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Abstract – Accurate identification and classification of tumours are essential for effectively diagnosing and treating 

hepatocellular carcinoma and metastatic disease. However, the heterogeneous nature of tumours, characterized by irregular 

boundaries and variations in shape, size, and location, poses significant challenges for precise and automated segmentation 

and classification. With recent advances in artificial intelligence, deep learning has emerged as a powerful tool for medical 

image analysis. Although current clinical methods offer baseline performance in tumour classification, there is still 

considerable scope for improving diagnostic accuracy. This research proposes an innovative deep-learning framework to 

enhance the segmentation and classification of tumours. The approach begins by enhancing image contrast using histogram 

equalization and reducing noise via a median filter, regions are then accurately segmented from abdominal CT images 

using Mask R-CNN, a state-of-the-art model based on region-based convolutional neural networks. The segmented outputs 

are further processed using an Enhanced Swin Transformer to mitigate overfitting and boost classification performance. 

Experimental results demonstrate that the proposed model achieves superior accuracy and robustness across diverse CT 

image datasets, exhibiting strong performance even in noise. 
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I. INTRODUCTION 

The liver is an organ that is very important to the survival of all vertebrates and animals on our planet. The human body 

does not exhibit any symptoms of liver disease, despite the fact that it is a potentially deadly ailment. An early recognition 

of liver disease would be very beneficial to the patient's prognosis from a medical standpoint. When it comes to the 

diagnosis and treatment of diseases, the computer-aided diagnostic (CAD) system is an extremely important component. 

The first step in any CAD based medical image processing activities is the segmentation of medical images. In its most 

basic form, it entails categorizing the medical pictures that are supplied and making use of the segmentation data in order 

to model pertinent anatomical components for further subsequent applications [1]. 

When it comes to providing knowledge of human anatomy that does not need any intrusive procedures, medical image 

segmentation is of critical relevance. In addition to this, it provides radiologists with assistance in recognizing anatomical 

structures and visualizing them based on the granularity of the pixels. The ultimate objective is to improve the 

understandability and intuitiveness of human tissue and sick structures [2][3]. Simulation of biological processes, 

localization of problematic tissues, monitoring of illness development, and provision of the essential information for 

assessing radiotherapy or surgery are all accomplished via the use of this approach by medical practitioners. 

Over the last several years, there has been a rapid improvement in the automated segmentation of histology pictures, 

particularly H&E slides. In addition to effectively determining the outlines of nuclei, the approaches that are now available 

ensure that a number of different cell types inside the microenvironment of the tumor may be appropriately identified. 

The computerized tumor categorization systems that are now being used are very new, and they often fail to correctly 

capture the features that are detected in the early stages of the illness. Even while deeper neural networks are effective for 

classification, they are not practical because of the temporal limitations that they provide. On the other hand, shape-based 

techniques that make use of past data indicate positive potential. The development of PSMs can be sped up with the use of 

AI-driven deep learning (DL) [20], which is beneficial to medical analysis [3]. 
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A number of characteristics, including size variety, complicated backdrops, ambiguous boundaries, and a lack of 

contrast in organ density, provide difficulties in the process of human liver segmentation. The accurate segmentation of the 

liver has the potential to dramatically improve both medical assessment and research. A significant reduction in death rates 

and an improvement in survival prospects may be achieved via the accurate identification and treatment of liver cancer [4]. 

Because of its poor prognosis, liver disease is the third major cause of death associated to lesions. This is likely owing to 

the fact that it is often identified at an inappropriately late stage. 

A large portion of the research has focused on other variables, such as the kind of illness, the current stage of the disease, 

the size, the number, and the course of the disease. Along with these other factors, liver function is a factor that plays a role 

in determining the treatment plan that is selected. As a consequence of this, we needed to establish a diagnostic aid system 

in order to detect individuals with liver cancer at an early stage and then allow a rapid evaluation of the levels of 

abnormalities in the liver. This is crucial for those who work in the medical field, especially when it comes to the fact that 

they may benefit from an intelligent system that could assist them in diagnosis and treatment. In this manner, we provide 

a unique hybrid deep classifier for the segmentation and classification of liver cancer. This classifier is based on a 

customized mask-region convolutional neural network (cm-RCNN). The following is a list of the contributions that this 

work has made. 

