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Abstract – Accurate and timely prognosis is essential for effective patient management and improved healthcare outcomes. 

This study introduces a novel ensemble framework that integrates Convolutional Neural Networks (CNN) and Long Short-

Term Memory (LSTM) networks, optimized using the Integer-Based Linear Hopper Optimization Algorithm (ILHOA). 

The model leverages CNN for spatial feature extraction and LSTM for capturing temporal patterns in clinical and laboratory 

data. ILHOA enhances model efficiency and robustness by selecting the most relevant features and eliminating redundancy. 

The proposed system includes data preprocessing, ILHOA-based feature selection, and a hybrid CNN-LSTM structure. 

Predictions from both deep learning models are combined through an ensemble process to boost generalization and reduce 

overfitting. The model’s performance is evaluated using key metrics including accuracy, precision, recall, F1-score, and 

AUC-ROC. Experimental results demonstrate the superiority of the ILHOA-optimized CNN-LSTM model over traditional 

machine learning and standalone deep learning approaches, offering high classification accuracy and reduced 

computational complexity. The hybrid architecture also improves interpretability, making it suitable for real-time clinical 

decision-making. Future work will focus on integrating attention mechanisms and validating the model with real-world 

patient datasets to enhance generalizability and expand its applicability across broader healthcare diagnostics. 

 

Keywords – Prognosis, CNN-LSTM Ensemble, Hopper Optimization, Overfitting, Feature Selection, Deep Learning, 

Clinical Decision Making. 

I. INTRODUCTION 

The COVID-19 pandemic has caused a major disturbance in global healthcare, and rapid and precise prognostic models 

are needed to evaluate disease severity and predict patient outcomes. Conventional diagnostic techniques like RT-PCR and 

radiological imaging have been helpful but are usually limited by high costs [1], low sensitivity, and lengthy procedures, 

so AI-based methods are crucial for quicker and more accurate COVID-19 prognosis. Of the numerous machine learning 

and deep learning algorithms, Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks 

have proven to be highly capable of processing structured and sequential medical information [2]. While CNNs are 

excellent at extracting spatial information from images and structured clinical data, LSTMs are extremely adept at learning 

temporal relationships in sequential health records, rendering their union best suited for advanced medical prediction 

problems. The presence of irrelevant and redundant features is one of the major problems confronting deep-learning models 

for COVID-19 prediction: Therefore, these features increase computation complexity and decrease generalization ability 

[3]. Thus, an effective feature selection mechanism is necessary to remove dirty characteristics while retaining only 

representative patterns that increase the classification accuracy and minimize model overfit. In overcoming the above 

problems, this study posits the use of an optimized ensemble CNN-LSTM model enhanced by a new feature selection and 

optimization algorithm: the Integer-Based Linear Hopper Optimization Algorithm (ILHOA)- based on a new concept of 

integer-based hopping movement. ILHOA is meant to iteratively refine feature subsets based on an adaptive hopping 

strategy that will attack noise and other non-relevant information while preserving the more significant attributes. On the 

contrary, conventional optimization algorithms such as PSO and GA get stuck in local optima with high-dimensional 
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feature spaces; ILHOA is based on linear structured-hopping mechanics to strike a balance between exploration and 

exploitation during effective feature selection and enhanced model generalization [4]. 

A proper feature extraction, feature selection, and spatio-temporal pattern identification are carried out by coupling 

ILHOA with the CNN-LSTM architecture for reliable COVID-19 prediction. The importance of this hybrid method is that 

it can tap both spatial and sequential patterns in patient data while, at the same time, optimizing feature subsets for optimal 

predictive performance. COVID-19 prediction involves processing heterogeneous patient data, such as radiological images, 

clinical laboratory results, and time-series vital signs. It have found extensive usage in medical diagnosis, their restricted 

capability to discover deep hierarchical patterns in complex data lowers their efficacy in processing high-dimensional 

health records. On the contrary, CNNs automatically discover sophisticated spatial correlations in structured health data, 

thereby proving to be highly efficient in feature extraction. At the same time, LSTMs excel in sequential data handling by 

being capable of storing long-term dependencies and, as such, allowing disease trend forecasting accurately [5]. The 

