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Abstract – One of the leading causes of memory loss and thinking problems in older adults is a condition that affects 

human function over time. Detecting this condition early is important for better care and treatment. However, even with 

the latest technology in artificial intelligence (AI) and deep learning, the results are not convincing because the dynamic 

nature of the datasets. This study introduces a new deep learning approach that includes a tool called Grad-CAM, which 

helps explain how the AI makes decisions. Our goal is to build a reliable and understandable system that uses a special 

type of AI model called a convolutional neural network (CNN) to analyze online dataset images. The model includes 

techniques to reduce errors and handle different types of data, while Grad-CAM provides visual feedback showing what 

the model is focusing on. The system achieved 95% accuracy, performing better than other well-known models like 

Xception (94.40%) and InceptionV3 (93.20%). Overall, this work offers a highly accurate and transparent tool to support 

early detection of memory-related conditions, assist professionals in planning care, and open new possibilities for research 

in AI-supported health applications. 

 

Keywords – Deep Learning, Grad-CAM, Convolutional Neural Networks, Classification, Explainable AI. 

 

I. INTRODUCTION 

Alzheimer's disease (AD) is one of the most common and debilitating neurodegenerative disorders, imposing a major 

burden on life quality for the millions it afflicts globally [1]. It is one of the major causes of dementia in the elderly and is 

characterized by a progressive decline in cognitive function and  memory loss. A timely and accurate diagnosis of 

Alzheimer's disease is critical to the management of  the disease and can lead to improved patient outcomes. As a non-

invasive imaging modality, Magnetic resonance  imaging (MRI) has proved to be an essential strategy for studying the 

structural and functional changes in Alzheimer's [2]. On the other hand, the interpretation  of manual diagnoses from MRI 

data leaves room for interpretive errors and necessitates considerable expertise, highlighting the necessity of automated 

and consistent methods. 

Alzheimer’s Disease (AD) is increasingly prevalent, bringing  significant interest in possible diagnostic solutions 

utilizing artificial intelligence (AI) and machine learning (ML) [3]. The method has explored some different techniques, 

but  deep learning specifically, has demonstrated great promise in the US for its ability to identify complex patterns and 

features from medical imaging data. Despite the above, the classification of Alzheimer's disease from MRI data remains a 

challenging task  because, in the early stages of the disease, the subtle brain changes are often camouflaged by normal 

processes [4]. Moreover, the multi-dimensionality of MRI data demands paradigms capable of isolating  disease-

characteristic features and providing sufficient specificity. 

Several reasons are challenging robust diagnostic  model development for Alzheimer's disease [5]. Variations in MRI 

data due to variations in imaging  protocols, scanner settings, and the demographics of the scanned patients make the task 

difficult. Moreover, the MCI stage may differ from early Alzheimer's disease only with a high level of precision and the  

features can overlap at this stage [6]. Existing advances themselves are hampered by the scarcity of large, properly 

annotated datasets, which further compound these issues by restricting the generalizability  and robustness of available 

models. Overcoming these issues requires frameworks that can address data heterogeneity with high  classification 

accuracy. 
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There is an increasing demand for an accurate, scalable, automated diagnostic framework for Alzheimer’s  disease [7]. 

Current methods usually fail to generalize across heterogeneous datasets  and therefore can perform very differently in 

real-world clinical settings. This emphasizes the need for a solution that can extract relevant features from  the complex 

MRI data and be able to adapt to different imaging conditions. In addition, this type of system would improve diagnostic 

capabilities and assist in early intervention strategies, which, in turn, could prolong disease progression and better the 

quality of life for  patients. 

This can be complemented or improved upon if  a continuous stream of improvements on classification-based neural 

network architectures can be obtained [8]. Incorporating a  variety of advanced techniques including convolutional neural 

networks (CNNs) and transfer learning, the framework is capable of handling and learning from MRI data, including 

extracting features inherent to the pathology by minimizing the effect of variability in the data. Utilizing this framework 

would yield a more solid and  scalable solution, delivering clinicians an accurate and accurate tool for early detection of 

Alzheimer's disease. 

