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Abstract – A key element of sustainable development is efficient trash classification, which aims to minimize 

environmental damage and expedite recycling procedures. In addition to being time-consuming, traditional human sorting 

methods are prone to mistakes, which makes waste management systems less effective. Automated garbage classification 

has attracted so much attention as AI, especially ML and DL, has grown. However, because they frequently rely on small-

scale datasets and traditional architectures, many of the models that are now in use have issues with generalization, poor 

performance, and high error rates. This work presents a hybrid deep learning system that combines an autoencoder with a 

vision transformer (ViT) to address these issues. By efficiently capturing local and global data, our design improves 

classification robustness and accuracy across various waste types. Our model was trained and assessed using a sizable and 

varied dataset to enhance generalization to real-world scenarios. According to experimental data, the suggested model 

achieves a precision of 96.72%, a recall of 96.21%, an F1-score of 96.46%, and a balanced accuracy of 96.48%, 

outperforming some cutting-edge CNN-based architectures. Furthermore, sophisticated measures like Cohen's Kappa 

(95.90%) and Matthews Correlation Coefficient (MCC = 94.91%) confirm the dependability of our solution. Lastly, by 

successfully implementing the model in an inference pipeline, we show that it is ready for real-world deployment and that 

it has the potential to promote sustainable development goals through scalable, intelligent waste management. 

 

Keywords – Sustainable Development, Waste Classification, Vision Transformer, Autoencoder, Hybrid Model. 

 

I. INTRODUCTION 

The increase in solid waste output caused by rapid urbanization, industrialization, and population growth worldwide poses 

a severe danger to environmental sustainability. If these patterns continue, the World Bank predicts worldwide waste 

generation will surpass 3.40 billion tones’ annually by 2050 [1]. Implementing intelligent waste management systems has 

emerged as a critical priority for creative and sustainable urban infrastructure as countries work to achieve the UN's SDGs, 

particularly objectives eleven (Sustainable Cities and Communities) and twelve (Responsible Consumption and 

Production). Traditional rubbish management systems lean heavily on manual sorting and fundamental mechanical 

separation, which are inefficient, labor-intensive, error-prone, and often economically unsustainable. Moreover, the 

complexity of modern garbage streams, including plastics, metals, glass, paper, and organic materials, requires 

sophisticated categorization techniques that can adapt to variability in appearance, contamination, and composition. 

Automated waste classification using computer vision and artificial intelligence has gained substantial traction in this 

context. Deep learning algorithms show great promise for reliably recognizing and classifying waste materials from photos, 

allowing for more inventive recycling systems and lowering the environmental impact of unmanaged trash [2], [3].  
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Convolutional Neural Networks (CNNs) have been the cornerstone of image classification tasks in recent years, 

achieving notable success in medical imaging, autonomous driving, and industrial automation [4]. However, CNNs exhibit 

certain limitations when applied to waste classification. Their reliance on local receptive fields and translation invariance 

makes capturing long-range spatial dependencies and contextual relationships challenging, especially in cluttered or 

occluded images often found in real-world waste environments [5]. Additionally, many waste classification datasets are 

small or imbalanced, hindering the performance of CNNs trained from scratch. Transfer learning from generic datasets 

such as ImageNet is commonly used to alleviate this issue, but domain mismatch frequently leads to suboptimal 

generalization [6]. 

This work proposes a novel technique based on the Vision Transformer Autoencoder (ViT-AE) architecture to address 

these challenges. ViTs have emerged as a powerful alternative to CNNs, successfully employing self-attention mechanisms 

to describe the global context and long-range interdependence [7]. Unlike CNNs, ViTs divide input images into fixed-size 

patches processed sequentially, allowing the model to comprehend the links between distant portions of the image. This 

property is particularly advantageous for waste classification tasks where distinguishing features may be spatially distant 

or subtle. 

The proposed ViT-Autoencoder architecture integrates ViTs' strengths with an unsupervised learning paradigm through 

masked image modeling, qualifying the system to learn meaningful visual representations even without large labeled 

datasets. By pretraining the model to reproduce masked image patches, we give it a good concept of the waste domain 

before fine-tuning it using labeled data. This two-stage learning strategy improves classification accuracy, generalization, 

and data efficiency [8]. To validate our approach, we used a high-resolution custom dataset comprising 15,000 labeled 

images spanning 30 diverse waste categories, including plastic bottles, glass shards, cardboard boxes, aluminum cans, food 

waste, and e-waste. The dataset incorporates significant intra-class variation, lighting differences, background noise, and 

occlusions, making it a realistic benchmark for evaluating waste classification models. Extensive experiments demonstrate 

that our ViT-AE model achieves superior accuracy and robustness compared to baseline CNN architectures such as ResNet, 

MobileNet, and DenseNet. The contributions of this study are summarized as follows:  

• A Novel Model Architecture: We propose a hybrid Vision Transformer Autoencoder model that leverages 

unsupervised pretraining and fine-tuning for robust waste image classification. 

• Custom Dataset Creation: We construct a large-scale, multi-class, high-resolution dataset tailored for real-world 

waste scenarios, supporting future research in sustainable AI. 

• Comprehensive Evaluation: We conduct detailed experiments comparing our model with several state-of-the-

art CNN baselines using precision, recall, F1-score, and inference time metrics. 

• Practical Implications: We show how the model can be used in smart bins, automatic conveyors, and recycling 

facilities, helping to promote ecologically responsible urban life.  