synergistic approach here involves applying both CNN and LSTM within an ensemble structure where CNN learns spatial 

relevant features while LSTM captures the time-varying patient states, thereby generating improved robust and precise 

forecasts [6,7]. The inclusion of ILHOA makes it possible for the most pertinent features to be contributing to the decision-

making process, minimizing computational overhead but still achieving high predictive accuracy. ILHOA works in two 

major phases: first, an initial feature selection phase ranks attributes according to their contribution to classification, and 

second, an optimization phase dynamically optimizes the chosen features by iterative hopping moves. This organized 

methodology enables ILHOA to converge more quickly and perform better feature selection than conventional optimization 

methods. The new CNN-LSTM-ILHOA model is tested on benchmark COVID-19 datasets, where its performance is 

compared with traditional deep learning and machine learning models on the basis of important parameters like accuracy, 

sensitivity, specificity, and computational cost.  

The experimental results show that the hybrid model performs better than baseline models in predicting COVID-19 

severity, highlighting its potential to enhance diagnostic accuracy and alleviate computational intensity. The main 

contributions of this work are the proposal of a new CNN-LSTM ensemble architecture optimized by ILHOA for COVID-

19 prediction, a sophisticated feature selection mechanism that removes redundant features to improve classification 

performance, a comparative study of the proposed model with conventional deep learning models, and a test of 

computational efficiency and generalization capability of ILHOA in healthcare contexts. This work gives a new approach 

in AI-assisted medical diagnostics by combining deep learning with wise optimization techniques for improving predictive 

efficiency. The major contributions are, 

• Combines CNN for spatial feature extraction and LSTM for temporal dependencies, improving COVID-19 

prognosis accuracy. 

• Enhances feature selection by removing irrelevant data, reducing computational cost, and boosting classification 

performance. 

• ILHOA enhances model efficiency by optimizing feature subsets, reducing computational complexity, and 

improving classification performance compared to conventional optimization techniques such as PSO and GA. 

The rest of this paper is structured as follows: the following section is a review of current deep learning and 

optimization-driven approaches to COVID-19 prognosis, followed by an in-depth methodology outlining the CNN-LSTM 

ensemble model and ILHOA-based feature choice. Then follows the experimental design, data sets, and evaluation criteria, 

after which a results discussion is provided comparing the approach with baseline models. Lastly, the paper concludes with 

the most important findings, limitations, and possible future directions for research in order to further improve AI-based 

COVID-19 prognosis with hybrid optimization methods. 

 

II. RELATED WORKS 

Machine learning (ML) has been very important in COVID-19 prediction of diagnosis, prognosis, and risk of death based 

on patient symptoms, clinical data, and imaging. Machine learning methods have been investigated across numerous studies 

for improving decision-making in healthcare. Zoabi et al. (2021) created a machine learning model for the prediction of 

COVID-19 diagnosis only from patient self-reported symptoms. The authors used logistic regression and other 

classification methods, with very high accuracy in the detection of infected cases. The model described by them 

demonstrated that symptom-based prediction could be an efficient preliminary screening method that lessens the 

dependency on laboratory testing and allows for early intervention. The research also advocated for ML promise within 

remote healthcare settings to alleviate the constraints of COVID-19 detection modalities that are non-invasive and low-

cost and can be scaled. It further shows there is need to incorporate such an application within a mobile app or a 

telemedicine platform for improved accessibility [8]. 

In 2021, Monjur et al. offered a mobile cloud application for prediction and prognosis of COVID-19 real-time mortality 

risk estimation [9]. The study integrated cloud computing with ML models to assess symptoms in patients and forecast 

possible disease progression. Here, LRs, SVMs and DLs models have been used to calculate mortality risk based on a 

number of clinical features such as oxygen saturation, respiratory rates as well as underlying comorbidities. The research's 

core value is that it brings friendly mobile applications along with ML. In this invention, the importance of mobile health 

(mHealth) in future management of pandemics is greatly proven. Also, the research covered oxygen saturation, respiratory 

rates, and other comorbidities-as well as related issues on data privacy and security-which brought forth encryption and 
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adherence to healthcare data standards. Further studies can also improve predictive ability further by including real-time 

sensor data for continuous monitoring of patients at much higher risk. 

