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Abstract: Smart Cyber-Physical Syster™ exist atthe interface of physical phenomena

together with computational which requires modelling the structural
interconnections and the functiongb dependenc®. The connection is established among and
between the various elements w n and in real-time scenarios. The traditional methods

of modelling frequently the te | dynamics and heterogeneous relationships that are

characteristic of SCE, er proposes the use of a Graph Neural Network (GNN) in
ontrol units, and communication interfaces in SCPSs. The system

-varying multi-relational graph, where nodes represent entities within

Joyment of the model is operated under variable operational conditions and fault conditions.
The SCPS artificial environment was designed to generate graph sequences with injected
anomalies that simulate reality-related scenarios in industry. Experimental findings indicate
that our approach outperforms fault localization, dependency inference, and anomaly detection

compared to classical graph models and existing state-of-the-art mechanisms. The framework
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is also characterised by interpretability, as the mechanism of interconnection between diverse
system parts can be recorded. This study constructs a database-driven, scalable study of
modelling and monitoring SCPSs based on spatio-temporal graph deep learning.

Keywords: Graph Neural Network, Anomaly Detection, Attention Mechanism, Security, Fault
Tolerance, Industrial automation, Loss Function.

1. Introduction

The emergence of Smart Cyber-Physical Systems (SCPSs) has transformed

technological landscape in many value-generating industries, including industrial a @ ‘
transportation, healthcare, and energy systems, among others [1]. These s Sl &
physical objects (e.g., sensors, actuators, and machines), computatigg® ro tems, and

P CN
Q 0f SCPSS is their

sensing, processing, and acting capabilities, and they are semi- and ful"g@utonomous, capable

networked communications infrastructures [2]. The key behaviOX

of adapting to environmental dynamics [3]. Achieving safety, ’atio al efficiency, and
cyber-resilience in these systems necessitates accurat ipg and a deep functional
understanding of the inner workings and correct fung@#®n ha\gr of these systems [4].
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&/

significant role in the analytical study of tiTghaviour of small-scale and deterministic CPSs

@

Traditional classical modelling techni (i.e., finite-state machines, simulators

based on differential equations, or fra analyS¥8 via control theory) have played a

[5]. Large-scale smart systems exhjbit high-dif@nsional, dynamic, and nonlinearly complex

interactions, where traditional gfpr often fail to work effectively [6]. The multi-modal

data streams generated moder, PSs are heterogeneous in both space and time,

necessitating models egrate structural, temporal, and semantic dependencies into a

des can be encoded as graph edges or have a cyber-functional nature [8]. The
graph-modelling techniques, such as static graphs, DAGs, or Laplacian-based
rocessing, are not adequate to represent time-varying connections, context-sensitive
functional dynamics, or fault-like propagation. They lack the flexibility of representations and
the ability to learn how to manage large-scale, time-varying dependencies, context-aware
behaviors, or fault propagation patterns.

Graph Neural Networks (GNNs) provide an efficient approach to addressing this challenge

and extending deep learning to graph-structured data [9]. GNNs execute message-passing




operations to combine and transform node and edge features by aggregating information from
both local and global neighborhoods, enabling the isolation of relational patterns and dynamic
interdependencies. Sequential stacking of layers of GNN enables the models to acquire high-
order structural features, which are key to tracking underlying dynamic behaviours in complex
cyber-physical environments [10]. The addition of temporal information to spatio-temporal
GNNSs, including Temporal Graph Convolutional Networks (T-GCNs), Graph Attenti

Networks (GATS), and Relational Graph Convolutional Networks (R-GCNs), has res

)

an even more pronounced extension of the capacity to model time-varying sy,

simultaneously adapt in topology and feature distributions [11]. The CPS is giy@ in
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Figure 1. Mechanism of CPS

rk in this article proposes a complex GNN-based model for instance

T earc
tQguctural and functional dependencies in SCPSs. The new system views the

as a set of sequences of multi-relational graphs, where each node encodes the
stem entity, and the set of edges changes over time to capture physical connectivity
IMMuence, as well as functional connections, between entities. To recognise both short-
term variation and long-term connection in the dynamics, the model incorporates temporal
attention mechanisms and gated message passing. Unlike in static GNNSs, the proposed
methodology updates the embeddings in real-time according to monitored anomalies, actuator
feedback, and cyber intrusion trends, facilitating real-time diagnostics and predictive

monitoring.