II. LITERATURE SURVEY 

Shaymaa Sorour et al [9]. Proposed a deep learning  technique-based early diagnosis of the Alzheimer's Disease-Deep 

Learning framework. Model development, which included pre-processing, training, and evaluation, was performed using 

brain  magnetic resonance imaging scans. We explored five deep-learning  models and grouped them according to whether 

they utilized data augmentation or not—the Convolutional Neural Network-Long Short-Term Memory model performed  

the best, producing an accuracy of 99.92 percent. The text-based features are designed specifically to optimize accuracy, 

recall, precision, F1score and computational efficiency. The findings underscore the promise of  deep learning for 

Alzheimer's disease detection. 

Doaa Ahmed Arafa et al. [10] provide a CNN-based deep-learning framework for Alzheimer's disease classification. 

The  proposed paradigm encompasses four phases: preprocessing, data augmentation, cross-validation, and classification 

with feature extraction. We implemented  two methods, simple CNN & Pre-trained VGG16 with transfer learning & fine-

tuning. Results showed that the  framework was effective with a limited number of labels and less domain-specific 

knowledge.  Model: (acc: 99.95%, val_acc: 99.99%) and fine-tuned VGG16 model: (acc: 97.44%, val_acc: 97.40%) It 

focused on lowered computational complexity, limited over-fitting and  reduced memory consumption, resulting in the 

suitability of the framework for AD diagnosis. 

Ahmed A. Abd El-Latif et al. [11] developed a lightweight  deep-learning model to detect Alzheimer's disease from 

MRI data. You are without deeper layers, which  does it perform well. It is also less complex and consumes less time as 

compared to the  other existing models with seven layers. On a 36 MB Kaggle dataset 99.22% accuracy on two classes 

and 95.933% accuracy on multi-class, higher than previous ly the model. Here, this study presents a novel combination of 

several  methodologies of AD detection with the Kaggle dataset as providing new challenges to researchers. The results 

underline model efficiency, as well as accuracy,  in AD classification tasks. 

Khojaste-Sarakhsi et al. [12] gave a review of the recent progress on emerging architectures and techniques for 

Alzheimer’s  disease (AD) diagnosis, including explainable models, normalizing flows, graph-based deep architectures, 

self-supervised learning, and attention models. Three major categories of currently known challenges in the existing  

literature include data-related issues, methodology-related complexities, and clinical adoption challenges. The study ends 

with potential future  directions and recommendations that may empower future studies in AD detection 

Ahsan Bin Tufail et al. [13] devised a scheme based on multiple deep 2D convolutional neural networks (2D-CNNs), 

where different kinds of diversified features were extracted from the images of the local brain for Alzheimer’s disease  

classification. Utilizing transfer learning architectures (Inception v3 and Xception) and custom CNN with separable 

convolutional layers to learn the generic imaging features, the model combined the features  for final classification. T1-

weighted MRI images from the OASIS database were used, ensuring consistent size and contrast across scans. 

Experimental results showed that transfer learning methods outperformed non-transfer learning approaches, highlighting 

their effectiveness in binary AD classification tasks. 

Mian Muhammad Sadiq Fareed et al. [14] introduced Alzheimer's Disease Detection Network (ADD-Net), a CNN 

architecture designed for AD detection with fewer parameters, ideal for smaller datasets. ADD-Net distinguishes the early 

stages of Alzheimer's disease and generates class activation maps as brain heatmaps. It reduces computational costs while 

precisely classifying AD stages. To address the class imbalance in the Kaggle MRI dataset, synthetic oversampling was 

employed to balance the classes. Evaluation against DenseNet169, VGG19, and InceptionResNet V2 showed ADD-Net’s 

superior performance across metrics, achieving 98.63% accuracy, 99.76% AUC, 98.61% F1-score, and a loss of 0.0549%. 

The results highlight ADD-Net’s effectiveness over state-of-the-art models. 

