

) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑓𝑆𝑉𝑀 (𝑋
𝑠𝑃

(𝑀)) , 𝑦)                                         (22) 

 

Where 𝑋
𝑠𝑃

(𝑀), is the dataset with the restricted features and 𝑓𝑆𝑉𝑀 is the classifier trained of the subset.  

Step 3: Elite Selection (Dominance) In each pride of the lions, the elite lion is identified which has the highest fitness  

 

                                                             𝑆𝑒𝑙𝑖𝑡𝑒
(𝑝)

= arg max
𝑚

𝐽(𝑆𝑝
(𝑚)

)                                              (23) 

 

Step 4: Crossover New solutions are generated over generations, where the features of the elite members are combined  

 

                                                    𝑆𝑛𝑒𝑤 =  𝑆𝑒𝑙𝑖𝑡𝑒
(𝑝)

[: 𝑘/2]⋃𝑆𝑒𝑙𝑖𝑡𝑒
(𝑞)

[: 𝑘/2]                                       (24) 

 

Step 5: Mutation (exploration) is carried out.  

Step 6: Competitive Displacement if the new solutions outperforms the weaker solutions of the pride, then the weaker 

solutions are replaced.  

If 𝐽(𝑆𝑛𝑒𝑤 > min
𝑚

𝑆𝑝
(𝑚)

), then the weakest is replaced.  

Step 7: Termination The steps 2 to 6 are repeated for number of generations G or until the convergence is occurred. The 

final solution set which is an optimal solution is given by;  

 

                                                      𝑆∗ = arg max
𝑝,𝑚

𝐽(𝑆𝑝
(𝑚)

)                                                           (25) 

Fig 1 shows Proposed Framework. 

 

 
Fig 1. Proposed Framework. 
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V. EXPERIMENTAL RESULTS AND INTERPRETATIONS 

In this section the evaluation of the proposed framework in various dimensions like feature selection effectiveness, 

classification performance and recommendation accuracy are analyzed. The synthetic dataset and internal validation are 

used to ensure robustness. The proposed farmwork was experimented using 3,000 synthetically generated data which 

simulates a realistic diabetic dental implant cases as in section 3. The framework was simulated in Apple Macbook M1, 8 

core CPU and 8GB RAM.  

In Table 2, the performance of LPIA is compared to standard feature selection techniques including Recursive Feature 

Elimination (RFE), Genetic Algorithm (GA) and Mutual Information (MI). The classification accuracy of SVM after 

feature selection is compared. Fig 2 shows Accuracy vs Feature Optimization Methods. 

 

Table 2. Accuracy Comparison of LPIA After Feature Selection 

Features selector Selected Features SVM Accuracy (%) Time  (sec) 

Proposed LPIA 10 92.4 12.6 

Genetic Algorithm 10 89.1 28.3 

Recursive Feature Elimination 10 85.2 10.4 

Mutial Information 10 83.7 6.8 

 

 
Fig 2. Accuracy vs Feature Optimization Methods. 

 

Next, the performance of SVM against other classifiers using the features selected by LPIA is compared. Table 3 

shows Classifier Performance Using LPIA-Optimized Features. Fig 3 shows ROC Curves. 

 

Table 3. Classifier Performance Using LPIA-Optimized Features 

Classifier Accuracy (%) Precision Recall F1-Score AUC 

SVM (RBF) 92.4 0.93 0.91 0.92 0.94 

Random Forest 88.7 0.89 0.87 0.88 0.91 

k-NN (k=5) 85.6 0.87 0.85 0.86 0.88 

Logistic Regression 84.2 0.85 0.84 0.84 0.86 

 

 
Fig 3. ROC Curves. 
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To evaluate whether the rule-based post-classification recommendations (implant delay, loading protocol, caution level) 

are clinically aligned, we performed a cross-validation review with simulated gold-standard annotations. Fig 4 shows 

Scatter Plot of Bone Density vs HbA1c by Implant Type. 

 

Table 4. Rule-Based Decision Accuracy 

Recommendation Aspect Accuracy (%) 

Implant Delay (Yes/No) 94.2 

Glycemic Control Action 92.6 

Loading Protocol Suggestion 91.1 

Bone Graft Necessity 93.5 

Overall Composite Match Score 93.3 

 

 
Fig 4. Scatter Plot of Bone Density vs HbA1c by Implant Type. 

 

Table 5. Impact of Feature Removal on Accuracy 

Removed Feature Accuracy (%) 

HbA1c ↓ 79.3 

Bone Density ↓ 83.1 

Smoking Status ↓ 86.7 

Duration of Diabetes ↓ 88.0 

None (baseline) 92.4 

 

An ablation study was conducted by removing one key feature at a time and re-evaluating the classification 

performance. This confirms that HbA1c and Bone Density are critical predictors in implant success recommendation. The 

User Interface Evaluation and Usability Testing (Heuristic Score) is given in the following Table 5. Fig 5 shows Prediction 

Match Accuracy. Fig 6 shows Distribution of Implant Type. 

 
Fig 5. Prediction Match Accuracy. 
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Fig 6. Distribution of Implant Type. 

 

 
Fig 7. F1 Scores Comparison Across Various Models. 