Survival Prediction of Critical COVID-19 Patients Utilizing Biometric Markers Priority-Based Employment of a 

Machine Learning Algorithm by Yan et al. (2020), which involves the chief biomarkers like lactic acid, lymphocyte count, 

and C-reactive protein, prediction based on them. As a result of analysis of a hospital's substantially large population, 

crucial physiological markers were found to have a strong positive correlation to increased mortality risk. Even the 

researchers made use of a number of ML algorithms like gradient boosting decision trees (GBDTs) to offer a robust and 

interpretable prediction model. Their methodology evolved a framework by virtue of which risk stratification could be 

carried out, enabling clinicians to identify high-risk patients and effective allocation of medical resources. Clinical decision-

making implications came from the study since the results demonstrated how such data-driven models could either 

supplement or supplant traditional diagnostic avenues. Also emphasized was the role of explainable AI in health care, 

especially as regards building trust and usability. From now onwards, deeper advances can be realized with the application 

of learning techniques such as recurrent neural networks (RNN) that introduce temporal patterns of patient biometric data 

to assess risk dynamically [10]. 

Karthikeyan et al. (2021) reported the development of a machine-learning clinical decision support system (CDSS) for 

predicting early death in COVID-19 patients. Utilization of a hospital patient dataset and supervised learning paradigms 

such as random forest and neural network for assessing the patient's chances of survival were discussed in the research. 

Feature selection was emphasized by the authors in the study and they concretely identified the likes of D-dimer levels, 

blood oxygen saturation, and inflammatory markers as significant factors in predicting severity. Their CDSS aimed to assist 

physicians by providing real-time mortuary risk evaluation so that timely intervention could be performed. The contribution 

of this research was to emphasize the integration of ML models into hospital workflows to improve patient outcomes. It 

also discussed the problem of imbalanced datasets regarding predictive accuracy enhancement through oversampling 

methods [11]. Future directions can possibly include ensemble hybrid approaches that combine deep learning with 

conventional machine-learning algorithms for enhanced predictive robustness and generalizability across heterogeneous 

patient populations. 

According to Abbaspour Onari and others, (2021) a machine learning framework tool has been developed for predicting 

severity levels of COVID-19 in patients for effective triage and allocation of resources in hospitals. The study classified 

patients as mild, moderate, and severe risk patients based on machine learning classification algorithms such as decision 

trees, SVMs, and XGBoost. Demographic information, comorbidities, and laboratory findings were the primary features. 

The authors emphasized the efficiency of ML models in detecting high-risk cases that could need intensive care, thereby 

maximizing resource utilization during peak pandemic seasons. Their research also investigated model interpretability, 

employing SHAP (Shapley Additive Explanations) values to describe feature importance. The study showed the potential 

of AI-driven risk assessment tools in emergency response planning. Future horizons could involve the incorporation of 

real-time patient monitoring data via IoT devices as well as federated learning methods for enhancing model adaptability 

while maintaining data privacy among various healthcare institutions [12]. The research gaps identified from the related 

work section is, 

• Most current research is based on static COVID-19 prediction and prognosis datasets. There is no integration of 

real-time patient monitoring through IoT-based wearable devices or hospital electronic health record systems. Future 

research needs to investigate dynamic data streams for ongoing risk assessment and enhanced early warning 

systems. 

• Numerous models are learnt from region-specific data, causing the risk of biases in prediction while being used 

across different populations. Cross-population validation and federated learning methods should be ensured to 

establish wider usage and justice in ML-based healthcare decision support. 

• Though ML models present good predictive power, their transparency is a hindrance, constraining trust from 

healthcare professionals. Further work on explainable AI (XAI) methods must be done to give transparent decision-

making, such that these models are acceptable in real-world clinical practice. 

 

III. PROPOSED METHODOLOGY USING ILHOA ENSEMBLE MODEL 

In addition to the brain and lungs, multiple other organs are impacted in people with the coronavirus COVID-19. A person 

with COVID-19 who has severely harmed [13] white matter and Lactate levels appear to have increased on Magnetic 

Resonance. Spectroscopy is an additional indicator of oxygen deprivation-related brain injury [14-18]. In order to detect 

the transmission of transmissible diseases and provide suitable medical treatment, many techniques have been established. 