A synthetic SCPS simulation environment was constructed to test the proposed
framework. This simulation environment enables the creation of graph-structured temporal
data in a controlled operating environment, where sensor faults, actuator failures, and network
attacks can be simulated. Such environments closely resemble real-time industrial settings, like
smart factories or autonomous robotic systems. The learned embeddings provide semantic

insight into how physical disturbances propagate through cyber-functional pathways, offeri

@ |

nteN@Rtions,

new capabilities for explainability and root-cause analysis.
The work adds the following novel components to the emerging SCPS moni
modelling:

(1) A unified spatio-temporal graph representation for dynaipdPC PN
(i) A modular GNN architecture that supports relational, a™¥ Q

Nsed, and’temporal
learning layers, and

(ili)  An experimental evaluation on synthetic and semi—real" dat®ets demonstrating

strong generalisation and interpretability @‘ adversarial and uncertain

environments.

This structure is not inconsistent 4 2 iMQeasing demand for smart, robust, and

autonomous SCPSs that can handle und Erturbat®ns and remain functional in highly
GNNs in SCPS modeling addresses a key

exibility in high-dimensional, time-varying,

distributed conditions. The incorporation
constraint of traditional CPS design. the lack o
and interdependent modeling @ s dynamics. The proposed solution would offer a
scalable, data-driven appr to reglacgl rule-based method, capable of high-value analytics,

such as real-time anoig ion, failure prediction, and optimal control.

he rapid evolution of SCPS has driven extensive interdisciplinary research across
various sectors, including smart manufacturing, healthcare, automotive, and smart agriculture.
These systems combine physical components, computational intelligence, and networked
infrastructures to achieve real-time decision-making, adaptability, and autonomy. Recent
studies have explored various technical domains, including co-simulation accuracy, digital twin

(DT) interoperability, FPGA-based education systems, threat detection in 6G environments,



and Al-driven security frameworks. Table 1 presents a consolidated background analysis of ten
prominent research works [ 12—-21], providing insights into their objectives, methodologies, key
findings, and identified limitations. This synthesis facilitates a deeper understanding of state-
of-the-art developments and reveals gaps in scalability, adaptability, and real-world
deployment readiness of current ICPS paradigms.

Table 1. Comprehensive Analysis of Background Study

Reference Purpose Methodology Key Findings Limitagd

Developed Aol- Improved

based temporal decision
Enhance ICPS co-

) ) interaction types; accuracy,
simulation

o introduced three simulati _
precision and o o ICPS domains;
[12] o synchronization  fidelity; bettar N
synchronization ) scalability to
) protocols; sy i4tion _
using Age of _ _ large-scale CPS is
_ validated using f
Information (Aol) unproven
he eous
models
Classify and Theoretical
Proposed _
address _ analysis only; no
) N challenges; comprehensive _ o
interoperability ) practical/empirical
[13] aj@ed into 6 6-level DT o
challenge validation or

roperability interoperability
] performance
levels (technical framework )
o metrics
to organizational)

Implemented

BPNN with _
) Real-time system
granular Achieved better

prove the
N ) _ performance and
adaptability of computinganda  environmental

robustness have

CPS in wireless multi-agent classification
) o not been
environments system for with improved
) ) ] ) thoroughly
using Al sensing, tracking,  error metrics )
validated

and pattern

recognition




Developed an
Enable remote, ) )
_ intelligent
multi-user access ]
platform with web

Facilitated
collaborative
FPGA

Latency,

concurrent access,

[15] to FPGA ] and hardware
access, real-time development )
hardware through contention are not
feedback, and and remote lab
ICPS ) fully addressed
peripheral control access
_ DSLs
Designed GreenH
_ demonstrated
o DSLs using BNF; )
Simplify the high D
evaluated syntax, _ -
development and N expressive lication
o scalability, )
[16] monitoring of N consiste general*purpose
) usability through _ )
DTs in smart and practica ICPS remains
_ language
agriculture o unexplored
engineering
metrics
Detect and U Achieved Model
seg
mitigate 99.97% generalization

cyberattacks in

accuracy using

under novel attack

ensemble ods ]
[17] autonomous the types remains
_ 0C-SVM, RF, N _
vehicle ICPS N) f EfficientNet  untested; dynamic
or
using intell§ ) _ model in AV threat adaptation
sion detection ) )
scenarios IS needed
Cognitive ) High model
Achieved 96% )
complexity,
accuracy, 91% ]
potential

e are blockchain +
[ data PS via ensemble DL +
ckchainand 10T integration for

precision,
strong privacy,

and low delay

interpretability,
and scalability

issues

semble learning access control and
attack detection
Simulate cyber Created a DT
threats in smart environment to
[19] manufacturing generate threat

