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Abstract – To enhance the identification and categorization of Alzheimer's Disease (AD) across four stages—Very Mild 

Dementia, Moderate Dementia, Mild Dementia, and Non-Dementia (Healthy Subjects). Leveraging a Kaggle dataset 

comprising 3,382 MRI brain images, the proposed methodology integrates transfer learning with the Inception V3 

convolutional neural network to extract high-dimensional features, followed by ensemble stacking of machine learning 

(ML) models, including Neural Networks (NN 100x100, NN 70x70), XGBoost, CatBoost, AdaBoost, and a meta-learner. 

The dataset is enlarged to 299x299 pixels. It undergoes 10-fold cross-validation to check its performance. The features are 

saved in *.csv format for use in machine learning.  Performance is assessed using AUC, Correctness Accuracy (CA), F1-

score, Precision, and Recall, revealing the Stacking model's standout performance with an AUC of 0.959, CA of 0.870, 

and balanced metrics of 0.871, alongside NN 100x100's leading AUC of 0.967 and CA of 0.863. While XGBoost (AUC 

0.928, CA 0.775) and CatBoost (AUC 0.881, CA 0.704) show moderate success, AdaBoost lags with an AUC of 0.681 

and CA of 0.568, highlighting challenges with imbalanced data, particularly for the underrepresented Moderate Dementia 

class (64 images). The hybrid approach is good at identifying complex patterns in AD. It can help with early diagnosis and 

treatment. Future efforts will aim to augment the dataset volume, enhance configurations for the model, try different 

structures, and combine Various types of data. 

 

Keywords – XGBoost, CatBoost, Self-Attention, Incetion V3, Steel Strength Estimation, Moderate Dementia Class, Meta-

Learner, Data-Driven Analysis. 

 

I. INTRODUCTION 

The Table 1 shows the ADStages and Diagnosis  has five stages. Each stage shows different symptoms. The stages range 

from early changes to severe cognitive decline. Doctors use tests like PET scans and MRIs to diagnose the disease. They 

also use cognitive assessments. Treatment changes as the disease progresses. In the early stages, lifestyle management and 

cognitive therapies are used.  

Table 1. Alzheimer's Disease Stages and Diagnosis 

Stage Effects & Symptoms Diagnosis Treatment 

Preclinical 

Stage 

No noticeable symptoms, but 

brain changes begin. 

Biomarker tests (CSF 

analysis, PET scans). 

No treatment required; 

lifestyle modifications may 

help delay onset. 

Mild 

Cognitive 

Impairment 

(MCI) 

Memory lapses, trouble finding 

words, and mild confusion. 

Cognitive tests 

(MoCA, MMSE), 

MRI, PET scans. 

Healthy diet, exercise, and 

monitoring; possible clinical 

trials. 

Early-Stage 

Alzheimer’s 

Increased forgetfulness, 

difficulty with problem-solving, 

and mild personality changes. 

Neurological exams, 

blood tests, and 

cognitive assessments. 

Cholinesterase inhibitors 

(Donepezil, Rivastigmine). 
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Table 1. Continued  

Stage Effects & Symptoms Diagnosis Treatment 

Moderate-

Stage 

Alzheimer’s 

Significant memory loss, 

difficulty recognizing people, 

mood swings, confusion, and 

trouble with daily tasks. 

Brain imaging (MRI, 

CT), cognitive tests. 

Cholinesterase inhibitors, 

NMDA receptor antagonists 

(Memantine), behavioural 

therapy. 

Severe/Late-

Stage 

Alzheimer’s 

Loss of communication, 

inability to recognize family, 

severe cognitive decline, 

bedridden state. 

Clinical evaluation 

based on symptoms 

and history. 

Palliative care, support for 

caregivers, medications to 

manage symptoms 

(antipsychotics, 

antidepressants). 