 

II. LITERATURE REVIEW 

In recent years, research has increasingly leveraged deep learning models for intelligent waste classification to support 

environmental sustainability. In 2025, Qiu et al.[9] proposed an enhanced EfficientNetV2 model incorporating CE-

Attention and SAFM modules, achieving 95.4% accuracy on the Huawei Cloud Waste dataset.That same year, 

Nahiduzzaman et al.[10] A high-performing architecture was introduced by a team using a parallel depthwise separable 

CNN (DP-CNN) combined with an Ensemble Extreme Learning Machine (En-ELM), trained on the TriCascade dataset 

(35,264 images), achieving an AUC of 98.68% in a 36-class setting. In 2024, Kunwar et al. [11] utilized YOLO variants 

(YOLO-11m, YOLO-11n, YOLO-10n) and MobileNetV2 on the WaDaBa dataset, with YOLO-11m yielding the best 

accuracy of 98.03%.  

Ahmed et al. [12] explored multiple pre-trained models, including DenseNet169, MobileNetV2, and ResNet50V2, on 

recyclable product images, where ResNet50V2 achieved 98.95% accuracy. In 2022, a dual-stage model employing 

EfficientDet-D2 for object detection and EfficientNet-B2 for classification was tested on natural and urban waste 

environments, reaching 70% average precision and 75% classification accuracy [13]. Narayan et al. [14] Introduced 

DeepWaste, based on ResNet-50, for classifying trash, compost, and recycling using a custom dataset, attaining an average 

precision of 0.881. Also, in 2021, Bobulski et al. [15] developed a CNN for plastic classification (PET, PP, PE-HD, PS), 

achieving 99.92% accuracy after 10 training epochs. 

In 2020, White et al. [16] proposed WasteNet, a CNN-based system for embedded waste classification across six 

categories, achieving a solid 97% accuracy suitable for edge deployment. Another 2020 study by Gyawali et al. [17] 

compared several deep CNNs and concluded that ResNet-18 performed best with 87.8% accuracy on a combined dataset, 

including TrashNet. In 2019, an intelligent waste classification system using ResNet-50 integrated with SVM was 

developed using the TrashNet dataset and achieved 87% accuracy [18]. 

 

III.    METHODOLOGY 

The waste classification research was carried out to guarantee accuracy and dependability using a set of clearly defined 

procedures. Data collection was the first step in the procedure, which was then followed by data preprocessing, model 
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building, training, and evaluation. Every stage was thoughtfully planned to manage the intricacies and variances seen in 

garbage photos. Fig 1 shows the entire workflow of the suggested methodology. 

 
Fig 1. Overall Framework of the Research. 

Dataset Description  

This research presents a large-scale, high-resolution collection of 15,000 images (256 x 256 pixels) covering 30 categories 

of home objects, general waste, and recyclable materials. To ensure thorough coverage of the diversity of garbage in the 

actual world, each category has 500 photographs, which are further subdivided into 250 images per subcategory where 

appropriate. The dataset offers a strong basis for training and assessing machine learning models and is intended to support 

developments in automated waste classification, recycling systems, and computer vision research. The dataset is organized 

into hierarchical folders for easy labeling and access. 

 

 
Fig 2. Sample Images of the Dataset. 

 

The root directory (/images) has subdirectories named after different types of rubbish, such as paper, cardboard, plastic 

bottles, and electronic waste. With potential subcategory splits (such as /plastic bottles/clear and /plastic bottles/colored), 

each category subfolder contains 500 photos. Labels: Folder names facilitate integration with data loaders (such as 

ImageFolder in PyTorch) by acting as ground-truth labels. 

Recycling analytics (such as trash composition tracking), automated waste sorting systems (like robotic separators), 

and teaching resources (like waste segregation training applications) are all made possible by this dataset. Additionally, it  

promotes scholarly studies in few-shot learning, domain adaptation, and sustainability-focused AI. To protect privacy, no 

photograph contains any sensitive or personal identifiable information. In addition to reducing algorithmic bias through its 

balanced class distribution and inclusion of uncommon waste categories (such as e-waste), the dataset’s open availability 



 

ISSN: 2788–7669                                                                                          Journal of Machine and Computing 5(3)(2025) 

1506 

· 

under a clear license encourages fair access and replication in environmental AI research. The sample of images is shown 

in Fig 2. 

 

Data Preprocessing 

Effective preprocessing is crucial in enhancing deep learning models' performance and generalization capability, 

particularly for image classification tasks. Here, a systematic sequence of preprocessing operations is applied to the raw 

waste images to ensure their consistency with the Vision Transformer (ViT) architecture while augmenting robustness in 

training. 

 

Image Resizing 

This means resizing all input images to a fixed spatial resolution 𝐻 × 𝑊 in compliance with the input requirements of the 

ViT model [19]. More specifically, each image is resized to 224 × 224 pixels, with three color channels (RGB) 

 𝑥 ∈ 𝑅𝐻×𝑊×𝐶 , 𝑤ℎ𝑒𝑟𝑒 𝐻 = 𝑊 = 224,  𝐶 = 3  (1) 

 

This way, the model training will experience consistent patch extraction and positional alignment. 

