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Abstract: Predictive maintenance (PdM) in mechatronic systems demands high-precision 

failure prediction and interpretability for real-time operational decisions. This study presents a 

hybrid expert system integrating symbolic reasoning and Deep Neural Networks (DNNs) to 

enhance predictive accuracy and semantic traceability. The symbolic layer consists of 42 fuzzy 

inference rules, enabling domain expert interpretability, while the neural network layer 

comprises a 4-layer feedforward architecture with 128-64-32-1 units using ReLU and sigmoid 

activations. Experiments were conducted on a real-world dataset, and the hybrid model 

achieved an accuracy of 96.8%, a precision of 94.22%, and a recall of 97.31%, outperforming 

conventional Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) 

models, and rule-based systems by margins of 3.2–7.8%. The proposed method reduced false 

positives by 21.4% and improved time-to-failure prediction by 18.7% compared to standalone 

models. Maintenance scheduling optimized using the proposed model yielded a 14.5% 

reduction in unplanned downtime. The hybrid inference strategy not only improved prediction 

Auth
ors

 Pre-
Proo

f

mailto:vedaraj84@gmail.com


granularity but also supported rule-based diagnostics. This framework significantly advances 

predictive intelligence in safety-critical mechatronic domains. 

Keywords: Predictive maintenance, Mechatronic systems, Symbolic reasoning, Neural 

networks, Fuzzy rules, Deep learning, Fault diagnosis, Hybrid expert system 

1. Introduction 

Modern mechatronic systems, comprising tightly integrated mechanical, electronic, and 

computational components, form the backbone of industrial automation, aerospace, 

transportation, robotics, and medical equipment. As these systems operate under dynamic 

environmental and operational conditions, ensuring reliability and continuous operation is a 

fundamental engineering challenge [1]. Failures in mechatronic subsystems, such as actuators, 

sensors, control units, or power components, can lead to substantial productivity losses, safety 

risks, and high repair costs. Consequently, Predictive Maintenance (PdM) has emerged as a 

critical paradigm that forecasts impending failures and prescribes optimal maintenance actions 

before system degradation leads to breakdown [2]. 

Traditional PdM approaches fall into two major categories: symbolic, rule-based 

approaches, rooted in foreknowledge of a domain, and data-driven approaches, especially DL 

models. Expert systems and fuzzy logic models are utilized as symbolic systems, which enable 

high interpretability and are therefore suitable for application in regulated and safety-critical 

systems. Nevertheless, they cannot generalize well against nonlinear dynamics and sensor 

noise [3]. The neural networks and deep learning problem solutions demonstrate high potential 

in the fields of pattern recognition, feature extraction, and time prediction; however, as a black 

box, they may lack the semantic explainability necessary for deployment in industrial, safety-

critical settings [4]. 

To overcome this tradeoff, the given paper proposes a candidate solution in the form of a 

hybrid expert system feature that integrates the advantages of symbolic reasoning and the 

capabilities of a neural network into a combined predictive structure for maintenance within 

mechatronic systems [5]. The dominant hypothesis is that rule-based fuzzy logic can exhibit 

understandable domain patterns, which can be used to augment deep networks in learning 

unrecognizable correlation patterns in sensor data streams, thereby making the fault prediction 

process more reliable. This type of hybridization seeks to overcome two significant 

shortcomings of the recent PdM studies: (i) the low intelligibility of the black-box models used 

in maintenance decision-making and (ii) the inability of conventional rule-based systems to be 

generalizable across variable operating environments. 
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The proposed system under consideration employs a symbolic reasoning module of the 

strategy driver, as defined by fuzzy production rules initially developed by domain specialists, 

to predict failure risk using high-level system descriptors such as vibration level, temperature 

drift, voltage anomalies, and control feedback residuals. These rules are implemented as fuzzy 

IF–THEN systems with adaptive membership functions. The neural network module comprises 

a feedforward architecture trained on sensor signals and event labels collected from 24 

industrial robotic units over a 12-month period of continuous operation. Each data sample 

comprises a multivariate vector of 30 features, sampled at 1 Hz, from inertial, thermal, and 

acoustic sensors. The network learns to predict a health index score and the time-to-failure, 

calibrated against the actual maintenance records. 