Buvaneswari et al. [15] proposed an approach for achieving high-performance automated classification of Alzheimer’s 

disease. Seven morphological features, including grey matter, white matter, cortical surface, gyri and sulci contours, 

cortical thickness, hippocampus, and cerebrospinal fluid space, were extracted from 240 structural MRI (sMRI) scans using 

SegNet. These features were used to train a ResNet model for classification. The trained classifier demonstrated a 

sensitivity of 96% and an accuracy of 95% on 240 ADNI sMRI scans not included in the training set. 

Ruhul Amin Hazarika et al. [16] Visualization of feature extraction was performed on deep learning models used for 

Alzheimer’s disease classification on MR images from ADNI dataset  16. DenseNet-121 reached 88.78% average 

accuracy, though it was slower in terms of computational cost s it performs considerable convolution operations. To reduce 
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its resource load, depth-wise convolution layers were replaced  with regular convolution layers in the DenseNet-121 

architecture. This change improved the computation and resulted in an increase of the mean  accuracy of the model to 

90.22%, illustrating it has greater performance and easier usage. 

 

III. PROPOSED MODEL 

Alzheimer's disease is a progressive degenerative disease of the nervous  system leading to loss of memory, impairment 

of cognitive functions, and changes in behavior. It is the most prevalent cause of dementia, causing a  major burden on 

millions worldwide. Fortunately,  early diagnosis is essential for managing symptoms and improving quality of life. Of 

the available  modalities, MRI is essential in detecting structural and functional alterations in the function of the brain in 

the context of Alzheimer's.  However manually analyzing the MRI data is error-prone, which requires an automated system 

built on advanced deep learning techniques. CNNs and  transfer learning models have been working well for the accurate 

detection and classification of Alzheimer's disease even in its early stages. 

The proposed CNN model which helps to classify the categories of Alzheimer's disease  is depicted in Fig 1. 

 

 
Fig 1. Proposed Method Architecture. 

 

• Conv2D Layer (16, kernel_size=(3,3), activation='ReLU', padding='same'): The effect of this block is that 

the first layer  in a convolutional network is a convolutional layer, which takes the input data and applies 16 filters 

of size 3 x 3 High. This layer is responsible for extracting spatial features like edges and textures from the  image. 

ReLU activation function adds non-linearity, allowing  the network to learn complex behaviors. Using 'same' 

padding helps in keeping the aspect ratio of output feature maps equal to input feature  maps so that whenever 

the model goes ahead with learning it can capture all the information from input as it can. 
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• Conv2D Layer (16, kernel_size=(3,3), activation='ReLU', padding='same'): The second  convolutional layer 

operates on these feature maps with the same parameters. Additional convolutional stacks allow for the addressing 

of finer details or more abstract features in the input image for downstream task  representation. 

• MaxPool2D Layer (pool_size=(2,2)): The next layer  is a pooling layer that halves the spatial dimensions of the 

feature maps. It downsamples by taking  the maximum value in each 2×2 window of the input. This approach 

lowers the computational complexity, prevents overfitting, and keeps  the strongest features that the previous 

convolutional layers have learned. 

• Conv2D Layer (32, kernel_size=(3,3), activation='ReLU', padding='same'): It increases the number of filters 

up to 32 for the network to recognize a higher number of more complex patterns in the input. The size of 3x3 for 

the filter allows for the capturing of local spatial relationships and  the ReLU activation retains non-linearity. 

• Conv2D Layer (32, kernel_size=(3,3), activation='ReLU', padding='same'): It adds another 32 filters using 

convolutional layers. This allows the network to learn from higher-order statistics of the signal, providing a deeper 

and more  abstract signal analysis. 

• BatchNormalization Layer (): It normalizes the outputs of the previous layer by scaling  the activations and 

centering them. This technique, known as batch normalization, normalizes the inputs of every layer in a way that 

stabilizes the optimizers used preventing slow  learning speed and being stuck in local minima. 

• MaxPool2D Layer (pool_size=(2,2)): The second pooling  layer continues to reduce the spatial dimensions of 

the feature maps. This helps the network  to only form high-level features as well as makes the architecture 

computationally efficient. 

• Conv2D Layer (64, kernel_size=(3,3), activation='ReLU', padding='same'): These are the  filters from the 

convolution in the previous layer, this convolution layer has 64 filters that learn high-level concepts. More number  

of filters cause the layer to learn more diverse features. 