 

Normalization 

Pixel intensity values must be normalized to align the input distribution with the pretrained ViT backbone. First, pixel 

values are scaled to the range [0, 1]; then, channel-wise normalization happens as follows 

 𝑥′ =
𝑥−𝜇

𝜎
  (2) 

 

Where µ = [0.485, 0.456, 0.406] and σ = [0.229, 0.224, 0.225] correspond to the mean and standard deviation used 

during ViT pretraining on the ImageNet dataset. 

 

Data Augmentation (Training Phase) 

During training, various augmentation techniques are applied to prevent possible overfitting and aid generalization [20]: 

• Random horizontal flip with a probability of p = 0.5. 

• Random rotation in the range of ± 15◦. 

• Color jittering: brightness, contrast, saturation. 

• Random resized cropping for scale variance. 

Let A ( ) be the augmentation operator; the augmented image is obtained as follows 

𝑥𝑎𝑢𝑔 = 𝐴(𝑥)  (3) 

 

Such augmentations ensure increased diversity and variability amongst the training samples. 

Label Encoding 

For classification, the ground truth class labels are one-hot encoded. For any sample representing a class 𝑘 ∈ {1, 2, … , 𝐾}: 

 y = [0, . . . , 1k, . . . , 0] ∈ RK  (4) 

 

In this study, K = n corresponds to the following waste classes: plastic, paper, metal, glass, etc. 
 

Noise Reduction 

Waste images often acquire high-frequency noise from environmental causes, including defective lighting, motion blur, 

sensor limitations, complicated backgrounds, and clutter. These artifacts may negatively affect the quality of features as 

experienced by the model. Gaussian filtering might be optionally applied to repair the damage as a preliminary denoising 

step before patch extraction. 

The Gaussian blur is defined as the convolution of the image x with the Gaussian kernel 𝐺𝜎: 

 𝑥𝑏𝑙𝑢𝑟(𝑖, 𝑗) = (𝐺𝜎 ∗ 𝑥)(𝑖, 𝑗) = ∑𝑘
𝑣=−𝑘 𝐺𝜎(𝑢, 𝑣) ⋅ 𝑥(𝑖 − 𝑢, 𝑗 − 𝑣)  (5) 

 

where (i, j) indexes the pixels in the image, k is the kernel radius, and 

Gσ(u, v) is defined by: 

 𝐺𝜎(𝑢, 𝑣) =
1

2𝜋𝜎2 𝑒𝑥𝑝 𝑒𝑥𝑝 (−
𝑢2+𝑣2

2𝜎2 )   (6) 

    Where σ controls the amount of smoothing. This operation essentially implements a low-pass filter that suppresses 

changes in intensity while retaining the image's structural components, avoiding spurious noise to which the Vision 

Transformer encoder can respond. 
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Color Space Augmentation 

Incorporation of color-based data augmentations during training has the per-performance rationale of allowing for better 

generalization and robustness against variations found in the real world: varying illumination, camera settings, and 

environmental conditions. In doing so, the visual appearance of the dataset will be altered without changing the semantic 

content. Γ is a randomly sampled contrast factor (e.g. 𝛾 ∈ [0.8,1.2]𝛽 , a brightness offset 𝛽 ∈ [−0.1,0.1]); and s is a 

saturation scaling factor (e.g.𝑠 ∈ [0.8,1.2]). 

This kind of augmentation aims to enlarge the intra-class variability, thus helping prevent the model from overfitting 

to specific illumination conditions. Additionally, it helps the encoder attain invariance to color distortions, an important 

task in real-world deployments where there might be variability in lighting and camera quality from one deployment to 

another. 

 

Adaptive Histogram Equalization (Optional) 

In the case where, say, shadows, glare, or uneven illumination all essentially spoil the bottom contrast of the image, contrast 

enhancement would assist in better feature extraction. Consequently, if desired, it is possible to perform contrast-limited 

adaptive histogram equalization (CLAHE). 

 While global histogram equalization would consider the entire image, CLAHE would work only on small tiles of the 

image, with a limitation to not allow the enhancement of the contrast past a certain point to avoid the otherwise 

enhancement of noise. 

For image x, the working of contrast-limited adaptive histogram equalization (CLAHE) is described as follows: 

• Divide x into non-overlapping tiles of size 𝑇 × 𝑇 

• Calculate each tile's histogram and clip at a specified threshold (the contrast limit). 

• Compute the cumulative distribution function (or CDF) after uniformly redeeming the clipped pixels. For 

intensity mapping, evenly redistribute the clipped pixels and compute the cumulative distribution function (or 

CDF). For edge artifacts, use bilinear interpolation between neighboring tiles. 

The resulting image 𝑥𝑒𝑞  can be expressed as: 

 𝑥𝑒𝑞 = 𝐶𝐿𝐴𝐻𝐸(𝑥, 𝑇, 𝜏)  (7) 

 

Where the tile size is ’T’ and the clip limit is ’tau’. This operation significantly enhances the visibility of significant 

structures in areas of low contrast and, more importantly, trains the model to learn highly discriminative features. 

 

Limitations of CNNs and Transfer Learning in Waste Image Classification 

Because of their ability to extract local features through convolutional operations, Convolutional Neural Networks (CNNs) 

have been the basis for many advances in image classification problems. However, long-range dependencies, essential for 

comprehending the global structure of objects in images, are intrinsically complex for CNNs to capture. CNNs frequently 

perform poorly in the setting of image categorization, where the spatial properties and contextual relationships of object 

pieces have a significant impact on classification accuracy. The domain gap between domain-specific trash datasets and 

general-purpose datasets, such as ImageNet, further hampers the efficacy of conventional trans- fer learning approaches. 