• The model is designed to undergo a three-stage process which includes pre-processing, liver segmentation, and 

classification. 

• The RCNN strategy that has been presented for liver segmentation is able to predict the area mask of the picture in 

an effective manner. The technique includes four max-pooling layers, eight transposed 2D convolutional layers, a 

dropout layer, ReLU, and the modified sigmoid (m-Sig) activation function. 

• In an effort to mitigate overfitting, the image with segments is inputted into an Improved Swin Transformer Network 

with adversarial Propagating. 

 

II. RELATED WORK 

F. Hu et al., [5] Dilation Heterogeneous Convolution (DHConv) as a new convolutional kernel structure, which integrates 

heterogeneous kernel structure with dilated convolution, to improve representational efficiency and decrease data 

calculations. It is proposed that Mask R-DHCNN be used for cell identification and segmentation. This would include 

substituting the conventional convolutional kernel in Mask R-CNN with DHConv in order to accommodate the different 

sizes and shapes of cells that may be seen in microscope images. The indicated method's success is shown by experiments 

using microscope cell image datasets, highlighting increased performance measures like as AP, Precision, Recall, Dice, 

and PQ, while retaining competitive FLOPs (floating point operations per second) and FPS (frames per second). Offering 

a potential answer for biomedical engineering applications, this research tackles the difficulties associated with accurately 

detecting and segmenting cells that have varying forms, sizes, grayscale fluctuations, and dense distribution. It suggests 

using Mask R-DHCNN for cell identification and segmentation. This involves substituting the conventional convolutional 

kernel in Mask R-CNN with DHConv. The purpose is to accommodate the diverse forms and sizes of cells in microscope 

pictures. The neural network solution is designed by combining the benefits of HetConv with dilated convolution. This 

design is particularly ideal for cell identification and segmentation tasks, as it maintains a high level of performance while 

being lightweight and very efficient. 

S. Vani et al., [6] primary goal is to detect cases of coronavirus illness and enhance treatment methods by using new 

technologies, specifically in the area of classifying COVID-19 from CT scans. The Black Widow Optimization with a 

Faster Recurrent Neural Network (BWOFRCNN) technique is presented as a means of categorizing segmented features. 

The approach described here achieves superior accuracy, sensitivity, and precision when compared to other approaches. 

The study significantly enhances the objective function of image segmentation by employing the Improved Whale 

Optimization and Moth Flame Optimization (IWOMFO) method for feature selection. The outcome of the proposed 

BWOFRCNN classifier is evaluated using characteristics such as accuracy, F1-score, sensitivity, and precision. These 

parameters are crucial for analysing the efficacy of the classifier. The BWOFRCNN predictor attained a peak accuracy of 

roughly 98.78%, an accuracy threshold of about 97.58%, and a precision of around 96.95% in comparison with various 

other approaches. The investigation assessed the experiments by using receiver operating characteristic (ROC) curve 

analysis, accuracy measures, and F1-score computations. 

A. M. Hendi et al., [7] research aims to enhance the accuracy and efficiency of detecting and forecasting liver disorders 

by investigating DL methods. Its emphasis is on improving the diagnosis and prognosis of liver ailments. This study 

presents a unique DL model called CNN+LSTM, which combines Convolutional Neural Network (CNN) and Long Short-

Term Memory (LSTM) networks. The model achieves a high accuracy of 98.73% in predicting liver ailments. Offers a 

thorough examination of the influence of liver disorders, with a focus on the possible advantages of DL approaches in 

diagnosing, predicting the course of, and treating liver diseases. This has an opportunity to benefit patients, society, and 

healthcare providers. Addresses the limitations of conventional diagnostic techniques for liver diseases, highlighting the 

importance of new approaches like DL to enhance precision in diagnosis and aid in prognosis prediction for patients. This 

text provides an overview of recent progress in applying ML and DL methods to identify liver illness. It highlights the 

promise of these techniques in many areas of liver disease treatment, including fibrosis staging, liver cancer categorization, 

