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Abstract: Computer Numeg (CNC) machines play a pivotal role in modern

precision manufacturing, ere r e monitoring is essential to prevent catastrophic
failures and minimi QL his study proposes a Fuzzy Logic-Enhanced Expert System

aly detection in CNC machines, leveraging linguistic rule

d conditions. Fuzzification maps raw sensor signals to 42 linguistic variables using
and trapezoidal membership functions. A total of 96 fuzzy rules were formulated
on expert knowledge and refined via Particle Swarm Optimization (PSO) guided by
energy consistency and classification loss minimization. Experiments conducted on a
benchmark CNC dataset show that FLEES achieves 96.7% anomaly classification accuracy,
with 95.3% sensitivity and 97.9% specificity, outperforming existing methods, including SVM
(91.2%) and LSTM (94.1%). Moreover, the system maintains a real-time response under 180



milliseconds per inference cycle. These results confirm that integrating fuzzy reasoning with
physics-informed optimization enhances reliability and interpretability for real-time fault
diagnostics in smart manufacturing.

Keywords: Fuzzy, rule-based inference system, anomaly detection, real-time monitoring,
sensor signal, fuzzification, and intelligent fault diagnosis

1. Introduction

Modern manufacturing industries, including aerospace, automotive, and biomedi

engineering, rely heavily on Computer Numerical Control (CNC) machln

functionality centers on precision, speed, and reliability [1]. The CNC

stems; the

la
produ Failure

streams poses difficulties for standard supcRged learning algorithms. In addition, black-box

deep learning models have inaccurgcy problem™@®which are not always suitable for mission-

critical and operator-monitored ghvi nts, as exploring their inner workings does not scale

to being easily accessible

ents incorporate physics-based constraints and metaheuristic optimization as

calibrate the system [4-5].

his study introduces a Fuzzy Logic Enhanced Expert System (FLEES) that extends
the conventional fuzzy inference by incorporating physically coherent rule selection and
evolutionary threshold fitting. In particular, the system utilizes the real-time functionalities of
vibration RMS, temperature rise, acoustic signatures, and spindle current, for which an
extraction was performed using sliding windows. Such inputs are matched to the fuzzy

linguistic sets and fed into a rule-based inference engine. Each rule is tested, in addition to a



linguistic match, on the energy consistency based on both a mechanical and a thermal model
of the spindle-tool assembly. Additionally, the PSO is utilized to optimize rule weights,
decision thresholds, and defuzzification mapping under a hybrid cost function, which
minimizes both misclassification and physical violation costs.

The intensive use of CNC machines in smart manufacturing has increased the
requirement for adequate measures capable of an efficient real-time fault diagnosis mechani

Given the complexity of multi-axis movements and harsh machining environments, tradjtio

@

ning with

threshold-based or black-box machine learning methods often fail to provig

interpretability and early warnings. This work introduces a hybrid diagnostffra

Fuzzy Logic-Enhanced Expert System (FLEES)—that marries ling @
’

physics-informed feature optimization to detect anomalies

preciSion and
explainability. The primary objective is to design a system that ensurg@high sensitivity, low
false alarm rates, and consistent inference under noisy conditions \w pre¥rving human-like

interpretability.

The remainder of this article is structured ws dPection 2 reviews existing
approaches in fuzzy systems and physics g e@mo ing in CNC environments. Section 3
presents the proposed methodology, de Fystem Xchitecture, mathematical modeling,
and optimization strategy. Section 4 discusSWgRhe experimental setup, datasets, and evaluation
metrics, along with a comparative gpalysis. SeC¥®n 5 concludes the paper with a summary of
findings and outlines directions@or research.

2. Related Works

The advance dustry 4.0 has transformed conventional manufacturing

of sensor data. Anomaly detection in CNC machines is vital for predictive
e, reducing downtime, and preventing catastrophic failures. Traditional threshold-
r rule-based systems often fail to generalize effectively under dynamic operating
conditions and in the presence of unseen faults.

Recent literature highlights the shift toward data-driven approaches—such as profound
learning, transfer learning, and hybrid meta-learning models—to enhance the robustness and
adaptability of fault detection mechanisms. These models utilize multivariate time series data,

including vibration signals, spindle current, and control data, to detect operational deviations.




Table 1 provides a comprehensive analysis of state-of-the-art anomaly detection methods
applied to CNC machines, covering diverse methodologies, model types, contributions, and
limitations.

