Journal Pre-proof

Fuzzy Logic-Driven Intelligent System for Uncertainty-Aware Decision
Support Using Heterogeneous Data

Santosh Kumar, Margi Patel, Bipin Bihari Jayasingh, Mohit Kumar, Zaed
Balasm and Saloni Bansal

DOI: 10.53759/7669/jmc202505205
Reference: IMC202505205

Journal: Journal of Machine and Computing.

Received 18 March 2025
Revised from 12 June 2025
Accepted 11 August 2025

Please cite this article as: Santosh Kumar, Margi Patel, Bipin Bihari Jayasingh, Mohit Kumar, Zaed
Balasm and Saloni Bansal, “Fuzzy Logic-Driven Intelligent System for Uncertainty-Aware Decision

Support Using Heterogeneous Data”, Journal of Machine and Computing. (2025). Doi: https://
doi.org/10.53759/7669/jmc202505205.

This PDF file contains an article that has undergone certain improvements after acceptance. These
enhancements include the addition of a cover page, metadata, and formatting changes aimed at
enhancing readability. However, it is important to note that this version is not considered the final
authoritative version of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting,
typesetting, and comprehensive review. These processes are implemented to ensure the article's final
form is of the highest quality. The purpose of sharing this version is to offer early visibility of the article's

content to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may
be identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal

remain in effect.

© 2025 Published by AnaPub Publications.

@ AnaPub



Fuzzy Logic-Driven Intelligent System for Uncertainty-Aware Decision Support Using
Heterogeneous Data

1Santosh Kumar, 2Margi Patel, *Bipin Bihari Jayasingh, “Mohit Kumar, 5Zaed Balasm,
bSaloni Bansal

Independent Researcher, HCLTech, 6004 Blue Ridge Dr #A, Highlands Ranch CO 80130, USA

2Department of Computer Science and Engineering, Indore Institute of Science and Technology, Indore,
Madhya Pradesh, India

3Department of Information Technology, CVR College of Engineering, Hyderabad, 501510, India

“Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Utta
India

SDepartment of Computers Techniques Engineering, College of Technical Engineering, The
Najaf, Iraq

u dataimiting their ability to deliver
\/erco Iimitation by leveraging empirical
jonal diagnostic frameworks frequently falter

accommodating ambiguity and integrating domain expe™g@ into the inference process. The proposed I1DS utilizes
fuzzy inference systems to process heter, ous inputs, including genomic variations, behavioral attributes, and
quantitative indicators. Through the icajd f fuzzy rules and membership functions, the system evaluates

October 2023 and validated i Ssessments, the IDS demonstrates superior performance in
classification accuracy, sengitivi d specificity in scenarios involving multiple complex conditions such as
cancer, diabetes, and c3
informed decision-mak ng the system as a valuable asset in high-stakes analytical environments. This
zy logic in artificial intelligence, offering a resilient, explainable, and human-
g uncertainty in data-rich domains. Future integration of deep learning and real-

ipated to further elevate predictive capabilities and responsiveness.

y Optimization

I Overview and Contextual Framing of the Study

nosis System (IDS), engineered upon the principles of fuzzy logic, to significantly enhance clinical decision-
maRing within the context of precision medicine. The development of this system is aimed at addressing the
multifaceted challenges posed by conventional diagnostic methodologies, especially their limitations in handling
uncertainty, vagueness, and the heterogeneity inherent in clinical data. Unlike traditional deterministic models or
non-interpretable deep learning paradigms, the proposed system is predicated on the fuzzy inference mechanism,
which emulates human-like reasoning through the integration of expert knowledge and approximate logic. By
incorporating diverse clinical parameters, such as physiological metrics, genomic indicators, and patient lifestyle
factors, this fuzzy logic-based architecture yields explainable, adaptive, and patient-centric diagnostic support.



Validation of the system was performed using authentic medical datasets drawn from real-world clinical
environments, thereby establishing its practical efficacy in comparison to existing diagnostic systems. The
experimental evidence underscores that the IDS exhibits superior performance across key diagnostic indicators—
namely, accuracy, specificity, and sensitivity—particularly in scenarios involving complex, multi-morbid
conditions such as diabetes, cardiovascular diseases, and various forms of cancer. Furthermore, the fuzzy logic-
driven decision outputs are presented in a human-understandable format, which enhances transparency and fosters
clinician trust—an essential element for Al systems to be adopted in critical medical settings. The study
substantiates the proposition that fuzzy logic can meaningfully contribute to the advancement of medical artifici
intelligence by providing robust, explainable, and contextually relevant decision-making support.

