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failure prediction and inte ili real-time operational decisions. This study presents a

ymbolic reasoning and Deep Neural Networks (DNNs) to

gnal Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM)
Is, and rule-based systems by margins of 3.2—7.8%. The proposed method reduced false
positives by 21.4% and improved time-to-failure prediction by 18.7% compared to standalone
models. Maintenance scheduling optimized using the proposed model yielded a 14.5%

reduction in unplanned downtime. The hybrid inference strategy not only improved prediction
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granularity but also supported rule-based diagnostics. This framework significantly advances
predictive intelligence in safety-critical mechatronic domains.
Keywords: Predictive maintenance, Mechatronic systems, Symbolic reasoning, Neural
networks, Fuzzy rules, Deep learning, Fault diagnosis, Hybrid expert system
1. Introduction

Modern mechatronic systems, comprising tightly integrated mechanical, electronic,

computational components, form the backbone of industrial automation, aergspa

environmental and operational conditions, ensuring reliability and continuo

transportation, robotics, and medical equipment. As these systems operate und @
PETNQ

fundamental engineering challenge [1]. Failures in mechatronic sub SUC actuators,

sensors, control units, or power components, can lead to substantid ity losSes, safety

risks, and high repair costs. Consequently, Predictive Maintenance A1) has emerged as a

critical paradigm that forecasts impending failures and prescribes (’nal aintenance actions

before system degradation leads to breakdown [2].

Traditional PdM approaches fall into two 0 teggiies: symbolic, rule-based

ata-driven approaches, especially DL

arning problem solutions demonstrate high potential
in the fields of pattern rec extraction, and time prediction; however, as a black
box, they may lack t aiN@a explainability necessary for deployment in industrial, safety-

critical settings [4].

ecognizable correlation patterns in sensor data streams, thereby making the fault prediction
process more reliable. This type of hybridization seeks to overcome two significant
shortcomings of the recent PAM studies: (i) the low intelligibility of the black-box models used
in maintenance decision-making and (ii) the inability of conventional rule-based systems to be

generalizable across variable operating environments.




The proposed system under consideration employs a symbolic reasoning module of the
strategy driver, as defined by fuzzy production rules initially developed by domain specialists,
to predict failure risk using high-level system descriptors such as vibration level, temperature
drift, voltage anomalies, and control feedback residuals. These rules are implemented as fuzzy
IF-THEN systems with adaptive membership functions. The neural network module comprises
a feedforward architecture trained on sensor signals and event labels collected from

industrial robotic units over a 12-month period of continuous operation. Each data sam

weighting strategy based on rule confidence and prediction uncertain®@This design ensures
that when the neural network encounters novel or noisy data, Vsym Olic rules provide
conservative fallback reasoning. Conversely, in data imes, the neural network
dominates the inference process. The hybrid output PNEKS a piPbabilistic failure score and

a symbolic justification trace, providing b ict ccuracy and transparency.

The proposed framework was evalua al-wor® industrial dataset comprising 8.4

million timestamped sensor observations, Labeled failure events, and six subsystem classes
(servo motor, gearbox, encoder, thermal sensoMpcontrol loop, and brake actuator). Baseline

models compared include stafdal uzzy expert systems, deep convolutional neural

networks (CNN), long shqglfterm me networks (LSTM), and ensemble random forests.

This study makes a sigsaaica¥@)contribution to the state of the art in three key areas. First, it

ing ¥ expert systems in maintenance. Section 3 formulates a mathematical model that
es symbolic reasoning with neural networks. Section 4 presents the simulation
environment, dataset description, and parameter settings, and details the experimental results,
comparative analysis, and ablation studies. Section 7 concludes the paper with key takeaways.
2. Literature Review

Predictive maintenance (PdM) within complex industrial systems has emerged as a critical

research frontier, integrating Artificial Intelligence (Al), symbolic reasoning, and data-driven



inference to enhance system reliability, minimize downtime, and inform decision-making.
Traditional deep learning models, although powerful, often operate as black boxes, limiting
their interpretability and practical deployment in safety-critical environments, such as
manufacturing, energy systems, and transportation. As a result, neuro-symbolic architectures
and graph-based cognitive reasoning models have gained momentum due to their inherent

capacity to deliver accurate predictions with interpretable explanations.