 

II. LITERATURE REVIEW 

Mahamud et al. (2025) [1] addressed the critical need for early and explainable Alzheimer’s detection using machine 

learning (ML) models. The authors developed a pipeline integrating feature extraction from clinical data and imaging 

modalities, followed by classification using interpretable ML algorithms such as decision trees and SHAP values. The 

model not only achieved competitive accuracy but also offered visual explanations for its predictions, thereby improving 

clinician trust and decision support in real-world settings. Topsukal et al. (2024) [2] proposed an ensemble of deep learning 

architectures with an enhanced Xception model as the core for detecting ADusing brain MRI images. The framework 

included advanced data augmentation techniques, image preprocessing, and fine-tuning of model layers. This approach 

improved convergence speed and achieved high classification performance across AD, MCI, and normal control classes, 

demonstrating the strength of using optimized pre-trained models in neuroimaging. Jenber Belay et al. (2024) [3] explored 

a combination of ensemble deep learning and quantum ML for Alzheimer’s classification. The authors employed traditional 

CNN backbones and integrated them with quantum classifiers based on variational quantum circuits. The fusion approach 

outperformed classical methods on standard benchmarks, indicating quantum-enhanced computing could provide a new 

dimension in neurodegenerative disease detection.  

Nasir et al. (2024) [4] focused on MRI-based classification, this research utilized multiple deep learning architectures 

including ResNet, DenseNet, and CNN-LSTM combinations. The models were trained on public datasets (e.g., ADNI), 

and performance metrics were evaluated using accuracy, precision, and AUC-ROC. The study highlighted the importance 

of spatial feature extraction in MRIs and presented a comparative performance analysis of architectures. Rana et al. (2024) 

[5] introduced a hybrid deep-learning model using InceptionV3 for feature extraction and a custom CNN classifier for 

prediction. It employed clinically relevant preprocessing like skull stripping and intensity normalization. The model was 

validated on real-world patient scans and demonstrated robustness in early-stage detection, positioning it as suitable for 

clinical deployment.  Mujahid et al. (2023) [6] implemented an ensemble of EfficientNet-B2 and VGG-16 architectures to 

detect Alzheimer's Disease. Each model contributed features that were concatenated before final classification. Data 

preprocessing involved histogram equalization and slice selection from 3D MRIs. The ensemble model achieved superior 

accuracy and generalization compared to individual baselines. Bhushanm (2023) [7] presented a custom-designed Inception 

V3 model optimized for detecting Alzheimer’s signs from neuroimaging data. Modifications included tuned activation 

functions and reduced parameter redundancy for faster training. The model was benchmarked against other CNN variants 

and achieved notable improvement in early-stage detection with minimal computational overhead. 

Alatrany et al. (2023) [8], transfer learning was applied to CNN models pre-trained on ImageNet, which were then fine-

tuned for Alzheimer’s classification. Models like ResNet50 and DenseNet121 were ensembled using voting and averaging 

techniques. The approach demonstrated that transfer learning could effectively compensate for the small size of 

Alzheimer’s datasets, providing significant accuracy gains. Sharma et al. (2022) [9] developed a modified Inception model 

integrating transfer learning and preprocessing steps such as normalization and contrast enhancement. The authors tested 

the model on 2D MRI slices and incorporated dropout layers to prevent overfitting. Results showed improved diagnostic 

precision and reduced training time, emphasizing the utility of architectural customization. Agarwal et al. (2021) [10] 

examined over 50 papers using transfer learning on neuroimaging data for Alzheimer’s detection. The review categorized 

studies by model type, imaging modality (MRI, PET, CT), and training strategy. It concluded that transfer learning 

significantly enhances performance, particularly when domain adaptation is used between imaging datasets.  