Although transfer learning with pre-trained CNN models can give you a head start, the fine-grained and domain-specific 

variances in waste materials cannot be well represented by the features learnt from natural picture datasets. Color, texture, 

deterioration, and partial occlusion require a more comprehensive image understanding than CNNs can offer. To deal with 

data scarcity, a model architecture must adapt to unsupervised pretraining, which retains both local details and global 

dependencies [21]. 

 

Justification for Vision Transformer Autoencoder (ViT-AE) 

We suggest a hybrid design that utilizes the Vision Transformer (ViT) within an autoencoder framework to overcome the 

above difficulties. By treating images as a series of patches, the ViT enables the modeling of long-range relationships 

throughout the image using self-attention methods. Global context modeling is essential in garbage image categorization, 

where visual features' spatial arrangement and interaction hold significant semantic meaning. The autoencoder framework 

further strengthens this method, which permits unsupervised pretraining on many unlabeled trash images. The encoder is 

motivated to learn compact and meaningful representations that reflect the inherent structure of trash objects by recreating 

the input image. A supervised classification head is then used to refine these representations, enabling the model to adjust 

to particular classification tasks while preserving the rich, previously learned characteristics. Thus, the ViT-Autoencoder 

offers a single model that balances interpretability, data efficiency, and generalization requirements. 
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Proposed Model 

The proposed ViT-Autoencoder architecture consists of three primary components: 

• ViT Encoder: Generates rich feature representations from the input image through self-attention image patch 

processing.  

• Decoder (Autoencoder Component): Applies the encoded features from pretraining to reconstruct the input 

image. 

• Classification Head: The encoder is adjusted for supervised classification following pretraining. 

The model is trained in two stages: 

• Pretraining Stage: The encoder and decoder are trained jointly, unsupervised, to reconstruct the input image 

through transformations; therefore, the encoder learns good image representations. 

• Fine-Tuning Stage: The encoder would be linked to a classification head and fine-tuned with labeled data to 

classify different images. 

The model commences with an unsupervised pretraining stage in which an autoencoder framework derives meaningful 

features from input images. Each image 𝑥 ∈ 𝑅𝐻×𝑊×𝐶, where H, W, and C denote height, width, and channels, respectively, 

is first split into patches of size 𝑃 × 𝑃 without overlap. The total number of patches is given as 

 

 𝑁 =
𝐻×𝑊

𝑃2   (8) 

 

Each patch 𝑥𝑝 ∈ 𝑅𝑃×𝑃×𝐶 is then converted into a vector by flattening it 𝑥̂𝑝
2 ∈ 𝑅, which is subsequently mapped to a 

lower-dimensional embedding space through a learnable matrix 𝐸 ∈ 𝑅𝑃2⋅𝐶×𝐷. Thus, for every patch, a sequence of patch 

embeddings is formed 𝑧0 = 𝐸(𝑥𝑝). 

Positional encodings are added to the embeddings to preserve the spatial arrangement of the patches. These enhanced 

embeddings 𝑧0 ∈ 𝑅𝑁×𝐷 are then fed to a Vision Transformer (ViT) encoder made of multi-layer arrangements of multi-

head self-attention (MHSA) and feed-forward networks (FFN). At every layer l, the output is computed through residual 

connections and layer normalization as follows: 

 

 𝑧′ = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑧𝑙−1 + 𝑀𝐻𝑆𝐴(𝑧𝑙−1)),   𝑧𝑙 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑧′ + 𝐹𝐹𝑁(𝑧′))  (9) 

 

This encoded representation 𝑧𝐿 ∈ 𝑅𝑁×𝐷 is the final output, a compressed, high-level abstraction of the original image. 

Next, the encoded output is mapped into the decoder, reconstructing the original input image 𝑥̂ ∈ 𝑅𝐻×𝑊×𝐶. The decoder, 

composed of transposed convolutional or fully connected layers, is trained to map the compact representation 𝑍𝐿 back to 

the input space. The reconstruction quality is assessed by computing the Mean Squared Error (MSE) between input image 

x and the reconstruction 𝑥̂: 

 

 𝐿𝑟𝑒𝑐 =
1

𝐻𝑊
|𝑥 − 𝑥̂|2

2  (10) 

 

Thus, during training, by minimizing the loss, the encoder learns to preserve valuable features of the image. The decoder 

is removed after pretraining, and the ViT encoder is fine-tuned for a downstream classification.  

 

 
Fig 3: Proposed model architecture (Vit+autoencoder). 

 

Token such as a [CLS] token, or a pooled representation of all patch embeddings, is used to capture the global context 

of the image. This global token, denoted 𝑧𝐶𝐿𝑆 ∈ 𝑅𝐷 , is fed into the multi-layer perceptron (MLP, also known as a fully 
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connected network composed of one or more fully connected layers). The output of that MLP is a vector of logits. From 

the logits vector, a softmax layer is applied to get a probability distribution 𝑦̂ ∈ 𝑅𝐾 , which 𝐾 is then defined by the number 

of target classes, one of which,h in our case, is counting 4 plastic, paper, metal, and glass. The optimization is done using 

cross-entropy loss, which is computed as: 

 𝐿𝑐𝑙𝑠 = − ∑ 𝑥𝐾
𝑘=1 𝑦𝑘 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑦𝑘̂)   (11) 

 

Where 𝑦𝑘  stands for the actual label. 

