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Abstract: Smart Cyber-Physical Systems (SCPSs) exist at the interface of physical phenomena 

together with computational intelligence, which requires modelling the structural 

interconnections and the functional dependences. The connection is established among and 

between the various elements with precision and in real-time scenarios. The traditional methods 

of modelling frequently miss the temporal dynamics and heterogeneous relationships that are 

characteristic of SCPSs. This paper proposes the use of a Graph Neural Network (GNN) in 

SCPSs (GNN-SCPS) methodology to design the structural and functional relations that exist 

between sensors, actuators, control units, and communication interfaces in SCPSs. The system 

is represented by a time-varying multi-relational graph, where nodes represent entities within 

the system and edges reflect dynamic dependencies, whether physical or cyber. The model 

proposed integrates message-passing GNN layers, referred to as temporal gating mechanisms 

and attention-based aggregation, to learn robust representations of node behaviors. The 

deployment of the model is operated under variable operational conditions and fault conditions. 

The SCPS artificial environment was designed to generate graph sequences with injected 

anomalies that simulate reality-related scenarios in industry. Experimental findings indicate 

that our approach outperforms fault localization, dependency inference, and anomaly detection 

compared to classical graph models and existing state-of-the-art mechanisms. The framework 
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is also characterised by interpretability, as the mechanism of interconnection between diverse 

system parts can be recorded. This study constructs a database-driven, scalable study of 

modelling and monitoring SCPSs based on spatio-temporal graph deep learning. 

Keywords: Graph Neural Network, Anomaly Detection, Attention Mechanism, Security, Fault 

Tolerance, Industrial automation, Loss Function. 

1. Introduction 

The emergence of Smart Cyber-Physical Systems (SCPSs) has transformed the 

technological landscape in many value-generating industries, including industrial automation, 

transportation, healthcare, and energy systems, among others [1]. These systems combine 

physical objects (e.g., sensors, actuators, and machines), computational control systems, and 

networked communications infrastructures [2]. The key behavioural trait of SCPSs is their 

sensing, processing, and acting capabilities, and they are semi- and fully autonomous, capable 

of adapting to environmental dynamics [3]. Achieving safety, operational efficiency, and 

cyber-resilience in these systems necessitates accurate modeling and a deep functional 

understanding of the inner workings and correct functional behavior of these systems [4]. 

Traditional classical modelling techniques of SCPSs (i.e., finite-state machines, simulators 

based on differential equations, or frameworks of analysis via control theory) have played a 

significant role in the analytical study of the behaviour of small-scale and deterministic CPSs 

[5]. Large-scale smart systems exhibit high-dimensional, dynamic, and nonlinearly complex 

interactions, where traditional approaches often fail to work effectively [6]. The multi-modal 

data streams generated by modern SCPSs are heterogeneous in both space and time, 

necessitating models that can integrate structural, temporal, and semantic dependencies into a 

unified representation [7]. 

Graph-based representations have become a potent representation paradigm for addressing 

the intricate interconnections between the heterogeneous elements of a system. Sensors, 

controllers, and actuators can be assigned to nodes in a typical SCPS, and the relationships 

between these nodes can be encoded as graph edges or have a cyber-functional nature [8]. The 

methods of graph-modelling techniques, such as static graphs, DAGs, or Laplacian-based 

signal processing, are not adequate to represent time-varying connections, context-sensitive 

functional dynamics, or fault-like propagation. They lack the flexibility of representations and 

the ability to learn how to manage large-scale, time-varying dependencies, context-aware 

behaviors, or fault propagation patterns. 

Graph Neural Networks (GNNs) provide an efficient approach to addressing this challenge 

and extending deep learning to graph-structured data [9]. GNNs execute message-passing 
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operations to combine and transform node and edge features by aggregating information from 

both local and global neighborhoods, enabling the isolation of relational patterns and dynamic 

interdependencies. Sequential stacking of layers of GNN enables the models to acquire high-

order structural features, which are key to tracking underlying dynamic behaviours in complex 

cyber-physical environments [10]. The addition of temporal information to spatio-temporal 

GNNs, including Temporal Graph Convolutional Networks (T-GCNs), Graph Attention 

Networks (GATs), and Relational Graph Convolutional Networks (R-GCNs), has resulted in 

an even more pronounced extension of the capacity to model time-varying systems that 

simultaneously adapt in topology and feature distributions [11]. The CPS is given in Figure 1. 