The suggested technique developed an Integrated Linear Factor depending Hoppers Optimisation Algorithms with 

Ensemble Learning (ILHOA with EL) for efficient Covid-19 forecasting. The suggested system's flow diagram is displayed 

in Fig 1.  
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Fig 1. The Suggested Model for Flowchart 

 

Input Dataset 

where it is collected ID, state, region, latitude, longitude, date, reported instances, fatalities, temperature, fog, and other 

data are all included in this database. A NOAA GSOD data set is the source of weather data. The most recent data will be 

regularly added to the NOAA GSOD dataset 

 

Data Normalized with Min-Max Normalized 

The COVID-19 dataset is normalized in this way with the aid of min-max normalization. One of the most widely used 

methods for normalizing data is min-max normalization. The dataset's values are normalized [19] within a predetermined 

range, and each piece of data is altered using the formula below.  

 

 v′ =
v−min(A) 

max(A) −min(A) 
(new_max (A) − new_min (A)) + n (1) 

 

Where a refers to the Attribute value, Min(A) , Max(A) - the least and highest absolute value of A respectively and the 

𝑣′ - New value for each data entry, 𝑣 - Old value for each data entry, New_min(A), new_min(A) stands for the highest 

and least value in the range respectively. 

 

Feature Selection using Integer Based Linear Hopper Optimization Algorithm (ILHOA) 

The Improved Linear Factors based Hoppers Optimization Algorithm is used to choose features. The Hoppers optimization 

algorithm simulates Hoppers behavior. The Hoppers swarm typically travels a great distance in search of a new habitat that 

is stocked with food. In this case, Hoppers communicate with one another via controlling one other within a swarm. The 

Hoppers' path is influenced by the force of the wind and gravity outside the swarm. Another important determinant is food 

intention [20].  

The search process is effectively divided into two parts by metaheuristic algorithms, which are called exploration and 

exploitation. The Hoppers are motivated to move swiftly in search of the ideal location during the exploration stage. 

Hoppers travel locally in search of a suitable target site during exploitation. It serves as a problem abstract for optimization. 

The hopper swarm is derived from the swarm composed of search agents.  

The dataset's features are regarded as the input in this proposed technological work. This assigns a place and fitness 

value to every feature in a dataset. Position shows the point in relation to a likely feature set. The fitness function is the 

classification accuracy.  

 

 Fitness function = Max (Accuracy) (2) 

 𝑋𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴𝑖 (3) 

 
Where, 𝑋𝑖indicates the ith feature position, 𝑆𝑖refers to the social interaction strength, 𝐺𝑖refers to the ith feature 

manipulating factor of significance force, and𝐴𝑖specifies the winds impact factor. 𝑆𝑖is expressed as: 

 

 𝑆𝑖 = ∑  𝑁
𝑗=1,𝑗≠𝑖 𝑠(𝑑𝑖𝑗)�̂�𝑖𝑗 (4) 
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𝑑𝑖𝑗 = |𝑥𝑗 − 𝑥𝑖|, �̂�𝑖𝑗indicates the unit vector from ith tojth attribute, given as �̂�𝑖𝑗 =
|𝑥𝑗−𝑥𝑖|

𝑑𝑖𝑗
 refers to a function depicting 

the effect of social relationship in the feature and is defined as: 

 

 s(r) = f𝑒
−𝑟

𝑙 − 𝑒−𝑟 (5) 

 

Expression 3 for numerical module optimization must incorporate tiny change factors when dealing with numerical 

optimization problems. 𝐺𝑖and 𝐴𝑖 specify the food target parameter in place of the external control. As a result, the phrase 

is changed to:  

 

 𝑥𝑖 = c (∑  𝑁
𝑗=1,𝑗≠𝑖  𝑐

𝑢−𝑙

2
𝑠(|𝑥𝑗 − 𝑥𝑖|)

𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
) + �̂�𝑑 (6) 

 

�̂�𝑑denotes the food target's location, which is the best possible place for all search characteristics to always discover in 

the numerical module. Additionally, c stands for the comfort zone parameter that was altered to balance the exploration 

and exploitation processes, as seen below:  

 

 c = 𝑐max − iter
𝑐max−𝑐min

 Max iter 
 (7) 

 

The current iteration 𝑐maxand 𝑐min the maximum number of iterations are specified by the iter, respectively. 𝑀𝑎𝑥iter and 

make use of the maximum and minimum values of c to refer to the maximum iterations to get the best answer, equation (6) 

must be run once more; it stops when the requirement is satisfied. Typically, the evolution process ends when the 

predetermined maximum number of iterations is reached.  