A joint training scheme may enhance the machine's performance further and preserve the generalization achieved by  

pretraining. This is an optional setup where the reconstruction loss and classification loss are summed to form a total 

cost function: 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝐿𝑟𝑒𝑐 + (1 − 𝜆)𝐿𝑐𝑙𝑠  (12) 

 

It is a hyperparameter that balances the contribution of each component. This hybrid training allows the encoder to 

maintain its reconstruction proficiency while sharpening its classification skills. For instance, in a classification scenario, 

the ViT encoder takes an image as input and generates a global representation output: 

 𝑧𝐶𝐿𝑆 = [0.12,  0.56,   − 0.89,   … ,  0.34]  (13) 

 

Submitted to MLP to generate logits as follows: 

 𝑀𝐿𝑃(𝑧𝐶𝐿𝑆) = [0.01,  0.48,  0.00,  0.26]  (14) 

 

The following output would be realized after applying a SoftMax: 

 𝑆𝑜𝑓𝑡𝑚𝑎𝑥([0.01,  0.48,  0.00,  0.26]) = [0.10,  0.05,  0.75,  0.10]  (15) 

 

This would thus indicate that there is 75% confidence by the model that this image is in the class “metal”.How the ViT 

encoder will benefit from the autoencoder’s capability of learning robust features in unsupervised fashion: First, by 

bringing suppressed supervised signals for effective classification, both merged will offer the model a better global spatial 

structure and domain-specific patterns very vital for the accurate classification of waste images, especially when less 

labeled data is present. The proposed model architecture is shown in Fig 3. 

 

Hyperparameter Tuning Strategy 

Within this newly presented architecture of ViT-Autoencoder for waste image classification, a thorough hyperparameter 

tuning is adopted to maximize the model's performance while not losing sight of generalization and stability in training. 

The crucial tuning of the learning rate (𝜂)is done via grid search [1 × 10−5,  1 × 10−3],since it is a key determinant of 

convergence speed and stability of the model. An adaptive optimizer, AdamW, helps in faster training, while weight decay 

regularization (𝜆𝑤𝑑 = 0.01) is applied to lessen the chances of overfitting. The value of batch size (𝐵) is chosen according 

to practical considerations and generalization behavior, and it finally settles down to a value 32 based on validation 

performance. The hyperparameters and their values are shown in Table 1. 

Table 1. Hyperparameter Configuration for ViT-Autoencoder 

 

Hyperparameter Pretraining Stage Fine-Tuning Stage Rationale 

Batch Size 256 128 Larger batches stabilize re- 

   construction; smaller batches 

   aid generalization. 

Learning Rate 3 × 10(AdamW) 3 × 10(AdamW) Higher LR for pretraining; 

Reduced for fine-tuning. 

Warmup Epochs 10 5 Gradual LR warmup prevents 

   early instability. 

Training Epochs 100 50 Longer pretraining for features 

   ; shorter fine-tuning. 

Optimizer AdamW (β1 = 0.9,β2 = 0.95) Balances momentum and 

   weight decay 

Weight Decay 0.05 0.01 Stronger regularization in 

   Pretraining. 

Patch Size 16× 16 Computational efficiency and 

   Feature capture. 

Embedding Dim (D) 768 Standard for ViT-base models 

Transformer Layers (L) 12 Sufficient depth for hierarchy- 
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   Cal features. 

Attention Heads 12 Ensures diverse attention 

mechanisms. 

Dropout Rate 0.1 Prevents overfitting in both stages. 

Reconstruction Loss 

 

MSE N/A Standard for pixel-level re- 

reconstruction. 

Classification Loss N/A Cross-Entropy Standard for multi-class 

tasks. 

LR Scheduler Cosine Annealing Smooth LR decay improves 

convergence 

Gradient Clipping 1.0 Avoids exploding gradients. 

                                                                 

Central to the model is a joint loss function that combines reconstruction loss (𝐿𝑟𝑒𝑐) and classification loss (𝐿𝑐𝑙𝑠) as: 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆 ⋅ 𝐿𝑟𝑒𝑐 + (1 − 𝜆) ⋅ 𝐿𝑐𝑙𝑠  (16) 

 

The hyperparameter 𝜆 ∈ [0,  1] is tuned to balance the contribution of unsupervised (autoencoder) and supervised 

(classification) objectives. We sweep values 𝜆 =  { 0.2,  0.4,  0.6,  0.8 }and find that 𝜆 =  0.4 the hyperparameter gives the 

best performance since it allows the encoder to extract features that are semantically meaningful while also being 

discriminative. 

Furthermore, other architectural hyperparameters, such as the number of transformer encoder layers (𝐿 = 12) and 

embedding dimension (𝐷 = 768) were chosen based on a trade-off between representation power and computational 

efficiency. A dropout 𝑝 = 0.1 is applied across the whole network for all the layers to avoid overfitting. The activation 

function is GELU (Gaussian Error Linear Unit) in MLP layers, which is a smoother and more nonlinear choice defined:  

𝐺𝐸𝐿𝑈(𝑥) =
𝑥

2
[1 + 𝑒𝑟𝑓 (

𝑥

√2
)]                                                            (17) 

 

This activation stabilizes training in the deep transformer layers through a probabilistic gating of input values. Overall, 

hyperparameters are chosen by a combination of manual tuning, some empirical validation, and computational constraints, 

ensuring good model behavior and high classification accuracy.  