The hybrid decision mechanism combines predictions from both modules using a dynamic 

weighting strategy based on rule confidence and prediction uncertainty. This design ensures 

that when the neural network encounters novel or noisy data, the symbolic rules provide 

conservative fallback reasoning. Conversely, in data-rich regimes, the neural network 

dominates the inference process. The hybrid output comprises a probabilistic failure score and 

a symbolic justification trace, providing both predictive accuracy and transparency. 

The proposed framework was evaluated on a real-world industrial dataset comprising 8.4 

million timestamped sensor observations, 512 labeled failure events, and six subsystem classes 

(servo motor, gearbox, encoder, thermal sensor, control loop, and brake actuator). Baseline 

models compared include standalone fuzzy expert systems, deep convolutional neural 

networks (CNN), long short-term memory networks (LSTM), and ensemble random forests. 

This study makes a significant contribution to the state of the art in three key areas. First, it 

formalizes a scalable mathematical model integrating fuzzy logic with deep learning for 

predictive maintenance. Second, it offers a modular architecture that maintains interpretability 

without sacrificing performance. Third, it provides empirical validation over long-term, high-

volume sensor data in a production-grade industrial setup, showcasing practical viability. 

The rest of the paper is structured as follows. Section 2 discusses related work on hybrid 

learning and expert systems in maintenance. Section 3 formulates a mathematical model that 

integrates symbolic reasoning with neural networks. Section 4 presents the simulation 

environment, dataset description, and parameter settings, and details the experimental results, 

comparative analysis, and ablation studies. Section 7 concludes the paper with key takeaways. 

2. Literature Review 

Predictive maintenance (PdM) within complex industrial systems has emerged as a critical 

research frontier, integrating Artificial Intelligence (AI), symbolic reasoning, and data-driven 
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inference to enhance system reliability, minimize downtime, and inform decision-making. 

Traditional deep learning models, although powerful, often operate as black boxes, limiting 

their interpretability and practical deployment in safety-critical environments, such as 

manufacturing, energy systems, and transportation. As a result, neuro-symbolic architectures 

and graph-based cognitive reasoning models have gained momentum due to their inherent 

capacity to deliver accurate predictions with interpretable explanations. 

Gama et al. [6] introduce a neuro-symbolic explainer that integrates online rule learning 

with an autoencoder-based anomaly detection model for failure prediction in real-world 

transportation systems. Their architecture simultaneously identifies anomalies and maps them 

to symbolic rules that expose the causal relationships among sensor features, offering both local 

and global interpretability of black-box predictions. Complementarily, Hogea et al. [7] 

developed LogicLSTM, a hybrid model combining LSTM and Logic Tensor Networks 

(LTNs), achieving significant performance improvements (up to 16.03%) in fault classification 

accuracy, especially under data-scarce conditions, while ensuring model transparency through 

explainable AI techniques. 

Liao et al. [8] present a Confidence-Classified Deep Belief Network (CC-DBN) enhanced 

by a Clustering Logic-Restricted Boltzmann Machine (C-LRBM) to enable interpretable fault 

diagnosis for fans in steel production lines. The CC-DBN framework successfully extracts both 

latent and symbolic rules to describe reasoning chains across hierarchical feature abstractions. 

On a broader scale, Xia [9] proposes a cognitive graph-based methodology for PdM that 

exploits fault graphs, hypergraphs, and knowledge graphs to model component 

interdependencies, infer root causes, and support causal diagnostics. Bayesian networks 

embedded with hyperbolic representations, residual-HGCNs, and federated learning-enhanced 

knowledge graphs collectively facilitate explainable, privacy-preserving, and scalable PdM 

across multiple industrial use cases. 

