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Abstract: Computer Numerical Control (CNC) machines play a pivotal role in modern 

precision manufacturing, where real-time monitoring is essential to prevent catastrophic 

failures and minimize downtime. This study proposes a Fuzzy Logic-Enhanced Expert System 

(FLEES) for real-time anomaly detection in CNC machines, leveraging linguistic rule 

inference fused with physical constraints and data-driven optimization. The system processes 

14 distinct sensory inputs, including spindle vibration, cutting torque, thermal gradients, and 

acoustic emissions, gathered from 120 hours of high-frequency CNC machine operation under 

varying load conditions. Fuzzification maps raw sensor signals to 42 linguistic variables using 

Gaussian and trapezoidal membership functions. A total of 96 fuzzy rules were formulated 

based on expert knowledge and refined via Particle Swarm Optimization (PSO) guided by 

energy consistency and classification loss minimization. Experiments conducted on a 

benchmark CNC dataset show that FLEES achieves 96.7% anomaly classification accuracy, 

with 95.3% sensitivity and 97.9% specificity, outperforming existing methods, including SVM 

(91.2%) and LSTM (94.1%). Moreover, the system maintains a real-time response under 180 
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milliseconds per inference cycle. These results confirm that integrating fuzzy reasoning with 

physics-informed optimization enhances reliability and interpretability for real-time fault 

diagnostics in smart manufacturing. 

Keywords: Fuzzy, rule-based inference system, anomaly detection, real-time monitoring, 

sensor signal, fuzzification, and intelligent fault diagnosis 

1. Introduction 

Modern manufacturing industries, including aerospace, automotive, and biomedical 

engineering, rely heavily on Computer Numerical Control (CNC) machines, whose 

functionality centers on precision, speed, and reliability [1]. The CNC systems include 

electromechanical parts, such as spindles, feed axes, tool changers, and coolant systems; the 

adequate performance of which is essential to ensure the quality of the product. Failure 

reactions, however, such as a tool wearing out, the spindle misaligning, or a bearing degrading, 

are often unpredictable, causing downtime, scrap, and expensive maintenance. 

Conventionally, the detection of anomalies in CNCs has been based on threshold alarms 

or post-analysis methods, which are not generalizable in diverse conditions and cannot detect 

faults at an earlier stage. In the age of Industry 4.0, sensor-larger-saturation has made it feasible 

to monitor online; however, a large volume of high-dimensional, noisy, and nonlinear data 

streams poses difficulties for standard supervised learning algorithms. In addition, black-box 

deep learning models have inaccuracy problems, which are not always suitable for mission-

critical and operator-monitored environments, as exploring their inner workings does not scale 

to being easily accessible [2]. 

A solution to this dilemma can be elegantly offered by fuzzy logic systems, which are 

based on the theory of approximate reasoning developed by Zadeh. They are also capable of 

representing linguistic uncertainty, encoding human knowledge through IF-THEN rules, and 

achieving the integration of heterogeneous sensor modalities [3]. Nonetheless, heuristic biases 

tend to affect the creation and tuning of rules and membership functions. To address this, the 

latest developments incorporate physics-based constraints and metaheuristic optimization as 

methods to calibrate the system [4-5].  

This study introduces a Fuzzy Logic Enhanced Expert System (FLEES) that extends 

the conventional fuzzy inference by incorporating physically coherent rule selection and 

evolutionary threshold fitting. In particular, the system utilizes the real-time functionalities of 

vibration RMS, temperature rise, acoustic signatures, and spindle current, for which an 

extraction was performed using sliding windows. Such inputs are matched to the fuzzy 

linguistic sets and fed into a rule-based inference engine. Each rule is tested, in addition to a 
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linguistic match, on the energy consistency based on both a mechanical and a thermal model 

of the spindle-tool assembly. Additionally, the PSO is utilized to optimize rule weights, 

decision thresholds, and defuzzification mapping under a hybrid cost function, which 

minimizes both misclassification and physical violation costs. 

The intensive use of CNC machines in smart manufacturing has increased the 

requirement for adequate measures capable of an efficient real-time fault diagnosis mechanism. 