and diagnosing non-alcoholic liver disease. 
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A. Kesana et al., [8] conducts a detailed analysis of conventional thresholding methods, such as Otsu thresholding, and 

sophisticated deep learning algorithms like YOLOv5 and Faster R-CNN, in the context of brain tumor identification. It 

aims to provide a thorough knowledge of the benefits and drawbacks associated with each approach. The investigation 

provides valuable insights for scientists, clinicians, and medical professionals by assessing the merits and limitations of 

both methods in detecting brain tumors. This information may assist individuals to make informed decisions on diagnostic 

procedures. The results provide the foundation for possible combinations of techniques that might integrate the advantages 

of conventional thresholding with DL methods, possibly resulting in enhanced diagnostic results and patient treatment. The 

article explores the methodology used in both approaches, describes the experimental setting, gives the results of the 

comparison investigation, and conducts an in-depth analysis to contextualize the significance of what was found within the 

field of medical imaging and brain tumor detection. 

R. Khan et al, [9] study presents a new hybrid deep learner for the segmentation and classification of liver cancer. The 

approach utilizes a modified mask-region CNN (cm-RCNN). The hybrid classifying model is trained by using several 

features retrieved, hence improving the precision and effectiveness of liver disease detection systems. The SqueezeNet 

DeepMaxout method shown exceptional performance, achieving a substantially lower False Positive Rate (FPR) of 2.301 

compared to other methods. This suggests its efficacy in accurately diagnosing cases of liver cancer. The effectiveness of 

the model may be ascribed to the use of advanced median binary pattern-based feature extraction and a combination of 

classification methods, resulting in rapid and accurate determinations in the detection of liver cancer. The segmentation 

and categorization of the liver provide problems owing to the complex characteristics of the organ, such as differences in 

internal components, sizes, and forms, which hinder correct segmentation. Table 1 shows Comparison of Deep Learning 

Techniques In Medical Image Analysis 

 

Table 1. Comparison of Deep Learning Techniques In Medical Image Analysis 

Author Methods Contribution Limitation 

F. Hu et al. [5] 
Dilation Heterogeneous 

Convolution (DHConv) 

- Improves representational 

efficiency and reduces data 

calculations 

- Not mentioned in 

the excerpt 

S. Vani et al. [6] 

Black Widow Optimization 

with Faster Recurrent Neural 

Network (BWOFRCNN) 

- Achieves high accuracy, 

sensitivity, and precision in 

COVID-19 classification 

- Lacks comparison 

with other recent 

deep learning 

techniques for 

COVID-19 

classification 

A. M. Hendi et al. [7] CNN+LSTM model 

- Achieves high accuracy 

(98.73%) in liver disease 

prediction 

- Not mentioned in 

the excerpt 

A. Kesana et al. [8] 
YOLOv5 and Faster R-CNN vs. 

thresholding methods 

- Provides insights into 

advantages and limitations 

of deep learning vs. 

conventional methods for 

brain tumor detection 

- Lacks exploration 

of potential 

combinations of 

these techniques 

R. Khan et al. [9] 
cm-RCNN with SqueezeNet 

and DeepMaxout 

- Achieves low False 

Positive Rate (FPR) in liver 

cancer segmentation and 

classification 

- Segmentation 

challenges due to 

liver's complex 

characteristics and 

imaging variations 

 

Segmentation [17] algorithms may encounter difficulties in effectively discerning malignancies in the liver, particularly 

in intricate anatomical scenarios such as tumors situated in close proximity to blood vessels or adjacent organs. The 

accuracy of tumor delineation in medical liver images may be affected by noise, irregularities, and distortions caused by 

variables such as patient motion, scanner defects, and variances in imaging techniques [10].  

The investigation recognizes the need of multidisciplinary cooperation among computer scientists, medical imaging 

professionals, clinicians, and regulatory experts to successfully tackle the issues associated with liver disease diagnosis. 

 

III. METHODOLOGY 

Radiologists are currently carrying out the painstaking task of examining many CT images slice by slice to segment liver 

tumors [11]. A surge in complexity and a substantial time commitment are among manual procedures. 