Helaly et al. (2022) [11] provided a structured review of deep learning applications in AD detection across five domains: 

image acquisition, preprocessing, model selection, evaluation metrics, and deployment. It highlighted advances in 

multimodal learning and fusion techniques, advocating for integrated imaging and clinical data analysis for future 

developments. In combined transfer learning with ensemble approaches to improve Alzheimer’s classification using data 

from multiple MRI datasets. Augmentation techniques like rotation, scaling, and elastic deformation were applied to 

expand training data. The combined models showed improved sensitivity, particularly in detecting mild cognitive 

impairment (MCI), often missed in standard models. Sadat et al. (2021) [12] presented a comparative study of ensemble 

methods including majority voting, stacking, and bagging, applied to deep CNN models. Using ADNI dataset, the study 

found that stacking yielded the best performance, suggesting that model diversity plays a key role in improving 

classification outcomes. Jansi et al. (2024) [13] focused on the InceptionV3 model, the paper explored its performance on 
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Alzheimer’s classification using both 2D and 3D MRIs. It reported an accuracy of 87.69% and emphasized the 

architecture’s efficient handling of varying spatial resolutions, which is critical in detecting fine-grained neuro degeneration 

patterns.  

The [14] introduced a CNN model using transfer learning for multiclass classification of Alzheimer's stages (CN, MCI, 

AD). The model was evaluated on balanced and imbalanced datasets using SMOTE and achieved a maximum accuracy of 

93%, suggesting strong potential for clinical support tools that provide stage-wise diagnosis.  

 

III. METHODOLOGY 

The proposed model detects Alzheimer's Disease. It classifies brain images into four stages: Mild Dementia, Moderate 

Dementia, Non-Dementia (Healthy Subjects), and Very Mild Dementia. The process has two phases. The first phase is 

Data Collection and Feature Extraction. The second phase is the Prediction Process. ML techniques and transfer learning 

are used to diagnose AD accurately. The workflow involves collecting ADimages from a Kaggle dataset, pre-processing 

them to standardize dimensions and enhance diversity, and storing them in *.PNG or *.JPEG formats for deep learning 

framework compatibility. The Inception V3 transfer learning model extracts features, which are transformed and stored in 

*.csv format for ML model integration. The dataset is split using 10-fold cross-validation for robust performance 

evaluation.  ML models help identify patterns and classify stages of Alzheimer's. A stacking approach combines predictions 

from individual models to create a meta-learner. The process involves building the best model by evaluating the stacked 

and individual models. An unknown Alzheimer's image is input into the model. The model predicts the probability of the 

image being associated with one of four classes. Performance analysis is done to assess the model's effectiveness across 

all classes.  

ML models help identify patterns and classify stages of Alzheimer's. A stacking approach combines predictions from 

individual models to create a meta-learner. The process involves building the best model by evaluating the stacked and 

individual models. An unknown Alzheimer's image is input into the model. The model predicts the probability of the image 

being associated with one of four classes. Performance analysis is done to assess the model's effectiveness across all classes.  

 

 
Fig 1. Proposal Model for The Identification of Alzheimer's Disease. 

 

Dataset Description 

The Table 2 presents the AD dataset, which is classified into four classes: Mild Dementia (896 images), Moderate 

Dementia (64 images), non-dementia (1,200 images), and Very Mild Dementia (1,222 images). The Alzheimer's image 

dataset, sourced from Kaggle's datastore, comprises four distinct classes: Mild Dementia, Moderate Dementia, Non-

Dementia, and Very Mild Dementia. Each class represents different stages of dementia, with 896 images labeled as Mild 

Dementia Fig 1, 64 images as Moderate Dementia, 1,200 images as non-dementia, and 1,222 images as Very Mild 

Dementia. This diverse representation is suitable for model training and supports experimental analysis in ML applications 

for Alzheimer's detection. Fig 3 shows MRI brain images from four groups in the AD dataset. The groups are: (a) Mild 
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Dementia, (b) Moderate Dementia, (c) Non-Dementia (Healthy Subjects), and (d) Very Mild Dementia. The visual 

differences across classes aid in understanding structural brain changes at various dementia stages. 