• Conv2D Layer (64, kernel_size=(3,3), activation='ReLU', padding='same'): This additional convolutional 

layer  has 64 filters to further abstract the features. The stacking of several layers allows  the model to create a 

hierarchical representation of the input. 

• BatchNormalization Layer (): It helps make  the learning process more stable by reducing the sensitivity of the 

model to shifting input distribution and also normalizes the activations of the previous layer. 

• MaxPool2D Layer (pool_size=(2,2)): As such, the third pooling layer decreases the  feature maps' spatial 

dimensions in a way that facilitates the network to focus on important features while omitting less important 

features. 

• Conv2D Layer (128, kernel_size=(3,3), activation='ReLU', padding='same'): This layer applies 128 filters to 

identify increasingly abstract and  complex characteristics in the data. The high number of filters  aids in learning 

minute details and intricate relationships. 

• Conv2D Layer (128, kernel_size=(3,3), activation='ReLU', padding='same'): A hundred and twenty-eight 

filters applied over the previous layer enhance this representation, enabling a more complex encoding of the  class 

information in the data for the model. 

• BatchNormalization Layer (): It is used to normalize the convolutional output, thus making sure that the output 

of the convolutional layers gives consistent scaling for the training model and also stabilizes and enhances the 

training  process. 

• MaxPool2D Layer (pool_size=(2,2)): The last pooling layer reduces the spatial dimensions dramatically and 

helps to prepare the feature maps before taking them to fully connected  layers. This technique allows us to 

abstract  the spatial information and capture the most relevant parts. 

• Conv2D Layer (256, kernel_size=(3,3), activation='ReLU', padding='same'): This is the first convolutional 

layer,  with 256 filters, which is expected to detect high-level features and information from the input that captures 

complex patterns and relationships. 

• Conv2D Layer (256, kernel_size=(3,3), activation='ReLU', padding='same', name='last_conv_layer'): This 

layer fine-tunes the abstract features based  on what the previous layer has produced. This specific layer  is the 

'last_conv_layer' as it is used in Grad-CAM to produce class activation maps based on gradients from this layer. 

• Batch Normalization Layer (): This layer normalizes the outputs of the last conv eyor to allow for stable 

gradients through backpropagation and higher generalization. 

• MaxPool2D Layer (pool_size=(2,2)): Reduces the feature map dimensions to prepare for the transition to the 

dense layers while retaining the most important high-level features. 

• Flatten Layer (): Flattens the multi-dimensional feature maps into a single 1D vector. This transformation is 

necessary for connecting the convolutional layers to the fully connected layers, which operate on vectors. 

• Dropout Layer (rate=0.2): Regularizes the model by randomly setting 20% of neurons to zero during training. 

This reduces the risk of overfitting by forcing the network to learn robust features. 

• Dense Layer (512, activation='ReLU'): Neurons in the fully connected layer are 512,  which learns high-level 

features of input. The ReLU activation  function enables the model to learn non-linear relationships. 

• Batch Normalization Layer (): This layer normalizes  the outputs of the dense layer. 
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• Dropout Layer (rate=0.7): Used 70% dropout rate to avoid overfitting by removing the dependence on specific 

neurons in the  training. 

• Dense Layer (128, activation='ReLU'): The  next layer is a dense layer of 128 neurons, allowing the model to 

better refine the feature representation and learn important patterns for classification. 

• Batch Normalization Layer (): It contains  the dense layer output and normalizes the activations, which helps 

accelerate training. 

• Dropout Layer (rate=0.5): Implements 50% dropout for further  regularization and reduces overfitting. 

• Dense Layer (64, activation='ReLU'): Further metas gave the dimensions 64 help convolve the process and 

identify the dimensions  most discriminative. 

• Batch Normalization Layer (): It  also normalizes the dense layer outputs for consistency. 

• Dropout Layer (rate=0.3): Implements  30% dropout to regularize the model before the final classification layer. 

• Dense Layer (4, activation='SoftMax'): The last dense layer consists of  neurons that suit the output classes. It 

is  a multi-class prediction model because SoftMax activates each class to give probabilities of each class. 