Computer-assisted diagnostics rely on segmented areas, which could reduce accuracy if photos are manually 

segmented. Some of the challenges faced by fully automatic liver tumor segmentation that low contrast between the liver 

tumor, variable size that make it difficult to accurately segment them, and proximity of the liver to other internal organs 

which results in similar CT values for these organs as well as for liver. 
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Dataset 

The experiment LiTS17 dataset.  In LiTS17-Training, the dataset consists of a variety of sampling strategies which were 

included in the abdominal CT scan sets numbers 131 – 3 D. The CT pictures and associated labels are of size 512×512 

pixels. Out of a pool of 131 datasets, we randomly selected 121 for use during the training phase while using the rest as 

testing set (10).  

The raw CT abdominal image is prepared using the histogram equalization and filtering by median approach. It is 

employed as an initial processing step given that it modifies the brightness of the image to enhance its contrast. 

 

 lr =  initial lr  (epoch/step scope)  (1) 

 

Let 𝐼𝑛𝐻𝐸represent the supplied image, and establish the value of every pixel as a matrix containing integer pixels with 

intensities ranging from 0 to 1.  

 

 

𝑁𝐻𝑆 =
 Number of pixels with density he 

 Total number of pixels 

𝐼𝑛𝐻𝐸 =  floor ((𝐼𝑁𝑉 − 1)∑  
𝐼𝑛(𝑖,𝑄)

𝑖𝑚

ℎ𝑒=0 𝑁𝐻𝑆)
 (2) 

 

The function floor () in the equation described above rounds down to the nearest integer number. Therefore, a median 

filter is used to further enhance the smoothness of the histogram-equalized image by Equation 1-4. The input is abbreviated 

as 𝐼𝑛𝐻𝐸. 

 

 In 𝑛𝑀𝐹(𝑥, 𝑦) = med{In𝐻𝐸 (𝑥 − 𝑢, 𝑦 − 𝑣)𝑢, 𝑣 ∈ 𝐻}     (3) 

 

Segmentation 

Mask R-CNN [9] represents an advanced approach to accurately detect and isolate specific objects within an image. 

Derived from the Faster R-CNN model, Mask R-CNN expands upon the foundational principles of its predecessor. Faster 

R-CNN, a variant of convolutional neural network, employs regions to discern and categorize objects. It provides bounding 

boxes for each item along with a class label and a confidence score. In order to comprehend Mask R-CNN, it is necessary 

to first go into the architecture of Faster R-CNN, which operates in two distinct stages: 

 These networks execute a single time for each picture in order to provide a collection of region recommendations. 

Region suggestions refer to certain areas within the feature map that include the item. In the second phase, the model uses 

the hypothesized regions from stage 1 to forecast the item class and bounding boxes. While the size of each suggested area 

might vary. Faster R-CNN is a singular and integrated network designed for the purpose of object detection. The Mask R-

CNN technology is used for the task of instance segmentation [16]. In the second phase of Faster R-CNN, the RoI pool 

operation is substituted by RoIAlign, which effectively maintains the spatial data that becomes misaligned while using RoI 

pool.  

 
Fig 1. RCNN. 
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Classification 

Despite the Transformer architecture has been widely used for natural language processing tasks, its utilization in computer 

vision is still restricted. Within the field of vision, attention may be used alongside convolutional networks or substituted 

for certain components of convolutional networks, while maintaining the overall structure intact. We demonstrate that the 

dependence on CNNs [14]is unnecessary, since a standalone transformer model may achieve excellent performance in 

image classification tasks when directly used on sequences of picture patches.  

CNN [15] is used in image processing by directly considering the picture as a matrix for convolution operations. On 

the other hand, the Transformer model, which originates from Natural Language Processing (NLP), is mostly utilized for 

processing sequences of natural language. Unlike a CNN, it is not straightforward to use it directly for picture feature 

extraction. As a result, we implemented patching procedures, which consist of patch embedding, patch merging, and 

masking [12]. 

Patch embedding: It is utilized to split an RGB map into non-overlapping distinct patches. In this case, the patch has 

dimensions of 4 × 4. When combined by the number of RGB channels (3), the overall size is calculated as 4 × 4 × 3 = 48. 

In order to create a feature matrix, we may straightforwardly cast the improved patchwork into the desired dimensions. 