Given the complexity of multi-axis movements and harsh machining environments, traditional 

threshold-based or black-box machine learning methods often fail to provide reliable 

interpretability and early warnings. This work introduces a hybrid diagnostic framework—

Fuzzy Logic-Enhanced Expert System (FLEES)—that marries linguistic rule reasoning with 

physics-informed feature optimization to detect anomalies with high precision and 

explainability. The primary objective is to design a system that ensures high sensitivity, low 

false alarm rates, and consistent inference under noisy conditions while preserving human-like 

interpretability. 

The remainder of this article is structured as follows: Section 2 reviews existing 

approaches in fuzzy systems and physics-based monitoring in CNC environments. Section 3 

presents the proposed methodology, detailing the system architecture, mathematical modeling, 

and optimization strategy. Section 4 discusses the experimental setup, datasets, and evaluation 

metrics, along with a comparative analysis. Section 5 concludes the paper with a summary of 

findings and outlines directions for future research. 

2. Related Works 

The advancement of Industry 4.0 has transformed conventional manufacturing 

environments through the integration of intelligent monitoring and cyber-physical systems. 

Among these, Computer Numerical Control (CNC) machines are central to automated 

manufacturing processes, making their operational reliability critical. However, detecting 

anomalies in real time remains challenging due to the high-dimensional, nonlinear, and non-

stationary nature of sensor data. Anomaly detection in CNC machines is vital for predictive 

maintenance, reducing downtime, and preventing catastrophic failures. Traditional threshold-

based or rule-based systems often fail to generalize effectively under dynamic operating 

conditions and in the presence of unseen faults. 

Recent literature highlights the shift toward data-driven approaches—such as profound 

learning, transfer learning, and hybrid meta-learning models—to enhance the robustness and 

adaptability of fault detection mechanisms. These models utilize multivariate time series data, 

including vibration signals, spindle current, and control data, to detect operational deviations. 
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Table 1 provides a comprehensive analysis of state-of-the-art anomaly detection methods 

applied to CNC machines, covering diverse methodologies, model types, contributions, and 

limitations. 

Table 1. Comprehensive Analysis of Anomaly Detection in CNC Machine 

Reference Title Method/Approach Inference Limitation 

[6] 

Deep 

anomaly 

detection for 

CNC 

machine 

cutting tool 

using spindle 

current 

signals 

Deep learning on 

spindle current 

signals 

Demonstrated 

that spindle 

current signals 

can be an 

effective 

surrogate for 

tool condition 

monitoring. 

Limited to 

current signal 

modality; lacks 

multimodal 

integration. 

[7] 

RoughLSTM 

for anomaly 

detection in 

CNC 

vibration 

data 

Rough Set + 

LSTM 

Enhanced 

robustness to 

noise in 

vibration 

signals. 

Computationally 

intensive due to 

Rough-LSTM 

hybridization. 

[8] 

Intelligent 

SBC for 

Industry 4.0 

anomaly 

detection 

IoT-based SBC 

monitoring system 

Enabled real-

time low-cost 

anomaly 

detection via 

edge devices. 

Scalability and 

security of 

SBCs under 

large-scale 

deployment are 

not discussed. 

[9] 

LSTM & 

Transfer 

Learning for 

3-axis CNC 

anomaly 

detection 

LSTM + Transfer 

Learning 

Leveraged 

domain 

adaptation to 

improve 

performance 

on unseen 

machines. 

Performance 

highly depends 

on the quality of 

the source 

domain data. 
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[10] 

1D CNN for 

anomaly 

detection in 

MCT and 

CNC 

1D CNN 

Achieved low-

latency and 

accurate 

classification 

in time-series 

data. 

Cannot 

inherently 

model long 

temporal 

dependencies 

like LSTM. 

[11] 

AnomDB: 

Unsupervised 

anomaly 

detection for 

CNC control 

data 

DB-based 

Unsupervised 

Learning 

Provided 

unsupervised 

learning for 

controller-

level data 

streams. 

Lack of labeled 

data limits 

interpretability 

and validation. 

[12] 

Meta-

Learning 

LSTM-AE 

for Low-Data 

CNC 

Scenarios 

Meta-Learning + 

LSTM-AE 

Effective in 

few-shot 

settings using 

multi-machine 

data 

adaptation. 