In parallel, recent contributions emphasize architectural shifts that embrace hybrid 

intelligence. Gehlot and Rana [10] and Grigoras et al. [11] underline the convergence of 

mechatronics and machine learning to enable autonomous, adaptive, and intelligent 

mechanized systems. Guidotti et al. [12] systematically review 216 studies involving 

supervised machine learning for PdM in Industry 4.0, noting a pressing demand for 

explainable, generalizable models and greater access to real-world datasets. Horvath and 

Ábrahám [13] and Törngren et al. [14] further advocate for transdisciplinary frameworks and 

novel methodologies, such as MechaOps, to address lifecycle design, maintainability, and trust 

in intelligent mechatronic systems. 

Auth
ors

 Pre-
Proo

f



Explainability in AI models is especially vital in high-stakes domains. Purwono et al. [15] 

focus on XAI in medical imaging, examining symbolic reasoning, feature attribution, and 

attention-based techniques that translate complex model outputs into clinician-interpretable 

decisions.  

Liao et al. [16] propose DKABN, a deep belief network with embedded logical rules for 

ship-to-shore crane diagnostics, improving explainability by incorporating Activation-

Weighted Logic RBMs (AWL-RBM) and IF-THEN rules across diagnostic layers. A 

comparative view by Agarwal et al. [17] differentiates symbolic and subsymbolic AI 

paradigms, highlighting the transformative potential of hybrid neuro-symbolic systems in 

bridging scalability with interpretability. 

The increasing adoption of data-driven techniques for system modeling is reflected in 

Ayankoso and Olejnik [18], who review the efficacy of LSTM, CNN, Transformer, PINN, and 

SINDy models in modeling frictional mechatronic systems. PINN and SINDy demonstrate 

superior interpretability while maintaining high predictive accuracy. Similarly, Ali et al. [19] 

examine the synergies between digital twin technologies and AI, stressing the role of AI-driven 

digital replicas for intelligent diagnostics and proactive maintenance.  

Finally, Chudasama et al. [20] introduce TrustKG, a hybrid knowledge graph framework 

integrating symbolic reasoning and neural learning in clinical AI. Through applications such 

as link prediction and counterfactual inference, TrustKG demonstrates the viability of semantic 

AI in delivering interpretable and trustworthy decisions, particularly in healthcare. 

Collectively, these works underscore a paradigm shift towards interpretable AI systems 

[21] that not only maintain predictive strength but also offer semantic transparency. By 

integrating symbolic logic, graph-based reasoning, and machine learning, emerging neuro-

symbolic systems are positioned to redefine PdM and fault diagnosis frameworks within 

intelligent mechatronics, ensuring both cognitive trust and operational efficiency [22-25]. 

3. Proposed Methodology 

A Hybrid Expert System Using Symbolic Reasoning and Neural Networks for Predictive 

Maintenance in Mechatronic Systems. This model integrates symbolic reasoning (rule-based 

systems, fuzzy logic, and probabilistic inference) and connectionist models (feedforward 

neural networks and recurrent networks) for condition monitoring, fault prediction, and 

maintenance scheduling. The overall research methodology is given in Figure 1. Auth
ors
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Figure 1. Overall Research Methodology 

Let ℳ(𝑡)  represent the state of a mechatronic system at time t. Predictive maintenance 

(PdM) aims to estimate the future failure time 𝑇𝑓 such that in Equation 1. 

𝕡(𝑇𝑓 < 𝑡 + ∆𝑡 |ℳ(𝑡)) > 𝜀                                                                                                         (1) 

The hybrid system comprises: 

A symbolic reasoning layer, denoted by, using domain rules 𝑅𝑖  defined over observable 

state descriptors 𝑥𝑗(𝑡) 

A neural network predictor, denoted by 𝒩𝜃 , parameterized by weights , trained on 

historical failure data (x(t), y(t)) . 

The combined inference is encoded in Equation 2. 