Gama et al. [6] introduce a neuro-symbolic explainer that integrates online rule leg
with an autoencoder-based anomaly detection model for failure prediction in o
transportation systems. Their architecture simultaneously identifies anomalie ) ,
to symbolic rules that expose the causal relationships among sensor feg ffeNQg both local

ogea €t al. [7]

Tensor Networks

and global interpretability of black-box predictions. Comple
developed LogicLSTM, a hybrid model combining LSTM and L%
(LTNSs), achieving significant performance improvements (up to lv/o) IWault classification
accuracy, especially under data-scarce conditions, while odel transparency through
explainable Al techniques.

Liao et al. [8] present a Confidence-C D@ Belief Network (CC-DBN) enhanced

ine (CRBM) to enable interpretable fault

by a Clustering Logic-Restricted Boltz
diagnosis for fans in steel production lines. CC-DBN framework successfully extracts both
latent and symbolic rules to describe reasoning Wains across hierarchical feature abstractions.

On a broader scale, Xia [9]
exploits fault graphs, and knowledge graphs to model component

interdependencies, i auses, and support causal diagnostics. Bayesian networks

lot and Rana [10] and Grigoras et al. [11] underline the convergence of
s and machine learning to enable autonomous, adaptive, and intelligent
1zed systems. Guidotti et al. [12] systematically review 216 studies involving
supervised machine learning for PdM in Industry 4.0, noting a pressing demand for
explainable, generalizable models and greater access to real-world datasets. Horvath and
Abraham [13] and Torngren et al. [14] further advocate for transdisciplinary frameworks and
novel methodologies, such as MechaOps, to address lifecycle design, maintainability, and trust

in intelligent mechatronic systems.



Explainability in Al models is especially vital in high-stakes domains. Purwono et al. [15]
focus on XAl in medical imaging, examining symbolic reasoning, feature attribution, and
attention-based techniques that translate complex model outputs into clinician-interpretable
decisions.

Liao et al. [16] propose DKABN, a deep belief network with embedded logical rules for
ship-to-shore crane diagnostics, improving explainability by incorporating Activati
Weighted Logic RBMs (AWL-RBM) and IF-THEN rules across diagnostic layers.

The increasing adoption of data-driven techniques for systé
Ayankoso and Olejnik [18], who review the efficacy of LSTM, CNN, sformer, PINN, and

comparative view by Agarwal et al. [17] differentiates symbolic and subsyy

paradigms, highlighting the transformative potential of hybrid neuro-symbh S

bridging scalability with interpretability.

SINDy models in modeling frictional mechatronic systems. PIN Dy demonstrate
. Similarly, Ali et al. [19]

essing the role of Al-driven

superior interpretability while maintaining high predicti

examine the synergies between digital twin technolo

as link prediction and counterfactualinference, ™stKG demonstrates the viability of semantic
Al in delivering interpretable a thy decisions, particularly in healthcare.
Collectively, these w

[21] that not only

a paradigm shift towards interpretable Al systems

integrating symbol

intell

pert System Using Symbolic Reasoning and Neural Networks for Predictive
e in Mechatronic Systems. This model integrates symbolic reasoning (rule-based
teMs, fuzzy logic, and probabilistic inference) and connectionist models (feedforward
neural networks and recurrent networks) for condition monitoring, fault prediction, and

maintenance scheduling. The overall research methodology is given in Figure 1.
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te of a mechatronic system at time t. Predictive maintenance

re failure time Ty such that in Equation 1.

(1

reasoning layer, denoted by, using domain rules R; defined over observable
te dcSiptors x;(t)

neural network predictor, denoted by Ny , parameterized by weights , trained on

rical failure data (x(t), y(t)) .

The combined inference is encoded in Equation 2.

PO=2.5(x(£)) + (1 = 2). Ny(x(¢)) )
Sensor Stream Representation and Feature Encoding

Let each sensor stream be sampled at discrete intervals, as shown in Equations 3 to 5.



si(ty) = x;(k), t, = k.6t k € z* (3)
x(k) = [x1(k), xz(K), oo, X (R)]T “4)
z(k) = @(x(k)) € R? (6]
Symbolic Rule-Based Expert Module

The symbolic module comprises fuzzy production rules, as outlined in Equations 6-9.