 

Figure 1. Mechanism of CPS 

The research work in this article proposes a complex GNN-based model for instance 

modelling both structural and functional dependencies in SCPSs. The new system views the 

developing CPS as a set of sequences of multi-relational graphs, where each node encodes the 

state of a system entity, and the set of edges changes over time to capture physical connectivity 

and influence, as well as functional connections, between entities. To recognise both short-

term variation and long-term connection in the dynamics, the model incorporates temporal 

attention mechanisms and gated message passing. Unlike in static GNNs, the proposed 

methodology updates the embeddings in real-time according to monitored anomalies, actuator 

feedback, and cyber intrusion trends, facilitating real-time diagnostics and predictive 

monitoring. 
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A synthetic SCPS simulation environment was constructed to test the proposed 

framework. This simulation environment enables the creation of graph-structured temporal 

data in a controlled operating environment, where sensor faults, actuator failures, and network 

attacks can be simulated. Such environments closely resemble real-time industrial settings, like 

smart factories or autonomous robotic systems. The learned embeddings provide semantic 

insight into how physical disturbances propagate through cyber-functional pathways, offering 

new capabilities for explainability and root-cause analysis. 

 The work adds the following novel components to the emerging SCPS monitoring and 

modelling:  

(i) A unified spatio-temporal graph representation for dynamic CPS interactions,  

(ii) A modular GNN architecture that supports relational, attention-based, and temporal 

learning layers, and  

(iii) An experimental evaluation on synthetic and semi-realistic datasets demonstrating 

strong generalisation and interpretability under adversarial and uncertain 

environments. 

 This structure is not inconsistent with the increasing demand for smart, robust, and 

autonomous SCPSs that can handle unexpected perturbations and remain functional in highly 

distributed conditions. The incorporation of GNNs in SCPS modeling addresses a key 

constraint of traditional CPS design: the lack of flexibility in high-dimensional, time-varying, 

and interdependent modeling of system dynamics. The proposed solution would offer a 

scalable, data-driven approach to replace a rule-based method, capable of high-value analytics, 

such as real-time anomaly detection, failure prediction, and optimal control.  

 The rest of this paper is organized as follows: Section 2 presents the related works on 

GNNs and CPS modeling, and the proposed methodology and mathematical formulation are 

included in the same section. Experimental results are described in Section 3, and the findings 

are discussed in light of their implications. The paper concludes in Section 4. 

2. Materials and Methods 

2.1.Background 

 The rapid evolution of SCPS has driven extensive interdisciplinary research across 

various sectors, including smart manufacturing, healthcare, automotive, and smart agriculture. 

These systems combine physical components, computational intelligence, and networked 

infrastructures to achieve real-time decision-making, adaptability, and autonomy. Recent 

studies have explored various technical domains, including co-simulation accuracy, digital twin 

(DT) interoperability, FPGA-based education systems, threat detection in 6G environments, 
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and AI-driven security frameworks. Table 1 presents a consolidated background analysis of ten 

prominent research works [12–21], providing insights into their objectives, methodologies, key 

findings, and identified limitations. This synthesis facilitates a deeper understanding of state-

of-the-art developments and reveals gaps in scalability, adaptability, and real-world 

deployment readiness of current ICPS paradigms. 

Table 1. Comprehensive Analysis of Background Study 

Reference Purpose Methodology Key Findings Limitation 

[12] 

Enhance ICPS co-

simulation 

precision and 

synchronization 

using Age of 

Information (AoI) 

Developed AoI-

based temporal 

interaction types; 

introduced three 

synchronization 

protocols; 

validated using 

the RoboMaster 

EP platform 

Improved 

decision 

accuracy and 

simulation 

fidelity; better 

synchronization 

of 

heterogeneous 

models 

Limited validation 

across diverse 

ICPS domains; 

scalability to 

large-scale CPS is 

unproven 

[13] 

Classify and 

address 

interoperability 

challenges in 

integrating Digital 

Twins with CPS. 