 

Integer Based Linear Hopper Optimization Algorithm 

Due to the lack of random elements, the traditional Hoppers Optimisation Algorithm (HOA) shows minor differences. To 

lessen the attraction and distaste between Hoppers, use parameter c, which is enclosed in parenthesis. There won't be 

enough convergence in the GOA algorithm's first step if the parameter drops too quickly. To address these problems, the 

Improved Linear Factor (ILF) is used to update the comfort zone value.  

 

 c = (𝑐min − 𝑐max) (
𝑇max−𝑡

𝑇max
) + 𝑐max (8) 

 

Where,𝐜max − max value of c, cmin −  min value of c. 

 

Strategy of the ILHOA technique 

The Integer-Based Linear Hopper Optimization (ILHO) algorithm is a metaheuristic feature selection technique designed 

to identify the most relevant features from a dataset. The feature position set is initialized with corresponding control 

parameters such as maximum and minimum hoppingized coefficients (cmaxandcmin)and the limits of the number of 

implementations. The algorithm calculates classification accuracy for all features, with the best search agent being selected 

toward the target solution.  

During the iterative search, ILHO dynamically updates the hopping coefficient according to a predefined equation. 

Each search agent is capable of altering its position within a normalized range [1,4] ensuring an adequate degree of search 

space diversity. The feature positions are modified through an update equation that considers their relative positions and 

movement characteristics [21,22]. Any updated position that infringes the specified boundary is immediately corrected to 

keep it feasible. 

The algorithm recursively updates the best solution by evaluating the new search agents against the current target. In 

case a better feature subset is found, the target will be updated. This process repeats until the iteration limit is reached, 

ultimately returning an optimal feature subset that enhances classification performance. ILHO’s structured approach 

ensures efficient exploration and exploitation, making it effective for high-dimensional datasets in feature selection tasks 

and the flow is given Fig 2. 

 

Classification using Ensemble Learning (EL) 

Ensemble Learning (EL), which includes several HCNNs for COVID 19 forecasting, is presented in this suggested 

technical study. It uses multiple hidden layers that perform subsampling and convolution to extract features [23] with input 

ranging from low to high levels. Convolution, subsampling or pooling, and full linked layers are the three basic layers of 

CNN, as shown in Fig 3.  
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Algorithm 1: Integer-Based Linear Hopper Optimization (ILHO) for Feature Selection 

Input: No. of attributes in a database 

Output: Optimal feature subset 

1. Originof features Xi where i=1, 2…, n. 

2. Set control parameters: cmax and cmin, and the maximum number of iterations. 

3. Classifier accuracy for all feature subsets. 

4. Identify the Target. 

5. While (iteration l< Maximum iterations) do: 

1. Update the hopping coefficient using Equation (8). 

2. For every search agent: 

1. Standardize the distance among hoppers in the range [1,4]. 

2. Modify the current feature position using Equation (6). 

3. Ensure the updated search agent remains within valid feature 

boundaries with proposed LSTM. 

3. End for 

4. Update the target if a better solution is found. 

5. Increment iteration count: l=l+1. 

6. End while 

7. Return the optimal feature subset. 

 

 
Fig 2. Flowchart of ILHOA Procedure 
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Fig 3. Convolutional Neural Network for COVID 19 Prediction. 

 

Convolution Layer 

The convolution of the input features in this convolution layer and a kernel (filter) is applied, and output features are 

produced using the layer's output. In general, aconvolution matrix's kernel is referred to as a filter, and the output features 

that result from thekernel and input convolution are called feature maps of dimension i*I [24].  