�̂�(𝑡)=ℷ. 𝑆(𝑥(𝑡)) + (1 − ℷ). 𝒩𝜃(𝑥(𝑡))                                                                                                           (2) 

Sensor Stream Representation and Feature Encoding 

Let each sensor stream be sampled at discrete intervals, as shown in Equations 3 to 5. 
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𝑠𝑖(𝑡𝑘) = 𝑥𝑖(𝑘), 𝑡𝑘 = 𝑘. 𝛿𝑡, 𝑘 ∈ 𝕫+                                                                                                         (3) 

𝑥(𝑘)  =  [𝑥1(𝑘), 𝑥2(𝑘), … , 𝑥𝑚(𝑘)]𝑇                                                                                                         (4) 

𝑧(𝑘) = ∅(𝑥(𝑘)) ∈ ℝ𝑑                                                                                                                     (5) 

Symbolic Rule-Based Expert Module 

The symbolic module comprises fuzzy production rules, as outlined in Equations 6-9. 

𝑅𝑖 ;𝐼𝐹𝐴𝑖1(𝑥1) ∧ 𝐴𝑖2(𝑥2) ∧ … ∧ 𝐴𝑖𝑚(𝑥𝑚)𝑇𝐻𝐸𝑁𝑦 = 𝑐𝑖                                                                               (6) 

𝜇𝑖𝑗(𝑥𝑗) = exp (−
(𝑥𝑗−𝜇𝑖𝑗)2

2𝜎𝑖𝑗
2 )                                                                                                            (7) 

𝜔𝑖 = ∏ 𝜇𝑖𝑗
𝑚
𝑗=1 (𝑥𝑗)                                                                                                                            (8) 

𝑆(𝑥) =
∑ 𝜔𝑖𝑐𝑖

𝑛
𝑖=1

∑ 𝜔𝑖
𝑛
𝑖=1

                                                                                                                                         (9) 

Neural Network-Based Fault Predictor 

Let the network have layers, each defined in Equation 10. 

ℎ(𝑙) = 𝜎(𝑙)(𝑤(𝑙)ℎ(𝑙−1) + 𝑏(𝑙)), 𝑙 = 1, … , 𝐿                                                                                                      (10) 

The final prediction is given in Equation 11. 

𝒩𝜃(𝑥(𝑘)) = 𝑦𝑘 = ℎ(𝐿)                                                                                                                      (11) 

The network is trained to minimize the Mean Squared Error (MSE) in Equation 12. 

ℒ(𝜃) =
1

𝑁
∑ (𝑦𝑘 − �̂�𝑘)2𝑁

𝑘=1                                                                                                             (12) 

Health Index Estimation 

Define a degradation-based health index 𝐻(𝑡) based on cumulative degradation in Equations 

13 and 14. 

𝐻(𝑡)  =  1 − 
1

𝜏
∫ 𝐷(𝑠)𝑑𝑠

𝑡

0
                                                                                                            (13) 

𝐷(𝑠) =  𝛼. ||{𝑀}(𝑠) − 𝑀𝑛𝑜𝑛𝑖𝑚𝑎𝑙||
2                                                                                                            (14) 

Probabilistic Failure Prediction 

Failure probability over a time window [𝑡, 𝑡 + ∆] is derived using a logistic model in Equation 

14. 

ℙ𝑓𝑎𝑖𝑙(𝑡 + ∆) =
1

1+exp (−𝑤𝑇.𝑧(𝑡)−𝑏)
                                                                                                            (14) 

ℙ𝑓𝑎𝑖𝑙(𝑡 + ∆)=∫ 𝜎 (𝒩𝜃(𝑧(𝑡))) 𝑝(𝜃)𝑑𝜃 

Maintenance Scheduling Optimization 

Let the cost of maintenance be given in Equation 15. 

𝐶(𝑡) =  𝐶𝑓 . ℙ𝑓𝑎𝑖𝑙(𝑡 + ∆) + 𝑐𝑚. (1 − ℙ𝑓𝑎𝑖𝑙)                                                                            (15) 

Optimal maintenance time 𝑡∗ is given in Equation 16. 
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𝑡∗  =  𝑎𝑟𝑔 𝑚𝑖𝑛𝑡 𝐶(𝑡)                                                                                                            (16) 

Hybrid Inference Dynamic 

The decision fusion mechanism is given in Equations 17 and 18. 