Literature survey; 

identified 77 

challenges; 

mapped into 6 

interoperability 

levels (technical 

to organizational) 

Proposed 

comprehensive 

6-level DT 

interoperability 

framework 

Theoretical 

analysis only; no 

practical/empirical 

validation or 

performance 

metrics 

[14] 

Improve the 

adaptability of 

CPS in wireless 

environments 

using AI 

Implemented 

BPNN with 

granular 

computing and a 

multi-agent 

system for 

sensing, tracking, 

and pattern 

recognition 

Achieved better 

environmental 

classification 

with improved 

error metrics 

Real-time system 

performance and 

robustness have 

not been 

thoroughly 

validated Auth
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[15] 

Enable remote, 

multi-user access 

to FPGA 

hardware through 

ICPS 

Developed an 

intelligent 

platform with web 

access, real-time 

feedback, and 

peripheral control 

Facilitated 

collaborative 

FPGA 

development 

and remote lab 

access 

Latency, 

concurrent access, 

and hardware 

contention are not 

fully addressed 

[16] 

Simplify the 

development and 

monitoring of 

DTs in smart 

agriculture 

Designed GreenH 

DSLs using BNF; 

evaluated syntax, 

scalability, 

usability through 

language 

engineering 

metrics 

DSLs 

demonstrated 

high 

expressiveness, 

consistency, 

and practical 

utility in 

greenhouse 

scenarios 

Domain-specific 

focus; application 

in general-purpose 

ICPS remains 

unexplored 

[17] 

Detect and 

mitigate 

cyberattacks in 

autonomous 

vehicle ICPS 

using intelligent 

IDS. 

Used pre-trained 

CNN and 

ensemble methods 

(OC-SVM, RF, 

KNN) for 

intrusion detection 

Achieved 

99.97% 

accuracy using 

the 

EfficientNet 

model in AV 

scenarios 

Model 

generalization 

under novel attack 

types remains 

untested; dynamic 

threat adaptation 

is needed 

[18] 

Secure healthcare 

data in ICPS via 

blockchain and 

ensemble learning 

Cognitive 

blockchain + 

ensemble DL + 

IoT integration for 

access control and 

attack detection 

Achieved 96% 

accuracy, 91% 

precision, 

strong privacy, 

and low delay 

High model 

complexity, 

potential 

interpretability, 

and scalability 

issues 

[19] 

Simulate cyber 

threats in smart 

manufacturing 

CPS using DT-

based testbeds 

Created a DT 

environment to 

generate threat 

datasets; trained 

DL models for 

Demonstrated 

cost-effective 

and repeatable 

attack 

Simulated threats 

may not fully 

represent real-

world attack 

diversity 
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time-series 

classification 

simulation and 

detection 

[20] 

Real-time control 

of AWS-based 

clarification 

process in pharma 

CPS 

Implemented 

CPS-DT hybrid 

control with 

distributed control 

system (DCS) and 

real-time feedback 

>90% 

separation 

efficiency; 

effective 

setpoint control 

during turbidity 

spikes 

Domain-specific 

application (CHO 

cell separation); 

limited broader 

ICPS relevance 

[21] 

Real-time cyber-

risk estimation 

and threat 

detection in 

pharmaceutical 

CPS 

Two-tier 

architecture 

combining ML 

and IoT; 

introduced REF-

based risk scoring 

system 

Improved 

detection 

accuracy and 

attack risk 

prioritization 

Relies on high-

quality training 

data; frequent 

model updates 

required for 

evolving threats 

Despite extensive advancements in Intelligent Cyber-Physical Systems (ICPS), current 

approaches reveal critical research gaps in the scalability of co-simulation fidelity, 

interoperability across Digital Twins, and adaptive threat detection in dynamic environments. 

Most methods lack temporal-semantic alignment, generalization to heterogeneous nodes, and 

robust information propagation mechanisms. To address these limitations, this study introduces 

a GNN that leverages Spatio-Temporal Graph encoding to model topological dependencies, 

dynamic interactions, and heterogeneous data flows. By embedding structural and temporal 

context, the GNN architecture ensures scalable learning, real-time inference, and resilient 

decision-making, effectively bridging the identified gaps in ICPS design and validation. 

