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Abstract 

Spoof detection is found to be essential for improving the security features of automatic speaker 

verification (ASV) systems, which are primarily used in authentication. The primary goal of this 

study is to enhance the performance and efficiency of spoof detection using speech samples 

taken from the ASVspoof 2019 dataset. The Constant Q Cepstral Coefficients (CQCC) extracted 

from these speech samples act as an important key feature. Feature optimization methods such 

as Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), and Mayfly Optimizer (MO) are 

used to refine these features and hence enhance the model accuracy with minimal time cost. A 

Vision Transformer (ViT) model is then trained using each optimized feature, and the 

performance is evaluated by comparing the results from different optimization methods. Time 

analysis shows a substantial reduction in training time per epoch when the optimized features 

are used. The Genetic Algorithm attained the best performance, with a test accuracy of 97% and 

the least training time. Equal Error Rate (EER) and the Tandem Detection Cost Function (t-

DCF) are used as the evaluation metrics. This study demonstrates how feature optimization 

helps to enhance spoof detection accuracy while reducing processing time, hence becoming an 

authentic solution for real-time ASV systems. 

Keywords: Feature Optimization, Vision Transformer, CQCC. 

1. Introduction

Spoof detection is crucial for the safety of security and authentication systems, particularly those that 

use biometric data such as speech recognition [1]. For example, spoofing in voice authentication can 

allow unauthorized individuals to use systems by impersonating someone else's voice, paving the way 

for criminal and illegal activities. The importance of spoof detection is in its potential to prevent fraud 

and identity theft, specifically in financial transactions, where attackers may imitate people to commit 

unauthorized activities. The spoofing attacks, like voice conversion, speech synthesis, replay attacks, 

and impersonation, show the various techniques that help in creating fake or counterfeit speech. To 

lower the risks due to spoofing attacks, it is crucial to create a system that can effectively distinguish 

between fake and authentic signals.. 

Artificial Intelligence plays an important role in Automatic Speaker Verification (ASV) fraud 

detection by improving the adaptability, efficiency, and accuracy of identifying false attempts [2]. This 

decreases false positives and negatives, hence improving the system’s total reliability. AI allows real-

time processing, therefore enabling the detection of fraud attempts, a crucial feature for applications 

like online access security and corporate intelligence. AI, by integrating speech patterns with other 

technologies, combines multimodal data and thereby enhances the precision and depth of analysis. 

Fraud detection by AI minimizes the demand for human oversight, leads to improved system efficiency. 

Finally, it finds ambiguities in passwords and guards ASV systems, hence offering an effective security 

against AI-driven security threats such as deepfakes [3][4]. 

To address the challenges in ASV spoof detection, this study suggests a technique that uses 

Constant-Q Cepstral Coefficients (CQCC) [5] for feature extraction, followed by feature optimization 

and classification using a Vision Transformer (ViT). This method efficiently integrates CQCC’s 

capability to attain essential audio features with the ViT model’s strength in realizing complex patterns 

present in the data.  

CQCC is derived from the Constant-Q Transform (CQT), which provides a logarithmic frequency 

resolution that aligns with human auditory perception. The CQCC [5] features capture the fine artifacts 
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introduced by spoofing methods such as Text-to-Speech (TTS) and Voice Conversion (VC), which 

change the low-frequency elements. The variable resolution of CQCC finds subtle details, hence making 

it more robust against known as well as unknown spoofing attacks. After extracting the CQCC features, 

optimization is done utilizing methods like the Genetic Algorithm (GA) [6][7] and the Mayfly Optimizer 

(MO) [8]. These methods are utilized to process the features and thereby improving the accuracy and 

efficiency of the classification process.  

Vision Transformer (ViT) model [9] is then trained using these optimized features. Even though 

initially produced for image processing, ViT’s ability to attain complex model patterns and long-range 

dependencies makes it suitable for differentiating between spoofed and bonafide audio samples. The 

proposed system, using CQCC [5] for feature extraction, GA, GWO, and MO for feature optimization, 

and the ViT classifier altogether enhances the performance of spoof detection. 

The Genetic Algorithm (GA) [6] optimizes the most suitable features from spoofed and bonafide 

samples, gives them to the  Vision Transformer (ViT) [9] classifier for spoof detection. It does crossover 

and mutation functions on feature combinations to enhance classification performance. After finding 

the optimal set of features, they are utilized in training the Vision Transformer (ViT), enabling it to learn 

efficiently from the informative data [10]. This approach improves the ViT’s performance in identifying 

spoofed samples. 

Grey Wolf Optimization (GWO) [7][11] is a metaheuristic algorithm inspired by the social 

hierarchy and cooperative hunting behaviour of grey wolves, employed to optimize the extracted CQCC 

features for the ViT classifier, allowing the model to attain high accuracy in identifying spoofed inputs 

while reducing both false positives and false negatives.  

Mayfly Optimization (MFO) [8] improves the spectral feature selection process of the Vision 

Transformer (ViT) classifier for spoof detection [9], thereby improving classification accuracy. 

Simulating mayfly behaviour, MFO improves its choice of critical features by balancing exploitation 

and exploration, hence concentrating on attributes that efficiently distinguish bonafide data from 

spoofed data. This targeted optimization leads to a more effective and precise classification process. 

This work makes the following contributions: 

1. Dataset Selection: The ASVspoof 2019 Logical Access (LA) dataset is used for evaluating and 

training the spoof detection algorithm. 

2. Feature Extraction: CQCC are implemented because of their improved frequency resolution at 

lower frequencies, which is crucial for procuring fine differences between spoofed and 

Bonafide speech samples. 

3. Optimization: The accuracy and efficiency of the model were improved via feature optimization 

strategies, like the Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), and Mayfly 

Optimizer (MO). 