   

IV. RESULTS AND DISCUSSION 

The proposed model was built through programming Python with the Tensor-Flow deep learning framework. All the 

experiments were performed in Google Colab under a setup with an NVIDIA A100 Tensor Core GPU, which proved to be 

a boon for training and inference. Preprocessing is done on the waste image dataset by splitting it into training and testing 

portions. 90% of the whole dataset constituted the training set, while the last 10% of the data formed the test set. This pose 

exposes the model to many samples while retaining a distinct set to undergo evaluation without bias. Image normalization 

provides pixel values between 0 and 1.  

 

 
Fig 4. Number of Samples of Each Class. 
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Table 2. Experimental Setup and Model Compilation Parameters 

Parameter Value 

Programming Language Python 3.10 

Deep Learning Framework TensorFlow 2.x / Keras 

Hardware Used Google Colab (NVIDIA A100 GPU) 

Number of Epochs 30 

Batch Size 32 

Learning Rate 0.001 

Optimizer Adam 

Loss Function Categorical Cross entropy 

Evaluation Metrics Accuracy, Precision, Recall, F1-score 

 

Data augmentation can include rotation, flipping, and zooming. Batch size, the learning rate, and the epoch number 

were tuned through experimentation to find the best possible value for these users.Such experiments were repeated several 

times to ensure reproducibility and robust outputs. Indicator metrics such as accuracy, precision, recall, and F1-score were 

then used to judge the constructed model’s performance. Table 2 shows the experimental setup and model compilation 

parameters. Fig 4 shows the number of samples of each class. 

 

Training And Testing Accuracy Analysis 

Table 3 provides a summary of the performance comparison between the suggested model and the baseline model. ViT + 

Autoencoder model and various baseline models. With a training accuracy of 98.32% and a testing accuracy of 96.48%, 

the suggested model outperformed the others in terms of accuracy. On the other hand, traditional transfer learning models, 

such as VGG16 and ResNet50, obtained testing accuracies of 93.12% and 94.03%, respectively. The specially designed 

CNN model had the worst performance with a testing accuracy of 89.76% and a training accuracy of 92.38%. These 

outcomes show how well the ViT + Autoencoder hybrid model learns and generalizes. The suggested model’s high 

accuracy indicates that an Autoencoder’s capacity to learn compressed representations and the Vision Transformer’s (ViT) 

attention-based feature extraction capabilities work to produce a potent synergy for visual pattern recognition tasks. While 

the autoencoder helps with regularization and noise reduction, ViT effectively captures global context, allowing the model 

to concentrate on more significant features during classification. 

 

Table 3. Comparison of Training and Testing Accuracies for Different Models 

Model Training 

Accuracy (%) 

Testing 

Accuracy (%) 

ViT + Autoencoder (Proposed) 98.32 96.48 

VGG16 95.87 93.12 

ResNet50 96.45 94.03 

Custom CNN 92.38 89.76 

 

Additionally, the ViT + Autoencoder model’s comparatively narrow training-test accuracy gap suggests a low danger 

of overfitting, demonstrating the model’s strong generalization to unknown data. The CNN model, on the other hand, 

exhibits a greater disparity, suggesting restricted generalization and potential overfitting or underfitting. Without enough 

fine-tuning, pre-trained models like VGG16 and ResNet50 may still perform poorly in domain-specific applications like 

waste picture categorization, despite their depth and learnt features from large-scale datasets (like ImageNet). As the 

proposed model (ViT+ autoencoder) performed best, training and validation accuracy per epoch are shown in Fig 5. 

 

Table 4. Performance Metrics: Precision, Recall, and F1-Score 

Model Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

ViT + Autoencoder (Proposed) 96.72 96.21 96.46 

ResNet50 (Transfer Learning) 94.20 93.87 94.03 

VGG16 (Transfer Learning) 93.45 92.78 93.11 

Custom CNN 90.32 88.91 89.61 

 

Classification Report Analysis 

The classification report includes a concise summary of these modeling performances beyond accuracy, including 

precision, recall, and F1-score. Such metrics help delve deeper into how well the models handle class balance and 

generalize to previously unseen data, which is critical in real-life waste classification applications (Table 4). The ViT + 
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Autoencoder model gave the highest balanced performance among the three metrics. The model’s precision is 96.72%, 

which tells that the model misclassifies very few non-relevant waste types as target classes. Its recall of 96.21% indicates 

that it is also successful in detecting nearly all actual instances of every class, thus showing ruggedness in identifying 

relevant patterns from different waste images. The resulting F1-score of 96.46% proves that the model holds a strong 

balance between precision and recall, which is ideal for practical applicability in sorting systems where accuracy and 

precision count most. 

 
Fig 5. Training and Validation Accuracy of Vit+Autoencoder. 

In contrast, the popular transfer learning model, ResNet50, obtained a quite astounding F1 score of 94.03%, having 

precision and recall at 94.20% and 93.87%, respectively. This made it clear that even though ResNet50 is up to the mark, 

it lags behind the hybrid of ViT + Autoencoder in capturing fine-grained patterns. Likewise, the case with VGG16 gave an 

F1 score of 93.11%. Although not higher than ResNet50, it showed comparatively consistent performance, as it possesses 

deeper feature extraction layers. However, it also proved prone to more misclassifications under visual noise or in less 

distinguishable waste categories. 