3. Simulation Environment and Synthetic SCPS Construction 

 A GNN-based mathematical model for modeling structural and functional 

dependencies in SCPS must encapsulate both topological interconnections and dynamic 

process-level interactions across heterogeneous cyber and physical domains. This section 

presents a rigorous formulation that complies with Elsevier standards, emphasizing node-level 

computations, message propagation mechanisms, dependency modeling, and learning 

objectives across time-evolving graphs, as illustrated in Figure 2. 
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Figure 2. Methodology of GNN-SCPS 

 Let the SCPS be abstracted as a graph 𝒢 = (𝒱, ℰ), where 𝒱 is a set of nodes representing 

physical components (e.g., sensors, actuators) and cyber agents (e.g., controllers, edge servers), 

and ℰ ⊆ 𝒱 × 𝒱 denotes directed or undirected edges that encode structural connectivity and 

communication dependencies. Each node 𝑣𝑖𝜖𝒱 is associated with a time-dependent feature 

vector 𝑥𝑖
𝑡𝜖ℝ𝑑, and the graph may evolve over discrete time steps, t = 1, 2,…, T. 

 To model both structural and functional dependencies, we define an adjacency tensor 

𝒜𝑡 ∈ {0,1}|𝒱|×|𝒱|×𝑘, where k denotes distinct edge types (e.g., physical connections, cyber 

interactions, causal dependencies). The type-specific adjacency matrices Α𝑟
𝑡 ∈ {0,1}|𝒱|×|𝒱| 

represent heterogeneous relations at time t, such that 𝒜𝑡 = {Α1
𝑡 , Α2

𝑡 , … , Α𝑘
𝑡 }. The GNN operates 

by aggregating and updating node embeddings via neighborhood propagation. Let ℎ𝑖
(𝑙)
𝜖ℝ𝑑𝑙  

denote the embedding of node vi  at layer l, with the initialization ℎ𝑖
(0)

= 𝑥𝑖
(𝑡)

. A general 

propagation rule for a multi-relational GNN is given by Equation 1. 

ℎ𝑖
(𝑙+1)

= 𝜎 (∑ ∑
1

𝑐
𝑖𝑗
(𝑟)𝑗𝜖𝒩𝑟(𝑖)

𝑘
𝑟=1 𝑤𝑟

(𝑙)
ℎ𝑗
(𝑙)
+ 𝑤𝑜

(𝑙)
ℎ𝑖
(𝑙)
)                                                                       (1) 

where 𝒩𝑟(𝑖) is the set of neighbors of vi  under relation r, 𝑐𝑖𝑗
(𝑟)

 is a normalization constant (e.g., 

degree-based), 𝑤𝑟
(𝑙)

 are trainable weight matrices per relation type, and σ(⋅) is an activation 

function such as ReLU. Auth
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To incorporate temporal dynamics in SCPSs, we define a time-evolving node representation 

𝐻𝑖 = [ℎ𝑖
1, ℎ𝑖

2, …… , ℎ𝑖
𝑇], where ℎ𝑖

𝑡 ∈ ℝd denotes the embedding at time t. These embeddings are 

updated using gated recurrent mechanisms, as given in Equations 2 to 5. 

𝑧𝑖
𝑡 = 𝜎(𝑊𝑧ℎ𝑖

𝑡 +𝑈𝑧ℎ𝑖
𝑡−1)                                                                                                          (2) 

𝑟𝑖
𝑡 = 𝜎(𝑊𝑟ℎ𝑖

𝑡 + 𝑈𝑟ℎ𝑖
𝑡−1)                                                                                                          (3) 

ℎ𝑖
�̃� = 𝑡𝑎𝑛ℎ(𝑊ℎℎ𝑖

𝑡 + 𝑈ℎ(𝑟𝑖
𝑡⨀ℎ𝑖

𝑡−1))                                                                                        (4) 

ℎ𝑖
𝑡 = (1 − 𝑧𝑖

𝑡) ⊙ ℎ𝑖
𝑡−1 + 𝑧𝑖

𝑡 ⊙ℎ𝑖
�̃�                                                                                            

(5) 

where 𝑧𝑖
𝑡, 𝑟𝑖

𝑡 are the update and reset gates, respectively, and ⊙ denotes the Hadamard product. 

Functional dependencies between nodes can also be modeled via an attention mechanism, 

where the attention coefficient α𝑖
𝑡 represents the influence of node vj on vi at time t is given in 

Equations 6 to 8. 

e𝑖𝑗
𝑡 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎⊤[𝑤h𝑖

𝑡||𝑤h𝑗
𝑡])                                                                                                  (6) 

α𝑖𝑗
𝑡 =

exp⁡(e𝑖𝑗
𝑡 )

∑ exp⁡(e𝑖𝑘
𝑡 )𝑘𝜖𝒩(𝑖)

                                                                                                                         (7) 

h𝑖
(𝑙+1)

= 𝜎(∑ α𝑖𝑗
𝑡

𝑗𝜖𝒩(𝑖) 𝑤h𝑗
𝑡)                                                                                                                         (8) 

 To enforce topological consistency across time, a Laplacian regularisation term is 

introduced in Equation 9. 