 

Grad-CAM  

Related work Gradient-weighted class activation mapping (Grad-CAM) is one of the  techniques used to interpret the 

decision-making process of CNNs. Grad-CAM helps researchers determine and visualize salient  features in input images 

by highlighting image regions most responsible for a model's predicted outcome. This technique calculates gradients of the 

predicted class score concerning the feature maps of the last convolutional layer and generates  a heatmap indicating which 

regions of the input image give significant contributions to the predicted score. 

 

Feature Extraction 

The Grad-CAM algorithms pull gradients from the final convolutional layer of the CNN (e.g., called "last_conv_layer") 

and perform a backward pass to determine how relevant they were to the output prediction. 

 

Heatmap Generation  

It pools gradients to identify their significance and  introduces a weighted map addition of feature maps. The produced 

heatmap identifies the important areas in the  MRI image leading to the classification outcome. 

 

Superimposition  

It shows the heatmap placed on the original MRI image, which also gives an  idea of where the model is concentrating its 

attention. 

The base model used was a custom CNN consisting  of Conv2D with multiple filters, MaxPooling, 

BatchNormalization, Dropout, and Dense layers. We applied Grad-CAM to this architecture  to understand the classifier's 

decisions. 

 

 
Fig 2. Grad-CAM Architecture. 

 

Fig 2 Grad-CAM Grad-CAM (Gradient-weighted Class Activation Mapping) [GS21] is once again a technique used to 

increase the interpretability of CNNs by highlighting the  regions of input images most contributing to a model's prediction. 
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We start with a standard CNN, where we feed images through multiple convolutional layers  to derive features. The 

features are used for the fully  connected layers where the class scores are calculated. Grad-CAM takes the gradients of 

the class  concerning the final convolutional layer feature maps. This also generates a  class-discriminative heatmap where 

only the prominent regions of the input image are preserved and the rest of the regions start to converge into the background. 

The architecture uses the spatial information  in convolutional layers to enhance interpretability. In this workflow, a 

heatmap that has been overlaid on the input  image enables researchers to pinpoint the areas that contributed most to the 

model's classification. For example, in medical imaging applications, such as Alzheimer's disease classification, 

understanding the parts of the image focused by the  model provides important insights into the diagnostic process. The 

proposed CNN model integrates perfectly with the Grad-CAM architecture for clinical practice to ensure that the prediction 

is not only accurate  but also explainable. 

 

Algorithm for Alzheimer’s disease  

Step 1: Input and Preprocessing 

• The model  shape is defined as 𝐼𝑛𝑝𝑢𝑡 ∈  𝑅𝐻×𝑊×𝐶 , 
Where: 

• H,W: Image height and width (e.g., 256 × 256 pixels). 

• C: Number of channels (3 for RGB images). 

• Input normalization ensures the pixel intensity values are scaled to the range [0,1]: 

• 𝑥𝑖𝑗 =
𝐼𝑖𝑗

255
 

Here, 𝐼𝑖𝑗  represents the pixel intensity at position (i,j). 

Step 2: Feature Extraction via Convolutional Layers 

• Each convolutional layer applies a filter 𝑊𝑘(Kernel) over the input to compute feature maps 𝐴𝑘: 
•  

𝐴𝑘
(𝑙)

= 𝑅𝑒𝐿𝑈(𝑊𝑘
(𝑙)

∗ 𝐴(𝑙−1) + 𝑏𝑘
(𝑙)

) 

 

• 𝑊𝑘
(𝑙)

: Weights of the k-th filter in layer l. 

• 𝐴(𝑙−1): Input feature map to the layer. 

• 𝑏𝑘
(𝑙)

: Bias for the k-th filter. 

• 𝑅𝑒𝐿𝑈: Activation function 

Step 3: Downsampling with MaxPooling 

• The MaxPooling operation reduces spatial dimensions by selecting the maximum value in non-

overlapping windows: 

𝐴𝑖𝑗
𝑝𝑜𝑜𝑙

=
𝑚𝑎𝑥

𝑚, 𝑛
(𝐴(𝑖+𝑚)(𝑗+𝑛)), 𝑚, 𝑛 ∈  𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 

This step helps in reducing computations and focusing on dominant features. 