Each convolution layer contains a cluster of n filters, and the filters are convolutioned using input. The depth of feature 

maps produced (n*) is equal to the number of filters that can be employed in the convolution process. 𝐶𝑖
(𝑙)

represents the lth 

convolutional layer, which includes feature maps [25] and is computed as, 

 

 𝐶𝑖
(𝑙)

= 𝐵𝑖
(𝑙)

+ ∑  
𝑎𝑖

(𝑙−1)

𝑗=1
𝐾𝑖,𝑗

(𝑙−1)
∗ 𝐶𝑗

(𝑙)
  (9) 

 

Where, 𝐵𝑖
(𝑙)

refers to the bias matrix,𝐾𝑖,𝑗
(𝑙−1)

 indicates the convolution filter/ kernel having size a*a which connects j-th 

feature map in layer (1 − 1)and the 𝑖-th feature map in identical layer. 𝐶𝑖
(𝑙)

layer output has feature maps. For equation 

(3.10), initial convolutional layer𝐶𝑖
(𝑙−1)

 forms the input space, i.e.,𝐶𝑖
(0)

= 𝑋𝑖 . The mapping of features is created by the 

kernel. The activate function is used in conjunction with the convolution layer in order to nonlinearly change the results of 

this layer. 

 

 Yi
(l) = Y(Ci

(l)) (10) 

 

Where,𝑌𝑖
(𝑙)

 - output of activation function, 𝐶𝑖
(𝑙)

- received input. 

In this work, ReLUs is presented and expressed as 

 

 Yi
(l) = max(0, Yi

(l)) (11) 

 

Because it helps lessen the impacts of interaction and nonlinearity, it is frequently utilized in DL approaches. The speed 

of training is one of this activation function's advantages over other functions since it is an error derivative that is reduced 

to a very nominal value in the saturating area; as a result, weight updating has essentially disappeared, and it is known as 

the Vanishing Gradient Problem.  

 

Sub Sampling or Pooling Layer 

The masks and feature maps are used in the subsampling process. This is accomplished by selecting a mask of size b b and 

performing a subsampling operation between the mask and attribute maps. 

 

 Xj
l = f(βj

l down(Xj
l−1) + bj

l) (12) 

 

This function usually adds each of the input dataset's n-by-n properties, resulting in an output that is n times smaller 

along both spatial dimensions. A multiplicative bias (b) and an additive bias (c) will be assigned to each output map.  
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Hyperparameter  

A collection Xi is one of a pools layer's input mapping of features. The selected activating in an arbitrary pool area X i is 

symbolised by the symbol 𝑎𝑐𝑡𝑙, where 𝑙 ∈ [1, 𝑘]. 
 

 actl = max(Xi ⊖ ∑  l−1
j=1  actj) (13) 

 

In this case, Θ indicates which components are being removed from the ensemble. The total indicator in (13) represents 

a limited set of components, including the highest 1∼ (1-1) stimulation, without numerically adding up all the other 

activations. 

Following the selection of the top k activations, neither the output nor the average are computed. The sum of the top-k 

activations is multiplied in this study using a hyperparameter𝛾 as a constraint factor. The end result is provided by  

 

 Output = γ ∗ ∑j=1
k  actj (14) 

 

Primarily, if=
1

𝑘
, The mean is the result. The results is controlled by the constraint variable, γ. 

 

 Yi
(l) = f(zi

(l)) (15) 

 

 Wherezi
(l)

= ∑
i=1

mi
(l−1)

 wi,j
(l)

yi
(l−1)

  (16) 

 

where f is the transfer function, which describes nonlinearity, and 𝑤𝑖,𝑗
(𝑙)

 denotes the weights that are anticipated to be 

adjusted by the fully connected layer as a whole in order to build the representation of each class. It can be demonstrated 

that, unlike pool and convolutions, which are distinct structures, nonlinearity in an entirely integrated layer is built inside 

its neurones. The HCNNsas in Fig 4 output is shown to predict the number of confirmed and fatal cases in India over a 

given time frame. 

 

 

 
Fig 4. Ensemble Based Convolutional Neural Networks. 

 

A judgment is reached after calculating the average of the output probabilities from a HCNNs for the specific features 

provided. The average output Si for output I can be written as follows:  

 

 𝑆𝑖 =
1

𝑛
∑ 𝑟𝑗 

𝑛
𝑗=1 (𝑖) (17) 

 

Where, 𝑟𝑗(i) refers to the output i. 