 

Table 2. Alzheimer's Disease Dataset Description 

Class Code Class Name No. of Images 

1 Mild Dementia 896 

2 
Moderate 

Dementia 
64 

3 Non-Dementia 1,200 

4 
Very Mild 

Dementia 
1,222 

 

 
a) Mild Dementia 

 
b) Moderate Dementia 

 
c) Non-Dementia (Healthy Subjects) 

 
d) Very Mild Dementia 

Fig 2. Sample Images of Alzheimer's Disease Experimental Image Dataset. 

Inception V3 

Inception V3 is a deep architecture that optimizes computational complexity, improves feature extraction, and reduces 

overfitting by using "Inception modules." It allows the network to process input data at multiple scales simultaneously, 

capturing fine-grained details and broader contextual information. In the research paper "Intelligent Dragon Fruit Detection 

System using Optimized Hybrid Deep Learning Models," Inception V3 is used as a powerful feature extractor for dragon 

fruit images, generating high-level feature representations that are fed into a hybrid classifier Fig 2.  

The network uses 299x299 pixels RGB input images for transfer learning, processing them through operations to 

generate a 2048-dimensional feature vector from its penultimate layer. Inception V3 is a deep learning model that uses 

multiple modules to extract features from dragon fruit images. It uses a 2048-dimensional feature vector and MLP 

classifiers for high-accuracy classification. The model has 48 layers, and 23.8 million parameters optimized via 1x1 

convolutions. Grok 3 aids in its development. 
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Fig 3. Inception V3 Model Description Model Description. 

 

Performance Parameters 

Accuracy is a measure of model performance, comparing the ratio of correct predictions to total predictions. Precision 

evaluates the accuracy of positive predictions, focusing on the proportion of true positives. Recall measures the model's 

ability to identify all relevant instances. The F1-Score offers a balanced harmonic mean of precision and recall, providing 

a single metric for evaluating performance when trade-offs between the two are significant. Equations (1) to (4) 
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IV. RESULT AND ANALYSIS 

This section analyses a confusion matrix for six ML models. These models use Inception V3 features to classify 

Alzheimer's Disease. It compares their performance in identifying different stages of dementia. The analysis shows the 

strengths and weaknesses of each model. 
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Confusion Matrices Analysis for all ML Models for IV3 Features 

The confusion matrix analysis for six ML models for classifying ADimages using Inception V3 features shows superior 

accuracy in Stacking, NN(100 100), and NN(70 70), particularly in recognizing Non-Demented and Mild Demented cases. 

XGBoost and CatBoost perform moderately well but struggle with overlapping classes like Moderate and Very Mild 

Dementia. AdaBoost, less accurate in earlier analyses, is likely outperformed by the ensemble and neural models.  

 

 
a) Confusion Matrix for XGBoost model 

 
b) Confusion Matrix for XGBoost model 

 
c) Confusion Matrix for Cat Boost model 

 
d) Confusion Matrix for NN(100 100)  

model 

 
e) Confusion Matrix for NN(70 70) model 

 
f) Confusion Matrix for Stacking model 

Fig 4. Confusion Matrices ML Models for the Inception V3 Features of Alzheimer's Disease Images. 

 

XGBoost ML Model for IV 3 Features of the AD Image Dataset 

The model (Fig 3(a)) had a high accuracy rate in Class 1 (639) and Class 2 (45), although it encountered difficulties in 

differentiating between early indicators of dementia and healthy patients. Class 3 (1014) had the best accuracy; nonetheless, 

it encountered difficulties in differentiating between early indicators of dementia and healthy patients. The model's 

performance was affected by class imbalance or nuanced variations. The model effectively identifies Mild Demented 

patients with an AUC of 0.949, indicating a balance between accuracy and recall. It has difficulties with mildly demented 

patients owing to class imbalance or feature overlap. The model excels at identifying non-demented persons, with few false 

negatives. The F1 score is 0.773, and the accuracy is 0.775.  The model is conservative and has fewer false positives. It 

might miss some actual cases. Recommendations include fixing class imbalance. The stacking ensemble should be tuned 

to help underperforming classes. It is important to investigate confusion with ModerateDemented cases. Exploring more 

discriminatory features for ModerateDemented, possibly cognitive scores or structural imaging features Fig 4. 