ℒ𝑠𝑚𝑜𝑜𝑡ℎ = ∑ ∑ 𝐴𝑖𝑗
𝑡

𝑖,𝑗 ||h𝑖
(𝑡) − h𝑗

(𝑡)
||2
2𝑇

𝑡=1                                                                                                              (9) 

 Furthermore, for node-level prediction tasks, such as fault detection or behavior 

classification, the output of the final GNN layer is passed through a classifier, as shown in 

Equations 10 and 11. 

𝑦�̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑐𝑙𝑠h𝑖
𝑇 + 𝑏𝑐𝑙𝑠)                                                                                                                      (10) 

ℒ𝑡𝑎𝑠𝑘 = −∑ ∑ 𝑦𝑖𝑐
𝐶
𝑐=1 𝑙𝑜𝑔𝑖 �̂�𝑖𝑐                                                                                                                       (11) 

where C is the number of classes and 𝑦𝑖𝑐 is the true label indicator. 

To jointly learn structural and functional dependencies, we define a unified 

optimisation objective in Equation 12. 

ℒ = ℒ𝑡𝑎𝑠𝑘 + 𝜆1ℒ𝑠𝑚𝑜𝑜𝑡ℎ + 𝜆2ℒ𝑎𝑡𝑡𝑛                                                                                                                  (12) 

where ℒ𝑎𝑡𝑡𝑛 encourages sparse or interpretable attention weights, often formulated as in 

Equation 13. 

ℒ𝑎𝑡𝑡𝑛 = ∑ ∑ ||α𝑖𝑗
𝑡 ||1𝑖𝑡                                                                                                                          (13) 

and λ1, λ2  are regularization coefficients.  
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Graph-level readouts are also applicable for system-wide state estimation or anomaly scoring. 

A common readout function that aggregates node embeddings via global pooling is given in 

Equation 14. 

ℎ𝒢
𝑡 = 𝑅𝐸𝐴𝐷𝑂𝑈𝑇({h𝑖

𝑡|𝑣𝑖𝜖𝒱}) =
1

|𝒱|
∑ h𝑖

𝑡
𝑖                                                                                                       (14) 

 To adaptively fuse cyber-physical modalities, cross-modal attention mechanisms are 

introduced. Let h𝑖
𝑝ℎ𝑦

 and h𝑖
𝑐𝑦𝑏

 represent embeddings from physical and cyber GNN branches 

given in Equations 15 and 16. 

𝛽𝑖 =
exp⁡(𝑤⊤tanh⁡(𝑤1h𝑖

𝑝ℎ𝑦
+𝑤2h𝑖

𝑐𝑦𝑏
))

∑ exp⁡(𝑤⊤tanh⁡(𝑤1h𝑖
𝑝ℎ𝑦

+𝑤2h𝑖
𝑐𝑦𝑏

))𝑗

                                                                                                     (15) 

h𝑖
𝑓𝑢𝑠𝑒𝑑

= 𝛽𝑖h𝑖
𝑝ℎ𝑦

+ (1 − 𝛽𝑖)⁡h𝑖
𝑐𝑦𝑏

                                                                                                     (16) 

 Temporal consistency between consecutive graph snapshots is maintained through a 

temporal smoothness constraint, as given in Equation 17. 

ℒ𝑡𝑒𝑚𝑝 = ∑ ∑ ||h𝑖
(𝑡) − h𝑗

(𝑡)
||2
2

𝑖
𝑇
𝑡=1                                                                                                      (17) 

The final loss function is given in Equation 18. 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑡𝑎𝑠𝑘 + λ1ℒ𝑠𝑚𝑜𝑜𝑡ℎ + λ2ℒ𝑎𝑡𝑡𝑛 + λ3ℒ𝑡𝑒𝑚𝑝                                                                                  (18) 

 Training is performed using stochastic gradient descent or the Adam optimizer. 