R IFAi;(x1) NAjp () A oo N Ajy (X )THENy = ¢;

(xj—Hij)?
wij (%) = exp (— —Jza.z.J )
ij

w; = l_[}n=1 HUij (xj)

S() = e ©)
Neural Network-Based Fault Predictor
Let the network have layers, each defined in Equation 10.
h® = a(l)(w(l)h(l_l) + b(l)),l =1,..,L , (10)
The final prediction is given in Equation 11.
Ny (x(K)) = y) = h®) (11)
The network is trained to minimize the (MSE) in Equation 12.
L(O) =~ TNk = )’ (12)
Health Index Estimation
Define a degradation-based he 1 (t) based on cumulative degradation in Equations
13 and 14.
(13)
(14)

(14)
+A)=[o (J\rg (z(t))) p(8)d6
Maintenance Scheduling Optimization
Let the cost of maintenance be given in Equation 15.

Optimal maintenance time t* is given in Equation 16.



t* = arg min; C(t) (16)
Hybrid Inference Dynamic

The decision fusion mechanism is given in Equations 17 and 18.

Ve = V-Ne(@(xk)) + (1 —7y).S(x) (17)
_ IveL(O)I|
T IVeLO)|+3; w; (18

System Dynamics Modeling
Model the underlying system behavior using a set of coupled nonlinear ordinary
Equations 19 and 20.
dx(t
S = F (O, u®),6) (19)

t+At

x(t+At) =x(t) + [, f(x(s),uls),s)ds (20)

In discrete time, in Equation 21.

Xir1 = X + Ot f (o Upr ti) p 4 1)

Online Update and Continual Learning

Online adaptation is achieved by updating paramectgqusin ons 22 and 23.
Ot41 = 0r =M. VgLonjine (6¢) (22)
Lontine = L+ 2|6, — epriorl |2 (23)

Symbolic rules are updated using incrementa¥gule refinement in Equation 24.

V=Bt (1 -B)yy i T (24)

Temporal Failure Sequence

For recurrent fault modeli se a M-based predictor in Equations 25 to 29.

(25)

(26)

el +be) (27)

(28)

(29)

e out]yis estimated by Equation 30.
¢ tmax(Wy.ht + x¢) (30)

Init@rpretability Module
Let A;(t) denote the attribution score of the input x;(t) using Integrated Gradients using

Equation 31.

A = (xi(t) — xb). f,_ ZeE2ED g 31)

Ix;



Symbolic explanations are extracted from rule traces using Equation 32.

Explanation (t) = arg max;w;(t) (32)
This research formulation integrates interpretable expert systems with deep predictive models
to enhance reliability, adaptability, and explainability in predictive maintenance of complex
mechatronic systems. The Hybrid Predictive Maintenance using Symbolic Reasoning and

Neural Networks is given in Algorithm 1.

Algorithm 1: Hybrid Predictive Maintenance using Symbolic Reasoning and I
Networks
Input:

Time-series sensor data from monitored components, symbolic rulg

model, RUL ground truth (for training phase)
Output:
Remaining Useful Life (RUL) prediction, maintenance decision w exanation trace

Begin

1. Data Preprocessing

Read multivariate sensor strea
Normalize each sensor chan
Segment time series using a slidi
Extract statistical featuregfor each wi

2. Symbolic Reasoning Subgst

Pas®nput vector to neural architecture (e.g., LSTM or CNN)
orward propagate through each layer with a nonlinear activation.
Compute the output RUL prediction.

Return neural RUL estimate.

4. Fusion of Symbolic and Neural Predictions

Estimate model confidence for both outputs




Compute the dynamic fusion coefficient using inverse error variance.

Calculate the final RUL as a confidence-weighted average of both estimates
5. Health Index Estimation

Compare the current input with the baseline nominal behavior.

Quantify degradation using squared deviation.

Smooth degradation signal over time

Derive the health index as the inverse of degradation
6. Uncertainty Quantification
Apply dropout at inference for multiple passes.
Compute the standard deviation across neural outputs.
Construct a prediction interval around the final RUL
7. Maintenance Decision Logic
If predicted RUL falls below the threshold: ,
If uncertainty is low:
Recommend immediate mainte e
Else

Flag instance for off

Else
Continue monitorin

8. Online Adaptation (if engle

ute feature attributions using SHAP for the neural component.
ombine both into a visual trace for decision interpretability

This algorithm offers a clear, modular, and interpretable framework layout, incorporating
both symbolic interpretability and neural adaptability for predictive maintenance tasks.
4. Result and Discussion

4.1.Experimentation Setup



The proposed hybrid expert system was implemented and evaluated in a controlled
simulation environment using Python 3.9 and TensorFlow 2.13 on a workstation equipped with
an Intel i9 processor, 64 GB of RAM, and an NVIDIA RTX A6000 GPU. Symbolic reasoning
components were encoded using a fuzzy rule base derived from domain heuristics, while the
deep learning module was trained using backpropagation with the Adam optimizer. The
experiments were designed to predict the Remaining Useful Life (RUL) of turbofan engi

from multivariate time-series data, simulating mechatronic degradation.