The integration of Long Short-Term Memory (LSTM) into the ILHOA enhances its ability to handle sequential 

dependencies in optimization tasks. The LSTM structure captures the optimization states of the past to help ILHOA better 

decide and dynamically change strategies in its searches. By remembering patterns from the past, it enhances exploration 

versus exploitation, convergence time, and stability in the presence of noise. Fitness evaluation by ILHOA is fine-tuned 

with LSTM outputs, leading to better adaptive learning capabilities and improvement of optimization performance. 

Integration of the two makes ILHOA more efficient, more robust, and better attuned to time-dependent problems such as 

forecasting, healthcare diagnostics, and intelligent decision-making applications. 

 

IV. EXPERIMENTAL RESULTS 

November 2022 onward is considered deep-learning-related training, which has assigned many models like LSTM, CNN, 

HBDCNN, and Proposed Work to MATLAB 2023a, as seen in Table 1. The integer-based linear hopper optimization 

Feature 

Selection 

HCNN0 

HCNN1 

HCNN2 

Integer0 

Integer1 

Integer2 

Average 

computation 

Final 

prediction 
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(ILHO) algorithm was then used to handle data preprocessing, feature selection, and optimization in an efficient manner 

for feature space optimization. The dataset was subjected to several steps, such as data augmentation, normalization, and 

feature reduction, to boost model performance. The training utilized adaptive learning rate schedules with Adam and 

RMSprop optimizers to ensure better convergence. Each model was trained on a batch size of 64 and 100 epochs to maintain 

stability and prevent overfitting through cross-validation (80%-20% train-test split). The dataset untilized is 

https://www.kaggle.com/datasets/sudalairajkumar/covid19-in-italy. 

Performance measures such as Accuracy, Precision, Recall, F-measure, and Error Rate were calculated to measure 

model performance. Real-time training performance monitoring was done using the MATLAB nntraintool, observing error 

reduction and model convergence. The Proposed Work yielded better results, outperforming traditional methods in terms 

of predictive accuracy for disease monitoring applications. 

 

Table 1. Simulation Set-Up 

Category Details 

Hardware Intel Core i9, 16GB RAM, NVIDIA RTX 3090 GPU 

Software MATLAB 2023a 

Optimization Algorithm Integer-Based Linear Hopper Optimization (ILHO) 

Data Preprocessing Augmentation, Normalization, Dimensionality Reduction 

Training Parameters Batch Size: 64, Epochs: 100 

Optimizer Used Adam, RMSprop 

Train-Test Split 80% Training, 20% Testing 

Evaluation  Accuracy, Precision, Recall, F-measure, Error Rate 

Monitoring Tool MATLAB nntraintool for Training Convergence 

 

Table 2. Performance Metrics Comparison 

Parameter ELs LSTMs CNNs HBDCNNs Proposed Work 

Accuracy 88.9320 91.7545 93.5879 95.1706 94.8294 

Precision 88.7128 92.5600 93.5282 94.8706 95.3200 

Recall 87.8975 93.7731 92.5654 95.3245 95.9000 

F-measure 88.7850 93.6714 94.5.32 95.1894 94.8800 

Error Rate 13.0880 10.2655 8.4253 6.8294 5.1200 

 

The Table 2 and Fig 5-9 gives a comparative study of various deep learning models—EL (Existing Literature), LSTM, 

CNN, and HBDCNN (Hybrid Deep CNN)—with the Proposed Work based on most important performance measures like 

Accuracy, Precision, Recall, F-measure, and Error Rate Accuracy, which indicates the overall correctness of the predictions, 

demonstrates a steady increase in all models, with EL at 87.92%, LSTM at 90.74%, CNN at 92.57%, and HBDCNN at 

94.17%. The Proposed Work attains the highest accuracy of 94.82%, reflecting improved feature extraction and 

classification ability. Accuracy, which represents the model's capacity to resist false positives, also exhibits a similar pattern. 

The EL model records 87.70%, rising via LSTM (90.55%), CNN (92.41%), and HBDCNN (94.87%), whereas the Proposed 

Work records 95.32%, demonstrating better classification accuracy. 