Model 

complexity and 

training cost are 

high. 

[13] 

Nearly real-

time CNC 

anomaly 

detection 

Stream-based ML 

processing 

Enabled 

timely fault 

response via 

near real-time 

stream 

analysis. 

Trade-off 

between 

detection 

accuracy and 

processing 

latency. 

[14] 

Semi-

supervised 

ML for CNC 

failure 

prediction 

Semi-supervised 

ML for time series 

Allowed fault 

prediction 

with limited 

labeled 

instances. 

Limited model 

generalizability 

to unseen fault 

types. 

[15] 

Data-driven 

anomaly 

diagnosis for 

machining 

Supervised 

Learning 

Achieved 

precise fault 

diagnosis 

Requires 

extensive 

labeled data for 
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using sensor 

process data. 

accurate 

training. 

[16] 

Hybrid 

robust 

convolutional 

AE under 

noisy 

environments 

Robust 

Convolutional 

Autoencoder 

Increased 

resilience to 

noisy signals 

in 

unsupervised 

tasks. 

Requires large 

training samples 

to achieve 

generalization. 

[17] 

IoT + ML in 

anomaly 

detection 

(Survey) 

Systematic 

Mapping Study 

Provided 

taxonomy and 

future 

roadmap for 

ML-based 

anomaly 

detection in 

industrial IoT. 

No experimental 

validation or 

performance 

benchmarking. 

[18] 

Incremental 

learning with 

LSTM-AE 

for CNC 

LSTM-AE + 

Incremental 

Learning 

Supported 

online 

learning for 

evolving 

machine 

states. 

Risk of 

catastrophic 

forgetting 

without 

regularization. 

[19] 

Real-time 

tool anomaly 

detection in 

CNC milling 

Time Series 

Monitoring + ML 

Enabled 

accurate tool 

anomaly 

detection in 

real-time. 

Sensitive to 

time-window 

size and signal 

drift. 

[20] 

PCA-based 

anomaly 

detection in 

CNC 

PCA + Clustering 

Efficient 

unsupervised 

anomaly 

detection 

using 

PCA is linear; it 

cannot capture 

nonlinear signal 

variations. Auth
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dimensionality 

reduction. 

[21] 

Transfer + 

Incremental 

Ensemble 

LSTM-AE 

LSTM-AE + TL + 

IL 

Combined 

benefits of 

ensemble 

learning, 

transferability, 

and continual 

learning. 

Complexity 

increases with 

ensemble size 

and multi-phase 

training. 

Despite advances in data-driven anomaly detection in CNC machines, existing models 

face limitations in generalizability, interpretability, and adaptability to low-data or noisy 

environments. Deep learning approaches often require large, labeled datasets and struggle to 

explain faults, whereas unsupervised methods lack robustness. Most models focus on single-

sensor data and do not support real-time diagnostics. To address these gaps, the proposed work 

introduces a fuzzy logic-enhanced expert system that integrates tri-axial sensor data, supports 

real-time detection, and embeds domain knowledge for improved interpretability and 

adaptability. This hybrid framework ensures robust, scalable, and explainable anomaly 

detection suited for Industry 4.0 environments. 

3. Proposed Methodology - Fuzzy Logic-Enhanced Expert System for Real-Time 

Anomaly Detection 

To extend the Fuzzy Logic-Enhanced Expert System for Real-Time Anomaly Detection 

in CNC Machines, we now embed additional physics-based optimization components and 

incorporate more mathematical equations to address mechanical behavior, thermodynamic 

response, and sensor data uncertainty modeling. 

This hybrid framework integrates: 

• Fuzzy logic inference, 

• Physics-informed objective constraints (e.g., vibration modeling, energy dissipation), 

• Optimization via energy-based reasoning and gradient-free techniques. 

Enhanced Input Representation with Physics-Derived Quantities: Let real-time signals be 

captured from sensors, resulting in a multivariate time series as shown in Equation 1. 

𝑋(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑚(𝑡)]                                                                                              (1)                            

For anomaly detection to reflect physical degradation, we derive additional physics-based 

surrogate variables 𝑍(𝑡) from raw (𝑡) . For example: 
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Vibration Dynamics 

Based on Newtonian motion and modal analysis, the vibration at the tool tip is 

modelled in Equation 2. 