The Custom CNN was working but produced the worst pixel/performance across the board, at 90.32%, with a recall of 

88.91% and an F1 score of 89.61%. These values indicate the network’s limitations in generalizing complex visual features, 

especially without pretrained weights, attention mechanisms, and, worse yet, any kind of supervision. 

In short, the classification report emphasizes the superior learning capability and generalization strength of the ViT + 

Autoencoder architecture. The architecture, with its high and balanced precision, recall, and F1-score, has proven capable 

of dealing with noisy, variable image data, thus making it a strong candidate for automated waste classification systems 

that demand reliable decision-making. 

 

Advanced Metrics Analysis 

 

 
Fig 6. Advanced Metrics Analysis. 
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The model is also evaluated using advanced metrics analysis, which is shown in Fig 6. MCC is beneficial when working 

with imbalanced datasets because it is a more balanced statistic that accounts for both actual and erroneous positives and 

negatives. With an MCC of 94.91%, the ViT + Autoencoder model performs exceptionally well in class distinction and 

misclassification reduction. With respective MCC values of 91.62% and 89.83%, the ResNet50 and VGG16 models exhibit 

strong performance. Although they perform well, their somewhat lower MCC values imply that they might not be as evenly 

distributed throughout all classes as the ViT-based model. With the lowest MCC of 85.24%, the Custom CNN performs 

less evenly and is more likely to make mistakes, particularly when dealing with waste classes that are more difficult to 

identify. Taking random chance into account, kappa calculates the degree of agreement between the actual and projected 

class labels. In line with its excellent performance on other metrics, the ViT + Autoencoder model attains a Kappa score 

of 95.90%, which indicates nearly perfect agreement between predictions and proper labels. The somewhat lower Kappa 

values of 92.10% and 90.20% for ResNet50 and VGG16, respectively, suggest that although their predictions are typically 

accurate, they are not quite as consistent as the ViT model. With a Kappa of 86.10%, the Custom CNN demonstrates poor 

prediction consistency, which indicates the model's generally poorer performance. The model's ability to differentiate 

between classes across all thresholds is represented by its AUC. With an AUC of 97.40%, the ViT + Autoencoder model 

demonstrates an excellent ability to discriminate between various waste classes. While still outstanding, ResNet50 and 

VGG16's somewhat lower AUC values of 95.20% and 94.60%, respectively, imply that they are less resilient when dealing 

with challenging class separations. With an AUC of 91.70%, the Custom CNN scores the poorest, indicating its low 

capacity to differentiate between waste categories accurately. 

All metrics show that the ViT + Autoencoder model performs better than the other models, including precision, recall, F1-

score, and advanced metrics like MCC, Kappa, AUC, and balanced accuracy. Its resilience and excellent performance 

result from its capacity to integrate the advantages of autoencoders and vision transformers for feature extraction and 

reconstruction. 

 

Deployment and Custom Sample Testing 

Deploying the trained model into practical applications is essential to delivering machine learning's benefits to users at the 

end of the project. Deploying the waste categorization system in your study entails several crucial procedures to guarantee 

the model's usability, performance, and accessibility in real-world situations. The image is processed and fed into the 

trained model to produce predictions. A probability distribution over various classes, each of which represents a waste 

category, is produced by the model. The class with the highest probability is the predicted class, and the probability value 

corresponding to that class provides the prediction confidence. Understanding and displaying the model's forecast after it 

has been made is crucial. It is necessary to map the model's raw output, or the predicted class, to the appropriate real-world 

waste category. Another critical factor in improving the user experience is visualization. In a deployment scenario, showing 

the image, the predicted class label, and the corresponding confidence score is helpful. This could be done on a website or 

mobile application, where users can view the classified image and the prediction results. For instance, if the model predicts 

that the image corresponds to class 0 (e.g., "Food waste") with a 99.96% probability, the expected output would indicate 

class 0 with a 99.96% confidence. Fig 7 illustrates a model that is predicted correctly with 99.96% confidence. 

 

 
Fig 7. Sample of a Single Output in Deployment with a Probability Score. 

 

Even though the suggested ViT-Autoencoder hybrid model performed well generally, Fig 8 shows that some examples 

were incorrectly identified during testing. These examples highlight the difficulties of classifying garbage images, 

especially when there is a lot of visual ambiguity because of traits overlapping classifications. For instance, because of 

specular highlights that resemble metallic textures, several samples of household garbage, such as plastic containers, were 

mistakenly identified as metal cans. False predictions were also caused by changes in lighting, occlusion, background 

clutter, and deterioration (such as crushed or partially visible garbage). These misclassifications highlight the difficulties 

of depending only on texture and shape signals in some borderline situations.  
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Fig 8. Error of misclassified sample. 