 

Table 3. Performance Parameters XGBoost ML Model for IV 3 Features AD Dataset Classes  

Class AUC CA F1 Precision Recall 

Mild_Demented 0.949 0.892 0.785 0.828 0.747 

Moderate_Demented 0.989 0.987 0.458 1.000 0.297 

Non_Demented 0.938 0.857 0.808 0.774 0.845 

Very_Mild_Demented 0.898 0.814 0.745 0.738 0.752 

All Over Classes  0.928 0.775 0.773 0.780 0.775 

 

AdaBoost ML Model for IV 3 Features of The AD Image Dataset 

Figure (Fig 3(b)) indicates that categorizing Alzheimer's patients into three distinct classifications is a complicated 

endeavours. Class 1 is classified as slightly demented, exhibiting a significant incidence of misclassifications, mostly 

attributable to symptom overlap with early-stage Alzheimer's disease. Class 2 has mild dementia, characterized by a 

predominance of erroneous classifications Table 3. Class 3 is non-demented, exhibiting a significant number of 
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misclassifications, which suggests challenges in differentiating healthy patients from those with very mild dementia. Class 

4 exhibits mild dementia, with considerable overlap with Class 1 and Class 3, underscoring the persistent difficulty in 

differentiating early-stage symptoms from those of healthy persons. The AdaBoost classifier was tested for ADstages. It 

used metrics like AUC, Class Accuracy, F1 Score, Precision, and Recall. The model did well in identifying MildDemented 

cases. It had a high rate of correct predictions for this group. However, it struggled with ModerateDemented cases, showing 

low accuracy and precision. Non-demented cases had a fair accuracy of 72.3%. VeryMildDemented cases had a moderate 

success rate of 67.0%. Overall, the model performed only moderately in distinguishing dementia stages. It had a low-class 

Accuracy of 56.8%. Precision and recall were both around 0.570 Table 4.  

 

Table 4. Performance Parameters AdaBoost ML Model for IV 3 Features AD Dataset Classes  

Class AUC CA F1 Precision Recall 

MildDemented 0.715 0.777 0.580 0.580 0.580 

ModerateDemented 0.610 0.966 0.207 0.185 0.234 

NonDemented 0.696 0.723 0.607 0.611 0.603 

VeryMildDemented 0.644 0.670 0.543 0.543 0.543 

All Classes  0.681 0.568 0.569 0.570 0.568 

 

Cat Boost ML Model for IV 3 Features of the AD Image Dataset 

The Cat Boost model performs well in identifying NonDemented and VeryMildDemented cases. It made 938 correct 

predictions for NonDemented and 830 for VeryMildDemented. MildDemented had 606 correct classifications, but many 

were misclassified as NonDemented or VeryMildDemented. ModerateDemented had very few correct predictions, only 7. 

The model struggles to detect ModerateDemented cases. The classification favors majority classes, suggesting a need for 

better handling of class imbalance. The classification model was tested across four ADcategories: MildDemented, 

ModerateDemented, NonDemented, and VeryMildDemented. The model effectively distinguished MildDemented cases 

with a high accuracy rate of 84.6%. However, its high accuracy may be misleading due to class imbalance. The model 

showed excellent separation ability but poor accuracy due to class imbalance. NonDemented showed good discriminatory 

power with a high accuracy rate of 81.5%, identifying 78.2% of actual samples. VeryMildDemented had a moderate 

capability with a high accuracy rate of 76.4%. Overall, the model's precision and recall were consistent across all classes 

Table 5.  