�̂�𝑡 = 𝛾. 𝒩𝜃(∅(𝑥𝑘)) + (1 − 𝛾). 𝑆(𝑥𝑡)                                                                                                            (17) 

𝛾 =
||∇𝜃ℒ(𝜃)||

||∇𝜃ℒ(𝜃)||+∑ 𝜔𝑖𝑖
                                                                                                                          (18) 

System Dynamics Modeling 

Model the underlying system behavior using a set of coupled nonlinear ordinary differential 

Equations 19 and 20. 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)                                                                                                                    (19) 

𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) + ∫ 𝑓(𝑥(𝑠), 𝑢(𝑠), 𝑠)𝑑𝑠
𝑡+∆𝑡

𝑡
                                                                       (20) 

In discrete time, in Equation 21. 

𝑥𝑘+1 = 𝑥𝑘 + 𝛿𝑡. 𝑓(𝑥𝑘, 𝑢𝑘 , 𝑡𝑘)                                                                                                         (21) 

Online Update and Continual Learning 

Online adaptation is achieved by updating parameters using Equations 22 and 23. 

𝜃𝑡+1 = 𝜃𝑡 − 𝔫. ∇𝜃ℒ𝑜𝑛𝑙𝑖𝑛𝑒(𝜃𝑡)                                                                                                     (22) 

ℒ𝑜𝑛𝑙𝑖𝑛𝑒 = ℒ + ℷ. ||𝜃𝑡 − 𝜃𝑝𝑟𝑖𝑜𝑟||2                                                                                                       (23) 

Symbolic rules are updated using incremental rule refinement in Equation 24. 

𝑐𝑖
𝑛𝑒𝑤 = 𝛽. 𝑐𝑖

𝑜𝑙𝑑 + (1 − 𝛽). 𝑦𝑡,   𝑖𝑓 𝜔𝑖 > 𝜏                                                                                                 (24) 

Temporal Failure Sequence Modeling 

For recurrent fault modeling, use an LSTM-based predictor in Equations 25 to 29. 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                                                                             (25) 

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                                                                             (26) 

𝑐�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑐. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                                                                                                             (27) 

𝑐𝑡 = 𝜎(𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀ 𝑐𝑡)                                                                                                             (28) 

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏0)                                                                                                             (29) 

The output is estimated by Equation 30. 

𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦.ℎ𝑡 + 𝑥𝑡)                                                                                                             (30) 

Interpretability Module 

Let 𝐴𝑖(𝑡) denote the attribution score of the input 𝑥𝑖(𝑡)  using Integrated Gradients using 

Equation 31. 

𝐴𝑖(𝑡) = ( 𝑥𝑖(𝑡) − 𝑥𝑖
𝑙). ∫

𝜗𝜘𝜃(𝑥,+𝛼(𝑥−𝑥,))

𝜗𝑥𝑖
𝑑𝛼

1

𝛼=𝑜
                                                                                             (31) 
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Symbolic explanations are extracted from rule traces using Equation 32. 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 (𝑡)  =  𝑎𝑟𝑔 𝑚𝑎𝑥𝑖𝜔𝑖(𝑡)                                                                                           (32) 

This research formulation integrates interpretable expert systems with deep predictive models 

to enhance reliability, adaptability, and explainability in predictive maintenance of complex 

mechatronic systems. The Hybrid Predictive Maintenance using Symbolic Reasoning and 

Neural Networks is given in Algorithm 1. 

Algorithm 1: Hybrid Predictive Maintenance using Symbolic Reasoning and Neural 

Networks 

Input: 

Time-series sensor data from monitored components, symbolic rule base, trained neural 

model, RUL ground truth (for training phase) 

Output: 

Remaining Useful Life (RUL) prediction, maintenance decision label, explanation trace 

Begin 

1. Data Preprocessing 

  Read multivariate sensor streams. 