 

Discussion and Future Work  

The suggested hybrid model performs well in classifying recyclable and household garbage photos by combining an 

Autoencoder architecture with a Vision Transformer (ViT). At 96.72% precision, 96.21% recall, and 96.46% F1-score, the 

model performs noticeably better than traditional CNN-based architectures like ResNet50, VGG16, and a bespoke CNN 

baseline. Furthermore, metrics such as the MCC, Cohen's Kappa, and Balanced Accuracy further confirm the model's 

resilience across many noisy garbage image categories. Even in intricate inter-class situations, the high average AUC 

(97.40%) suggests a good capacity for discrimination. This degree of performance demonstrates how well ViT's global 

attention strategy works and how well the Autoencoder can highlight and compress key feature representations. A real-

world inference pipeline has successfully implemented the model. Preprocessing procedures like batch preparation, image 

scaling, and normalization were part of the deployment strategy. The trained model was then passed forward to produce 

class predictions. The inference technique is appropriate for edge or embedded systems due to its low latency and high 

confidence (e.g., a sample predicted with 99.96% confidence). The model's suitability for incorporation into intelligent 

recycling systems, smartphone apps, or Internet of Things devices utilized in trash management infrastructure is confirmed 

by this real-world implementation. Model quantization and pruning will be investigated optimally to lower computational 

complexity and make deployment easier on environments with limited resources, like embedded systems or mobile devices. 

According to preliminary findings, post-training quantization (such as using an 8-bit integer encoding) can reduce model 

size and speed up inference without appreciably lowering performance. In the future, several improvements are suggested: 

● Domain adaptation strategies will be examined to improve the model's generalization across garbage 

photos taken in various environmental and geographic contexts. 

● Using unlabeled waste data for self-supervised pretraining could enhance feature representations even 

more and lessen the need for labeled datasets. 

● Explainability and interpretability technologies (such as Grad-CAM or attention visualization) will be 

incorporated to provide transparency into the model's decision-making process. This is a critical component of 

trust and adoption in public waste management systems. 

● Automated garbage sorting and source-level monitoring will be made possible by the prototype real-time 

interface with innovative bin systems. 

Fig 10 compares the previous research with the proposed model. With its 96.48% classification accuracy, the proposed 

deep learning paradigm clearly outperforms almost all the latest state-of-the-art waste classification methods. Unlike earlier 

models developed with smaller or more constrained datasets, this model was trained on a large-scale dataset with nearly 

38,000 labeled images, enabling it to generalize well across various waste classes. Wang et al. [22] based their work on a 

ResNet-50 backbone model with Gaussian clustering on the augmented TrashNet dataset containing 2,527 images 

classified into six waste classes. Their model accomplished 92.4% accuracy, which is reasonably good; however, the 

relatively small dataset and the clustering methods applied could have limited scaling and fine-grained classification. 
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Fig 9. Deployment Workflow of Autoencoder–ViT-Based Waste Classification System. 

 

Qiu et al. [9] reported an enhanced EfficientNetV2 using Channel-Efficient Attention (CE-Attention) and Spatial-

Aware Feature Modules (SAFM). The model was evaluated on the Huawei Cloud Garbage Classification Challenge 

dataset, comprising a moderate volume of labeled images (~10,000 samples). Despite some architectural enhancements, 

the model could only achieve an accuracy of 95.4%, which is 1.08% below that of the proposed model, hinting that better 

feature representation and optimization should be worked upon. Nakib et al. [23] considered a segmentation-based 

architecture—Mask R-CNN—and applied it to a custom dataset comprising 1,800 images under five categories of ordinary 

wastes. Although their approach entailed using Grad-CAM for explainability and achieved an accuracy of 92.58%, the 

small size of that dataset and its reliance on segmentation methods might have hindered its classification efficacy. Sayed 

et al. [24] proposed a variation of MobileNetV3, which was later optimized with the bio-inspired Beluga Whale 

Optimization method and tested on the Huawei Garbage Classification dataset. Despite its innovative optimization, the 

model achieved only 92.62% accuracy, illustrating the limitation of model compression and lightweight architecture in 

preserving classification fidelity.  

 

 
Fig 10. Comparison of Classification Accuracy Between the Proposed Model and Recent State-of-the-Art Waste 

Classification Approaches. 
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The proposed model, by contrast, not only benefited from a much larger and more diverse dataset (~38K images) but 

also consistently outperformed the competing techniques on many other evaluation criteria, such as precision, recall, and 

F1-score, implying that it is a well-balanced classification system with high reliability. The higher performance of the 

proposed model can be ascribed to: (i) the advanced data preprocessing and augmentation strategies, and (ii) the design of 

a deeper or more efficiently tuned neural network architecture that can capture the subtle inter-class differences. Hence, 

the results presented in Fig 9 conclusively show that the proposed model is a new state-of-the-art for waste classification 

and thus very well suited for deployment in a real intelligent waste management system. 

 

V. CONCLUSION 

This research presents a hybrid deep learning framework that combines a Vision Transformer (ViT) and an Autoencoder, 

referred to as the ViT + Autoencoder model. The primary goal of this model is to improve the accuracy and robustness of 

waste image classification systems. The development process utilized Python and was implemented with TensorFlow in a 

Google Colab environment, using an NVIDIA A100 GPU to accelerate training and inference. Extensive experiments 

demonstrated that the proposed model achieved a training accuracy of 98.32% and a testing accuracy of 96.48%. It 

outperformed several baseline architectures, including ResNet50, VGG16, and a custom CNN. Additionally, the model 

delivered strong results across key evaluation metrics, achieving a precision of 96.72%, a recall of 96.21%, and an F1-

score of 96.46%. These results confirm the effectiveness of combining the attention mechanism of the Vision Transformer 

with the regularizing and feature-compressing capabilities of an Autoencoder. Traditional CNN-based and transfer learning 

models exhibited greater variance between training and testing accuracies, indicating potential overfitting or limited 

generalization. The ViT + Autoencoder model maintained a narrower accuracy gap, suggesting superior generalization 

capabilities on unseen data. 
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