CPS using DT- datasets; trained
based testbeds DL models for

Demonstrated
cost-effective
and repeatable

attack

Simulated threats
may not fully
represent real-
world attack

diversity




time-series simulation and

classification detection
>90%
_ Implemented ] ) .
Real-time control _ separation Domain-specific
CPS-DT hybrid o o
of AWS-based ) efficiency; application (CH
o control with ) )
[20] clarification o effective cell separation),
_ distributed control ] o
process in pharma setpoint control  limited
system (DCS) and ) o
CPS ] during turbidity  ICR@#e
real-time feedback _
spikes
] Two-tier ] )
Real-time cyber- _ Relies on high-
_ o architecture Improved ) o
risk estimation o ) quality training
combining ML detectlv
and threat data; frequent
[21] o and loT; and
detection in model updates

) introduced REF- )
pharmaceutical . ) required for
prioritization
CPS

evolving threats

Despite extensive advancements in ligent Cyber-Physical Systems (ICPS), current

approaches reveal critical research gaps 1M@the scalability of co-simulation fidelity,

interoperability across Digital Ti#fins adaptive threat detection in dynamic environments.

Most methods lack tempoa@Semantic gfenment, generalization to heterogeneous nodes, and
robust information progagati echanisms. To address these limitations, this study introduces

Temporal Graph encoding to model topological dependencies,

nvironment and Synthetic SCPS Construction

NN-based mathematical model for modeling structural and functional
ncies in SCPS must encapsulate both topological interconnections and dynamic
process-level interactions across heterogeneous cyber and physical domains. This section
presents a rigorous formulation that complies with Elsevier standards, emphasizing node-level
computations, message propagation mechanisms, dependency modeling, and learning

objectives across time-evolving graphs, as illustrated in Figure 2.
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Figure 2. Methodology of G ,

Let the SCPS be abstracted asa graph G = (V, &), a set of nodes representing

physical components (e.g., sensors, actuators )2 rag ., controllers, edge servers),
encode structural connectivity and
is associated with a time-dependent feature
vector xl-t eRY, and the graph may evolve ovelN@screte time steps, t=1, 2,..., T.

To model both structura functional dependencies, we define an adjacency tensor
At € {0,1}VIXIVIXk \yhere s diftinct edge types (e.g., physical connections, cyber
interactions, causal depen ies)he type-specific adjacency matrices AL € {0,1}/VI*WVI

iorWat time t, such that A = {Af, AL, ..., AL }. The GNN operates

node embeddings via neighborhood propagation. Let thE]Rdl

of node vi at layer I, with the initialization h( ) = x(t) A general
r a multi-relational GNN is given by Equation 1.
1 D, INC
Zr 12]6]\/}(0 (r) W( )h]( ) (g)hi( )) (1)

)

e V(i) is the set of neighbors of vi under relationr, ¢; i is a normalization constant (e.g.,

O]

degree-based), w,~ are trainable weight matrices per relation type, and o(-) is an activation

function such as ReLU.



To incorporate temporal dynamics in SCPSs, we define a time-evolving node representation
H; = [h}, h?, ......,hT], where h! € RY denotes the embedding at time t. These embeddings are
updated using gated recurrent mechanisms, as given in Equations 2 to 5.

z; = a(W;hi + U,hi™) 2)
rf = o(Wehi + U;hi™h) A3)
hf = tanh(Wyhi + Up(r{ Oh{™"))
R=1-zDOh™ +2f ORt
)

where z{, rf are the update and reset gates, respectively, and © denotesas ard t.

Functional dependencies between nodes can also be modeled vj @ ion hanism,
where the attention coefficient af represents the influence of node VQedPat time t is given in

Equations 6 to 8. ,

ef; = LeakyReLU(a' [wh{||wh{]) (6)
t exp (ef]-)
v D e—— 7

i Tken i) €Xp (e5) (7)
1+1

b = o(E e o o wh) (8)

To enforce topological consisten ss time, a Laplacian regularisation term is

introduced in Equation 9.

