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Abstract 

Strategic decision-making and organizational governance increasingly depend on 

accurate assessment of human behavioral competencies. Traditional evaluation methods often 

lack scalability, objectivity, and predictive insight, limiting their utility in dynamic enterprise 

environments. This study proposes a machine learning-based framework for competency 

development and analytics that integrates multi-source behavioral data with predictive 

modeling to enable data-driven governance. A structured pipeline is developed comprising 

behavioral signal attainment, feature engineering, probabilistic classification, and governance-

aligned scoring. The framework is operationalized using multiple supervised learning models, 

including Logistic Regression, Random Forest, XGBoost, and Multilayer Perceptron, with 

XGBoost achieving the highest classification accuracy (83.4%) and superior probabilistic 

calibration. Cross-validation confirmed the robustness of performance with minimal variance 

(±1.5%), and interpretability was supported through feature attribution. Behavioral profiling 

revealed high central tendency in Analytical Thinking and wide dispersion in Ethical Conduct, 

informing strategic prioritization. The proposed model delivers calibrated, interpretable, and 

governance-compatible competency predictions, presenting a scalable solution for institutional 

leadership development, risk management, and policy alignment. Experimental validation 
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across 1,247 behavioral instances confirms the model’s effectiveness in bridging human capital 

analytics with strategic decision processes. 

Keywords: Behavioral Competency, Machine Learning, XGBoost, Strategic Governance, 

Competency Profiling, Probabilistic Calibration, Human Capital Analytics 

1. Introduction 

Organizational performance in contemporary knowledge economies is increasingly 

determined by the behavioral competencies of individuals rather than solely by technical 

capabilities or domain expertise [1]. As enterprises adapt to rapidly shifting market conditions, 

strategic priorities such as leadership effectiveness, adaptability, ethical conduct, and cognitive 

agility have become essential drivers of sustained success [2]. These competencies impact not 

only internal operational cohesion but also external stakeholder confidence, regulatory 

compliance, and long-term innovation potential. Consequently, the measurement, 

development, and deployment of behavioral competencies have emerged as critical 

components of strategic governance and workforce transformation [3]. 

Despite their importance, conventional competency assessment practices—such as 

structured interviews, supervisor evaluations, and self-assessment inventories—are limited by 

subjectivity, evaluator bias, low scalability, and insufficient integration with real-time decision 

systems [4]. These methods typically propose static, retrospective snapshots of employee 

performance, lacking the predictive granularity required for high-stakes decisions related to 

leadership succession planning, organizational risk profiling, and regulatory alignment. As a 

result, organizations face a growing imperative to adopt objective, data-driven approaches that 

can systematically evaluate behavioral attributes across large, diverse populations while 

preserving interpretability and decision accountability [5]. 

Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) 

propose transformative opportunities for competency analytics. Supervised learning 

algorithms, in particular, are capable of mapping complex behavioral features to latent 

competency classes using both structured and unstructured data sources, such as psychometric 

assessments, communication patterns, 360-degree feedback, and HR information systems [6, 

7]. When properly calibrated, these models can deliver probabilistic predictions with 

quantifiable confidence levels, enabling downstream applications in decision support, 

performance management, and leadership development. However, the adoption of such 

systems for governance purposes demands rigorous attention to fairness, reliability, 

transparency, and actionable interpretability—criteria often unmet by black-box AI solutions 

[8]. 
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This research addresses these challenges by proposing a comprehensive, explainable, 

and governance-compatible model for behavioral competency analytics grounded in ML. The 

model integrates multi-source behavioral signals into an engineered feature space, employs 

supervised classification models to infer competency classes, and generates probabilistic 

outputs used to compute governance-aligned scores. Model development follows best practices 

in cross-validation, calibration testing, and interpretability auditing to ensure the integrity and 

utility of predictions. 

The study contributes to the literature by formalizing a competency modeling pipeline 

that aligns technical rigor with strategic relevance. Unlike prior efforts that focus narrowly on 

performance classification or psychometric diagnostics, the proposed approach is holistic, 

linking individual-level behavioral insights to macro-level governance objectives. It further 

evaluates model performance not only through standard accuracy metrics but also through 

probabilistic calibration measures and class-wise behavioral profiling, ensuring the robust and 

responsible deployment of AI in human capital management contexts. 

The remainder of this paper is organized as follows: Section 2 reviews the existing literature 

on behavioral competency models and AI applications in workforce analytics. Section 3 

describes the methodology, including data preprocessing, Feature Engineering (FE), model 

training, and evaluation design. Section 4 presents empirical results from the classification, 

calibration, and interpretability analysis. Section 5 concludes with future research directions 

and considerations for deployment. 

2. Literature Review 

The integration of AI into human resource management and governance models has 

accelerated the development of advanced systems for competency identification, workforce 

planning, and Strategic Decision-Making (SDM). This section reviews prior work relevant to 

AI-driven talent analytics, behavioral competency modeling, and ML employed in predictive 

evaluation systems. The review is structured around three thematic pillars: (1) AI in talent 

analytics and workforce systems, (2) competency modeling and behavioral measurement, and 

(3) ML for performance prediction and interpretability. 