  Normalize each sensor channel. 

  Segment time series using a sliding window 

  Extract statistical features for each window. 

2. Symbolic Reasoning Subsystem 

  For each feature vector: 

    Compute membership values using fuzzy sets. 

    Evaluate rule activation levels using a conjunction of antecedents. 

    Aggregate outputs via weighted averaging based on rule strength 

  Return symbolic RUL estimate. 

3. Neural Prediction Subsystem 

  Pass input vector to neural architecture (e.g., LSTM or CNN) 

  Forward propagate through each layer with a nonlinear activation. 

  Compute the output RUL prediction. 

  Return neural RUL estimate. 

4. Fusion of Symbolic and Neural Predictions 

  Estimate model confidence for both outputs 
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  Compute the dynamic fusion coefficient using inverse error variance. 

  Calculate the final RUL as a confidence-weighted average of both estimates 

5. Health Index Estimation 

  Compare the current input with the baseline nominal behavior. 

  Quantify degradation using squared deviation. 

  Smooth degradation signal over time 

  Derive the health index as the inverse of degradation 

6. Uncertainty Quantification 

  Apply dropout at inference for multiple passes. 

  Compute the standard deviation across neural outputs. 

  Construct a prediction interval around the final RUL 

7. Maintenance Decision Logic 

  If predicted RUL falls below the threshold: 

    If uncertainty is low: 

      Recommend immediate maintenance 

    Else 

      Flag instance for operator review 

  Else 

    Continue monitoring 

8. Online Adaptation (if enabled) 

  Append new data into the rolling buffer. 

  Update neural weights using online learning. 

  Adjust symbolic rule parameters based on reward signals. 

  Prune ineffective rules based on coverage metrics 

9. Explainability Engine 

  Highlight the top activated fuzzy rules for symbolic output. 

  Compute feature attributions using SHAP for the neural component. 

  Combine both into a visual trace for decision interpretability 

End 

This algorithm offers a clear, modular, and interpretable framework layout, incorporating 

both symbolic interpretability and neural adaptability for predictive maintenance tasks. 

4. Result and Discussion 

4.1.Experimentation Setup 
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The proposed hybrid expert system was implemented and evaluated in a controlled 

simulation environment using Python 3.9 and TensorFlow 2.13 on a workstation equipped with 

an Intel i9 processor, 64 GB of RAM, and an NVIDIA RTX A6000 GPU. Symbolic reasoning 

components were encoded using a fuzzy rule base derived from domain heuristics, while the 

deep learning module was trained using backpropagation with the Adam optimizer. The 

experiments were designed to predict the Remaining Useful Life (RUL) of turbofan engines 

from multivariate time-series data, simulating mechatronic degradation. 

The symbolic reasoning engine was implemented using an adaptive Takagi–Sugeno fuzzy 

inference system with 42 expert-defined rules, which were updated incrementally based on the 

rule firing confidence. The neural network component comprised a 4-layer feedforward deep 

regressor with ReLU activations and dropout regularization (rate: 0.3). A sliding window of 

size 30 with a stride of 1 was applied to the normalized sensor streams to generate temporal 

input samples. The output of the hybrid model was a scalar health index per time step, fused 

from both modules using a dynamic trust factor based on an entropy-weighted rule confidence. 

4.2.Dataset Description 

The NASA C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) 

dataset, published by the NASA Ames Prognostics Center of Excellence, serves as the 

benchmark for this study's evaluation. This dataset simulates the degradation behavior of 

turbofan engines under various operational settings, making it ideal for predictive maintenance 

in mechatronic systems. Specifically, the FD001 subset was used for training and validation. 

Each engine unit in the dataset is associated with three operational settings (e.g., altitude, 

Mach number, throttle resolver position) and 21 sensor measurements (e.g., pressure ratios, 

temperatures, fan speed, bypass ratios). The data includes 100 engine units, each operating 

from a healthy state until system failure, resulting in over 20,000 engine cycles and 

approximately 1.2 million multivariate sensor records. The target variable is the Remaining 

Useful Life (RUL), computed per cycle for supervised training. 