𝑚 �̈�(𝑡)  +  𝑐�̇�(𝑡)  +  𝑘𝑥(𝑡)  =  𝐹(𝑡)                                                                                       (2) 

Solving yields acceleration �̈�(𝑡) , velocity�̇�(𝑡)  , displacement 𝑥(𝑡), from which 

features like spectral energy, natural frequency, and damping ratio are computed in Equation 

3 

𝜁 =  
𝑐

2√𝑘𝑚
 , 𝑤𝑛 = √

𝑘

𝑚
                                                                                                              (3) 

Thermal Behavior 

Using Fourier’s law and the lumped capacitance model in Equation 4. 

 𝑄(𝑡) =  𝑚𝑐𝑝
𝑑𝑇

𝑑𝑡
 ⟹ 𝑇(𝑡) =  𝑅𝑜  +  

1

𝑚𝑐𝑝
∫ 𝑄(𝑡) , 𝑑𝑡

𝑡

𝑜
                                                              (4) 

These surrogate variables 𝑍(𝑡) ⊏ ℝ𝑃  are combined with original sensor variables in 

Equation 5. 

𝑋′(𝑡)  =  [𝑥1, … , 𝑥𝑚, 𝑧1, … , 𝑧𝑝]                                                                                                (5) 

Fuzzification with Physics-Guided Membership Functions 

Instead of arbitrary membership function ranges, we define fuzzy sets based on physical 

thresholds: 

Let the root-mean-square (RMS) vibration amplitude be in Equation 6. 

𝑥𝑣𝑖𝑏 , 𝑅𝑀𝑆 = √
1

𝑇
∫ 𝑥2(𝑡)𝑑𝑡

𝑇

𝑂
                                                                                                   (6) 

Then define fuzzy sets in Equation 7. 

Low: 𝜇𝜁(𝑥) = 𝑒𝑥𝑝 (−
(𝑥−0)2

2𝜎2 )                                                                                                 (7) 

• Normal: centered around expected amplitude 𝐴𝑛 

• High: centered around known damage threshold 𝐴𝑒 

Extended Inference: Weighted Rule Firing with Physical Constraints 

Each fuzzy rule is given in Equation 8. 

𝑅𝑘 ;  𝐼𝐹  𝑥1 𝑖𝑠 𝐴𝑁𝐷 …  𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐵𝑘                                                                                      (8) 

A weight is assigned based on confidence, and energy consistency is given in Equation 

9. 

Let 

𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (𝑡) = ∑ 𝑥𝑖
2(𝑡),   𝐸𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 (𝑡) = Φ𝑘(𝑋(𝑡))  𝑖                                                         (9) 

Then define the energy-consistency score in Equation 10. 
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𝛿𝑘(𝑡) = exp(−Υ| 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐸𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 |)                                                                         (10) 

and adequate firing strength is given in Equation 11. 

𝛼�̃� = 𝛼𝑘. 𝑤𝑘. 𝛿𝑘(𝑡)                                                                                                                (11) 

This ensures that rules violating physical energy constraints are down-weighted. 

Physics-Based Optimization for Threshold Adaptation 

We optimize the decision threshold 𝜏  using a physics-informed cost function. Let: be 

labeled datasets: fuzzy system output. Define the loss function as 𝐷𝑛𝑜𝑟𝑚𝑎𝑙,𝐷𝑓𝑎𝑢𝑙𝑡 be labeled as 

datasets 𝑦∗(𝑡; 𝜃)𝑓𝑢𝑧𝑧𝑦 𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑢𝑡𝑝𝑢𝑡. 

Define the loss function in Equation 12, 

ℒ(𝜃, 𝜏) = ∑ (𝑦∗(𝑡; 𝜃) − 𝑦𝑡𝑟𝑢𝑒(𝑡))2 + λ ∑ |𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) − 𝐸𝑝ℎ𝑦𝑠(𝑡)|𝑡𝑡𝜖𝐷                                

(12) 

We apply a gradient-free optimiser, Particle Swarm Optimisation (PSO), to minimise 

ℒ—the position of a particle in PSO in Equations 13 and 14. 