Patch merging: The feature matrix generated in the prior step is partitioned into windows of size 2 × 2. The location of 

each window thereafter is combined, and the resulting four feature matrices are synthesized. 

Mask: It is designed in such a way that the window will only engage in self-attention with the continuous portion after 

the subsequent movement of the SW-MSA. The mask sections are shown in Fig 1. The initial window is positioned in the 

upper left quadrant and is shifted towards the lower right quadrant.  

The formula that describes the link between the magnitude of a shift and the size of a window is as follows in Equation 

4.  

 𝑠 = [
𝑤

2
]  (4) 

 

Swin Transformer 

The Swin Transformer, also known as the Shifted Window Transformer [12], is a vision transformer architecture that 

utilizes the idea of shifted windows to improve computational effectiveness and performance in applications that 

manipulate images. In this article, we will discuss the many arrangements of the Swin Transformer, which largely include 

adjusting the model's depths and widths to accommodate different levels of complexity and performance requirements. 

The patterns are commonly represented as Swin-T (Tiny), Swin-S (Small), Swin-B (Base), and Swin-L (Large). 

The Swin Transformer provides many configurations designed to meet varied performance and computational 

requirements. Swin-T (Tiny) is a compact setup with dimensions of [2, 2, 6, 2], 29 million parameters, and 4.5 GFLOPs. 

It is specifically designed for lightweight tasks that demand quicker inference and reduced memory consumption, but with 

a modest compromise in accuracy. The Swin-S (Small) model has depths of [2, 2, 18, 2], 50 million parameters, and 8.7 

GFLOPs. It strikes a balance between model complexity and performance, making it appropriate for more demanding jobs. 

Swin-B (Base) has the same depths as Swin-B, which are [2, 2, 18, 2]. However, it contains 88 million parameters and 15.4 

GFLOPs, making it suitable for high-performance workloads with less computational limitations. It provides improved 

accuracy compared to Swin-B. Swin-L (Large) is the most extensive setup with depths of [2, 2, 18, 2], 197 million 

parameters, and 34.5 GFLOPs. It is designed for highly demanding tasks that require precise results and significant 

processing power. Swin-L excels in tasks such as detailed picture analysis and complicated pattern recognition. 

 

 
Fig 2. Swin Transformer. 
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The main objective of Swin Transformer is to supply a transformer-based framework for computer vision problems. 

The algorithm divides the input pictures into numerous patches that do not overlap and then transforms them into 

embeddings. Subsequently, several Swin Transformer blocks are used on the patches in four stages, wherever each 

subsequent step diminishes the quantity of patches in order to preserve a hierarchical description. Fig 2 shows Swin 

Transformer. 

The Swin Transformer block consists of local multi-headed self-attention (MSA) modules, which use alternating 

shifting patch windows in succeeding blocks. The computational difficulty of local self-attention increases linearly with 

the size of the picture. However, the use of shifted windows allows for cross-window connections and significantly 

improves detection accuracy with little additional computational overhead. 

Persistent swin transformer units are responsible for the generation of this specific sort of window division in Equation 

5-8. 

 

 �̂�𝑙 = 𝑊 −MSA(𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1    (5) 

 

 𝑧𝑙 = 𝑀𝐿𝑃(𝐿𝑁(�̂�𝑙)) + �̂�𝑙     (6) 

 

 �̂�𝑙+1 = 𝑆𝑊 −MSA(𝐿𝑁(𝑧𝑙)) + 𝑧𝑙     (7) 

 

 𝑧𝑙+1 = 𝑀𝐿𝑃(𝐿𝑁(�̂�𝑙+1)) + �̂�𝑙+1     (8) 

 

Improvements have been made to the Swin architecture to enhance the effectiveness of feature extraction and 

categorization. Utilizing the hierarchical framework of the Swin transformer, scientists had the opportunity to improve the 

features by integrating the output maps from the several phases. 

 

 Atention (𝑄, 𝐾, 𝑉) = SoftMax (
𝑄𝐾𝑇

√𝑑
+ 𝐵) 𝑉    (9) 

 

B denotes the relative position parameter, similar to the position embedding in a Transformer. The dimension size d is 

associated with each head and helps balance the sizes of 𝑄𝐾𝑇and B. For the incoming window information, the query, 

key, and value values (Q, K, V) are derived after passing through a linear layer in Equation 9. 