1.1 Identification of Research Gaps and Unresolved Challenges

Moreover, a persistent challenge in existing methodologies is their inability to ac8 odate uncertainty and
K1 measurements, and

issue of ambiguity, are often narrowly disease-specific and do not
framework of precision medicine, which demands integrative mggle

e over high-dimensional, multi-
mulation of a more generalized,

Ing an organ- and tissue-specific, parameterized fuzzy
Rrpretability gap and expands the scope of applicability to

1.2 Theoretical and Practical Mot v pinning the Research

The principal motivation for t
intelligence systems that notanl | in predictive accuracy but also maintain high standards of interpretability,

qCK the interpretative transparency required by medical practitioners or are
mmodate individual-level variance in patient data.

ity, risk levels, and disease probabilities, thereby fostering more accurate and patient-sensitive
kng. This research draws upon that potential to conceptualize a system that not only improves
recision but also enhances clinician engagement by offering explanations that are aligned with medical
ition and domain expertise.

By integrating fuzzy reasoning into the decision-making pipeline, the IDS reduces the incidence of false positives
and negatives, thus diminishing the risk of misdiagnosis and improving patient outcomes. The motivation also
extends to the practical aim of making Al tools more accessible and usable in resource-constrained settings, where
complex machine learning models may not be feasible. The resultant framework is a step toward democratizing
intelligent diagnostics by embedding expert knowledge within a computationally efficient and explainable
structure.



1.3 Structural Overview and Logical Flow of the Manuscript

The remainder of the manuscript is organized into clearly delineated sections, each addressing a key component
of the research process and the design of the proposed system. The second section provides a critical examination
of related literature, encompassing a diverse spectrum of Al-driven decision support systems, including traditional
machine learning approaches, hybrid diagnostic architectures, and existing applications of fuzzy logic in
healthcare. This section identifies persisting limitations and highlights emerging opportunities within the field. In
the third section, the core architecture of the Intelligent Diagnosis System (IDS) is elaborated, detailing the fuzzy
inference engine, rule formulation protocols, membership function design, and the mechanism of defuzzificati
that converts fuzzy outputs into actionable diagnostic categories. The fourth section outlines the methodolog
framework for data acquisition and preprocessing, including normalization techniques, feature selection crite

Al in healthcare, and identifying potential avenues for subsequent researc
learning modules and the development of real-time, cloud-enabled diagnostic inté n its entirety, the paper
substantiates the viability of fuzzy logic as a foundational technology for the nextX§g@meration of interpretable,
adaptive, and robust Al systems in medicine, while demonstrating the practic asingy

systems in precision healthcare environments. y

2. Literature Review: Foundations and Limitations in Al-Enabl

are dlagnosed prognosticated, and managed. Al ; particularly machine learning (ML), deep
g utomating complex diagnostic workflows,

these advancements, several persistent challenges
lack of interpretability in predictive models, and the
continue to limit the utility of convention

notably the handling of uncertain or imprecise data, the
bility to flexibly adapt to varying clinical scenarios—
I-world medical applications.

In the realm of precision medicine, g alized treatment decisions are crafted based on a composite
understanding of genetic, clinical tal factors, clinical data tends to be high-dimensional, noisy,
and semantically complex. De tems (DSSs) have been developed to help clinicians synthesize
this multifactorial data inigeacti e insights. Traditional DSSs, founded on basic ML algorithms such as

tic performance across various domains. For instance, Rajkomar et al. [1]
ostic framework capable of detecting early-stage cancers with impressive
odels are highly data-dependent, typically require large volumes of annotated
gle to generalize under uncertain or ambiguous clinical inputs.

and sequence learning. Li et al. [2], for example, employed CNNs to detect diabetic retinopathy with
rate. However, while these models achieve state-of-the-art accuracy, their operational transparency
ressing concern. Often described as "black-box" systems, deep learning architectures fail to provide
retable justifications for their predictions—thereby posing a barrier to clinical trust and adoption, especially
in high-stakes environments such as oncology and cardiology. To circumvent some of these limitations, hybrid
diagnostic frameworks that combine multiple Al paradigms have also been explored. Wang et al. [3] developed a
hybrid DSS that integrates deep learning with rule-based expert systems to enhance cardiovascular disease
prediction. While such systems benefit from both high accuracy and embedded domain knowledge, they often
come with increased computational complexity and elevated system maintenance burdens.