4. Model Selection: A Vision Transformer (ViT) was implemented as the classifier to capitalize 

on its capability for effective feature learning and classification. 

5. Evaluation: Model efficiency was evaluated via a comprehensive performance analysis, 

such as an accuracy versus loss graph, confusion matrices, ROC curves, and classification 

reports. A time efficiency study was conducted to compare the training duration per epoch 

with and without optimization, showcasing the time savings attained via these optimized 

features. 

 

2. Related Research Work 

Mcuba et al. (2023)  suggested a deepfake audio detection framework utilizing various deep learning 

architectures, including a custom model, Visual Geometry Group Network 16 (VGG-16), Residual 

Networks (ResNet), and Frequency-Gated Lightweight Convolutional Neural Networks (FG-LCNN). 

The assessment was done using various optimizers, including Stochastic Gradient Descent (SGD), 

Adaptive Moment Estimation (Adam), and Adadelta, along with multiple audio features such as Mel-

Spectrograms, Mel Frequency Cepstral Coefficients (MFCC), Spectrograms, and Chromagrams. The 
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highest performance was achieved by the custom model using SGD, reaching an accuracy of 83.636% 

on Chromagram images, while VGG-16 yielded 85.906% accuracy for MFCC features. These findings 

underscore the importance of context-specific architectural and feature choices in forensic audio 

analysis [10]. 

Shaaban et al. (2023) explored various methodologies for detecting audio deepfakes using both 

classical machine learning (ML) and deep learning (DL) models, and the performance across multiple 

datasets, including ASVspoof 2019, AR-DAD, and Fake-or-Real (FOR), was evaluated. Key models 

investigated include Convolutional Neural Networks (CNN), RES-EfficientCNN, and Siamese CNN, 

achieving detection accuracies of up to 99%. Notable results include RES-EfficientCNN with an F1-

score of 97.61%, Deep4SNet with 98.5% accuracy, and a Support Vector Machine (SVM) model 

attaining 99% accuracy on the AR-DAD dataset. The study highlights the critical role of dataset 

selection and evaluation metrics in optimizing deepfake detection performance [4]. 

Kwak et al. (2023) proposed a compact model for enhancing voice spoofing detection, utilizing the 

ASVspoof 2019 dataset. The model integrates ResNet’s skip connections with Light CNN’s max feature 

map to produce a low Equal Error Rate (EER) of 0.30%, outperforming the top ensemble system. 

Additionally, by employing depth-wise separable convolutions, the model size was reduced by 84.3% 

while maintaining an EER of 0.36% [1]. 

Chen et al. (2022) introduced a GNSS spoofing detection system that integrates multiple parameters 

with a Support Vector Machine (SVM). Unlike traditional single-parameter approaches, which often 

fail against modern spoofing techniques, this method incorporates features such as composite signal 

quality, carrier-to-noise ratio, and PVT residuals. The multi-parameter model demonstrated 

significantly improved performance, achieving F1-scores of 93.97% on the TEXBAT dataset and 97% 

on the OAKBAT dataset, thereby outperforming conventional single-parameter detection methods [12]. 

Anagha et al. (2023) proposed a deep learning-based approach for audio deepfake detection using 

Convolutional Neural Networks (CNNs) trained on the ASVspoof 2019 dataset. The method utilizes 

Mel spectrograms for feature extraction and employs the Adam optimizer for model training. The 

proposed system achieved an accuracy of 85%, an AUC of 0.87, and an average precision of 0.90 [13]. 

Todisco et al. (2017) introduced Constant-Q Cepstral Coefficients (CQCCs) for detecting spoofing 

attacks in automatic speaker verification (ASV) systems. The method was evaluated across three 

datasets, including ASVspoof 2015, ASVspoof, and RedDots-Replayed, demonstrating CQCCs' ability 

to capture manipulation artifacts and outperform conventional features, with error rate improvements of 

up to 72%, 47%, and 64%, respectively. However, the results varied across datasets, indicating that a 

single feature configuration may not be universally effective. Consequently, the authors recommend 

exploring an ensemble of classifiers to enhance robustness against diverse spoofing scenarios [14]. 

Ye et al. (2019) introduced a novel approach for replay attack detection based on a normalized 

Constant-Q Cepstral Coefficients (CQCC) algorithm. By applying Cepstral Mean and Variance 

Normalization (CMVN), the method achieved the best Equal Error Rate (EER) of 15.96%. Significant 

improvements were observed, with EER reductions of 34.7% and 54% for CQCC and Mel-Frequency 

Cepstral Coefficients (MFCC), respectively. These results demonstrate the robustness of the approach 

in cross-device scenarios, maintaining EER values below 10% [15]. 

Zhan et al. (2022) proposed a Segment-Based Anti-Spoofing Detection (SASD) method for 

Embedded Voice Recognition systems. This novel approach leverages Constant-Q Cepstral Coefficients 

(CQCCs) and Zero Crossing Rate (ZCR) to enhance voice spoofing detection. By focusing on both word 

and silence segments, the method achieved a 33.47% improvement in anti-spoofing accuracy and a 

69.10% reduction in detection time on embedded devices, based on evaluations conducted using the 

ASVspoof 2021 datasets. This demonstrates the method’s effectiveness as a fast and efficient solution 

against voice spoofing attacks [16]. 

Table 1: Comparison of Related Research Work 

Reference Technique(s) Database Advantages Results 

Mcuba et al. 

(2023) [10] 

Deepfake audio detection with 

VGG-16, ResNet, and FG-

LCNN using SGD, Adam, 

Adadelta. 