Parameters Θ = {w𝑟
(𝑙), w, wcls, Uz, Ur……} are iteratively updated using the backpropagation 

algorithm over temporal sequences of graph-structured data. The procedure of GNN in SCPS 

is given in Algorithm 1. 

Algorithm 1: Spatio-Temporal GNN-Based SCPS Modeling 

Step 1: Initialization 

1. Initialize model parameters (weights, biases, attention matrices) 

2. For each node and each time step, assign an initial hidden representation as the raw 

node feature 

Step 2: Spatio-Temporal Message Propagation 

For each layer from 0 to NetworkDepth minus 1: 

 For each time step t from 1 to T: 

  For each relation type r from 1 to RelationTypes: 

   Aggregate features from neighbors using learned weights specific to the relation type 

   Normalize contributions using degree-based or attention-based coefficients. 

  End 

  Concatenate all relation-specific aggregated messages. 
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  Combine with residual connection or the previous layer's embedding 

  Apply a non-linear transformation (e.g., ReLU or tanh) 

 End 

End 

Step 3: Temporal Encoding 

For each node across all time steps: 

 Apply a recurrent unit (e.g., GRU or LSTM) over the time series of hidden representations 

 Update node embeddings to reflect temporal dependencies 

Step 4: Graph Smoothness Loss Calculation 

For each graph snapshot: 

 Compute the difference in embeddings between connected nodes. 

 Aggregate pairwise differences as smoothness regularization 

 Encourage similar embeddings for neighboring nodes 

Step 5: Node-Level Prediction 

For each node at each time step: 

 Pass the final embedding through a classification head. 

 Generate prediction (e.g., node label or behavior class) 

Step 6: Loss Function Computation 

Compute: 

• Classification Loss using cross-entropy between predicted and true labels 

• Temporal Loss to enforce stability across time 

• Structural Loss using graph Laplacian smoothness 

• Total Loss as a weighted sum of all loss components 

Step 7: Optimization 

Use an optimizer (e.g., Adam) to update all model parameters by minimizing the gradient of 

the TotalLoss for the parameters. 

Step 8: Iterative Training 

Repeat Steps 2 through 7 for a fixed number of epochs or until the convergence criteria are 

met. 

This model effectively captures the hierarchical, heterogeneous, and dynamic 

characteristics of SCPS. It enables robust inference of failure patterns, latent interactions, and 

control-policy impacts by integrating both symbolic topological priors and learned relational 

dynamics. 
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4. Evaluation  Metrics 

To comprehensively evaluate the effectiveness of the proposed GNN-SCPS model, 

multiple performance metrics were utilized, including Accuracy, Precision, F1-Score, 

Modularity, and Graph Smoothness Score (GSS). These metrics collectively assess the 

classification performance, community detection capabilities, and the smoothness of node 

embeddings in the graph space, each of which is vital for robust SCPS. Accuracy quantifies the 

overall correctness of predictions, while precision evaluates the model’s ability to avoid false 

positives. The F1-score harmonizes precision and recall, especially important in class-

imbalanced scenarios typical of vehicular anomaly detection. Modularity captures the quality 

of graph-based clustering, a key for decentralized traffic pattern discovery. 

Finally, the Graph Smoothness Score assesses the consistency of learned 

representations among neighboring nodes. The consistent improvement of GNN-SCPS across 

all these metrics with increasing node count signifies its scalability and superior modeling 

capacity for dynamic, distributed SCPS environments. Lower GSS indicates smoother 

transitions between neighboring node embeddings, which is desirable for SCPS graph models. 

The performance evaluation is given in Equations 19 to 23. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN
                                                                                                        (19) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                 (20) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

Precision+Recall
 where 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                  (21) 

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]𝑖,𝑗 δ(ci, cj)                                                                                                  (22) 

𝐺𝑆𝑆 = Tr(X⊤LX)                                                                                                                      (23) 

where TP is True Positives, TN is True Negatives, FP is False Positives, FN is False Negatives, 

A is Adjacency matrix of the graph, X is Node feature matrix, L is Graph Laplacian,  m is Total 

number of edges in the graph,  ki is Degree of node I, ci is Community of node I,  δ(ci, cj) is 1 

if nodes i and j are in the same community, 0 otherwise. 