The symbolic reasoning engine was implemented using an adaptive Takagi—Sug
inference system with 42 expert-defined rules, which were updated increment
rule firing confidence. The neural network component comprised a
regressor with ReLU activations and dropout regularization (rateY
size 30 with a stride of 1 was applied to the normalized sensor streal@{o generate temporal
input samples. The output of the hybrid model was a scalar healt ex [%&r time step, fused
from both modules using a dynamic trust factor based on @? Py-weighted rule confidence.
4.2.Dataset Description

The NASA C-MAPSS (Commercig laNQRero-Propulsion System Simulation)

tics ter of Excellence, serves as the

turbofan engines under various operational settigs, making it ideal for predictive maintenance
in mechatronic systems. Specify D001 subset was used for training and validation.

ciated with three operational settings (e.g., altitude,

0C g steps included z-score normalization of sensor values, removal of non-

rmatli® variables, and feature selection using variance thresholding. Rule-based features

., mgh-vibration events, thermal drift) were manually extracted and incorporated into the
symbolic inference layer.

Table 1. Dataset Description

Feature Description




C-MAPSS (Commercial Modular Aero-Propulsion System

Name ] ]
Simulation)
Provided By NASA Ames Prognostics Center of Excellence
Subsystem Simulated Turbofan engines with degradation modes

) 21 sensors per cycle (e.g., T24, T30, P15, fan speed, bypass
Sensor Variables
flow, etc.)

3 conditions per unit (e.g., altitude, Mach number, thr

Operational Settings

resolver)
Number of Units FDO0O01: 100 engines, FD002: 260, FD003: 10
Sampling Rate 1 cycle per time
Failure Mode Progressive degradation to fa
Total Data Size >1 million sensor readi

Label Format Remaining Ugaful (RUL

Mechatronic predictive m with multivariate time-

Domain Suitability

4.3.Performance Metrics
The hybrid framework was evaluate ombination of classification and regression-

based performance metrics to capture its dus@@bjective: fault prediction accuracy and health

index estimation. The performangggpevaluated Using Equations 33 to 39. Let y; be the ground
truth RUL or class label, andQ; icted output.
1 ~
MAE = -Yiq |yi = il (33)
(34)
(35)
(36)
(37
F1 re =2 X WWhere Recall = —> (38)
Precision+Recall TP+FN
FAR = —= (39)
FP+TN

These metrics were computed for each model variant (symbolic-only, neural-only, and
hybrid) over 10 independent runs with 5-fold cross-validation.

4.4.Performance Illustration



Table 2 presents a comparative performance summary of the proposed hybrid system
concerning baseline models, including CNN, LSTM, and fuzzy rule-based expert systems. The
hybrid model consistently outperforms its counterparts across all evaluation metrics.

Table 2. Comparative Performance Analysis on FD0O1 Subset

MAE RMSE Accuracy F1-Score  FAR
Model R? Score
(hrs) (hrs) (%) (%) (%)
Fuzzy Expert
6.91 9.24 0.72 84.3 82.6
System
CNN 4.76 6.33 0.86 90.2 89
LSTM 4.21 5.97 0.89 91.7 .8 11
Hybrid
2.94 4.08 0.94 96.8 95.8 7.6
(Proposed)

—— Ground Truth RUL
=== Fuzzy Expert System
-=-=- CNN

-== LSTM

—— Hybrid (Proposed)

120 4

[

o

o
L

'''

80+

60+

40

Remaining Useful Life (RUL)

40 60 80 100 120
Time Steps

Predicted vs. Ground Truth RUL Trajectories for Hybrid vs. Baselines
llustrates the predicted vs. true RUL trajectories for a representative engine
ybrid model exhibits smoother transitions and more effective early failure

on compared to non-hybrid models.