/ 

Context-specific 

models enhance audio 

analysis 

SGD: 83.636%, VGG-16: 

85.906%. 
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Reference Technique(s) Database Advantages Results 

Shaaban et 

al. (2023) [4] 

CNN, RES-EfficientCNN, 

Siamese CNN, SVM for audio 

detection 

ASVspoof 

2019, AR-

DAD, FOR 

High detection 

accuracy 
SVM: 99% on AR-DAD. 

Kwak et al. 

(2023) [1] 

Compact voice spoofing model 

using ResNet skip connections 

and Light CNN. 

ASVspoof 

2019 

84.3% size reduction, 

maintaining 

performance 

EER: 0.30%, 0.36% with 

depthwise convolutions. 

Chen et al. 

(2022) [12] 

GNSS spoofing detection with 

SVM using multiple 

parameters. 

TEXBAT, 

OAKBAT 

Diverse features 

enhance detection 
F1-scores: 93.97%, 97%. 

Anagha et al. 

(2023) [13] 

Deep learning method with 

CNNs 

ASVspoof 

2019 

Mel spectrograms for 

feature extraction 

85% accuracy, AUC: 

0.87. 

Todisco et al. 

(2017) [14] 

CQCCs for spoofing detection 

in ASV 

ASVspoof 

2015, AVspoof, 

RedDots 

CQCCs capture 

artifacts, outperform 

traditional methods 

Error rate improvements: 

up to 72%, 47%, 64%. 

Ye et al. 

(2019) [15] 

Normalized CQCC for replay 

attack detection 
/ 

Enhanced 

performance via 

CMVN; robust across 

devices 

Best EER: 15.96%, 

reductions of 34.7% for 

CQCC, 54% for MFCC. 

Zhan et al. 

(2022) [16] 

Segment-Based Anti-Spoofing 

using CQCCs and ZCR 

ASVspoof 

2021 

Fast solution against 

spoofing; improved 

accuracy 

Accuracy improved by 

33.47%; detection time 

reduced by 69.10%. 

 

3. Methodology 
 

The main intent is to design a structured spoof detection system utilizing a Vision Transformer 

(ViT) model [17]. A core component of this framework is feature optimization, which amplifies the 

models performance by detecting and sifting the most salient input features. The process initially 

extracts the Constant-Q Cepstral Coefficients (CQCCs) [14] features from the audio samples, which are 

ideal for capturing crucial spectral properties essential to differentiate bonafide speech from spoofed 

audio. Following feature extraction, three optimization techniques, Genetic Algorithm (GA) [18], Grey 

Wolf Optimizer (GWO), and Mayfly Optimizer (MO) [19], are employed to identify the optimal subset 

of features. By choosing the most discriminative attributes, it explores diverse feature combinations to 

enhance classification accuracy. A comparative analysis of the GA [20], GWO, and MO is carried out 

to establish which technique most constructively distinguishes subtle differences between bonafide and 

spoofed audio samples. This systematic feature optimization strategy magnifies the overall performance 

of the spoof detection system. The suggested framework is illustrated in Figure 1. 

 

 
 

Figure 1: Proposed Workflow 
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3.1 Dataset 
 

The ASVspoof 2019 dataset is a comprehensive public collection of spoofed speech samples [21] 

that was created specifically to aid in the study of deepfake detection and voice spoofing, as well as the 

creation and assessment of countermeasures against spoofing. The dataset consists of two subsets: 

Logical Access (LA) and Physical Access (PA), each representing distinct spoofing conditions.  There 

are two classes in it: parody and genuine speech. The duration of each audio samples is roughly 30 

seconds. Model development makes use of the Logical Access (LA) subset. This subset comprises 

25,000 training samples, 9,900 validation samples, and 9,900 testing samples. 

 
 

Figure 2: Proposed Model Architecture 

3.2 Feature Extraction 
 

A crucial step in spoof detection systems is feature extraction, which converts raw audio signals 

into informative representations that enable machine learning models to effectively distinguish real and 

fake audio samples.  The main goal of feature extraction is to identify unique characteristics of the audio 

signal that highlight the subtle distinctions between bonafide and spoof samples, which are frequently 

imperceptible and difficult to identify. 

In audio processing, Constant-Q Cepstral Coefficients (CQCC) are a well-known feature extraction 

method, that works especially well for tasks like speaker recognition, audio categorisation, and spoof 

detection [5]. Constant-Q Cepstral Coefficients (CQCCs) are derived from the Constant-Q Transform 
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(CQT), which generates a non-linear time-frequency representation that closely aligns with human 

auditory perception. By using a logarithmic frequency scale, the CQT gives a higher resolution at lower 

frequencies, capturing the fine spectral details, while it gives better temporal resolution at higher 

frequencies. This unique characteristic makes CQCCs particularly apt for capturing rich harmonic 

content and subtle fluctuations in audio signals [22]. 

The CQCC features are extracted with the application of the Constant Q Transform (CQT) on the 

audio signal, which is mathematically defined in Equation (1): 

 

𝐶𝑄𝑇(𝑓, 𝑡) = ∑ 𝑥𝑁−1
𝑛=0 [𝑛] ⋅ 𝑤[𝑛 − 𝑡] ⋅ 𝑒

−𝑗
2𝜋

𝑄
𝑓𝑛

  (1) 

 

In this equation, 𝑥[𝑛] represents the audio signal, 𝑤[𝑛 − 𝑡] denotes the window function, and 𝑒
−𝑗

2𝜋

𝑄
𝑓𝑛

 

applies the frequency based transformation. After computing the CQT, logarithmic scaling is applied to 

its magnitude of the CQT, as shown in Equation (2), to compress the dynamic range of the spectrum: 

 
𝑆(𝑓, 𝑡) = log|𝐶𝑄𝑇(𝑓, 𝑡)|      (2) 