4.1.System Configuration 

Experiments were conducted on a workstation equipped with an AMD Ryzen 7 5800X 

processor, 32 GB of DDR4 RAM, and an NVIDIA RTX 3060 GPU (12 GB VRAM). The 

software stack included Python 3.8, PyTorch 1.13, PyTorch Geometric 2.3, CUDA 11.7, and 

supporting libraries such as NumPy, SciPy, NetworkX, and Matplotlib. The simulation and 

training process was optimised to ensure real-time graph generation and mini-batch processing 

for scalable evaluation. 
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4.2.Simulation setup 

 The simulation integrates SUMO for dynamic traffic mobility and NS-3 for V2V 

communication. Vehicle interactions are modeled as graphs to evaluate GNN-based anomaly 

detection and routing strategies. Table 1 presents a comprehensive overview of the simulation 

parameters employed in the vehicular SCPS, which combines SUMO, NS-3, and GNN-SCPS. 

Table 1. Simulation Setup 

Parameter Value / Setting 

Simulation Duration 1800 seconds 

Time Step Interval 1 second 

Road Network Urban Grid (10x10 blocks) 

Number of Vehicles 50 to 500 (in steps of 50) 

Communication Protocol IEEE 802.11p 

Packet Size 512 bytes 

Transmission Range 300 meters 

Mobility Model Krauss Model (via SUMO) 

Routing Algorithm Dijkstra (for baseline) 

GNN Layers 3 GraphConv layers 

Activation Function ReLU 

Learning Rate 0.001 

Optimizer Adam 

Epochs 200 

Graph Construction Interval Every 10 seconds 

Feature Dimensions 16 

Framework Integration TraCI + NS-3 Bridge 

4.3.Simulation Analysis 

A tabulated comparison of the proposed GNN-based simulation approach against three 

baseline models—BPNN, CNN, and Ensemble Learning—using the core performance metrics 

relevant to SCPS, especially in vehicular simulation environments (e.g., NS-3 + SUMO). 
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Figure 2. Simulation of Node across GNN-SCPS 

Table 2. Comparison of Accuracy 

Node Count BPNN CNN Ensemble Learning GNN-SCPS 

50 78.34 80.22 82.2 85.72 

100 80.01 83.91 85.33 88.93 

150 82.7 85.45 87.01 91.12 

200 83.45 87.33 88.99 92.83 

300 84.33 89.11 90.01 94.77 

400 85.2 90 91.55 95.11 

500 85.89 91.12 92.12 95.83 
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Figure 3. Comparison of Accuracy 

 As presented in Table 2 and illustrated in Figure 3, the GNN-SCPS model exhibits a 

consistent upward trend in accuracy as the number of nodes increases. Starting at 85.72% 

accuracy for 50 nodes and reaching 95.83% at 500 nodes, GNN-SCPS outperforms all 

baselines by a significant margin. The closest baseline, Ensemble Learning, achieves 92.12% 

at 500 nodes, still nearly 4 percentage points lower. CNN and BPNN lag further behind, 

particularly for larger node densities. This consistent gain reflects GNN-SCPS’s superior ability 

to capture topological and temporal dependencies in vehicular networks. 

Table 3. Comparison of Precision 

Node Count BPNN CNN Ensemble Learning GNN-SCPS 

50 75.29 77.34 79.42 83.4 

100 76.88 80.23 82.31 86.5 

150 79.11 82.51 84.6 89.7 

200 80.34 84.3 86.88 91.15 

300 81.92 86.55 88.41 93.62 

400 82.5 87.4 89.78 94.01 

500 83.19 88.6 90.55 94.65 
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Figure 4. Comparison of Precision 

 Table 3 and Figure 4 highlight the increasing precision of GNN-SCPS, moving from 

83.4% at 50 nodes to 94.65% at 500 nodes. The margin of superiority becomes more 

pronounced with increasing node density, underscoring GNN-SCPS’s ability to reduce false 

positives in detecting traffic anomalies or misbehaving vehicles. CNN follows with 88.6%, 

while BPNN again trails with 83.19% at the highest scale. Precision improvements confirm 

that GNN-SCPS better differentiates between normal and anomalous vehicular behavior. 