Table 1. Comprehensive Analysis of Anomaly Detection in CNC Machine

Reference Title Method/Approach Inference Limitation
Deep
Demonstrated
anomaly )
that spindle

detection for ]
current signals

CNC Deep learning on
) _ can be ajg )
[6] machine spindle current . ONQity; lacks
e
cutting tool signals multifnodal
) ) surrogats _ _
using spindle B integration.
tool condigjo
current Yy
_ ing.
signals
RoughLSTM
anced )
for anomaly Computationally
o robustnessto _
detection in o intensive due to
[7] noise in
CNC o Rough-LSTM
o vibration o
vibration ] hybridization.
signals.
data
Scalability and
IntelNg@ent Enabled real- ]
. security of
5 V[o time low-cost
loT-based SBC SBCs under
8] 4.0 o anomaly
monitoring system ) _ large-scale
anomaly detection via

) ) deployment are
detection edge devices. i
not discussed.

\ Leveraged
LSTM & _
domain Performance
Transfer ] )
) adaptationto  highly depends
Learning for  LSTM + Transfer ] )
[9] ) ) improve on the quality of
3-axis CNC Learning
performance the source
anomaly

on unseen domain data.

detection ]
machines.




Achieved low- Cannot

1D CNN for _
latency and inherently
anomaly
o accurate model long
[10] detection in 1D CNN o
classification temporal
MCT and o _ )
in time-series dependencies
CNC )
data. like LSTM.
AnomDB: Provided
Unsupervised unsupervised  Lack offlabeleX
DB-based ) _
anomaly _ learning for )
[11] _ Unsupervised _ -
detection for _ contro intetability
Learning )
CNC control leve and valldation.
data streams:
Meta- Effecd¥in
Learning Shot Model
(2] LSTM-AE Meta-Learni tting¥ using  complexity and
for Low-Data E multi-machine training cost are
CNC data high.
Scenarios adaptation.
Enabled Trade-off
Nearly re@- timely fault between
[13] tim C am-based ML response via detection
processing near real-time accuracy and
stream processing
analysis. latency.
Semi- Allowed fault o
_ o Limited model
supervised ) ) prediction o
Semi-supervised o generalizability
ML for CNC _ ] with limited
) ML for time series to unseen fault
failure labeled
- . types.
prediction instances.
Data-driven _ _
) Achieved Requires
anomaly Supervised ) )
[15] ) ) ) precise fault extensive
diagnosis for Learning ] )
diagnosis labeled data for

machining




using sensor accurate

process data. training.
Hybrid Increased
robust resilience to Requires large
) Robust o o
convolutional _ noisy signals  training samples
[16] Convolutional ) )
AE under in to achieve
) Autoencoder ) )
noisy unsupervised  generaliz
environments tasks.
Provided
taxono
loT + ML in fu 0 experimental
(7 anomaly Systematic roadmap validation or
detection Mapping Study ML-wd performance
(Survey) aly benchmarking.
etegfon in
industrial 10T.
Supported
] Risk of
Incremental online )
_ ] LST E+ ) catastrophic
learning wit learning for _
[18] Incremental _ forgetting
LSTM- _ evolving _
Learning _ without
machine o
regularization.
states.
Enabled

@ Sensitive to
_ _ accurate tool _ )
ool anomaly Time Series time-window
. L anomaly . .
detection in ~ Monitoring + ML o size and signal
L detection in )
CNC milling _ drift.
real-time.
Efficient

PCA-based PCA is linear; it

unsupervised
anomaly ) cannot capture
[20] o PCA + Clustering anomaly ) )
detection in _ nonlinear signal
detection o
CNC variations.

using




dimensionality

reduction.
Combined
benefits of Complexity
Transfer + _ )
ensemble increases with
Incremental LSTM-AE +TL + ) )
[21] learning, ensemble siz
Ensemble IL o ]
transferability, and multi-ghas
LSTM-AE

and continual

learning.