 

Next, the Discrete Cosine Transform (DCT) [23] is applied to the log-scaled spectrum to convert the 

data into the cepstral domain, as described in Equation (3): 

 

𝐶𝑄𝐶𝐶(𝑘) = ∑ 𝑆𝑁−1
𝑛=0 (𝑛) ⋅ cos (

𝜋

𝑁
(𝑛 +

1

2
) 𝑘) for 𝑘 = 0,1, … , 𝐾 − 1  (3) 

 

The resulting CQCC features, represented by the vector in Equation (4), capture complex spectral and 

temporal details, making them highly effective for differentiating between genuine and spoofed audio 

samples: 
𝐶𝑄𝐶𝐶 = [𝐶𝑄𝐶𝐶(0), 𝐶𝑄𝐶𝐶(1), … , 𝐶𝑄𝐶𝐶(𝐾 − 1)]                                 (4) 

 

CQCCs are particularly advantageous in spoof detection because they offer effectiveness against 

variations in pitch, speed, and recording conditions, which are often exploited in spoofing attacks such 

as voice conversion, synthesis, or manipulation. Their ability to capture fine-grained spectral features 

enhances the discriminative power of machine learning models, resulting in improved classification 

performance in real-world spoof detection applications. 

 

3.3 Optimization Techniques for Performance Enhancement 

 

Feature optimization is an essential stage in enhancing the performance of machine learning 

models, particularly for applications like spoof detection. During this process, the collected features 

(like CQCC) are sifted to upgrade their ability to capture the elementary patterns in the data. The feature 

optimization ensures that the model can correctly differentiate between spoofed audio samples and 

bonafide. Here in this study, three optimization techniques are put to function: Genetic Algorithm (GA) 

[24], Grey Wolf Optimizer (GWO), and Mayfly Optimizer (MO). These strategies are employed on the 

procured features to enhance their importance for classification tasks. Each strategy helps in conquering 

the usual optimization problems, such as balancing exploitation and exploration, ignoring local minima, 

and increasing speed of convergence. Feature refining before passing them to Vision Transformer will 

improve the model’s overall general accuracy, along with confronting the complexity of audio input. 
 

3.3.1 Grey wolf Optimizer 

 

The Grey Wolf Optimizer (GWO)[7][11] was employed to improve the performance of the Vision 

Transformer (ViT) model used for the spoof detection task. GWO, a nature-inspired optimization 

algorithm, emulates the social hierarchy and hunting strategies of grey wolves[25]. In the 

implementation, GWO was employed for feature optimization, accurately optimizing the CQCC 

features extracted from the dataset for spoof detection[26]. The aim of this optimization was to refine 

the feature set [26], and hence increase the model’s capacity to precisely distinguish between spoofed 

and bonafide samples. 
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The optimization process begins with initializing a population of "wolves," where each wolf stands 

for a set of feature configurations [26]. These wolves undergo periodic changes with respect to the 

GWO’s position updating rules [11]. Through this process, the best feature configurations are identified 

to improve classification accuracy, as illustrated in Figure 3, which outlines the proposed integration of 

GWO in the model for feature optimization. 

 
Figure 3: Proposed Integration of Grey Wolf Optimizer (GWO) into the Model for Feature Optimization 

 

By simulating the grey wolves hunting nature, the GWO algorithm updates feature configurations, 

and three key equations govern the process. Initially, the distance between a wolf (current feature 

configuration) and the prey (optimal feature set) is calculated using Equation (5): 

 

                          �⃗⃗� = |𝐶 ⋅ 𝑋 prey − 𝑋 |                    (5) 

where: 

• 𝐶  is a coefficient vector, calculated as 𝐶 = 2 ⋅ 𝑟2⃗⃗  ⃗, 

• 𝑟2⃗⃗  ⃗ is a random vector in the range [0,1], 

• 𝑋 prey represents the position of the prey (optimal feature set), 

• 𝑋  represents the current feature configuration. 

In each iteration, the wolves update their positions depending on the three best solutions, known as 

the alpha, beta, and delta wolves. The modified positions are calculated using Equations (6),(7), and (8): 

 

                          X⃗⃗ 1 = X⃗⃗ α − A⃗⃗ 1 ⋅ D⃗⃗ α (6) 

X⃗⃗ 2 = X⃗⃗ β − A⃗⃗ 2 ⋅ D⃗⃗ β                 (7) 

X⃗⃗ 3 = X⃗⃗ δ − A⃗⃗ 3 ⋅ D⃗⃗ δ               (8) 

 

Finally, the new position of each wolf (feature set) is obtained as the mean of the positions of the 

alpha, beta, and delta wolves, as depicted in Equation (9): 

 

𝑋 (𝑡 + 1) =
�⃗� 1+�⃗� 2+�⃗� 3

3
                   (9) 

 

This iterative process allows GWO to refine the features extracted from the audio data, leading to 

an enhancement in the Vision Transformer model’s classification performance. The combination of 
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GWO optimizes the feature space by exploiting these position update equations, which leads the search 

towards the most relevant features. Figure 3 depicts the absolute flow of how GWO was combined in 

the model for optimizing the features. Table 2 displays the main parameters utilized for the Grey Wolf 

Optimizer (GWO) in feature optimization. These parameters, consisting of convergence control factors, 

population size, and fitness metrics, are critical for guiding the optimization process efficiently. 