2.1 AI in Talent Analytics and Strategic Governance 

The emergence of AI as a catalyst for workforce transformation has sparked growing 

interest in intelligent talent analytics systems that can extract actionable insights from 

behavioral and organizational data.  

[9] Provide a comprehensive survey of AI techniques applied to talent analytics, 

identifying core components such as data fusion, behavioral FE, model calibration, and 
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decision support integration. The study categorizes AI tools into predictive, prescriptive, and 

adaptive analytics models, emphasizing the importance of transparency and explainability, 

particularly in applications that impact promotion, compensation, and succession planning. 

Their taxonomy establishes the theoretical foundation for integrating AI outputs into 

governance workflows, where decisions must align with fairness and accountability standards. 

Similarly, [10] explored technology acceptance through a behavioral lens using ML 

models applied to fintech transaction data. Their study validates the use of decision trees and 

gradient boosting in modeling latent behavioral responses and confirms the effectiveness of 

probabilistic classifiers in capturing digital interaction patterns. These insights support the 

relevance of ML-based behavioral inference systems in broader domains beyond fintech, 

including education, human capital management, and competency development. 

2.2 Competency Modeling and Behavioral Structuring 

The transition from traditional competency assessments to digital, AI-augmented 

systems requires formal models for defining, measuring, and validating behavioral indicators. 

[11] proposed the Meta AI Literacy Scale (MAILS), a structured instrument for evaluating AI-

related competencies across cognitive, emotional, and strategic dimensions. Their model 

introduces meta-competency categories, such as self-regulation and situational awareness, 

which closely align with enterprise-level governance objectives. By grounding competency 

definitions in psychological theory and empirical testing, MAILS facilitates the transformation 

of abstract behavioral traits into quantifiable model features. 

[12] further expanded the competency modeling literature by proposing a hierarchical 

model for AI literacy, rooted in constructivist theory and validated through iterative expert 

consultations. Their approach formalizes the competency lifecycle—from conceptual model to 

measurable indicators—and outlines a roadmap for integrating assessment metrics into 

educational and professional development systems. Both works reinforce the importance of 

structured, theory-informed competency definitions when designing AI-driven classification 

and scoring systems. 

In an applied context, [13] examined teaching competencies in higher education under 

the influence of AI integration. Their findings revealed a multidimensional competency model 

encompassing technical fluency, communication, ethical reasoning, and instructional 

adaptability. The study provides empirical validation of how AI exposure reshapes expected 

behavioral attributes and proposes a practical basis for model training datasets that incorporate 

domain-specific competency clusters. 

2.3 ML for Behavioral Prediction and Interpretability 

Auth
ors

 Pre-
Proo

f



ML proposals are powerful tools for modeling non-linear relationships between 

behavioral inputs and competency outcomes.  

[14] Conducted a scientometric and empirical analysis on behavior-driven learning 

performance prediction. The study compared models such as XGBoost, Random Forest (RF), 

and neural networks, and identified XGBoost as the most stable and interpretable classifier 

when paired with SHAP (SHapley Additive exPlanations) for feature attribution. Their findings 

confirm the suitability of ensemble-based methods for modeling behavioral systems that 

demand both predictive strength and decision transparency. 

Supporting this, [15] demonstrated the efficacy of XGBoost in predicting educational 

performance, outperforming baseline models in both accuracy and reliability. Their study 

emphasized the importance of feature selection, class balance, and probabilistic calibration in 

achieving meaningful results. The use of interpretable outputs, including reliability plots and 

class-wise scoring, further bridges the gap between algorithmic outputs and stakeholder 

comprehension—a necessary feature in governance applications. 

2.4. Summary and Research Gap 

Existing research establishes a robust foundation for the application of AI in behavioral 

competency modeling. Prior studies provide theoretical competency taxonomies, validated 

scoring instruments, and empirical support for ensemble learning and explainable models. 

However, a critical gap remains in the end-to-end operationalization of behavioral 

competency analytics models that integrate engineered behavioral signals, probabilistic ML 

outputs, and governance-aligned scoring mechanisms. Moreover, few studies simultaneously 

address model calibration, feature interpretability, and domain-specific profiling within a single 

architecture. This research addresses these gaps by developing a calibrated, explainable, and 

governance-compatible ML pipeline for behavioral competency evaluation using multi-source 

data and interpretable modeling techniques [16-19]. 

3. Methodology 

A rigorous methodology is essential to operationalize behavioral competency analytics 

within strategic and governance systems. The proposed methodology integrates ML with 

behavioral data mining to establish a systematic, scalable, and explainable model for 

competency evaluation. This section outlines the conceptual foundation, data flow architecture, 

modeling techniques, and evaluation protocols adopted in the construction of the AI-driven 

competency analytics model. 
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Figure 1: Conceptual Model 
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3.1 Conceptual Model 

The conceptual model (Figure 1) establishes the theoretical and architectural basis for 

integrating AI into behavioral competency modeling, linking individual-level attributes to 

broader strategic governance outcomes. This integration is facilitated by a three-tiered system 

encompassing behavioral signal acquisition, ML-based competency inference, and strategic 

governance alignment. 