— ®)
Lsmooth - Z{:l Zi,j Agj ”hi y i 2 (9)
Furthermore, for -1eVel pydliction tasks, such as fault detection or behavior
classification, the outpgut.o final GNN layer is passed through a classifier, as shown in

Equations 10 and 1

~

Yy, = sofgma, 4 (10)
Ltas g:l 0g yic (11)

wher the ber of classes and y;,. is the true label indicator.

ly learn structural and functional dependencies, we define a unified
objective in Equation 12.

task T 21 Lsmootn + A2Laten (12)
where L+, encourages sparse or interpretable attention weights, often formulated as in
Equation 13.

Laten = Nt D ||0‘1Fj||1 (13)

and A1, A2 are regularization coefficients.



Graph-level readouts are also applicable for system-wide state estimation or anomaly scoring.
A common readout function that aggregates node embeddings via global pooling is given in

Equation 14.
1

hé = READOUT ({h{|v;eV}) = o

Xih; (14)
To adaptively fuse cyber-physical modalities, cross-modal attention mechanisms ar;

introduced. Let hfhy and hfy b represent embeddings from physical and cyber GNN branc

given in Equations 15 and 16.
g = exp (wTtanh (w;h?™ +w,h&?y)
' %jexp wTtanh (w;hP™ +w,h ™))

Parameters @ = {wﬁ”, W, Weis, Ug, Up o

d h b
h/“et = g™ + (1 - B) by (16)
Temporal consistency between consecutive graph snapshot aintained through a
temporal smoothness constraint, as given in Equation 17. ,
t
Leemp = 2=y i |1h{” — |2 (17)
The final loss function is given in Equation 18.
Liotar = Ltask T MLsmooen + A2Laren + o (18)
Training is performed using @ cradiei® descent or the Adam optimizer.
} A

iteratively updated using the backpropagation
algorithm over temporal sequenceggaf graph-str®tured data. The procedure of GNN in SCPS
is given in Algorithm 1.

Algorithm 1: Spatio-Te ral G sed SCPS Modeling

)

ana each time step, assign an initial hidden representation as the raw

Step 1: Initializatiq
1.

Initialize md

eters (weights, biases, attention matrices)

StelR: i mporal Message Propagation
r eac er from 0 to NetworkDepth minus 1:
h time step t from 1 to T:
For each relation type r from 1 to RelationTypes:
Aggregate features from neighbors using learned weights specific to the relation type
Normalize contributions using degree-based or attention-based coefficients.
End

Concatenate all relation-specific aggregated messages.



Combine with residual connection or the previous layer's embedding
Apply a non-linear transformation (e.g., ReLU or tanh)
End
End
Step 3: Temporal Encoding
For each node across all time steps:
Apply a recurrent unit (e.g., GRU or LSTM) over the time series of hidden representgtio
Update node embeddings to reflect temporal dependencies
Step 4: Graph Smoothness Loss Calculation
For each graph snapshot:
Compute the difference in embeddings between connected nod
Aggregate pairwise differences as smoothness regularization
Encourage similar embeddings for neighboring nodes ,
Step 5: Node-Level Prediction
For each node at each time step:
Pass the final embedding through a clasgta
Generate prediction (e.g., node label *@

Step 6: Loss Function Computation

Compute:
o Classification Loss usingcrg tropy between predicted and true labels

e Temporal Loss to rce stgbilgf across time
e Structural Lo Ty) h Laplacian smoothness

ed Sum of all loss components

Step Qlte e Training

eat s 2 through 7 for a fixed number of epochs or until the convergence criteria are
{.

This model effectively captures the hierarchical, heterogeneous, and dynamic
characteristics of SCPS. It enables robust inference of failure patterns, latent interactions, and
control-policy impacts by integrating both symbolic topological priors and learned relational

dynamics.



4. Evaluation Metrics

To comprehensively evaluate the effectiveness of the proposed GNN-SCPS model,
multiple performance metrics were utilized, including Accuracy, Precision, F1-Score,
Modularity, and Graph Smoothness Score (GSS). These metrics collectively assess the
classification performance, community detection capabilities, and the smoothness of node
embeddings in the graph space, each of which is vital for robust SCPS. Accuracy quantifies

overall correctness of predictions, while precision evaluates the model’s ability to avoid fa

positives. The Fl-score harmonizes precision and recall, especially importan %
imbalanced scenarios typical of vehicular anomaly detection. Modularity capg€s tN@gua

of graph-based clustering, a key for decentralized traffic pattern discg

Finally, the Graph Smoothness Score assesses the ncy ol learned

representations among neighboring nodes. The consistent improveme GNN-SCPS across
all these metrics with increasing node count signifies its scalabv andSuperior modeling
capacity for dynamic, distributed SCPS environmen GSS indicates smoother
transitions between neighboring node embeddings, esiggPle for SCPS graph models.