 

Table 2: Grey Wolf Optimizer (GWO) Parameters for Feature Optimization 

Parameter Value 

Population Size 30 

Maximum Iterations 3 

Convergence Control Factor (𝑎) 2 to 0 

Alpha, Beta, Delta Wolves Best Performing 

Search Agents Wolf-based Exploration 

Fitness Function Accuracy, Precision, Recall, F1-Score 

 

3.3.2 Mayfly Optimizer 
 

The Mayfly Optimizer (MO) was integrated in the work to optimize the features for the spoof 

detection task [27], used by the Vision Transformer (ViT) model. MO, simulated by the flight and 

mating nature of mayflies, effectively traverses for the optimal set of features extracted from the input 

data [19]. By choosing the finest features, this behaviour encouraged the optimization algorithm to 

update the performance of the model, which is given to the Vision Transformer for classification. 
 

The optimization process begins with an initial population of mayflies, where each portrays a 

different layout of procured features. The MO algorithm robustly organises these features through the 

interaction of male and female mayflies, hence paving the way for a thorough inspection of the feature 

space to find the best efficient feature combinations [28][29]. The improved model performance [20] is 

mainly due to the mayflies nature, like attraction, repulsion, and mating, which helps in sifting chosen 

features repeatedly. Following the refining process by MO, the optimized feature set then goes to the 

Vision Transformer (ViT), leading to enhanced classification accuracy for the spoof detection task. The 

best accuracy achieved throughout the optimization process is 90%, demonstrating the effectiveness of 

MO in optimizing the features. 

 
Figure 4: Mayfly Optimizer for Feature Optimization 
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Position Update For Male Mayflies 

The velocity of the male mayfly at iteration 𝑡 + 1 is implemented using the following equations: 

This equation (10) describes how the velocity of a male mayfly is improved by considering both 

personal and global best positions, adjusted by random factors for observation. 

 

𝐕𝑖(𝑡 + 1) = 𝑤𝐕𝑖(𝑡) + 𝑐1𝑟1(𝐏𝑖(𝑡) − 𝐗𝑖(𝑡)) + 𝑐2𝑟2(𝐆(𝑡) − 𝐗𝑖(𝑡))    (10) 

Where: 

• 𝐕𝑖(𝑡) is the velocity of the 𝑖-th male at iteration 𝑡, 

• 𝑤 is the inertia weight, which stabilises exploration and exploitation, 

• 𝑐1 and 𝑐2 are the cognitive and social coefficients, representing self-confidence and group 

influence, 

• 𝑟1 and 𝑟2 are random values uniformly distributed between a range of [0,1], 

• 𝐏𝑖(𝑡) is the personal best position of 𝑖-th male, 

• 𝐆(𝑡) is the global best position found by all mayflies. 

Next, the position of the male mayfly is updated based on the new velocity: Here, 𝐗𝑖(𝑡 + 1) 

represents the new position of the 𝑖th male mayfly, calculated by adding the updated velocity to the 

current position 𝐗𝑖(𝑡). Equation (11) guarantees that the mayfly moves in the direction determined by 

its velocity. 

 

𝐗𝑖(𝑡 + 1) = 𝐗𝑖(𝑡) + 𝐕𝑖(𝑡 + 1)      (11) 
 

Position Update For Female Mayflies 

The position of the female mayfly is updated based on her attraction to the nearby male mayfly and 

a random disturbance, as shown below: Equation (12) governs how the position of female mayflies is 

influenced by their presence to male mayflies and some random movement to explore new positions. 

 

𝐗𝑓(𝑡 + 1) = 𝐗𝑓(𝑡) + 𝛽𝑒−𝛾𝑑𝑓𝑚(𝐗𝑚(𝑡) − 𝐗𝑓(𝑡)) + 𝛼𝒩(0,1)  (12) 

 

Where: 

• 𝐗𝑓(𝑡) and 𝐗𝑚(𝑡) are the positions of the female and the nearest male, respectively, at iteration 

𝑡, 

• 𝛽 is the attraction factor between the female and male mayflies, 

• 𝛾 is the damping coefficient controlling the strength of attraction, 

• 𝑑𝑓𝑚 is the distance between the female and male mayfly (calculated in equation (13)), 

• 𝛼 is the random walk factor adding diversity to the position update, 

• 𝒩(0,1) is a normal distribution with mean 0 and variance 1, introducing randomness. 

The distance between the female and male mayflies, 𝑑𝑓𝑚, is calculated as follows: Here, the 

Euclidean distance between the positions of the female and male mayflies is calculated. This distance 

𝑑𝑓𝑚 (equation (13)) is used to determine the strength of attraction between the two mayflies in equation 

(12). 

𝑑𝑓𝑚 =∥ 𝐗𝑚(𝑡) − 𝐗𝑓(𝑡) ∥     (13) 
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Mating Process 
 

If a male and female mayfly come any closer, they can mate, and the position of the offspring is 

calculated as: Equation (14) computes the position of the offspring, which is the average position of the 

two parent mayflies, with a small random perturbation added to maintain diversity in the population. 

 

𝐗offspring =
1

2
(𝐗𝑚(𝑡) + 𝐗𝑓(𝑡)) + 𝛿𝒩(0,1)    (14) 

Where: 

• 𝐗𝑚(𝑡) and 𝐗𝑓(𝑡) are the positions of the male and female mayfly, 

• 𝛿 is a small random factor to introduce diversity in the offspring’s position. 

These optimized feature sets acquired after the MO-based feature optimization process (described 

in equations (10) to (14)) are later input to the Vision Transformer (ViT) model for better classification 

accuracy in spoof detection. Figure 4 shows the complete flow of how MO was integrated into the model 

for optimizing the features. Table 3 outlines the parameters utilized for the Mayfly Optimizer (MO) in 

feature optimization. These include key settings such as population size, crossover and mutation rates, 

and fitness function criteria, all of which are essential for achieving optimal performance. 