𝐴𝑖𝑗
𝑝𝑜𝑜𝑙

: Output of the pooling operation. 

𝑊𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒: The size of the pooling window (commonly 2×2). 

Step 4: Flattening 

• After the final convolutional and pooling layers, the feature maps are flattened into a 1D vector z: 

𝑧 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐴𝐿) 

Where 𝐴𝐿 is the feature map from the last convolutional layer. 

𝐹𝑙𝑎𝑡𝑡𝑒𝑛: Converts multi-dimensional feature maps into a 1D vector for dense layer processing. 

Step 5: Fully Connected Layers 

• Fully connected (Dense) layers compute weighted sums of their inputs: 

𝑍(𝑙) = 𝑅𝑒𝐿𝑈(𝑊(𝑙)𝑍(𝑙−1) + 𝑏(𝑙)) 

𝑊(𝑙): Weight matrix for layer 𝑙. 

𝑍(𝑙−1): Input vector from the previous layer. 

𝑥(𝐵𝑙): Bias term. 

Step 6: Dropout for Regularization 

• Dropout randomly sets a fraction p of activations to zero during training to prevent overfitting: 

𝑍𝑖
𝑑𝑟𝑜𝑝

=  {
𝑍𝑖 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝 

0,   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝
 

𝑃: Dropout rate (e.g., 0.2, 0.5, etc.). 

Step 7: Output Layer with SoftMax 

• The output layer computes class probabilities using the SoftMax activation: 
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�̂�𝑖 =
𝑒𝑥𝑝(𝑍𝑖)

∑ 𝑒𝑥𝑝(𝑍𝑖)
𝐶
𝑗=1

, 𝑖 ∈ 1,2, … , 𝐶 

𝐶: Number of classes. 

�̂�𝑌𝑖 : Predicted probability for class i. 

Step 8: Loss Function (Categorical Crossentropy) 

• The loss function measures the difference between predicted probabilities �̂� and true labels y: 

𝐿 = − ∑ 𝑦𝑖𝑙𝑜𝑔(

𝐶

𝑖=1

�̂�𝑖) 

𝑦𝑖 : True label for class i (one-hot encoded). 

�̂�𝑌𝑖 : Predicted probability for class i. 

Step 9: Optimization (Adam) 

• The Adam optimizer updates weights W using gradients ∇L: 

𝑊𝑡+1 =  𝑊𝑡 −η.
�̂�𝑡

√�̂�𝑡+∈
 

�̂�𝑀𝑡 ,  �̂�𝑡: Corrected first and second moments of gradients. 

η:  Learning rate (e.g., 0.001). 

∈: Small value to avoid division by zero. 

Step 10: Early Stopping 

• Early stopping halts training when validation loss does not improve for a specified number of epochs (p): 

Stop training if min(𝐿𝑣𝑎𝑙 ,t) does not decrease for t>p 

(𝐿𝑣𝑎𝑙,t) : Validation loss at epoch t. 

 

The proposed model is a carefully designed convolutional neural network (CNN) optimized for multi-class 

classification of MRI data. The model incorporates multiple layers of convolutional operations with progressively 

increasing filter sizes (16, 32, 64, 128, 256) to extract hierarchical spatial features, enabling it to learn complex patterns in 

medical imaging data. Batch Normalization is strategically placed after convolutional and Dense layers to stabilize 

activations and improve training efficiency. Regularization is achieved through Dropout layers with varying rates (0.2, 0.5, 

and 0.7) to prevent overfitting and enhance generalization. Additionally, the final convolutional layer is explicitly named 

`last_conv_layer` to support Grad-CAM, which provides interpretability by highlighting the critical regions in MRI scans 

that influenced the classification decision. 