𝜃1
𝑡+1 =  𝜃1

𝑡 + 𝑣1
𝑡                                                                                                                     (13) 

𝑣1
𝑡+1 = 𝑤𝑣1

𝑡 + 𝑐1𝑟1(𝑝𝑖 − 𝜃𝑖
𝑡) + 𝑐2𝑟2(𝑔 − 𝜃1

𝑡))                                                                    (14) 

where inertia 𝜔,  personal best 𝑝𝑖, and global best g. 

𝑟1, 𝑟2~𝒰(0,1)                                                                                                                         (15) 

Energy-Aware Rule Reduction via Multi-Objective Optimization 

To prune fuzzy rules while preserving accuracy and physical consistency. Define 

objectives: 

1. Classification loss 𝑓1(𝑅) 

2. Rule count 𝑓2(𝑅) = |𝑅| 

3. Violation of physics 𝑓3(𝑅) = ∑ (1 − 𝛿𝑘)𝑘∈𝑟  

Formulate as a multi-objective optimization using Equation 16. 

𝑚𝑖𝑛𝑅⊆𝑅𝑓𝑢𝑙𝑙
(𝑓1(𝑅), 𝑓2(𝑅), 𝑓3(𝑅), )                                                                                         (16) 

Time-Windowed Anomaly Scoring Using Dynamic System Signatures 

Define a signature function over a time window 𝜔 Equation 17. 

𝑆(𝑡) =
1

𝜔
∑ 𝑦∗(𝑡 − 𝑖)𝜔−1

𝑖=0                                                                                                       (17) 

Then, compute anomaly score index (ASI) in Equation 18. 

𝐴𝑆𝐼(𝑡) =
𝑆(𝑡)

max 𝑆
 . 𝛿𝑒𝑛𝑒𝑟𝑔𝑦(𝑡)                                                                                                  (18) 

This index integrates fuzzy output and energy anomaly, with higher values indicating 

critical machine health issues. 
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Final Output 

• The resulting system combines: 

• Fuzzy knowledge-based inference, 

• Real-time physics consistency checks, 

• Adaptive rule tuning, Energy-aware anomaly scoring, 

• Optimization-driven threshold calibration. 

Such a hybrid system aligns with digital twin architectures in smart manufacturing and 

cyber-physical systems (CPS), providing accurate, explainable, and physically consistent 

real-time anomaly detection. 

4. Experimental Analysis 

The experimental testbed comprises a 4-axis vertical machining center equipped with 

integrated sensors for vibration (piezoelectric accelerometers at 3 kHz), temperature (RTDs), 

spindle load (Hall sensors), and acoustic emissions (ultrasonic microphones). Data were logged 

using a National Instruments DAQ with a sampling rate of 5 kHz per channel and processed in 

real time using a MATLAB-Simulink interface integrated with FLEES [22].  

The Bosch CNC Vibration Dataset comprises tri-axial acceleration signals collected from three 

industrial CNC machines across 15 machining processes. Data were gathered over six semi-

annual timeframes using Bosch CISS sensors at a sampling rate of 2 kHz, producing high-

resolution vibration profiles in the X, Y, and Z directions. Each process instance is stored in 

.h5 format and labeled as “good” or “bad” to facilitate anomaly detection tasks. With over 270 

labeled process folders, this dataset supports time-series analysis, cross-process generalization, 

and model scalability assessments [22]. Its structured organization and included loading 

utilities make it ideal for developing fuzzy rule-based expert systems for real-time anomaly 

detection—the dataset description is given in Table 2. 

Table 2. Dataset Description 

Attribute Description 

Dataset Name Bosch CNC Vibration Dataset 

Machines 3 (M01, M02, M03) 

Processes 15 processes per machine (OP00 to OP14) 

Timeframes 6 (Oct 2018 – Aug 2021, semi-annual) 

Sensor Used Bosch CISS tri-axial accelerometer 

Sampling Rate 2 kHz (2000 samples/second) 

Data Format H5 files storing (n_samples, 3) array for X, Y, Z axes 
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Labels ‘good’ (normal) and ‘bad’ (anomalous) 

License CC-BY-4.0 (data), BSD-3-Clause (code) 

Tools Provided Python 3.11 scripts and visualization notebooks 

In evaluating anomaly detection systems, such as the proposed Fuzzy Logic-Enhanced 

Expert System (FLEES), several performance metrics are used to quantify the accuracy, 

reliability, and responsiveness of the model. Accuracy (ACC) refers to the proportion of 

correctly classified instances—both normal and anomalous—out of the total instances. It 

provides an overall indication of how well the system distinguishes between faulty and non-

faulty conditions. However, accuracy alone may be misleading in imbalanced datasets; thus, 

additional metrics are essential for a comprehensive assessment. 