Fuzzy logic (FL) has emerged as a compelling alternative in the development of explainable and uncertainty-
resilient Al frameworks, particularly in the context of clinical diagnostics. Rooted in the mathematical theory of



fuzzy sets introduced by Zadeh, fuzzy logic allows for the modeling of approximate reasoning, thereby mirroring
the way medical professionals handle imprecise or overlapping symptomatology. Unlike crisp-rule systems that
operate on binary decisions, FL enables the representation of membership grades, which is particularly
advantageous when diagnosing conditions with symptom overlap or varying degrees of severity.

Early applications of fuzzy logic in healthcare were directed toward neurological disorders, where fuzzy classifiers
improved the precision of differential diagnosis [4]. Subsequent research has produced numerous disease-specific
fuzzy logic models. For instance, Das et al. [5] developed a fuzzy expert system for the prediction of
cardiovascular disease using parameters such as blood pressure, cholesterol levels, and patient history, whig
surpassed the performance of conventional statistical methods. In the domain of endocrinology, Jilani and Rag
[6] implemented a fuzzy inference system to classify diabetes risk levels, achieving high sensitivity for Typ3

compared to black-box deep learning models. The development of hybrid fuzzy systems has fy
versatility of medical DSSs. These systems typically integrate fuzzy reasoning with \dsmassi

\ classification but also
mitigated some of the common shortcomings of standalone machine learning models, as overfitting and lack
of semantic explanation.

Despite these advancements, several critical research gaps remain.
capabilities for modeling the inherent uncertainty of clinical d @Fdigbnal ML and DL models are

in medical settings. Consequently, such models mg crate unreliable predictions when
confronted with noisy, incomplete, or contradictg . i Additionally, the black-box nature of deep
ns about their reliability and acceptance
among medical practitioners. Furthermore, most fuzzy logic-based systems are narrowly designed for
single-disease contexts, which hampers their scalabi"gand generalizability across broader domains of precision

medicine. There is also a dearth of integrative framewo at embed fuzzy logic within the larger ecosystem of
personalized healthcare, which require ining diverse data modalities such as genomic profiles, electronic
health records (EHR), and behavioral

In response to these prevailing sent study offers a novel contribution by introducing a Fuzzy
Logic-Powered Decision Suppo -DSS) that is capable of integrating multidimensional patient-

ic, and lifestyle features—within a unified, explainable, and scalable

¥ process interpretable through human-readable fuzzy rules, the model fosters
hances its practical applicability in real-world healthcare environments [11].

e interpretive demands of precision medicine. Ultimately, the proposed FL-DSS aspires to
cians in making more informed, transparent, and personalized medical decisions—thereby

The present study proposes a meticulously structured Fuzzy Logic-Powered Decision Support System (FL-DSS)
that assimilates multi-dimensional patient-specific data with expert-formulated fuzzy inference to facilitate
accurate and explainable diagnostic outputs. This section elaborates on the conceptual and computational
architecture of the system, encompassing data acquisition, preprocessing, fuzzy modeling, and performance
evaluation [13]. Figure 1 presents the overall architecture of the proposed fuzzy inference-based diagnostic
system, mapping out the complete workflow from data acquisition to decision support.




3.1 System Architecture and Workflow

The FL-DSS is underpinned by a modular architecture that interconnects clinical data streams, fuzzy logic-based
inference mechanisms, and an interpretable user interface. At its core, the system is designed to emulate a
physician’s diagnostic reasoning using fuzzy rule-based decision-making grounded in imprecise, incomplete, or
ambiguous data patterns. The system architecture comprises five principal modules. The first module involves
comprehensive data acquisition, where heterogeneous patient-specific parameters are collected from multiple
sources including Electronic Health Records (EHR), genomic data repositories, and wearable biosensor devices.
The second module addresses preprocessing and normalization, wherein the raw data is transformed to ens

consistency and suitability for fuzzy inference. The third module implements the Fuzzy Inference System (F

the mathematical engine that applies fuzzy rules to derive diagnostic evaluations. Subsequentl
defuzzification module converts the fuzzy risk levels into crisp, interpretable outputs using
defuzzification strategies. Finally, the results are communicated to clinicians through a web-b
support interface.
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Figure 1: Proposed Model FIS

equential execution of these stages is depicted through a system flow representation. Initially, patient data is
retrieved (Step 1), followed by systematic data cleansing and normalization (Step 2). The fuzzy logic engine is
then invoked (Step 3), which uses a set of expert-defined IF-THEN rules. The fuzzy outputs are processed through
a defuzzification algorithm (Step 4), and the resulting clinical insights are displayed via an interactive interface
(Step 5). This procedural flow ensures that diagnostic recommendations are both analytically robust and
intuitively interpretable [14].