 

Table 3: Optimizer (MO) Parameters For Feature Optimization 

Parameter Value 

Population Size 30 

Crossover Rate 0.7 

Mutation Rate 0.1 

Maximum Iterations 3 

Attraction Constant(α) 0.1 

Randomness Factor(β) 0.3 

Fitness Function Accuracy, Precision, Recall, F1-Score 

 

3.3.3 Genetic Algorithm 
 

The Genetic Algorithm (GA) [18] was employed for feature optimization of the Vision 

Transformer (ViT) model deployed in the spoof detection task. GA is a nature-inspired optimization 

technique that simulates the process of natural selection, where the fittest individuals are right for 

reproduction to create the next generation [30]. In this context, each individual in the population 

represents a unique feature set configuration, and GA optimizes these features to revamp the model 

performance [31][6]. 
 

The GA process has three important steps: selection, crossover, and mutation [32]. During the 

selection phase, individuals (feature sets) are estimated based on their fitness, commonly measured by 

model performance on a validation set. The best-performing individuals are selected for reproduction, 

allowing them to advance their optimized features to the next generation. In the crossover phase, 

selected individuals exchange parts of their feature sets to generate new offspring, combining 

dominance from both parent configurations. Mutation introduces random changes to some individuals, 

continuing genetic diversity and preventing premature convergence [33]. This iterative process 

continues for several generations, allowing GA to refine the feature sets and enhance the model’s 

accuracy[34]. The algorithm’s ability to explore and exploit feature combinations led to the 

development of the spoof detection system [35] as depicted in Figure 5. 
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Figure 5: Genetic Algorithm for Feature Optimization 

 

Initial Population: 

The GA begins by generating an initial population of individuals (chromosomes), each illustrates a 

candidate solution (feature set). This is depicted as: 

 

𝑃(0) = {𝐶1, 𝐶2, … , 𝐶𝑛}    (15) 

Equation (15) defines the initial population 𝑃(0) of the GA, where 𝐶𝑖 shows an individual chromosome, 

and 𝑛 is the population size. 

 

Fitness Function: 

Each chromosome 𝐶𝑖 is evaluated using a fitness function, which measures its 

performance: 

 

𝐹(𝐶𝑖) = Fitness(𝐶𝑖)             (16) 

 

In equation (16), 𝐹(𝐶𝑖) denotes the fitness of a chromosome 𝐶𝑖, determining its effectiveness 

in solving the optimization problem. 

 
Selection: 

In Roulette Wheel Selection, the chance of selecting a chromosome 𝐶𝑖 for reproduction is 

proportional to its fitness: 

𝑝(𝐶𝑖) =
𝐹(𝐶𝑖)

∑ 𝐹𝑛
𝑗=1 (𝐶𝑗)

                      (17) 

 

Equation (17) shows how the selection probability 𝑝(𝐶𝑖) is calculated based on the fitness values of the 

chromosomes, ensuring that fitter chromosomes have a higher chance of being selected. 

 

Crossover: 

For single-point crossover, two offspring are generated by combining segments of two parent 

chromosomes: 

Offspring
1
= [𝐶1

1, 𝐶2
1, … , 𝐶𝑥

1, 𝐶𝑥+1
2 , … , 𝐶𝑛

2]   (18) 

Offspring
2
= [𝐶1

2, 𝐶2
2, … , 𝐶𝑥

2, 𝐶𝑥+1
1 , … , 𝐶𝑛

1]    (19) 

 
Equations (18) and (19) depict how the offspring are generated by combining parts of their parents’ 

chromosomes, enabling the sharing of features and characteristics. 

Auth
ors

 Pre-
Proo

f



 

Mutation: 

In bit-flip mutation, individual genes in a chromosome are randomly flipped, introducing diversity: 

 

𝐶𝑖′ = {
1 − 𝐶𝑖 if mutation occurs at position 𝑖
𝐶𝑖 otherwise

   (20) 

 

Equation (20) describes the mutation process, where a gene of a chromosome 𝐶𝑖 may be flipped, 

promoting genetic diversity and preventing premature convergence. 

 

New Population: 

After selection, crossover, and mutation, a new population of individuals is generated: 

 

𝑃(𝑡 + 1) = {𝐶1′ , 𝐶2′ , … , 𝐶𝑛′}    (21) 

 
In equation (21), 𝑃(𝑡 + 1) represents the new population formed from the previous generation’s 

individuals after undergoing selection, crossover, and mutation. 

 

Termination: 

The GA terminates if an obstructing criterion is met, such as reaching a maximum number of 

generations 𝐺 or achieving a desired fitness level: 

 

Stop if: 𝑡 ≥ 𝐺 or max(𝐹(𝐶𝑖)) ≥ threshold   (22) 

 

Equation (22) outlines the termination conditions for the GA, specifying when the optimization process 

should stop based on generation limits or fitness thresholds. Table 4 outlines the parameters used for 

the Genetic Algorithm (GA) in feature optimization. These inculcate key factors like Selection Method, 

population size, crossover probability, and mutation probability, which are important for achieving the 

best outcomes. 

Table 4: Genetic Algorithm (GA) Parameters For Feature Optimization 

Parameter Value 

Population Size 30 

Crossover Probability 0.8 

Mutation Probability 0.2-0.5 

Selection Method Roulette Wheel or Tournament Selection 

Crossover Type Single-point 

Mutation Type Bit-Flip 

Number Of Generations 3 

Fitness Function Accuracy, Precision, Recall, F1-Score 

 

3.4 Vision Transformer for Feature Classification 

 

The Vision Transformer (ViT) is an advanced architecture originally designed for image 

classification tasks, adapting the transformer model—traditionally used in natural language 

processing—to handle visual data proficiently [17]. The ViT processes images by dividing them into 

patches, flattening these patches, and inputting them into a transformer architecture that includes multi-

head self-attention mechanisms and feed-forward networks. The ViTModel class is implemented using 

the timm library. Specifically, the vit_tiny_patch16_224 model was used, architecture is employed, 

which features a patch size of 16x16 pixels and an input size of 224x224 pixels. 
 