The sensitivity (SE), also known as the recall or true positive rate, indicates the actual 

anomalies that are detected correctly by the system. The presence of high sensitivity ensures 

that the majority of actual faults will be identified, which is paramount in safety-sensitive CNC 

applications. Specificity (SP), in turn, refers to the system's ability to accurately identify normal 

circumstances (true negatives) accurately, thereby avoiding false alarms that could halt the 

production process. 

Precision (P) is the number of good (true) anomalies divided by the number of 

anomalies we predict. It reflects the trust in the system's alerts, which ensures high accuracy 

and reduces unnecessary interventions. F1 balances precision and sensitivity using its harmonic 

mean, thereby providing a single measure that weighs both false positives and false negatives. 

Inference Time (IT) considers the time it takes for the system to process input data and 

produce a decision. Having an inference time of less than 200 ms in real-time applications is 

crucial, as in CNC machine monitoring, we want to have the opportunity to correct ourselves 

and present results on time. Lastly, the Receiver Operating Characteristic (ROC) curve can be 

used to determine the Area Under the Curve (AUC), which provides a threshold-free analysis 

of the classification performance. AUC is the model's ability to distinguish between normal 

and anomalous states at various decision limits, and higher numbers near 1.0 indicate better 

performance. All these measures indeed guarantee that not only is the system accurate, but also 

quick, consistent, and viable to implement in an industrial setting. Auth
ors
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Figure 1. Tri-axial Vibration Signal 

Figure 1 illustrates the vibration data captured along the X, Y, and Z axes of a CNC 

milling machine using a tri-axial Bosch CISS accelerometer. The signal is sampled at 2 kHz, 

demonstrating the high-frequency vibrational characteristics inherent in machining operations. 

The X-axis typically corresponds to the feed direction, the Y-axis to cross-feed, and the Z-axis 

to spindle motion. The plot shows apparent amplitude variation across axes, highlighting 

directional dependencies of machine-induced oscillations. Notably, the Z-axis tends to display 

higher peak amplitudes due to tool-spindle interaction, making it more susceptible to anomaly 

detection. 

 

Figure 2. Good vs Anomalous Vibration Signal (X-axis) 

Figure 2 presents a comparative view of normal (good) and anomalous (bad) vibration 

signals along the X-axis. The normal signal exhibits periodic, low-amplitude sinusoidal 

patterns, indicating consistent machine operation. In contrast, the anomalous signal is 

superimposed with stochastic, high-amplitude fluctuations and irregular frequency content, 

reflecting underlying mechanical faults such as tool wear, imbalance, or misalignment. These 
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deviations serve as critical indicators in the classification process and are easily discernible, 

even with low-complexity models, due to their distinct statistical behavior. 

 

 

 

 

 

 

 

Figure 3. Feature Importance Plot 

Figure 3 displays the ranked importance of input features extracted from the vibration 

signals using signal processing and statistical metrics. Standard features include RMS (Root 

Mean Square), Peak-to-Peak, Kurtosis, Skewness, and Frequency-Domain Entropy. In this 

plot, RMS, Peak Amplitude, and Spectral Kurtosis contribute the most to model performance, 

particularly in anomaly differentiation. The feature importance was computed using a 

permutation-based method with the trained classifier (FLEES), highlighting how specific 

descriptors dominate predictive decision-making. This analysis validates the choice of hybrid 

time-frequency domain features in enhancing detection accuracy. 