The performance evaluation is given in E

TP+TN
Accuracy = —————r (19)
Precision = —— (20)
TP+FP
F1 — Score = 2 x ZLecisionxRee Recall = —=~ Q1)
Precision+Ref@ll TP+FN
(22)
(23)

iments were conducted on a workstation equipped with an AMD Ryzen 7 5800X
ssor, 32 GB of DDR4 RAM, and an NVIDIA RTX 3060 GPU (12 GB VRAM). The
software stack included Python 3.8, PyTorch 1.13, PyTorch Geometric 2.3, CUDA 11.7, and
supporting libraries such as NumPy, SciPy, NetworkX, and Matplotlib. The simulation and
training process was optimised to ensure real-time graph generation and mini-batch processing

for scalable evaluation.



4.2.Simulation setup
The simulation integrates SUMO for dynamic traffic mobility and NS-3 for V2V
communication. Vehicle interactions are modeled as graphs to evaluate GNN-based anomaly
detection and routing strategies. Table 1 presents a comprehensive overview of the simulation
parameters employed in the vehicular SCPS, which combines SUMO, NS-3, and GNN-SCPS.
Table 1. Simulation Setup

Parameter Value / Setting
Simulation Duration 1800 seconds
Time Step Interval 1 second

Road Network Urban Grid

Number of Vehicles 50 to 500

Communication Protocol IEEE 8029

Packet Size

Transmission Range

Mobility Model Krau odel (via SUMO)
Routing Algorithm ijkstra (for baseline)
GNN Layers 3 GraphConv layers
Activation Function RelLU

Learning Rate 0.001
Optimizer Adam
200

Every 10 seconds

16
TraCl + NS-3 Bridge

ant to SCPS, especially in vehicular simulation environments (e.g., NS-3 + SUMO).



Figure 2. Simulation of Node across GNN-SC

Table 2. Comparison of Accuracy

Node Count BPNN CNN En arning  GNN-SCPS

50 78.34 85.72
100 80.01 85.33 88.93
150 82.7 87.01 91.12
200 83.45 88.99 92.83
300 84.33 90.01 94.77
400 85 90 91.55 95.11
500 . 91.12 92.12 95.83

&
O
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Comparison of Accuracy

BPNN

CNN

Model

Ensemble

GNN-5CPS

0 20 40 60 80
Accuracy (%

Figure 3. Comparison cy

As presented in 7able 2 and illustiggf Q) FTe@e 3, the GNN-SCPS model exhibits a

gpcr of Wdes increases. Starting at 85.72%
o at 500 nodes, GNN-SCPS outperforms all

baselines by a significant margin. The closest B

accuracy for 50 nodes and reaching 95N

eline, Ensemble Learning, achieves 92.12%

at 500 nodes, still nearly 4 peffent oints lower. CNN and BPNN lag further behind,
particularly for larger node gihsitics. Thigconsistent gain reflects GNN-SCPS’s superior ability

to capture topological teN@aoral dependencies in vehicular networks.
Table 3. Comparison of Precision
N CNN Ensemble Learning GNN-SCPS

75.29 77.34 79.42 83.4
76.88 80.23 82.31 86.5
79.11 82.51 84.6 89.7
80.34 84.3 86.88 91.15
81.92 86.55 88.41 93.62
82.5 87.4 89.78 94.01

83.19 88.6 90.55 94.65




Comparison of Precision

100 A
95 -
2 90
c
S
@
Q
[
& 85 ‘
80 -
75
BPNN CNN Ensemble GNN-SCPS
Model
Figure 4. Comparison on

Table 3 and Figure 4 highlight thed
83.4% at 50 nodes to 94.65% at 50

ing@erecision of GNN-SCPS, moving from

he m¥gin of superiority becomes more

pronounced with increasing node density, Sgerscoring GNN-SCPS’s ability to reduce false

positives in detecting traffic anomalies or misMghaving vehicles. CNN follows with 88.6%,