The proposed model brings along several key contributions making  it appropriate for medical imaging classification 

tasks. Early Stopping allows for efficient training by stopping when validation loss is no longer improving, and Model 

Checkpoint allows the saving of  the best weights based on validation. Adaptive updates to the model's parameters using  

the Adam optimizer with a learning rate of 0.001 ensure faster convergence. The  overall evaluation metrics including 

categorical accuracy, AUC, and F1-Score describe the performance of the model. This model combines interpretability, 

robust regularization, and feature extraction,  making your solution scalable and reliable in clinical applications and 

overcoming the obstacles posed by heterogeneous data, as well as ensuring explainable AI for healthcare applications. 

 

IV. EXPERIMENTAL RESULTS 

This subsection gives a  thorough assessment of the results reported by the proposed method while the simulations are 

still in progress. This Simulations UNIX dataset was obtained from the Best Alzheimer MRI  dataset [17]. The  same 

data treatment detailed above was performed on this dataset for the current study. Fig 3 represents the sample images of 

the dataset. 

The dataset consists  of: 

• Mild Impairment 

• Moderate Impairment 

• No Impairment 

• Very Mild Impairment 

 

Mild Impairment 

 
(a) 

 

 

Mild Impairment 

 
(b) 

 

Mild Impairment 

 
(c) 
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Moderate Impairment 

 
(d) 

 

Moderate Impairment 

 
(e) 

 

Moderate Impairment 

 
(f) 

 

No Impairment 

 
(g) 

 

No Impairment 

 
(h) 

 

No Impairment 

 
(i) 

 

Very Mild Impairment 

 
(j) 

 

Very Mild Impairment 

 
(k) 

 

Very Mild Impairment 

 
(l) 

 

Fig 3. The Sample Images of the Dataset. 

 

 
(a) Ground Truth: No Impairment 

Predicted: No Impairment 

 

 
(b) Ground Truth: No Impairment 

Predicted: No Impairment 

 
(c) Ground Truth: No Impairment 

Predicted: No Impairment 

 
(d) Ground Truth: Very Mild Impairment 

Predicted: Very Mild Impairment 

 

 
(e) Ground Truth: No Impairment 

Predicted: No Impairment 

 
(f) Ground Truth: Mild Impairment 

Predicted: Mild Impairment 

Fig 4. Grad-CAM Visualizations for Alzheimer’s Disease Classification. 

 

Fig 4  depicts Grad-CAM visualizations showing the areas where the model was most focused on when classifying 

Alzheimer's disease stages using MRI scans. Each image comes with a heatmap superimposed with the origins of the MRI 

scan, where warmer colors (red, orange yellow) mean higher significance for  the model's decisions, while cooler colors 
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(green, and blue) mean lower significance for the decision-making process. The true label and predicted labels shown 

above each of the image’s dependent on the  classification output of the custom CNN model. The set of images provides 

evidence  of the model learned to differentiate important areas of the human brain that are related to three degrees of 

impairment i.e., No Impairment, Mild Impairment, and Very Mild Impairment. 

These numbers reinforce  the need for something like Grad-CAM for interpretability in medical AI systems. The 

Explainable AI behavior can be validated based on visualizing the top pay between regions  that lead to the classification 

made for a model by researchers and clinicians. The predicted regions are not matched with the image ground truth  and 

in all cases the highlighted regions are consistent with clinicians' clinical expected regions, even providing validation that 

the focused areas are diagnostically reasonable. This ability to provide descriptive behavior improves trust in  the 

Explainable AI itself and the model complements the structural changes observed in the brain with the different stages of 

Alzheimer's disease, thus making it useful for diagnostic aid but also for further studies in this research level. 

 

Table 1. Classification Report 

 Precision Recall F1-Score 

Mild Impairment 0.93 0.96 0.94 

Moderate Impairment 1.00 0.83 0.91 

No Impairment 0.94 0.98 0.96 

Very Mild Impairment 0.97 0.90 0.94 

Accuracy 0.95 

 

Performance of the proposed model in terms of four categories, namely, Mild Impairment, Moderate Impairment, No 

Impairment, and Very Mild Impairment  shown in Table 1 by using the classification report. The NO IMP category has 

the highest value of F1 score of 0.96  and recall of 0.98, while the model has very good precision, recall and F1 scores 

across the capabilities of the model. Both the Mild Impairment  and Very Mild Impairment categories have high F1-scores 

of 0.94, indicating both high precision and recall. Where the Moderate Impairment class has a precision of 1.00, recall is 

lower at 0.83, leading to a n F1-score of 0.91. The metrics are yielding an overall accuracy of 95% indicating a pretty 

effective  application of the model for the multi-classification of MRI data for patients with Alzheimer's disease. 