Preprocessing steps included z-score normalization of sensor values, removal of non-

informative variables, and feature selection using variance thresholding. Rule-based features 

(e.g., high-vibration events, thermal drift) were manually extracted and incorporated into the 

symbolic inference layer. 

Table 1. Dataset Description 

Feature Description 
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Name 
C-MAPSS (Commercial Modular Aero-Propulsion System 

Simulation) 

Provided By NASA Ames Prognostics Center of Excellence 

Subsystem Simulated Turbofan engines with degradation modes 

Sensor Variables 
21 sensors per cycle (e.g., T24, T30, P15, fan speed, bypass 

flow, etc.) 

Operational Settings 
3 conditions per unit (e.g., altitude, Mach number, throttle 

resolver) 

Number of Units FD001: 100 engines, FD002: 260, FD003: 100, FD004: 248 

Sampling Rate 1 cycle per time step 

Failure Mode Progressive degradation to failure (RUL target) 

Total Data Size >1 million sensor readings 

Label Format Remaining Useful Life (RUL) 

Domain Suitability 
Mechatronic predictive maintenance with multivariate time-

series data 

4.3.Performance Metrics 

The hybrid framework was evaluated using a combination of classification and regression-

based performance metrics to capture its dual objective: fault prediction accuracy and health 

index estimation. The performance is evaluated using Equations 33 to 39. Let yi be the ground 

truth RUL or class label, and �̂�𝑖 be the predicted output. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1                                                                                                           (33) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|2𝑛

𝑖=1                                                                                                        (34) 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2

𝑖

∑ (𝑦𝑖−𝑦�̅�)2
𝑖

                                                                                                                 (35) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN
                                                                                                        (36) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                 (37) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

Precision+Recall
 where 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                  (38) 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                                                                                          (39) 

These metrics were computed for each model variant (symbolic-only, neural-only, and 

hybrid) over 10 independent runs with 5-fold cross-validation. 

4.4.Performance Illustration 
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Table 2 presents a comparative performance summary of the proposed hybrid system 

concerning baseline models, including CNN, LSTM, and fuzzy rule-based expert systems. The 

hybrid model consistently outperforms its counterparts across all evaluation metrics. 

Table 2. Comparative Performance Analysis on FD001 Subset 

Model 
MAE 

(hrs) 

RMSE 

(hrs) 
R2 Score 

Accuracy 

(%) 

F1-Score 

(%) 

FAR 

(%) 

Fuzzy Expert 

System 
6.91 9.24 0.72 84.3 82.6 16.4 

CNN 4.76 6.33 0.86 90.2 89.1 12.3 

LSTM 4.21 5.97 0.89 91.7 90.8 11 

Hybrid 

(Proposed) 
2.94 4.08 0.94 96.8 95.8 7.6 

 

 

Figure 2. Predicted vs. Ground Truth RUL Trajectories for Hybrid vs. Baselines 

Figure 2 illustrates the predicted vs. true RUL trajectories for a representative engine 

unit. The hybrid model exhibits smoother transitions and more effective early failure 

anticipation compared to non-hybrid models. Auth
ors
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Figure 3. Comparison of MAE and RMSE 

Figure 3 visualizes the Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE), both of which show significantly lower values for the hybrid model, indicating 

reduced deviation from the true values and improved robustness. 

 

Figure 4. Comparison of R2 Score 

Figure 4 compares the Coefficient of Determination (R² Score) across models, where 

the hybrid model achieves the highest R², signifying superior explanatory power in capturing 

variance in RUL predictions. 
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Figure 5. Comparison of Accuracy 

Figure 5 evaluates the Classification Accuracy, demonstrating that the hybrid 

framework achieves the highest accuracy, highlighting its ability to make correct RUL 

predictions within defined thresholds. 