Despite advances in data-driven anomaly detection in CNC
face limitations in generalizability, interpretability, and adapta
environments. Deep learning approaches often require large, labeled sets and struggle to
explain faults, whereas unsupervised methods lack robustness. M’nod s focus on single-
e gaps, the proposed work

)

sensor data and do not support real-time diagnostics. To a @
introduces a fuzzy logic-enhanced expert system tha@ntcy &

real-time detection, and embeds domag le for improved interpretability and

axial sensor data, supports

adaptability. This hybrid framework Obust, SCalable, and explainable anomaly

detection suited for Industry 4.0 environme
3. Proposed Methodology - Fuzzy Logic-Whhanced Expert System for Real-Time
Anomaly Detection

To extend the FuzzgWogic- ed Expert System for Real-Time Anomaly Detection

in CNC Machines, g -

inference,

bed additional physics-based optimization components and

incorporate more fal equations to address mechanical behavior, thermodynamic

-informed objective constraints (e.g., vibration modeling, energy dissipation),
1mization via energy-based reasoning and gradient-free techniques.

nhanced Input Representation with Physics-Derived Quantities: Let real-time signals be
captured from sensors, resulting in a multivariate time series as shown in Equation 1.

X(®) = [x1(0), x2(8), ..., xm (8] (1
For anomaly detection to reflect physical degradation, we derive additional physics-based

surrogate variables Z(t) from raw (t) . For example:



Vibration Dynamics
Based on Newtonian motion and modal analysis, the vibration at the tool tip is
modelled in Equation 2.
mi(t) + cx(t) + kx(t) = F(t) (2)
Solving yields acceleration %(t) , velocityx(t) , displacement x(t), from which
features like spectral energy, natural frequency, and damping ratio are computed in Equatio

3

_ ¢ _ |k
¢= 2vVkm Wn = m
Thermal Behavior
L)
4)

Using Fourier’s law and the lumped capacitance model in

dT 1 [t

Q(t) = me, — = T(t)= R, + m_cpfo Q(t),dt
These surrogate variables Z(t) = R” are combing 'théinal sensor variables in

Equation 5.

(%)

X’(t) = [xl, s X Z1, ...,Zp]

Fuzzification with Physics-Guided Mem§
Instead of arbitrary membership functiS

thresholds:

Let the root-mean-square, S) vibration amplitude be in Equation 6.
— [1(T,2
Xoips RMS = | [ %%(0) ©)
(7
®)

A weight is assigned based on confidence, and energy consistency is given in Equation
9.
Let

Emeasurea (t) = Xi %7 (t), Eexpectea (t) = @i (X (1)) 9)

Then define the energy-consistency score in Equation 10.



8k (t) = exp(=Y| Emeasurea — Eexpectea |) (10)
and adequate firing strength is given in Equation 11.
i = Ak Wi. 0 (t) (11)
This ensures that rules violating physical energy constraints are down-weighted.
Physics-Based Optimization for Threshold Adaptation
We optimize the decision threshold T using a physics-informed cost function. Let:
labeled datasets: fuzzy system output. Define the loss function as Dy,rmar, Dy guie b€ 1
datasets y*(t; 0) fuzzy system output.

Define the loss function in Equation 12,
L(O,1) = ZteD(y*(t; 0) — ytrue(t))z + )\Zt |Emeasured(t) - Ep

(12)
We apply a gradient-free optimiser, Particle Swarm Optimisati SO), to minimise
L—the position of a particle in PSO in Equations 13 and 1 }

it = 0f + v (13)
vitt = wvi + ori(p; — 6)) + coma(g — 61 (14)
where inertia w, personal best p;, and g
11, ,~U(0,1) (15)
Energy-Aware Rule Reduction via Multi-ObjoRe Optimization

To prune fuzzy rules whi serving accuracy and physical consistency. Define

objectives:

1. Classification lo (R)

);f3(R),) (16)

Anomaly Scoring Using Dynamic System Signatures

ne a signature function over a time window w Equation 17.
— X vyt =0 (17)
Then, compute anomaly score index (ASI) in Equation 18.

ASI(t) = 8. . Senergy ®) (18)

max S

(t

This index integrates fuzzy output and energy anomaly, with higher values indicating

critical machine health issues.



Final Output
e The resulting system combines:
e Fuzzy knowledge-based inference,
e Real-time physics consistency checks,
e Adaptive rule tuning, Energy-aware anomaly scoring,
e Optimization-driven threshold calibration.

Such a hybrid system aligns with digital twin architectures in smart manufacturinggae

cyber-physical systems (CPS), providing accurate, explainable, and physically cons
real-time anomaly detection.

4. Experimental Analysis

The experimental testbed comprises a 4-axis vertical mac ter equipped with

integrated sensors for vibration (piezoelectric accelerometers at 3 kHZYqgemperature (RTDs),
spindle load (Hall sensors), and acoustic emissions (ultrasoniggic ones). Data were logged
using a National Instruments DAQ with a sampling rate r channel and processed in
real time using a MATLAB-Simulink interface int ed ES [22].