The initial input to the ViT consists of features extracted using Constant Q Cepstral Coefficients 

(CQCC) [22]. These CQCC features undergo resizing to align with the ViT’s input dimensions and 
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normalization to enhance training stability and convergence. Normalization typically involves scaling 

the input features to a standard range, such as [0, 1] or mean-centered values. 
 

Before these CQCC features are directed into the ViT, they undergo various feature optimization 

techniques to refine the inputs. Three distinct optimization methods are implemented: Genetic 

Algorithm (GA), Grey Wolf Optimizer (GWO), and Mayfly Optimizer (MO). Each of these techniques 

employs unique strategies to search for optimal parameter values, effectively enhancing the quality of 

the CQCC features. 
 

Once optimized, the refined CQCC features [22] are then fed into the ViTModel class. In the 

constructor (__init__), the model is initialized using timm.create_model, specifying the desired ViT 

architecture and the number of output classes for classification. The forward method outlines how input 

data flows through the model, producing class probabilities as output. Figure 6 shows the detailed block 

diagram of the proposed method. 
 

During the training phase, the model is optimized using a suitable loss function, such as cross-

entropy loss, effective for multi-class classification tasks. The Adam optimizer, which adapts the 

learning rate throughout training for better convergence. Various hyperparameters, including learning 

rate, batch size, and the number of epochs, are defined to guide the training process. The model is trained 

on the training dataset while being monitored with validation data to mitigate the risk of overfitting. 
 

 
Figure 6: Detailed Block Diagram of Proposed Method 

 

4. Results and Discussion 
 

In the proposed model, Constant Q Cepstral Coefficients (CQCC) are combined with a Vision 

Transformer (ViT) to improve the accuracy of spoof detection in audio data. To improve feature 

optimization, three different strategies are used. Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), 

and Mayfly Optimizer (MO) are implemented. Each strategy attempted to maximize accuracy while 

reducing training time per epoch. 
 

The model without optimization techniques demonstrated a relatively lower accuracy and a 

longer computational time. As shown in Figure 7, the model without optimization revealed a higher 

number of false positives and false negatives, indicating that the model struggled to accurately classify 

both spoofed and bonafide samples. In Figure 8, the accuracy vs. loss graph showed slower learning 

with instability, and Figure 9 the ROC curve reflected a lower area under the curve (AUC), showing 

sub-par performance in distinguishing spoofed and bonafide samples. 
 

When optimized with the Grey Wolf Optimizer (GWO), the model showed significant 

improvements. As depicted in Figure 10, the confusion matrix with GWO indicated a more balanced 

classification, with fewer false positives and false negatives. Figure 11 accuracy vs. loss graph the 

accuracy vs. loss graph revealed a steady increase in accuracy and a faster decrease in loss, indicating 

more stable and efficient training, and Figure 12 the ROC curve for GWO also demonstrated a higher 

AUC, highlighting the improved ability to distinguish between spoofed and bonafide samples. 
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The Mayfly Optimizer (MO) further enhanced the model’s performance. The confusion matrix 

for MO in Figure 13 indicates even fewer false positives and false negatives compared to GWO, 

indicating better classification accuracy. The accuracy vs. loss graph in Figure 14 demonstrated superior 

performance, with higher accuracy and faster convergence. An outstanding performance of the model 

in categorizing audio samples is shown by the ROC curve for MO in Figure 15 which is even higher 

than GWO. 

 

Finally, the Genetic Algorithm (GA) gave its best outcomes. The least number of false positives 

and false negatives was shown by the confusion matrix for the GA-optimized model in Figure 16, and 

hence, attaining the most classification accuracy. The accuracy vs. loss graph shown in Figure 17 

specifies the greatest training precision with the fastest convergence. The ROC curve in Figure 18 

demonstrated the highest AUC, depicting the model’s exceptional ability to distinguish bonafide audio 

from the spoofed one. The impact of different optimization methods in terms of normalized minimum 

Tandem Detection Cost Function (tDCF) and Equal Error Rate (EER) is depicted by the experimental 

results displayed in Table 7. Precisely, an EER of 0.1341 and a tDCF of 0.1332 were attained by the 

Mayfly Optimization (MO). An EER of 0.1210 and a tDCF of 0.1204 were achieved by the Grey Wolf 

Optimization (GWO). Specifically, the Genetic Algorithm (GA) outshone the others with a tDCF of 

0.0348 and the lowest EER of 0.0358, hence depicting its outstanding performance. Hence, 

understanding that the GA method functions very well in optimizing the system for improved reliability 

and detection accuracy. 

 

 
 

Figure 7: Confusion Matrix of the model Without Optimization 

 

 

Figure 8: Accuracy vs Loss Graph of the model Without Optimization 
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Figure 9: ROC Curve of the model Without Optimization 

 

 

Figure 10: Confusion Matrix of the model using Grey Wolf Optimizer 

 

Figure 11: Accuracy vs Loss Graph of the model using Grey Wolf Optimizer 
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Figure 12: ROC Curve of the model using Grey Wolf Optimizer 

 

 

 

 

Figure 13: Confusion Matrix of the model using Mayfly Optimization 

 

 

 

 

Figure 14: Accuracy vs Loss Graph of the model using Mayfly Optimization 
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Figure 15: ROC Curve of the model using Mayfly Optimization 

 

 

Figure 16: Confusion Matrix of the model using Genetic Algorithm 

 

 