Table 3. Comparison of Performance 

Technique ACC (%) SE (%) SP (%) F1 (%) AUC IT (ms) 

SVM 91.2 89.7 92.4 90.1 0.911 230 

LSTM 94.1 92.3 95.5 93.1 0.946 410 
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Plain Fuzzy 

System 
93.6 90.9 95.2 92 0.935 190 

FLEES 

(Proposed 

Model) 

96.7 95.3 97.9 96.1 0.973 180 

Table 3 compares the proposed FLEES model with baseline techniques. FLEES 

significantly outperforms others with 96.7% accuracy, 95.3% sensitivity (true positive rate), 

and 97.9% specificity (true negative rate). The Area Under the Curve (AUC) value of 0.973 

indicates high discriminatory power, and the inference time (IT) of 180 ms confirms its 

suitability for real-time anomaly detection. While LSTM achieves competitive results, its 

higher latency and computational demand make it less favorable for deployment in constrained 

environments. 

 

Figure 4. Model Performance Comparison (Accuracy, Precision, F1-Score) 

This bar chart visually compares Accuracy, Precision, and F1-Score across the four techniques. 

The FLEES model shows superior performance in all three metrics, closely followed by LSTM. 

The advantage of FLEES lies in its rule-based explainability, combined with fuzzy logic 

adaptability, which enables it to handle ambiguous signals more effectively than traditional 

models—the SVM model trails in F1-score, indicating lesser robustness in handling 

imbalanced classes or borderline cases. 
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Figure 5. Model Performance Comparison  

Figure 5 presents a three-metric comparison involving Sensitivity (SE), Specificity 

(SP), and Inference Time (IT). The FLEES system yields the highest SE and SP values, 

reaffirming its reliability in correctly identifying both faulty and healthy states. Furthermore, 

its lowest inference time (180 ms) demonstrates computational efficiency, which is essential 

for edge deployments in real-time CNC monitoring systems. While the Plain Fuzzy System is 

faster than LSTM, it sacrifices marginal sensitivity, justifying the proposed model’s hybrid 

enhancements. 
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Figure 6. ROC Curve (AUC for model performance) 

The ROC curve compares the true positive rate against the False Positive Rate (FPR) 

for all evaluated models. FLEES maintains the highest curve with an AUC of 0.973, indicating 

superior classification capability. The LSTM model’s curve is slightly lower but still robust, 

suggesting high reliability but increased complexity. SVM and the plain fuzzy system exhibit 

lower curves, indicating weaker generalization under varying anomaly profiles. This figure 

visually affirms the diagnostic strength of the FLEES model. 
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Figure 7. FFT of Vibration Signal (simulated X-axis vibration) 

Figure 7 displays the Fast Fourier Transform (FFT) of a typical X-axis vibration signal 

from the CNC system. The spectrum reveals dominant frequency components in the range of 

50–150 Hz, associated with spindle speed and tool frequency harmonics. In anomalous states, 

broadband noise and higher-frequency peaks emerge, indicative of mechanical looseness or 

bearing faults. The presence of such spectral distortions justifies the use of frequency-domain 

features in the feature engineering process and underscores the importance of spectral entropy 

and kurtosis in fault diagnosis. 

5. Conclusion and Future Work 

This study presented a novel Fuzzy Logic-Enhanced Expert System (FLEES) designed 

for real-time anomaly detection in CNC machines. By integrating fuzzy reasoning with 

physics-informed rule modulation and PSO-based optimization, the system successfully 

addresses the challenges of uncertainty, nonlinearity, and interpretability in industrial 

diagnostics. The model achieved superior classification performance with 96.7% accuracy and 

an inference latency of under 200 ms. Unlike black-box models, FLEES provides explainable 

rule-based outputs and integrates domain-specific constraints such as vibration energy and 

thermal consistency. The system was extensively validated using real-world sensor datasets 

under diverse operational and fault scenarios. Results indicate significant improvements over 

conventional machine learning and fuzzy-only approaches. The proposed architecture 

demonstrates promise for deployment in predictive maintenance, condition monitoring, and 

digital twin frameworks in smart factories. 

Future extensions will explore the integration of reinforcement learning for adaptive 

rule evolution, the incorporation of edge computing for decentralized monitoring, and testing 

under additional fault modes, such as axis misalignment and chatter instability. Furthermore, 

hybrid neuro-fuzzy extensions may enhance generalizability across different machine types 

and manufacturing conditions. 
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