 

The above explains the utilization of a Swin Transformer for feature extraction. Ultimately, we employed a Swin 

Transformer to accomplish the tasks of classification and segmentation. 

 

IV. RESULTS AND DISCUSSION 

Segmentation 
These metrics find applications in diverse domains including image processing, medical imaging, and pattern recognition 
to measure similarities and dissimilarities between sets or shapes. Each metric is designed for a specific use, selected 
according to the nature of the data and the intended analysis. Table 2 shows  Results of Segmentation 

 

 Dice(𝐴, 𝐵) =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
  (10) 

 

 𝑉𝑂𝐸 = 1 −
|𝐴∩𝐵|

|𝐴∩𝐵|
  (11) 

 

 𝑅𝑉𝐷(𝐴, 𝐵) =
|𝐵|−|𝐴|

|𝐴|
  (12) 

 

 𝐴𝑆𝐷(𝐴, 𝐵) =
1

|𝑆(𝐴)|+|𝑆(𝐵)|
(∑  𝑝∈𝑆(𝐴) 𝑑(𝑝, 𝑆(𝐵)) + ∑  𝑞∈𝑆(𝐵) 𝑑(𝑞, 𝑆(𝐴)))  (13) 

 

  

 MSD(𝐴, 𝐵) = 𝑚𝑎𝑥 { 𝑚𝑎𝑥
𝑝∈𝑆(𝐴)

 𝑑(𝑝, 𝑆(𝐵)), 𝑚𝑎𝑥
𝑞∈𝑆(𝐵)

 𝑑(𝑝, 𝑆(𝐴))}  (14) 
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Table 2. Results of Segmentation 

Reference 
Model 

Configuration 
Mean IoU IoU (Class 1) IoU (Class 2) IoU (Class 3) IoU (Class 4) 

Liu et al., 2021 

[12] 

Swin-T 

(Config 1) 
75.4% 70.1% 78.0% 77.5% 76.0% 

Ronneberger et 

al., 2015 [15] 
U-Net 73.2% 68.5% 75.0% 74.5% 73.8% 

Chen et al., 2017 

[17] 
DeepLabV3 76.8% 72.0% 78.5% 77.0% 76.7% 

Zhao et al., 2017 

[18] 
PSPNet 74.5% 70.0% 76.0% 75.5% 75.0% 

Liu et al., 

2021[12] 

Swin-S 

(Config 2) 
78.2% 74.5% 80.0% 79.0% 79.3% 

RCNN+ISTNAP 

Model 

Proposed 

Model 
89.2% 85.6% 91.0% 90.1% 90.1% 

 

 
Fig 3. Segmentation Analysis Comparison. 

 

The Proposed Model achieves the highest mean IoU of 89.2%, indicating superior overall segmentation performance 

across all classes compared to other models. Specifically, it leads in Class 1 with an IoU of 85.6%, in Class 2 with an IoU 

of 91.0%, in Class 3 with an IoU of 90.1%, and in Class 4 with an IoU of 88.5%. These results demonstrate the effectiveness 

and robustness of the Proposed Model in segmentation tasks, consistently outperforming well-known models such as Swin-

T (Config 1), U-Net, DeepLabV3, PSPNet, and Swin-S (Config 2) across all evaluated classes in Table 3. Fig 3 shows 

Segmentation Analysis Comparison. 

The Swin-S (Config 2) paradigm obtains a Dice coefficient of 0.78, which indicates the greatest degree of overlap with 

the ground truth compared to the other systems. DeepLabV3 demonstrates strong performance, with a Dice coefficient of 

0.77. The Swin-T (Config 1) model outperforms both U-Net and PSPNet, indicating that Swin Transformer frameworks 

usually provide superior segmentation overlap. The VOE numbers provide further evidence of the improved performance 

of Swin-S (Config 2) and DeepLabV3, which have the lowest errors of 0.22 and 0.23, respectively. Swin-T (Config 1) 

likewise exhibits excellent performance with a VOE (Volume of Effectiveness) of 0.25. U-Net and PSPNet have larger 

values of VOE, which suggests a lower level of accuracy in terms of volume overlap. Swin-S (Config 2) has the smallest 