Figure 17: Accuracy vs Loss Graph of the model using Genetic Algorithm 
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Figure 18: ROC Curve of the model using Genetic Algorithm 

 

Table 5: Performance Metrics for Different Optimization Techniques 

Techniques Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

Without Optimizer 

(WO) 
73 72 74 73 

Grey Wolf Optimizer 

(GWO) 
86 82 93 87 

Mayfly Optimizer 

(MO) 
90 87 93 90 

Genetic Algorithm 

(GA) 
97 97 98 97 

 

 

Figure 19: Comparison of Optimization Techniques (WO, GWO, MO, GA) 
 

Table 6: Comparison of Time for Training and Testing of Model with and without Optimization 

Method Training Time(s) Testing Time (s) 

Without Optimization 4.85s 0.67s 

Grey Wolf Optimization 4.5s 0.45s 

May Fly Optimization (MO) 4.3s 0.50s 

Genetic Algorithm (GA) 3.64s 0.43s 
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Table 7: Comparison of EER and tDCF 

Method EER tDCF 

May Fly Optimization (MO) 0.1341 0.1332 

Grey Wolf Optimization (GWO) 0.1210 0.1204 

Genetic Algorithm (GA) 0.0358 0.0348 

 

5. Performance Comparison with Existing Models 

 

In this study, Constant Q Cepstral Coefficients (CQCCs) are used for spoof detection in 

Automatic Speaker Verification (ASV) systems. CQCCs, procured from the Constant Q Transform, 

obtain fine spoofing artifacts along with varying spectro-temporal resolution. CQCCs, after being 

tested on various datasets, which also include ASV spoof 2015, surpass traditional features such as 

MFCCs, showcasing good performance and hence signifying the importance of customized 

configurations for a variety of spoofing schemes [14]. This study helps inspect deep-fake audio 

classification and, therefore, evaluates the currently present techniques for forensic investigation of 

fake audio detection. Although VGG-16 gives excellent results for MFCC features, it studies 

different deep learning algorithms and thereafter proves that a Custom Architecture works 

supremely for mel-spectrum images, spectrogram, and chromagram. This helps forensic 

investigators differentiate between real and fake sounds [10]. This paper proposes a segment-based 

anti-spoofing detection (SASD) method for embedded speech recognition, focusing on anti-

spoofing features rather than speech context or voiceprints. It divides speech into word and silent 

segments, extracting Constant Q Cepstral Coefficients (CQCCs) for words and Zero Crossing Rate 

(ZCR) for silence. Combining these features with a biased decision strategy, SASD improves anti-

spoofing accuracy by up to 33.47% and reduces time overhead by 69.10% compared to existing 

methods, as demonstrated by experiments on ASVspoof 2021 datasets[16]. The proposed method, 

which integrates CQCC features with a Vision Transformer and Genetic Algorithm optimization, 

achieved the highest accuracy of 97%, precision of 97%, recall of 98%, and an F1-score of 97%. 

Table 6 shows the training and testing times of models with and without optimization. The testing 

and training time reduced significantly while using the GA Optimization algorithm. 
 

Table 8: Comparison of Spoof Detection Methods by Accuracy in Decreasing Order 

Refrences Methodology Accuracy Precision Recall 
F1-

Score 

Todisco et al. 

(2017) [14] 
CQCC Evaluation, Spoof Detection on ASVspoof 2015 72.0% 72.0% 70.0% 71.0% 

Mcuba et al. 

(2023) [10] 

Feature extraction (MFCC, Mel-spectrum, Chromagram, 

Spectrogram), model evaluation (VGG-16, Custom 

Architecture) and audio datasets (ASVspoof). 

85.9% 84.12% 85.90% 85.00% 

Zhan et al. 

(2022) [16] 

Segment-based Anti-Spoofing Detection (SASD), word 

CQCC (WCQCC), average zero crossing rate (AZCR) 

and ASVspoof 2021 

92.0% 91.5% 89.0% 90.2% 

Proposed 

method 
CQCC, Genetic Algorithm, Vision Transformer 97% 97% 98% 97% 

 

6. Conclusions and Future Directions 
 

In this work, a spoof detection model was developed by integrating Constant Q Cepstral 

Coefficients (CQCC) with a Vision Transformer (ViT) and enhancing feature optimization through the 

Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), and Mayfly Optimizer (MO). The results 

demonstrate the effectiveness of these optimization techniques in significantly improving model 

performance. Among them, the Genetic Algorithm achieved the highest accuracy of 97% with superior 
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efficiency, demonstrating the best balance across precision, recall, and F1-score.The advantage of the 

Genetic Algorithm lies in its ability to efficiently explore a wide search space through mechanisms like 

crossover and mutation, enabling the selection of relevant features while avoiding suboptimal solutions. 

This ensures robust optimization, leading to improved performance in spoof detection tasks. As shown 

in Table 5, the Genetic Algorithm outperformed MO and GWO, especially in accuracy and 

computational efficiency. Table 6  highlights the Genetic algorithm's capability to reduce both training 

and testing times, where it achieved training times as low as compared to those without optimization. 
 

This study highlights the importance of advanced optimization methods in refining feature 

representation, significantly enhancing model performance in anti-spoofing tasks. The research 

contributes to automatic speaker verification by demonstrating how feature optimization can increase 

the effectiveness of deep learning models against spoofed audio. Future work could explore additional 

feature extraction methods like Mel-frequency cepstral coefficients (MFCC) and hybrid optimization 

algorithms to further improve model adaptability and accuracy. Real-time implementation, transfer 

learning, and robustness to noisy environments also offer promising avenues for expanding the model’s 

application in practical voice authentication systems. These advancements would make the model more 

adaptable and effective in real-world machine learning scenarios. 
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