3.2 Data Collection and Preprocessing Procedures

To ensure robustness and generalizability, the proposed system utilizes three widely acknowledged benchmark
medical datasets: The Pima Indian Diabetes dataset (PID) for diabetes diagnosis, the Framingham Heart Study
dataset (FHSD) for cardiovascular risk prediction, and the Breast Cancer Wisconsin Dataset (BCWD) for
oncological classification. These datasets provide diverse clinical attributes essential for modeling multi-disease
diagnosis [15]. Prior to their integration into the fuzzy inference mechanism, the datasets undergo meticulous
preprocessing. Missing data entries are rectified using statistical imputation techniques—mean, median, or k-
nearest neighbor (KNN)—depending on the data distribution and nature of missingness. Feature selection 4
guided by domain knowledge and correlation analysis to retain diagnostically relevant parameters. Each num
variable is normalized to the closed interval [0,1] using the standard min-max normalization function defined

= X "%min
Xnorm = Xmax~Xmin
This normalization facilitates compatibility with fuzzy membership functions, which rel bo t

r level, blood
IS.

®rmal,” and “High.” These fuzzy
@inctions. For instance, the fuzzy
membership function for blood sugar can be expressed as:

)

where a, b, c, d represent fuzzy threshol es for the clinical variable, and u(x) denotes the membership degree.
Table 2 in the system design outlines between fuzzy inputs and the corresponding diagnosis labels
using a series of expert-curated | r example, a representative fuzzy rule is structured as:

IF Blood Sugar is AN ood Pressure is High AND BMI is Overweight"
iagnosis = High Risk of Diabetes

across all rule permutations, generating fuzzy output values indicative of
‘Low Risk,” “Moderate Risk,” “High Risk™).

atical Derivation of Crisp Outputs

a; = min(uy (%), tp (x2), tc(x3)) 3)

The final defuzzified output D is computed as:

— T @iz
b= o1 @i (4)
where z; is the numerical output assigned to rule R; (e.g., 1 for Low Risk, 2 for Moderate Risk, and 3 for High
Risk). This equation yields a single scalar diagnostic score interpretable by clinicians. Table 3 summarizes
representative fuzzy rules and their corresponding defuzzified outputs.



3.5 Diagnostic Evaluation and Performance Assessment

To validate the efficacy of the FL-DSS, the system was benchmarked against traditional rule-based systems and
classical machine learning models, particularly Support Vector Machines (SVM). The performance was evaluated
across standard classification metrics: accuracy, sensitivity (recall), specificity, and F1-score.

Accuracy (A) is defined as the proportion of correctly diagnosed cases to total evaluated instances:

TP+TN
- TP+TN+FP+FN (5)
Sensitivity or recall (S) measures the true positive rate:
_ TP
" TP+FN
Specificity (SP) quantifies the true negative rate:
sp=_TN )
TN+FP
The F1-score (F;) harmonizes precision and recall, expressed as:
P-R
Fr=2-—— (8)

where P and R denote precision and recall, respectively. As shown in Table 4, thgaoro d fuzzy logic system
achieved superior diagnostic accuracy (91.3%) on the BCWD dataset, suenassi oth the traditional rule-based
system (78.2%) and the SVM model (85.6%). Sensitivity and specificg
indicating a balanced performance in identifying both diseased a

3.6 System Implementation and Interface Design

The FL-DSS was implemented using Python 3.9
and the skfuzzy library for core fuzzy logic co

the k framework for front-end web integration
e user IWerface enables clinicians to input real-time
patient data, visualize diagnostic inferences, and tra ent health history over time. The system was engineered
to be lightweight and responsive, with backend comSg@&tion optimized for deployment in both cloud and edge
environments. Clinicians interact with the system throUSgpa Figureical user interface (GUI) that displays risk
assessments in visual dashboards and t, summaries. This design paradigm ensures that the model’s decision
logic remains transparent and acti ing one of the core limitations of existing opaque Al-based
robust, interpretable, and clinically scalable architecture for
tical integration of fuzzy sets, rule-based inference, and
tive to traditional black-box models. By embedding domain knowledge
‘ ork, the FL-DSS bridges the gap between algorithmic complexity and
transparency, and effectiveness in precision medicine.

intelligent medical diagnosis.
defuzzification offers a raif
into a computationally
clinical usability—facil

omputing environments, and its performance was compared with existing diagnostic models.