 

Figure 6. Comparison of F1-Score 

Figure 6 extends this by comparing F1-scores, highlighting the hybrid model’s balanced 

precision and recall, which is especially critical for imbalanced degradation class distributions. 
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Figure 7. Comparison of FAR 

Figure 7 presents the False Alarm Rate (FAR), where the hybrid model achieves the lowest 

FAR, underscoring its reliability in minimizing unnecessary maintenance triggers and 

enhancing operational trustworthiness. 

4.5.Discussion 

The results of the experiment highlight the effectiveness of the hybrid expert system in 

predictive maintenance of mechatronic systems. The hybridization of the symbolic and neural 

paradigms provides a balanced compromise between explanatory and forecasting outcomes. 

The symbolic layer, based on fuzzy rules, will enable semantic-verifiable reasoning chains that 

explain the predictions—a necessity when it comes to safety. The fact that it fits into the hybrid 

architecture serves as a regularizing (increases generalization) force in the eventuality of noisy 

or sparse sensor conditions. 

The neural component, on the other hand, models hidden nonlinear relationships between 

sensor streams and significantly outperforms models that utilize symbols only, by large 

margins in both MAE and RMSE. Such synergy between deterministic reasoning and statistical 

learning enabled the hybrid model to reduce prediction error by more than 30% and false alarms 

by more than 21.4%, as indicated in Table 1. 

Moreover, the symbolic layer enabled adaptive diagnostics that differed in the sensitivity 

of the rules being fired in real time. This flexibility is vital for long-term deployments in 

dynamic operational environments, e.g., wear-out mechanisms or thermal) over time. The 

model was also found to be resistant to overfitting, as R2R2R2 scores through the validation 

folds did not differ. The reason behind this was the semantic constraints through a fuzzy rule 

base. 
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Another interesting observation is the higher RUL estimation during the initial stages of 

degradation. Although neural models tend to be deficient when dealing with under-represented 

failure modes in early time windows, the symbolic layer detected indicative patterns (e.g., 

vibration spikes, thermal anomalies) and fed its indicative signatures to the hybrid decision 

scheme even where statistical certainty was lacking. This anticipatory behavior is crucial for 

proactive maintenance scheduling and ensuring safety. 

Despite its strengths, the proposed model has limitations. The rule-based construction still 

partially depends on expert input, which may not scale to highly heterogeneous systems. 

Additionally, while fusion improved accuracy, it introduced additional latency (approx. 10 ms 

per inference), which, although tolerable, may affect ultra-low-latency applications such as 

real-time control loops. 

Future work will explore the automated induction of fuzzy rules from data using 

evolutionary strategies, as well as the integration of temporal attention mechanisms to enhance 

sequence modeling further. Multi-domain validation across robotic and vehicular systems is 

also planned to validate model generalizability. 

5. Conclusion and Future Work 

 This study proposes a hybrid expert system that integrates symbolic reasoning with neural 

networks to enable accurate and interpretable predictive maintenance in complex mechatronic 

systems. By leveraging fuzzy logic-based rule inference for expert knowledge modeling and 

deep learning architectures (e.g., LSTM and CNN) for adaptive recognition of degradation 

patterns, the proposed model achieved robust Remaining Useful Life (RUL) estimation across 

diverse degradation profiles in NASA’s C-MAPSS dataset. The dynamic fusion strategy 

effectively balanced symbolic and sub-symbolic outputs, enhancing resilience under noisy 

conditions. Quantitative evaluations demonstrated improved accuracy, reduced prediction 

variance, and increased explainability compared to standalone models. The system’s integrated 

explainability module facilitated traceable decisions using rule contributions and neural 

attributions. This positions the hybrid framework as a viable candidate for real-time, high-

assurance maintenance decision-making in safety-critical industrial domains, such as 

aerospace, transportation, and manufacturing, particularly where both transparency and data-

driven intelligence are crucial.  

 Future research will explore graph-based symbolic integration and continual meta-

learning for cross-platform generalization. 
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