Recall, which indicates the model's sensitivity towards true positives, is highest in the Proposed Work (95.90%), 

surpassing HBDCNN (95.32%) and other models. This indicates improved feature detection and preservation of useful 

information. The F-measure, balancing precision and recall, also shows corresponding improvements, up to 94.88% in the 

Proposed Work On the other hand, the Error Rate, indicating misclassification, goes down as the models get better. EL has 

the highest error rate (12.07%), which comes down through LSTM (9.25%), CNN (7.42%), and HBDCNN (5.82%). The 

Proposed Work has the lowest error rate (5.12%), showing better robustness. In general, Proposed Work outperforms 

current algorithms consistently, asserting its superiority in feature extraction as well as classification. 

 

Table 3. Performance of Different Models Across New Cases, Hospitalized Cases, Recovered Cases, Daily Deaths and 

Daily Infected Cases 

Model New Cases (%) 
Hospitalized 

Cases (%) 

Recovered 

Cases (%) 

Daily Deaths 

(%) 

Daily Infected 

Cases (%) 

EL 75 65 80 60 70 

LSTM 78 70 85 65 75 

CNN 82 74 88 70 80 

HBDCNN 86 78 92 75 85 

Proposed 

Work 
90 82 95 80 90 
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Fig 5. Accuracy Computation. 

 

 
Fig 6. Precision Computation. 

 

 
Fig 7. Recall Computation. 

 
Fig 8. F-Measure Computation. 
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Fig 9. Error Rate Calculation. 

 

 
Fig 10. New Cases, Hospitalized and Recovered Cases Progression. 

 
Fig 11. Daily Deaths and Daily Infected Cases Progression. 

 

Comparative Performance: Daily Deaths and Daily Infected Cases 

This chart in Fig 11assesses model efficiency to forecast daily deaths and daily infections. The Proposed Work is 80% 

accurate for daily deaths and 90% for daily infections Fig 10, indicating higher predictive power. HBDCNN also Table 3 

shows perform well, but conventional EL is bogged down by just 60% accuracy for deaths and 70% for infections. Better 

performance of the Proposed Work indicates better adaptability towards changing health data, which is significant for early 

warnings and prevention. 

The MATLAB nntraintool plot in Fig 12 depicts the training process of the Integer-Based Linear Hopper Optimization 

(ILHO) Algorithm within the ensemble model. The plot monitors error reduction, convergence rate, and feature 

optimization in several deep learning architectures (LSTM, CNN, HBDCNN). The training curve illustrates error 

minimization with epochs, guaranteeing optimal learning. Validation checks against overfitting are ensured, while 

monitoring gradients assists in stability. By optimizing training paths, ILHO speeds up convergence, resulting in increased 

accuracy and stability. This figure illustrates ILHO's contribution to ensemble training optimization for better prediction 

performance. 
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Fig 12. MATLAB Nntraintool For Proposed Ensemble Training Model. 

 

 CONCLUSION 

For more effective medical prediction, this study proposed an improved Linear Factor-Based Hopper Optimization System 

using Ensemble Learning (ILHOA-EL). The ILHOA algorithm effectively selected optimal features by simulating the 

swarming behavior of hoppers and dynamically adjusting the comfort zone parameter to balance exploration and 

exploitation. This intelligent feature selection process enhanced classification accuracy by filtering out irrelevant and 

redundant data. The combination of Ensemble Learning (EL) with Hyperparameter-optimized Convolutional Neural 

Networks (HCNN) enabled the model to learn deep, meaningful feature representations, further improving predictive 

performance. The synergy between ILHOA and EL resulted in a robust predictive framework with improved accuracy and 

generalization capability compared to conventional models. The proposed method achieved a maximum classification 

accuracy of 94.82%, highlighting its effectiveness in both feature extraction and deep learning-based classification tasks. 

Experimental results confirm that ILHOA-EL is a powerful and efficient solution for medical data processing, feature 

optimization, and accurate classification. Future work will focus on extending this approach to a wider range of healthcare 

applications, including other disease types, and incorporating real-time data streams for adaptive, responsive clinical 

decision-making in modern healthcare environments. 
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