MAE and RMSE Distribution Comparison

Fuzzy Expert System

Model

LSTM

Hybrid (Proposed)

Error Value (hrs)

Figure 3. Comparison of MAE and RM
Figure 3 visualizes the Mean Absolute Error (MAE) and RS Mean Square Error
(RMSE), both of which show significantly lower values for th brid®nodel, indicating
reduced deviation from the true values and improved rob @?

Comparison of R2
1.00

0.95

0.90

R? Score

0.85

0.80

stem CNN LSTM Hybrid (Proposed)
Model

Figure 4. Comparison of R* Score

ure yggompares the Coefficient of Determination (R? Score) across models, where

the 1d 1 achieves the highest R?, signifying superior explanatory power in capturing
iancc PR UL predictions.



Accuracy

Hybrid (Proposed)

LSTM

Model

Fuzzy Expert System [ ]
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Figure 5. Comparison of Accuracy

predictions within defined thresholds.

Hybrid (Proposed)

LSTM

Model

CN
te
70

o
75 80 a5 20 95 100 105
F1-Score (%)

Figure 6. Comparison of F1-Score

ure tends this by comparing F1-scores, highlighting the hybrid model’s balanced

prec a all, which is especially critical for imbalanced degradation class distributions.




Comparison of FAR Distribution

0.08

0.06

Density

0.04

0.02
O
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Figure 7. Comparison of FAR

Figure 7 presents the False Alarm Rate (FAR), where the hybrid m achieves the lowest
FAR, underscoring its reliability in minimizing unnecessary ntefhce triggers and
enhancing operational trustworthiness.
4.5.Discussion

The results of the experiment highlig fi eness of the hybrid expert system in

predictive maintenance of mechatronic e hytWrization of the symbolic and neural

paradigms provides a balanced compromiSgetween explanatory and forecasting outcomes.
The symbolic layer, based on fuzzy rules, will eNgble semantic-verifiable reasoning chains that
explain the predictions—a necegifity it comes to safety. The fact that it fits into the hybrid
architecture serves as a re izING (ingd¥ases generalization) force in the eventuality of noisy

or sparse sensor condifians.

4%, as indicated in Table 1.

r, the symbolic layer enabled adaptive diagnostics that differed in the sensitivity
ules being fired in real time. This flexibility is vital for long-term deployments in
dynamic operational environments, e.g., wear-out mechanisms or thermal) over time. The
model was also found to be resistant to overfitting, as R2R2R2 scores through the validation
folds did not differ. The reason behind this was the semantic constraints through a fuzzy rule

base.



Another interesting observation is the higher RUL estimation during the initial stages of
degradation. Although neural models tend to be deficient when dealing with under-represented
failure modes in early time windows, the symbolic layer detected indicative patterns (e.g.,
vibration spikes, thermal anomalies) and fed its indicative signatures to the hybrid decision
scheme even where statistical certainty was lacking. This anticipatory behavior is crucial for
proactive maintenance scheduling and ensuring safety.

Despite its strengths, the proposed model has limitations. The rule-based constructig

partially depends on expert input, which may not scale to highly heterogeneou
Additionally, while fusion improved accuracy, it introduced additional latenc p
per inference), which, although tolerable, may affect ultra-low-lat lic s such as
real-time control loops.

Future work will explore the automated induction of fuzzy s from data using
evolutionary strategies, as well as the integration of temporal attentjg’mecN¥anisms to enhance
sequence modeling further. Multi-domain validation acr, jc and vehicular systems is
also planned to validate model generalizability.

5. Conclusion and Future Work

This study proposes a hybrid expe at integ¥ates symbolic reasoning with neural

networks to enable accurate and interpretab¥gRredictive maintenance in complex mechatronic

systems. By leveraging fuzzy logic-based rule Werence for expert knowledge modeling and

deep learning architectures (e. and CNN) for adaptive recognition of degradation
patterns, the proposed mogglachieved bust Remaining Useful Life (RUL) estimation across

diverse degradation pas NASA’s C-MAPSS dataset. The dynamic fusion strategy

s positions the hybrid framework as a viable candidate for real-time, high-
aintenance decision-making in safety-critical industrial domains, such as
ce, transportation, and manufacturing, particularly where both transparency and data-
driven intelligence are crucial.

Future research will explore graph-based symbolic integration and continual meta-
learning for cross-platform generalization.
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