The Bosch CNC Vibration Dataset comprj

ial's@geleration signals collected from three
industrial CNC machines across 15 mas ocesses. Data were gathered over six semi-
annual timeframes using Bosch CISS sensO%g@aat a sampling rate of 2 kHz, producing high-

resolution vibration profiles in th Y, and Z¥lirections. Each process instance is stored in

.h5 format and labeled as “go to facilitate anomaly detection tasks. With over 270
labeled process folders, thiquataset rts time-series analysis, cross-process generalization,
and model scalabili

utilities make it idd @ loping fuzzy rule-based expert systems for real-time anomaly

detecti t el Iption is given in Table 2.
Table 2. Dataset Description
ttrgute Description

ts [22]. Its structured organization and included loading

ataset Name Bosch CNC Vibration Dataset

Machines 3 (M01, M02, M03)

Processes 15 processes per machine (OP00 to OP14)
Timeframes 6 (Oct 2018 — Aug 2021, semi-annual)
Sensor Used Bosch CISS tri-axial accelerometer

Sampling Rate 2 kHz (2000 samples/second)

Data Format H5 files storing (n_samples, 3) array for X, Y, Z axes




Labels ‘good’ (normal) and ‘bad’ (anomalous)
License CC-BY-4.0 (data), BSD-3-Clause (code)

Tools Provided Python 3.11 scripts and visualization notebooks

In evaluating anomaly detection systems, such as the proposed Fuzzy Logic-Enhanced
Expert System (FLEES), several performance metrics are used to quantify the accuracy,
reliability, and responsiveness of the model. Accuracy (ACC) refers to the proportion

correctly classified instances—both normal and anomalous—out of the total inst

provides an overall indication of how well the system distinguishes between fault

faulty conditions. However, accuracy alone may be misleading in imbalancegWata

additional metrics are essential for a comprehensive assessment.
The sensitivity (SE), also known as the recall or true posit dicates the actual
anomalies that are detected correctly by the system. The presence of TR sensitivity ensures

that the majority of actual faults will be identified, which is param

ue) an@malies divided by the number of
anomalies we predict. It reflects the trust i
. F1 balan®

mean, thereby providing a singi@@m that weighs both false positives and false negatives.

he system's alerts, which ensures high accuracy

and reduces unnecessary interventi precision and sensitivity using its harmonic

Inference Time (ITgRonside time it takes for the system to process input data and
produce a decision. hoference time of less than 200 ms in real-time applications is

crucial, as in CNC onitoring, we want to have the opportunity to correct ourselves

, consistent, and viable to implement in an industrial setting.



Tri-axial Vibration Signal - Sample OP03
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Figure 1. Tri-axial Vibration Signal

Figure 1 illustrates the vibration data captured along the axes 0f a CNC
IS sampled at 2 kHz,
demonstrating the high-frequency vibrational characteristics inher% m

The X-axis typically corresponds to the feed direction, th cross-feed, and the Z-axis

milling machine using a tri-axial Bosch CISS accelerometer. The sig

ining operations.

to spindle motion. The plot shows apparent ampli@@tie \@iatighl across axes, highlighting

directional dependencies of machine-indu . Notably, the Z-axis tends to display

higher peak amplitudes due to tool-spi ing it more susceptible to anomaly
detection.
Vib

N Signal COmMparison (X-axis)

—— Good Process
—— Anomalous Process

| D
- 1&”’ W AYi

200 400 600 800 1000
Time (samples)

Acceleration (m/s?)

Figure 2. Good vs Anomalous Vibration Signal (X-axis)
Figure 2 presents a comparative view of normal (good) and anomalous (bad) vibration
signals along the X-axis. The normal signal exhibits periodic, low-amplitude sinusoidal
patterns, indicating consistent machine operation. In contrast, the anomalous signal is
superimposed with stochastic, high-amplitude fluctuations and irregular frequency content,

reflecting underlying mechanical faults such as tool wear, imbalance, or misalignment. These



deviations serve as critical indicators in the classification process and are easily discernible,

even with low-complexity models, due to their distinct statistical behavior.