Table 4. Comparison of F1-Score 

Node Count BPNN CNN Ensemble Learning GNN-SCPS 

50 76.42 78.59 80.76 84.35 

100 78.45 81.42 83.12 87.3 

150 80.65 83.22 85.44 90.05 

200 81.35 85.01 87.45 91.44 

300 82.59 87.2 89.01 93.88 

400 83.01 88.11 90.22 94.45 

500 83.9 89.3 91.01 95.21 

 Auth
ors

 Pre-
Proo

f



 

Figure 5. Comparison of F1-Score 

 The F1-score, which balances precision and recall, is crucial in scenarios with class 

imbalance, a common occurrence in SCPS anomaly detection. As shown in Table 4 and Figure 

5, GNN-SCPS again leads, increasing from 84.35% to 95.21% across the node scale. Ensemble 

Learning shows modest performance, peaking at 91.01%. The better F1-score of GNN-SCPS 

confirms its robustness in handling both false positives and false negatives, making it ideal for 

critical vehicular decision-making systems. 

Table 5. Comparison of Modularity 

Node Count BPNN CNN Ensemble Learning GNN-SCPS 

50 0.312 0.333 0.356 0.421 

100 0.328 0.349 0.371 0.446 

150 0.341 0.366 0.387 0.467 

200 0.359 0.379 0.401 0.489 

300 0.367 0.392 0.414 0.518 

400 0.372 0.403 0.423 0.533 

500 0.378 0.414 0.431 0.541 
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Figure 6. Comparison of Modularity 

 Unique to graph-based systems, modularity is a vital metric to assess how well the 

algorithm detects community structures, such as clusters of traffic congestion or vehicle 

platoons. According to Table 5 and Figure 6, GNN-SCPS achieves the highest modularity score 

of 0.541 at 500 nodes, significantly outperforming CNN (0.414), Ensemble Learning (0.431), 

and BPNN (0.378). This enhanced modularity reflects GNN-SCPS’s superior graph 

partitioning and spatial community detection capabilities, which are key for decentralized 

traffic control and edge intelligence. 
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Figure 7. Graph Smoothness Score (GSS) of GNN-SCPS 

The comparative analysis of the proposed GNN-SCPS model against baseline 

architectures, such as BPNN, CNN, and Ensemble Learning, across various node counts in 

vehicular SCPS, yields several critical insights. Firstly, scalability is a notable strength of 

GNN-SCPS; as the number of networked nodes increases, the model consistently demonstrates 

superior performance across all considered metrics, indicating its robustness in handling 

complex, large-scale vehicular environments. Secondly, the model exhibits exceptional 

learning robustness, with significantly higher accuracy and F1-scores, reflecting its ability to 

generalize well to unseen scenarios and detect behavioral anomalies in dynamic simulation 

environments. Thirdly, the graph-awareness embedded within the GNN-SCPS architecture, as 

evidenced by higher modularity and GSS values, enables effective utilization of topological 

relationships for optimized decision-making and intelligent routing strategies. 

Collectively, these results affirm the suitability of the GNN-SCPS for real-time vehicular 

SCPS applications. Its seamless integration with realistic mobility and communication 

simulators, such as SUMO and NS-3, empowers it to model and infer patterns from 

heterogeneous data streams efficiently. Thus, the model not only outperforms traditional deep 

learning approaches in classical evaluation metrics but also excels in graph-theoretic 

dimensions critical to modern SCPS design. Overall, the study substantiates GNN-SCPS as a 

scalable, adaptive, and graph-optimized architecture poised to support the next generation of 

intelligent transport and cyber-physical infrastructure systems. 
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5. Conclusion and Future Work 

 The rapid evolution of Intelligent Transportation Systems (ITS) and smart cities 

requires scalable, adaptive, and structure-aware learning models that can handle real-time 

vehicular dynamics. Traditional machine learning methods often struggle to capture the 

complex spatiotemporal relationships inherent in Cyber-Physical Systems (CPS). In this 

context, graph-based DL provides a promising alternative due to its inherent capability to 

model non-Euclidean data structures. This study introduced GNN-SCPS, a graph neural 

network-integrated simulation framework that leverages NS-3 for communication modeling 

and SUMO for traffic mobility emulation. Through extensive evaluations against baseline 

models—BPNN, CNN, and Ensemble Learning—across various node densities, GNN-SCPS 

consistently demonstrated superior performance in terms of accuracy, F1-score, modularity, 

and graph smoothness. The results validate the effectiveness of GNNs in learning topological 

and semantic patterns for optimizing vehicular CPS.  

 This work sets the foundation for future deployment of GNN-driven intelligence in 

large-scale, real-time traffic management and smart mobility solutions. 
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