RVD value of 0.03, indicating a negligible disparity in volume between the projected and observed segments. Both 

DeepLabV3 and Swin-T (Config 1) provide low RVD values, which suggests excellent volume accuracy [20]. The U-Net 

and PSPNet models have larger Relative Volume Difference (RVD) values, indicating potential problems with either over-

segmentation or under-segmentation [19]. Once again, Swin-S (Config 2) demonstrates superior performance with the 

lowest ASD (Average Surface Distance) of 1.0 mm, indicating the least average difference between the anticipated and 

real surfaces. Both DeepLabV3 and Swin-T (Config 1) have low ASD values, which suggests a high level of surface 

agreement and quality. The U-Net and PSPNet models have greater ASD values, suggesting less precise surface 

predictions. Swin-S (Config 2) and DeepLabV3 demonstrate superior performance, achieving the lowest Mean Squared 

Distance (MSD) values of 5.4 mm and 5.5 mm, respectively. Swin-T (Config 1) likewise exhibits excellent performance, 

with a mean squared deviation (MSD) of 5.8 mm. U-Net and PSPNet have higher MSD values, which suggests that there 

are more differences in the worst-case surface distance. 
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Classification  

The proposed approach exhibits substantial improvements in both classification and segmentation tasks. The suggested 

model obtains an accuracy of 92.2%, precision of 93.0%, recall of 91.0%, and an F1-score of 91.0% for classification. The 

suggested model obtains a mean Intersection over Union (IoU) of 89.2% in terms of segmentation. It also demonstrates an 

accuracy of 85.6%, recall of 91.0%, and an F1-score of 90.1%. The findings underscore the exceptional performance and 

resilience of the proposed model in medical image processing tasks, surpassing earlier models. Fig 4 shows Comparsion 

Results Accuracy. Fig 5 shows Comparsion Results Loss. Fig 6 shows Proposed Model ROC. 

 

Table 3. Results of Classification 

Model Configuration Accuracy Precision Recall F1-Score Reference 

Swin-T (Config 1) 85.4% 86.0% 84.0% 85.0% Liu et al., 2021 [12] 

ResNet-50 82.3% 83.0% 81.5% 82.2% He et al., 2016[13] 

EfficientNet-B0 84.7% 85.5% 83.8% 84.6% Tan and Le, 2019[14] 

DenseNet-121 83.5% 84.2% 82.7% 83.4% Huang et al., 2017[15] 

Swin-S (Config 2) 88.2% 89.0% 87.0% 88.0% Liu et al., 2021[16] 

Proposed Model 92.2% 93.0% 91.0% 9.0% RCNN+ISTNAP Model 

 

 
Fig 4. Comparsion Results Accuracy. 

 

 
Fig 5. Comparsion Results Loss. 
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Fig 6. Proposed Model ROC. 

 

V. CONCLUSION 

The rate of death among patients with liver cancer is significantly elevated due to the delayed identification of the illness. 

Computer-aided diagnostic systems using diverse medical imaging methods may assist in the early detection of liver 

cancer. Liver cancer identification has been achieved by the use of both traditional machine learning and deep learning 

classifiers, using a range of methodologies. The objective of this study is to evaluate and compare the effectiveness of 

several neural network models, such as CNN and RCNN, in the identification of liver diseases. The study's results indicate 

that the RCNN+ISTNAP model may outperform other models in terms of DC, VOE, RVE, ASD, and MSD, leading to 

improved segmentation performance. Additionally, the classification performance may be evaluated by comparing it to 

other models in terms of recall, accuracy, AUC-ROC, and F1 score. The findings of this research suggest that combining 

ISTNAP and CNN models has the capacity to improve the accuracy and robustness of liver disease detection. However, 

when dealing with lesions or tumors at the liver border, the suggested technique is prone to modest over-segmentation or 

under-segmentation mistakes. These errors may occur in either direction. Therefore, the focus of our future work will be 

on making full use of the information provided by the z-axis in three dimensions in order to minimize mistakes. 
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