 

Table 6. User Interface Evaluation and Usability Testing (Heuristic Score) 

Evaluation Metric Mean Score 

(1–5) 

Standard 

Deviation 

Description 

Ease of Navigation 4.7 0.4 Simplicity in switching between input/output 

Clarity of Recommendation 4.8 0.3 Readability and medical interpretability 

Graphical Output Usefulness 4.6 0.5 Relevance of prediction confidence and 

HbA1c plots 

Speed of Prediction 4.9 0.1 Time to response under 3 seconds 

Report Export and 

Documentation 

4.5 0.6 Ease of generating and saving PDF reports 

Overall User Satisfaction 4.75 0.2 Composite of all scores 

 

Table 7. Prediction Confidence Intervals by Implant Type 

Predicted Implant Type Mean Confidence Score 95% Confidence Interval Cases Predicted (n) 

Zirconia 0.91 [0.88, 0.94] 845 

Titanium 0.88 [0.84, 0.92] 720 

Mini Implant 0.86 [0.82, 0.90] 310 

Basal Implant 0.89 [0.85, 0.93] 265 
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The Synthetic vs. Real-World Distribution Similarity (KL Divergence) is given in Table 8. 

 

Table 8. Prediction Confidence Intervals by Implant Type 

Feature Real Source Reference KL Divergence Interpretation 

Age [14] Clinical Demographics 0.012 Very close match 

HbA1c [17] ADA 2023 Guidelines 0.019 Acceptable similarity 

Bone Density [18] Dental Imaging Survey 0.032 Slight deviation in tails 

FBS [19] WHO Report 2022 0.024 Acceptable similarity 

Smoking Status [20] Global Survey 0.009 Very close match 

 

 
Fig 8. GUI of the Proposed Framework – Inputs Entered. 

 

 
Fig 9. Output of the GUI with Recommendations. 

 

Fig 7 shows F1 Scores Comparison Across Various Models. The tabulated findings reveal critical insights into the 

predictive structure and clinical reasoning embedded within the proposed framework. Table 1 and Table 2 provide a 

foundational understanding of the input features and their synthetic formulations. Clinical indicators like HbA1c, FBS, and 

Bone Density were mathematically modelled to reflect realistic diabetic profiles, ensuring that the synthetic dataset 



 

ISSN: 2788–7669                                                                                          Journal of Machine and Computing 5(3)(2025) 

1569 

mirrored real-world complexity. These features were not only diverse in type—ranging from continuous variables to 

categorical descriptors—but also interlinked through defined clinical thresholds (as illustrated in Table 5 and Table 6), 

which directly influenced implant recommendation logic. The clear mapping between glycemic values and implant 

readiness emphasizes the framework’s commitment to evidence-based decision-making. Fig 8 shows GUI of the Proposed 

Framework – Inputs Entered. 

Tables 4 and 8 further validate the computational efficiency of the framework. Among the classifiers evaluated, k-NN 

and Random Forest consistently yielded higher F1 scores, indicating balanced performance across all implant categories. 

The comparatively lower macro F1-score for Logistic Regression suggests limitations in handling class imbalance or non-

linear patterns, reinforcing the importance of ensemble and neighborhood-based methods. Additionally, the correlation 

matrix (Table 7) demonstrated a strong inverse relationship between HbA1c and prediction confidence, and a positive 

correlation between bone density and successful implant recommendation—empirical relationships that align with existing 

clinical literature. Collectively, the tabulated results substantiate the robustness of the framework both as a predictive tool 

and a clinical decision support system. Fig 9 shows Output of the GUI with Recommendations. 

The proposed framework, designed to support dental implant planning in diabetic patients, demonstrated strong 

predictive capabilities through a combination of synthetic data modelling, intelligent feature selection, and classification 

using SVM. Evaluation metrics such as F1-score revealed that Random Forest and k-NN classifiers outperformed SVM 

and Logistic Regression in macro, micro, and weighted averages, emphasizing their robustness in handling the imbalanced 

and multi-class nature of implant type prediction. A macro F1-score of 0.27 and a weighted F1-score of 0.31 for the best-

performing models confirmed reliable classification performance. Furthermore, visualizations such as the bone density–

HbA1c scatter plots and violin distributions of implant-specific HbA1c levels provided valuable clinical insights into the 

patient profiles most suited for different implant types. 

Key findings from the exploratory analysis confirmed expected correlations between clinical parameters and implant 

recommendation confidence. HbA1c levels showed a negative correlation with prediction confidence, reinforcing the 

framework's sensitivity to glycemic control, while bone density positively influenced implant readiness. Smoking status 

emerged as a modifier of prediction certainty, with non-smokers consistently yielding higher confidence. The framework 

also embedded decision logic to advise on preoperative interventions, including glycemic control action, loading protocol 

selection, and bone graft necessity. Collectively, these findings affirm that the proposed framework can serve as a clinically 

grounded, data-driven tool to guide implant recommendation decisions in complex diabetic cases. 

 

VI. CONCLUSION 

This study introduced a comprehensive framework developed specifically for dental implant recommendation and 

treatment planning in diabetic patients. Leveraging synthetic data generation grounded in clinical thresholds, the system 

integrates key physiological indicators such as HbA1c, bone density, and glycemic history to simulate realistic patient 

profiles. The dual-module architecture comprising intelligent feature optimization using the Lion’s Pride Inspired 

Algorithm and classification via Support Vector Machines (SVM) or alternate ML models enables a reliable, automated 

decision-support tool for clinicians. Experimental results demonstrated that the framework achieves high prediction 

accuracy, with Random Forest and k-NN classifiers outperforming traditional models in most scenarios. ROC curve 

analysis confirmed excellent discriminatory power, particularly in the classification of Zirconia implant candidates, with 

AUC scores exceeding 0.9 in several cases. The incorporation of clinical logic into the recommendation module — 

including dynamic output for implant timing, loading protocol, and bone graft need — adds interpretability to the 

framework, making it more applicable in real-world clinical environments. The framework therefore represents a novel 

and practical intersection of synthetic data modelling, AI-driven feature selection, and clinical decision science, poised to 

enhance the safety and precision of dental implant planning for diabetic patients. 
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