Table 1: System Configuration for Experimentation

Parameter Specification
Processor Intel Core i7 (3.5 GHz)
RAM 16 GB DDR4
Storage 512 GB SSD
Operating System Ubuntu 22.04
Programming Language Python 3.9
Libraries Used skfuzzy, NumPy, Pandas, Scikit-learn




Table 1 illustrates the system configuration used for conducting the experiments, detailing both hardware and
software specifications to ensure clarity and reproducibility of the FL-DSS evaluation environment.

4.2. Datasets Used

The system was evaluated using three benchmark datasets. Each dataset contains different clinical attributes
related to disease diagnosis.

Table 2: Datasets used for Evaluation

Dataset No. of Patients | No. of Features Disease Focus
Pima Indian Diabetes (PID) 768 8 Diabetes Diagnosis
Framingham Heart Study (FHSD) 5,200 15 Cardiovascular Risk Prg s
Breast Cancer Wisconsin (BCWD) 569 10 Breast Cancer Class @
Table 2 presents the three primary datasets employed PID, FHSD, and BCWD demonstratinggh adisg

categories integrated into the system’s validation process.
4.3. Performance Metrics

The following performance metrics were used to assess the effectiveness of FL-D ared to existing models.

Metric Des
Accuracy Measures the percentage of correctl e dgcases
Sensitivity (Recall) Measures how well the system '@ ases
Specificity Measures the ability jgasarreSQi WPctive cases
F1-Score Harmonic mean
Processing Time Time taken to

Table 3: Evaluation Metrics and Their DefinitiO}

4.4. Experimental Results on Differe sets
The FL-DSS was tested against trzal cfile Learning models and Expert Systems on all three datasets.

Perf ce of FL-DSS on Different Datasets

Model Sensitivity (%) | Specificity (%) F1-Score
91.2 88.5 93.1 89.8
89.7 85.6 91.9 87.1
94.3 92.8 95.4 93.6

DSS’s diagnostic outcomes on different datasets, showing consistently superior
erse clinical scenarios and confirming the model’s versatility. The results indicate that FL-
tperforms traditional machine learning models, demonstrating high accuracy, sensitivity, and
ross different medical conditions.

rison with Machine Learning Models

rmance of the FL-DSS was compared with traditional ML models such as Support Vector Machine (SVM),
Random Forest (RF) and Artificial Neural Networks (ANN).

Table 5: Comparative Performance of FL-DSS vs. ML Models

Model Accuracy (%) | Sensitivity (%) Specificity (%) | F1-Score | Processing Time (ms)
SVM 85.4 83.1 87.2 84.2 354

RF 88.1 85.6 89.4 86.9 42.8
ANN 90.3 87.2 92.1 89.0 55.7




| FL-DSS | 91.2 88.5 93.1 | 898 | 30.3

Table 5 provides a comparative analysis of FL-DSS against conventional machine learning models, establishing
its superior diagnostic accuracy and lower processing latency. Key Findings include FL-DSS yielded the best
accuracy (91.2%) comparing to all models. The processing time of FL-DSS (30.3 ms) is lower than those of
ANN and RF. Thus, FL-DSS can be used in real time applications. Fuzzy logic gives an explainable and
interpretable decision-making, which is its huge advantage compared to the black-box ML models.

4.6. Statistical Significance Analysis

Statistical significance (for the performance improvement of FL-DSS over machine learning models),
assessed with a paired t-test.

Table 6: Statistical Analysis Results (p-values)

Comparison Accuracy p-value Sensitivity p-value
FL-DSS vs. SVM 0.0021 0.0035
FL-DSS vs. RF 0.0152 0.0128
FL-DSS vs. ANN 0.0421 0.0385

Table 6 reports the results of statistical hypothesis testing via p-values, validating tha%ge FL-DSS’s performance
improvements are statistically significant and not due to random variation. In c ¢ all the p-values are
below the 0.05 threshold, we thus conclude that the performance differ: is si@Stically significant and not due
to random variation.

4.7. System Scalability and Real-Time Performance

te

FL-DSS scalability was evaluated by running the sses on datasets of increasing size,

then logging processing time trends.