195

while BPNN again trails with
that GNN-SCPS better dificfnti

the highest scale. Precision improvements confirm
s bejg@een normal and anomalous vehicular behavior.

lable 4. Comparison of F1-Score

CNN Ensemble Learning  GNN-SCPS
78.59 80.76 84.35
81.42 83.12 87.3
83.22 85.44 90.05
85.01 87.45 91.44
87.2 89.01 93.88
88.11 90.22 94.45

89.3 91.01 95.21




Comparison of F1-Score

95.0 A l

92.5 A

1 _ 1

90.0 A

87.5 4

85.0 N

F1-Score (%)

82.5
80.0 =
775 T T T T
BPNN CNN Ensemble GNN-SCPS
Model
Figure 5. Comparison ore

The F1-score, which balances preg all, 1s crucial in scenarios with class

deteC®on. As shown in Table 4 and Figure

imbalance, a common occurrence in SG@R )
5% t0 95.21% across the node scale. Ensemble

P1.01%. The better F1-score of GNN-SCPS

5, GNN-SCPS again leads, increasing from
Learning shows modest performance, peaking %

confirms its robustness in handlfifg b alse positives and false negatives, making it ideal for

CNN Ensemble Learning  GNN-SCPS
0.333 0.356 0.421
0.349 0.371 0.446
0.366 0.387 0.467
0.379 0.401 0.489
0.392 0.414 0.518
0.403 0.423 0.533

0.414 0.431 0.541




Comparison of Modularity

—&— BPNN
95.0 CNN —i/i
—&— Ensemble
% GNN-SCPS
92.5 -
90.0 A
S
b
£ 875
©
S
8
= 85.0 A
82.5 A
80.0 A
77.5 1

100 200 300 400 500
Number of Sensor N

Figure 6. Comparison o rity,

Unique to graph-based systems, ity vital metric to assess how well the

platoons. According to Table 5 and Figure ORERNN-SCPS achieves the highest modularity score
Qe CNN (0.414), Ensemble Learning (0.431),

and BPNN (0.378). This enffanc odularity reflects GNN-SCPS’s superior graph
partitioning and spatial ¢ unity tion capabilities, which are key for decentralized
e

traffic control and edif € nce.

algorithm detects community structur clus of traffic congestion or vehicle

of 0.541 at 500 nodes, significantly outperfo
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Figure 7. Graph Smoothness Score (G -SCPS
The comparative analysis of the propo G model against baseline

architectures, such as BPNN, CNN, and

e ing, across various node counts in
vehicular SCPS, yields several critical

GNN-SCPS; as the number of networked nod

¥ Firstly, scalability is a notable strength of

increases, the model consistently demonstrates

superior performance across al sidered mctrics, indicating its robustness in handling

complex, large-scale vehicyla ents. Secondly, the model exhibits exceptional

learning robustness, with ifica gher accuracy and F1-scores, reflecting its ability to

j0s and detect behavioral anomalies in dynamic simulation

geneous data streams efficiently. Thus, the model not only outperforms traditional deep
learning approaches in classical evaluation metrics but also excels in graph-theoretic
dimensions critical to modern SCPS design. Overall, the study substantiates GNN-SCPS as a
scalable, adaptive, and graph-optimized architecture poised to support the next generation of

intelligent transport and cyber-physical infrastructure systems.



5. Conclusion and Future Work

The rapid evolution of Intelligent Transportation Systems (ITS) and smart cities
requires scalable, adaptive, and structure-aware learning models that can handle real-time
vehicular dynamics. Traditional machine learning methods often struggle to capture the
complex spatiotemporal relationships inherent in Cyber-Physical Systems (CPS). In this
context, graph-based DL provides a promising alternative due to its inherent capability

model non-Euclidean data structures. This study introduced GNN-SCPS, a graph _geu

network-integrated simulation framework that leverages NS-3 for communicatio

and SUMO for traffic mobility emulation. Through extensive evaluations ns

models—BPNN, CNN, and Ensemble Learning—across various n
consistently demonstrated superior performance in terms of acc

and graph smoothness. The results validate the effectiveness of GNN earning topological

and semantic patterns for optimizing vehicular CPS. ,

This work sets the foundation for future deploy NN-driven intelligence in
large-scale, real-time traffic management and smart 1N soly@ons.
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