 

 
Fig 5. Confusion Matrix. 

 

The confusion matrix (Fig 5) is a detailed overview used in statistics to assess the  performance of a multi-class 

classification model. Gives informative aspects of True positives (TP), False  positives (FP), False negatives (FN), and 

True negatives (TN) in each category. It is a method  that is especially useful in the context of Alzheimer's disease 

diagnosis, allowing us to see how well our model can distinguish between different impairment levels. 

Within this specific matrix: 
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Mild Impairment 

The cell in the top-left corner (171) indicates the true positives (TP), which are cases accurately predicted as Mild 

Impairment. False negatives (FN) and false positives (FP) fill out the  off-diagonal cells (4, 4), showing instances that 

were misclassified into the wrong group. 

 

Moderate Impairment 

The TP count is 10, found in the second row, second column. The off-diagonal cells (1, 1) show misclassifications into 

Mild Impairment and Very Mild Impairment. 

 

No Impairment  

The largest TP value is 630, found in the third row, and third column, reflecting the model's high accuracy for this class. 

Off-diagonal cells (3, 7) represent misclassifications into other classes. 

 

Very Mild Impairment  

The TP count is 404 in the last row, last column, while the off-diagonal cells (9, 35) indicate misclassifications into Mild 

Impairment and No Impairment, respectively. 

This confusion matrix demonstrates that the model performs exceptionally well for categories like No Impairment and 

Mild Impairment while showing some misclassification challenges for Very Mild Impairment and Moderate Impairment. 

 

Table 2. Comparative Analysis 

Methods Accuracy 

EfficientNetB0 [18] 39.48% 

MobileNetV1 [19] 70.54% 

VGG16[20] 72.87% 

SqueezeNet [21] 88.60% 

NASNETMobile [22] 92.80% 

InceptionV3 [23] 93.20% 

Xception [24] 94.40% 

Proposed (GRAD-CAM’s) 95.00% 

 

Table 2 presents a comparative analysis of various deep learning methods used for Alzheimer’s disease classification 

based on their accuracy. The proposed model utilizing Grad-CAM achieves the highest accuracy of 95.00%, outperforming 

several state-of-the-art architectures. Among the compared methods, Xception reaches an accuracy of 94.40%, closely 

followed by InceptionV3 at 93.20% and NASNETMobile at 92.80%. SqueezeNet and VGG16 achieve moderate accuracies 

of 88.60% and 72.87%, respectively, while MobileNetV1 and EfficientNetB0 yield lower accuracies of 70.54% and 

39.48%. Such  comparison indicates an excellent improvement for the presented model, hence attesting precision and 

strength for the successful classification of MR images in the task of detecting Alzheimer's disease. 

 

V. CONCLUSION 

This research introduces and validates a new deep-learning system designed to identify different levels of memory-related 

conditions. The proposed model combines a custom-built AI structure with a tool called Grad-CAM, which helps explain 

how the system makes its decisions. Key features of the model include multiple layers for learning patterns, techniques to 

improve training stability, and methods to prevent the system from becoming too focused on specific training examples. 

Grad-CAM also provides visual feedback, showing which areas of the dataset images, the model used to make its decision, 

offering a clear explanation of its thinking process. The model reached an accuracy of 95%, outperforming other well-

known systems like Xception (94.40%) and InceptionV3 (93.20%). This approach is unique because it not only delivers 

strong performance but also addresses the growing need for AI tools to be understandable and trustworthy. Our findings 

showed that the model can successfully recognize different stages of human function decline and could be useful in real-

world decision-making processes. This system sets a new standard by bridging advanced technology with everyday use, 

supporting better outcomes for people, and increasing trust in AI-powered tools. The work shows that deep learning has 

great potential to improve how we detect and understand complex problems, while also making sure that the results are 

clear and reliable. 
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