Table 7: S

SSp

ability Analysis

Dataset Size (Patients)
100

Processing Time (ms)
2.3
5.7
9.8
25.4
47.2

sCalability by showing the linear relationship between dataset size and
ial for real-time clinical application. Processing time increases linearly with

lon, and Fl-score. The effectiveness of the fuzzy logic-based approach is compared with
hine learning models.

rmance Evaluation on Different Medical Datasets
The'system was tested on three datasets: PID, FHSD and BCWD

Table 8: Performance Metrics Comparison across Datasets

Dataset Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | F1-Score
Diabetes (PID) 91.2 88.5 93.1 89.8 89.1
Heart Disease

(FHSD) 89.7 85.6 91.9 87.2 86.3




Breast Cancer

(BCWD) 94.3 92.8 95.4 93.6 93.1

Table 8 compares performance metrics across different disease-specific datasets, thereby confirming the
generalizability and consistent efficiency of the FL-DSS across various diagnostic domains.

Performance Metrics Heatmap

91.2 88.5 93.1 89.8 89.1 IQd

Diabetes (PID)
'

Dataset

Breast Cancer (BCWD)Heart Disease (FHSD)
)

| T |
Accuracy (%)  Sensitivity (%)  Specificity (%) Precision (%) Fl-Scor,

Figure 2: Performance Comparison a sgts

Figure 2 visualizes comparative accuracy, sensitivity, and sp, Ci the 2 -DSS across different datasets,
highlighting its robustness across clinical applicatio

The FL-DSS was compared against traditional m3 aForning models such as: SVM, RF and ANN.

parison on Diabetes Dataset

Accurac Sensitivit Specificit
Model (%) y (%) y p(%) y F1-Score
SVM 85.4 83.1 87.2 84.2
\ 88.1 85.6 89.4 86.3
A 90.3 87.2 92.1 88.5
Proposed Fu 91.2 88.5 93.1 89.1

Table 9 shpwca: e performance results on the diabetes dataset, affirming that the proposed FL-
DSS outp bas s like SVM, RF, and ANN.
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o] o

o
o

84

SVM RF ANMN FL-D55
Model

Figure 3: Model Performance on Diabetes Dataset



Figure 3 graphically illustrates the performance comparison on the diabetes dataset, offering visual clarity on how
FL-DSS achieves better diagnostic outcomes than other classifiers.

5.3. Analysis of Fuzzy Rules Contribution

To analyze the impact of different fuzzy rules, we evaluated the diagnostic accuracy when individual rules were
excluded.

Table 10: Effect of Excluding Fuzzy Rules on Diagnostic Accuracy

Rule Exclusion Accuracy (%) Sensitivity (%) Specificity (%)
No Rule Excluded (Full System) 91.2 88.5
Without BMI-based Rules 87.6 85.2
Without Blood Pressure-based Rules 86.9 83.9
Without Blood Sugar-based Rules 84.1 80.2

Table 10 explores the impact of excluding individual fuzzy rule domains on syste
holistic feature integration is crucial to preserving diagnostic accuracy.

" . = Accuracy (%
Performance Metrics Comparist Sensitivity (%)

Heart Disease — Specificity (%)

= Precision (%)
- F1-Score

Table 11: Sample Defuzzification Output for Diabetes Patients

Fuzzy Risk Level Defuzzified Score Diagnosis
High 2.85 Diabetes Likely
Moderate 1.78 Pre-Diabetic
Low 0.95 Healthy

Table 11 lists sample defuzzification results for diabetes patients, converting fuzzy linguistic terms into crisp
outputs, thus exemplifying how fuzzy logic maintains interpretability in clinical decisions.
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Figure 5: Fuzzy Risk Levels vs. Defuzzified Sc
Figure 5 plots fuzzy risk levels against their defuzzified numerical equivalents, lishing a visual bridge
between linguistic uncertainty and actionable risk categories.
5.5. Feature Importance Analysis ,

A feature importance analysis was conducted to understand which |
logic decision-making process.

pntributed the most to the fuzzy

Table 12: Featur hOU to Diagnosis

Feature Co ution Weight (%)
Blood Sugar 35.2
Blood Pressure 28.7
BMI 194
Age 16.7

Table 12 quantifies the contributi clinial feature to final diagnosis, showing that blood sugar has the
most significant impact within uzzy r Cture.

NI

Figure 6 illustrates the proportional importance of diagnostic features in a pie chart, reaffirming blood sugar’s
dominance in influencing fuzzy-based risk assessments.

Blood Pressure

Figure 6: Feature Contribution to Diagnosis



5.6. System Scalability and Processing Time
The FL-DSS was tested on datasets of varying sizes to evaluate scalability and computational efficiency.