 

Table 5. Performance Parameters Cat Boost ML Model for IV 3 Features AD Dataset Classes  

Class AUC CA F1 Precision Recall 

MildDemented 0.912 0.846 0.699 0.723 0.676 

ModerateDemented 0.979 0.983 0.197 1.000 0.109 

NonDemented 0.894 0.815 0.750 0.720 0.782 

VeryMildDemented 0.837 0.764 0.676 0.672 0.679 

All Classes  0.881 0.704 0.699 0.709 0.704 

 

MLP(100 100) ML Model for IV 3 Features of The AD Image Dataset 

The Neural Network (100 100) model accurately identified Non-Demented and Very Mild Demented cases, achieving 

1,059 and 1,030 correct predictions, respectively. Mild Demented had 776 correctly classified cases, although some were 

confused with Class 4. Moderate Demented had 52 out of 64 accurately identified cases. Misclassifications mainly occurred 

between neighbouring dementia stages, particularly Classes 3 and 4. Overall, the model shows strong classification 

capability. The model performs very well in classifying different types of dementia. It has high AUC scores, which range 

from 0.952 to 0.996. This shows that it can distinguish between classes effectively. The ModerateDemented group has the 

best classification accuracy at 0.996. It also has a strong F1-score of 0.874, which balances precision and recall well. The 

MildDemented and Nondemented groups also have the same F1-score of 0.874, with high precision and recall values. 

VeryMildDemented performed slightly lower but maintained robust metrics with an F1-score of 0.842. The average 

performance across all classes (AUC: 0.967, CA: 0.863, F1: 0.863) demonstrates the model's strong and reliable prediction 

capability Table 6.  

 

Table 6. Performance Parameters MLP(100 100) ML Model for IV 3 Features AD Dataset Classes  

Class AUC CA F1 Precision Recall 

MildDemented 0.981 0.934 0.874 0.883 0.866 

ModerateDemented 0.996 0.996 0.874 0.945 0.812 

NonDemented 0.970 0.910 0.874 0.867 0.882 

VeryMildDemented 0.952 0.885 0.842 0.840 0.843 

All Classes  0.967 0.863 0.863 0.863 0.863 
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MLP(70 70) ML Model for IV 3 Features of The AD Image Dataset 

The confusion matrix for the NN(70 70) model shows promising results. Class 1, MildDemented, had 774 correct 

predictions out of 896. Class 3, NonDemented, also did well with 1,056 correct predictions and few mistakes. Class 4, 

VeryMildDemented, confused some instances with Class 3, misclassifying 144 times, but still had 1,011 correct 

predictions. Class 2 (ModerateDemented) had a small sample size and showed 48 correct predictions, with minor 

misclassification to other classes. The model performs very well in classifying ADcategories. For MildDemented, it has a 

high F1-score of 0.874. It shows good consistency and balance precision-recallll. Moderate Demented has a smaller class 

size but still performs impressively. It has a near-perfect AUC of 0.997 and an intense precision of 0.923. NonDemented 

and VeryMildDemented also perform well, each with F1-scores above 0.82. The average AUC across all classes is 0.962, 

indicating the model's strong discriminative ability. Overall, the model is reliable and well-generalized for multi-class 

classification Table 7.  

 

Table 7. Performance Parameters MLP(70 70)  ML Model for IV 3 Features AD Dataset Classes  

Class AUC CA F1 Precision Recall 

MildDemented 0.978 0.934 0.874 0.884 0.864 

ModerateDemented 0.997 0.994 0.828 0.923 0.750 

NonDemented 0.965 0.904 0.867 0.855 0.880 

VeryMildDemented 0.943 0.876 0.828 0.829 0.827 

All Classes  0.962 0.854 0.854 0.855 0.854 

 