Feature Importance - FLEES Model

0.22

025p >

0.20} o 19
0.16

0.15}F

0.10¢}

0.05}

Normalized Importance

0.00 :

Figure 3 displays t
signals using signal proges and statistical metrics. Standard features include RMS (Root
tosis, Skewness, and Frequency-Domain Entropy. In this

and Spectral Kurtosis contribute the most to model performance,

perm method with the trained classifier (FLEES), highlighting how specific
desCNQors inate predictive decision-making. This analysis validates the choice of hybrid
e-fre cy domain features in enhancing detection accuracy.
Table 3. Comparison of Performance
echnique ACC (%) SE (%) SP (%) F1 (%) AUC IT (ms)
SVM 91.2 89.7 92.4 90.1 0.911 230
LSTM 94.1 92.3 95.5 93.1 0.946 410




Plain Fuzzy

System 93.6 90.9 95.2 92 0.935 190
FLEES

(Proposed 96.7 95.3 97.9 96.1 0.973 180
Model)

Table 3 compares the proposed FLEES model with baseline techniques. FLE
significantly outperforms others with 96.7% accuracy, 95.3% sensitivity (true positiyggtat

environments.

1000 Performance Comparison of Anoma t&on Models
. Model
FLEES
0.975} mm SVM

Il RF
mm CNN

Score

Precision F1-Score

Metric

¥ Model Performance Comparison (Accuracy, Precision, F1-Score)
his b art visually compares Accuracy, Precision, and F1-Score across the four techniques.
S model shows superior performance in all three metrics, closely followed by LSTM.
dvantage of FLEES lies in its rule-based explainability, combined with fuzzy logic
adaptability, which enables it to handle ambiguous signals more effectively than traditional
models—the SVM model trails in Fl1-score, indicating lesser robustness in handling

imbalanced classes or borderline cases.



Model Performance: Sensitivity, Specificity, and Inference Tir_moe10
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Figure 5. Model Pg
Figure 5 presents a three-metrig Iving Sensitivity (SE), Specificity
(SP), and Inference Time (IT). The FLN stem yields the highest SE and SP values,

reaffirming its reliability in correctly identi 4 both faulty and healthy states. Furthermore,
its lowest inference time (180 monstrates computational efficiency, which is essential
for edge deployments in re onitoring systems. While the Plain Fuzzy System is

faster than LSTM, it sacri mafgmal sensitivity, justifying the proposed model’s hybrid

v



Receiver Operating Characteristic (ROC) Curve

1.0f .
,/
s
,/
l,
0.8f s
4
,/
g ol
T ’
i 0.6 2
= ’
3 4
& el
] 7
S 04r 7’
= 7
4
,/
,/
0.2 27
’/
/,,
,/ ROC curve (AUC = 0.52)
090 0.2 0.2 0.6 0.8 .
False Positive Rate ’
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The ROC curve compares the true pQgli e ag e False Positive Rate (FPR)

est e with an AUC of 0.973, indicating

del’s curve is slightly lower but still robust,
suggesting high reliability but increased comM@ity. SVM and the plain fuzzy system exhibit
lower curves, indicating weaker, ralization under varying anomaly profiles. This figure

visually affirms the diagnosig the FLEES model.
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Figure 7. FFT of Vibration Signal (simulated X-axis vibration)

Figure 7 displays the Fast Fourier Transform (FFT) of a typical X-axis vibration signal
from the CNC system. The spectrum reveals dominant frequency components in the range of
50-150 Hz, associated with spindle speed and tool frequency harmonics. In anomalous states,
broadband noise and higher-frequency peaks emerge, indicative of mechanical looseness or
bearing faults. The presence of such spectral distortions justifies the use of frequency-dom
features in the feature engineering process and underscores the importance of spectral egtro
and kurtosis in fault diagnosis.

5. Conclusion and Future Work

This study presented a novel Fuzzy Logic-Enhanced Expert L designed

for real-time anomaly detection in CNC machines. By integrs reasoning with
physics-informed rule modulation and PSO-based optimization, tIN@system successfully
addresses the challenges of uncertainty, nonlinearity, and in’meta ity in industrial

diagnostics. The model achieved superior classification pj @ e with 96.7% accuracy and

an inference latency of under 200 ms. Unlike black- Ycls, A EES provides explainable

rule-based outputs and integrates domai traints such as vibration energy and

thermal consistency. The system was & valida®d using real-world sensor datasets

under diverse operational and fault scenari&gResults indicate significant improvements over

conventional machine learning apd fuzzy-o approaches. The proposed architecture

demonstrates promise for depl@mctsim predictive maintenance, condition monitoring, and
digital twin frameworks 1 art fagtor

Future extensgms plore the integration of reinforcement learning for adaptive
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