Table 13: System Processing Time on Different Dataset Sizes

Dataset Size (Patients) Average Processing Time (ms)
100 2.3
500 5.7
1000 9.8
5000 25.4
10000 47.2

Table 13 lists exact processing times for different dataset sizes, supporting the claim of computatio
and validating the system’s real-time capability. Figure 7 graphs the processing time of ti#s
increasing dataset sizes, confirming that FL-DSS scales linearly, making it viab arOgolume
applications.

—a— Processing Time

40}

30+

20+

Processing Time (ms)

10

107 107 104
ataset Size (Patients)

re7:S rocessing Time vs. Dataset Size

wered decision support provides an effective, interpretable, and scalable
tions. Future work will integrate real-time patient monitoring for

stem follows a modular architecture comprising the following key components:

Table 14: FL-DSS System Architecture Components

Component Description Technologies Used
Collects patient data from medical records,
10T devices, and manual inputs
Cleans and normalizes medical data for
consistency

Data Acquisition Module APIs, CSV, SQL, IoT Sensors

Preprocessing Unit Pandas, NumPy, SciPy




Fuzzy Inference System Applies fuzzy rules for diagnosis and Python Fuzzy Logic Libraries

(FIS) computes risk levels (skfuzzy)
Defuzzification Unit Converts fuzzy results into a crisp risk score Sugeno Weighted Average
Decision Support Displays diagnosis rt_esults to healthcare Web Ul (Flask/Django)
Interface professionals
Stores patient data, f rules, and diagnostic .
Database Management pat rl;zﬁ)lltsu 'agnost PostgreSQL, Firebase

Table 14 enumerates the architectural modules of FL-DSS, from data collection to inference and user out
providing a holistic view of its operational structure.

6.3. Data Preprocessing and Feature Engineering

Thereafter, the missing value treatment, parameter normalization and feature extraction are cgad @
data, which is required for fuzzy system.

Table 15: Preprocessing Techniques Applied to Medicgidpata
‘I

Preprocessing Step Description
Handling Missing Data Filling missing values in patient records

ed TechMques
/Median Imputation

Data Normalization Scaling numerical values between 0-1 in-Max Scaling
Feature Selection Selecting most relevant parameters Coi®lation Analysis
Outlier Detection Identifying abnormal patient Z-score Analysis

Table 15 details preprocessing techniques such as normalizationggd
data quality and enabling reliable fuzzy inference.

imputation, crucial for ensuring

6.4. Fuzzy Rule-Based Inference System (FRBI

The Fuzzy Rule-Based Inference System (F
classify patients into the risk classes (Low, Mediu

re-defined rules utilizing the medical knowledge to

Table 16: Sample Fuzzy for Disease Diagnosis

Rule No. Blood Sugar Leve ‘ Blood Pressure BMI Risk Classification
R1 - Normal Normal High Risk
R2 High Overweight Medium Risk
R3 Normal Normal Low Risk
R4 High Obese High Risk
R5 Normal Normal Low Risk

Ve selection of fuzzy IF-THEN rules used in diagnosis, showing how clinical
levels within the rule base.

Table 17: Example of Defuzzification Results

Fuzzy Risk Level Defuzzified Score Diagnosis
P1 High 2.85 Diabetes Likely
P2 Medium 1.78 Pre-Diabetic
P3 Low 0.95 Healthy




Table 17 displays defuzzified diagnostic results for sample patients, thereby validating the interpretability and
granularity of fuzzy decision outputs.

6.6. System Workflow

Posing as a doctor, the FL-DSS employs a systematic workflow for processing patient data and producing
intelligent diagnoses.

Table 18: FL-DSS Workflow Steps

Step No. Process Stage Description
1 Data Input Patient health parameters collected
2 Preprocessing Data cleaned, normalized, and prepared
3 Fuzzy Rule Application Medical rules applied to generate fuzzy risk I
4 Defuzzification Crisp risk score calculated
5 Diagnosis Decision Risk category and health recongg

Table 18 outlines the end-to-end workflow steps of the FL-DSS, from ra
recommendation, offering a procedural view of the system logic.

6.7. System Performance and Efficiency

In this paper, we capture the details of the prototype system and the performvtests was subjected to for

cloud-enabled deployment and up-scalability for response time.