Stacking ML Model for IV 3 Features of the AD Image Dataset 

The Stacking model shows good performance in classifying Alzheimer's disease. For Class 1, MildDemented, the model 

made 783 correct predictions out of 896. It indicates high precision and few mistakes. In Class 2, ModerateDemented, there 

were 52 correct predictions. Only a few were confused with other classes. Class 3, NonDemented, had 1,068 correct 

identifications. It shows that the model works well for this group. Class 4, VeryMildDemented, achieved 1,041 correct 

predictions out of 1,222, indicating strong class-wise recall. The model is very good at classifying Alzheimer's disease. It 

has a strong F1-score of 0.889. The AUC is also high at 0.972. The moderate-demented class has perfect accuracy and 

precision. The non-demented and very-demented classes perform consistently well. The model is robust in identifying 

Alzheimer's disease. The model's robustness in ADidentification is confirmed by its excellent average AUC of 0.959 and 

F1-score of 0.871 Table 8.  

 

Table 8. Performance Parameters MLP(70 70)  ML Model for IV 3 Features AD Dataset Classes  

Class AUC CA F1 Precision Recall 

MildDemented 0.972 0.942 0.889 0.905 0.874 

ModerateDemented 0.996 0.996 0.874 0.945 0.812 

NonDemented 0.963 0.913 0.879 0.868 0.890 

VeryMildDemented 0.946 0.891 0.849 0.847 0.852 

All Classes  0.959 0.870 0.871 0.871 0.870 

 

ROC-AUC and Performance Curves Analysis for IV 3 Features of The AD Image Dataset 

Fig 5 (A) shows several ROC curves. These curves represent how different ML models perform on an ADimage dataset. 

Each model has a specific color. Dark Green is for XGBoost, Light Brown for AdaBoost, Purple for CatBoost, Violet for 

a Neural Network with two hidden layers of 100 neurons, Light Green for a Neural Network with two hidden layers of 70 

neurons, and Orange for the Stacking Ensemble model.  

There is a legend to match colors with models. A dashed diagonal line indicates the performance of a random classifier 

with an AUC of 0.5. Models above this line perform better than random classifiers. The ROC-AUC values measure how 

well different models perform on a dataset. The largest neural network, with layers of 100 and 100, has the highest AUC 

of 0.967. This means that it is the best at distinguishing between classes. The smaller network, with layers of 70 and 70, 

also performs well. The stacking ensemble model has a high AUC of 0.959, showing it works well by combining 

predictions from multiple base models. XGBoost has a good AUC of 0.928, while CatBoost has the lowest AUC of 0.881.  
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(A)  

 
(B)  

Fig 5. (A) ML ROC Curves ML Model for IV 3 Features AD Dataset (B) ML Lift Curves ML Model for IV 3 Features 

AD Dataset. 

 

Lift curves (Fig 5 (B)) help evaluate ML models, especially with imbalanced data. They show how well a model finds 

positive cases compared to random guessing. Higher lift values mean better performance. The area under the curve 

measures this improvement. The probability threshold shows how confident the predictions are. The Stacking model has 

the highest lift value of 2.269. It finds more than twice the true positives compared to random selection. Its probability 

threshold is 0.037, showing it makes confident predictions at a low threshold. The Neural Network model has a lift of 2.268 

and shows high confidence in positive predictions. Another Neural Network model has a lift of 2.258 and is efficient in 

early detection. XGBoost had a lift of 2.222 with a threshold of 0.027. This means it balanced early predictions and 

precision well. CatBoost achieved a lift of 2.117 with a higher threshold of 0.132. This suggests it predicts positive cases 

confidently only at higher probabilities, which may lower false positives. AdaBoost performed the worst with a lift of 1.621 

and started at a threshold of 0.0. This shows it struggled to distinguish positives from random guessing. The analysis 

indicates that ensemble models like Stacking and deep neural networks perform better in detecting Alzheimer’s stages 

when using Inception V3  features. 
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