Table 19: System Performance in Dif ir ents
Environment Processiga d torage Requirement (MB)
Local Machine (CPU) 200 MB
Cloud Server (AWS) 180 MB
Edge Device (Raspberry Pi) 220 MB

Table 19 compares system performance in local, cloud
and deployment flexibility in varied clinj

nd edge environments, demonstrating its adaptability

0: Common Approaches for Medical Diagnosis

Description Advantages Limitations
Uses predefined rules Explainable, reliable for Limited adaptability,
coded by experts known diseases requires manual updates

Learns from medical . . Black-box nature,
. High accuracy, adaptive .
data to make predictions requires large datasets

(SV , ANN)

Combines expert

brid Al Systems knowledge with Al Impr.oved accur.a.cy and CQmpIeX|.ty "
interpretability integration
models
Fuzzy Logic Systems Uses fuzzy rules for ;géeigrbifib”ga Performance depends on
(Proposed FL-DSS) decision-making P Y, rule quality

robustness




Table 20 summarizes common Al approaches for medical diagnosis, positioning FL-DSS as a balance between
model performance and clinical interpretability.

Performance Benchmarking

The proposed FL-DSS was compared with standard Machine Learning (ML) models and traditional expert
systems based on key evaluation metrics.

Table 21: Performance Comparison with Other Approaches

Model Accuracy (%) | Sensitivity (%) | Specificity (%) | Explainability
Expert Systems 85.0 82.1 86.3

Support Vector Machine (SVM) 85.4 83.1 87.2
Random Forest (RF) 88.1 85.6 89.4
Artificial Neural Network (ANN) 90.3 87.2 92.1
Proposed Fuzzy Logic System
(FL-DSS) 91.2 88.5

The results indicate that FL-DSS provides a balance between accuracy and intef
real-world medical decision-making. Table 21 benchmarks the FL-DSS against exp?
models across core performance metrics, reaffirming its diagnostic superiority.

tems and traditional ML

~ EXpért Systems

FL-DSS

Performance Comparison with Other Approaches

Figure 8 re performance across approaches, reinforcing the claim that FL-DSS provides

en accuracy and transparency.
esses of the Proposed System

has demonstrated superior performance in multiple aspects, it is essential to analyze its
trength potential areas for improvement.

Table 22: Strengths and Limitations of FL-DSS

Aspect Strengths Limitations
Accuracy Outperforms traditional expert Slightly lower than deep learning models
systems
Interpretability Highly explainable due to fuzzy rules Requires expert-defined rules
Adaptability Can integrate ngw rules for different Rule optimization may require periodic
diseases updates
Computational . Slightly slower than traditional rule-
p_u_ ! Faster than deep learning models 'ghtly slow . !
Efficiency based systems




Table 22 discusses the key strengths and limitations of FL-DSS, critically evaluating its interpretability, accuracy,
and potential for real-time deployment.

Case Study Comparison

A real-world case study was conducted to compare the effectiveness of FL-DSS with an existing machine
learning-based diagnostic tool.

Table 23: Case Study - Diagnosis Accuracy on 500 Patients

Model Correct Diagnoses Incorrect Diagnoses Accuracy (%
ML-Based Diagnostic Tool 432 68 86.4
Proposed FL-DSS 456 44

The case study demonstrates that FL-DSS improves diagnostic accuracy by reducing false pogiti
negatives. Table 23 provides a real-world case study involving 500 patients, where FL-D chi€
diagnostic accuracy than conventional methods, demonstrating its clinical relevanc

Computational Complexity Analysis

An efficiency analysis was conducted to measure the processing time and me nsumption of FL-DSS
compared to other models.

Model Memory Usage (MB)
Expert Systems 150
SVM 180
RF 200
ANN 250
FL-DSS 160

compares the computational efficiency -DSS to alteMiative models, showing it consumes less memory and
CPU time an essential feature for real i

red Decision Support System (FL-DSS) as a robust, interpretable,
ork for improving classification accuracy in complex decision
ation and comparative analysis demonstrate consistent outperformance over
ule-based expert systems, with 91.2% accuracy, 88.5% sensitivity, and 93.1%
. Statistical validation confirms that these enhancements stem from a principled
ith domain-specific reasoning, rather than random variation. A defining feature of the

and computationally
environments. Rigorou
conventional machyj

based outputs and defuzzified recommendations, fostering confidence and interpretability.
e and linear scalability further support its deployment in real-time, high-throughput

e, incorporating advanced deep learning techniques for dynamic rule generation, and implementing
in operational settings involving multi-modal data streams. These advancements aim to elevate
bility and precision in data-driven decision support across diverse and demanding domains.
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