Let the dataset denote a behavioral observation space. 

𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁         (1) 

where 𝑥𝑖 ∈ ℝ𝑑 represents the 𝑖-th individual's feature vector consisting of 𝑑 behavioral 

indicators, and 𝑦𝑖 ∈ 𝒞 is the corresponding competency class label from a predefined set of 

competency categories 𝒞 = {𝑐1, 𝑐2, … , 𝑐𝑘}. Here, 𝑁 denotes the total number of observed 

individuals in the dataset. The objective is to learn a function. 

𝑓:ℝ𝑑 → 𝒞         (2) 

that maps each feature vector 𝑥𝑖 to its predicted competency class �̂�𝑖 = 𝑓(𝑥𝑖), enabling 

automated classification of behavioral profiles. 

To evaluate strategic alignment, a governance impact score is computed using the 

derived competencies. Let 𝜃𝑗 ∈ ℝ denotes the impact weight associated with the competency 

category 𝑐𝑗, and let 𝑝𝑗 denote the predicted probability that an individual belongs to a 

competency 𝑐𝑗. The aggregate governance alignment score 𝑆𝑔 is given by: 

𝑆𝑔 = ∑  𝑘
𝑗=1 𝜃𝑗 ⋅ 𝑝𝑗       (3) 

where 𝑆𝑔 ∈ ℝ represents a scalar index capturing the strategic value contribution of a 

behavioral profile. The values of 𝑝𝑗 are obtained from the softmax outputs of the trained model, 

while the weights 𝜃𝑗 are determined through expert elicitation or regression modeling linking 

competencies to organizational performance indicators. 

To structure the data transformation pipeline, the entire competency evaluation 

architecture is decomposed into three primary functional modules: 

1. Behavioral Feature Extraction Layer (𝓕) : Transforms raw inputs (e.g., textual 

feedback, psychometrics, HR data) into standardized feature vectors 𝑥𝑖 using natural 

language processing, signal aggregation, or embedding functions. 

2. Competency Inference Engine (𝓜): Implements the learned mapping 𝑓(⋅) via 

supervised ML (e.g., RF, SVM, neural networks), producing class predictions �̂�𝑖 and 

probability vectors [𝑝1, … , 𝑝𝑘]. 
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3. Governance Alignment Module (𝓖) : Computes the final governance score 𝑆𝑔 based 

on equation (3), enabling integration of competency analytics into executive 

dashboards and decision systems. 

The final output of the model is a structured mapping: 

𝒟 →
ℱ 

ℝ𝑑 →
ℳ 

𝒞 →
𝒢 

ℝ        (4) 

This end-to-end transformation facilitates data-driven SDM based on objective 

behavioral analytics. 

The conceptual models thus form the foundation for a scalable and explainable 

competency analytics system that bridges individual behavioral data with organizational 

governance insights. Subsequent sections describe the data modeling procedures, ML 

employed, and the system’s empirical validation. 

3.2 Data Collection and Preprocessing 

Accurate and high-quality data acquisition forms the foundation for any ML-based 

behavioral competency analysis. This section describes the sources, structure, and 

preprocessing protocols applied to the behavioral dataset used for competency inference. 

Emphasis is placed on ensuring standardization, ethical compliance, and consistency 

throughout the transformation process to enable reliable model training and interpretation. 

3.2.1 Behavioral Data Sources 

The behavioral data used for competency modeling were drawn from a diverse set of 

organizational repositories, each contributing a specific dimension of behavioral expression: 

• Performance Appraisal Reports: Structured annual feedback forms containing 

ratings on soft skills, communication style, adaptability, and teamwork. 

• 360-Degree Feedback: Multi-source evaluations collected from supervisors, peers, and 

subordinates covering dimensions of leadership, conflict resolution, and ethical 

conduct. 

• Digital Communication Logs: Linguistic and sentiment features extracted from 

corporate emails, meeting transcripts, and internal messaging platforms. 

• Psychometric Assessments: Standardized test scores reflecting traits such as openness, 

conscientiousness, and emotional stability. 

• HRIS Metadata: Demographic attributes, promotion timelines, and tenure records, 

used for auxiliary features and stratification. 

These multi-source inputs contribute to the generation of a unified behavioral profile vector 

𝑥𝑖 ∈ ℝ𝑑 as defined in Equation (1). 
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3.2.2 Data Cleaning and Anonymization 

Raw data collected from multiple systems often contains inconsistencies, missing values, 

and identifying information. A formal cleaning process was applied: 

• Imputation: Missing values were filled using a hybrid approach that combined 

statistical mean imputation for numeric fields with the mode for categorical variables, 

ensuring statistical consistency while minimizing data leakage. 

• Deduplication: Records with identical identifiers and timestamp overlaps were 

removed to avoid redundancy. 

• Normalization: All numerical features were scaled using min-max normalization as: 

𝑥𝑖𝑗
norm =

𝑥𝑖𝑗−min(𝑥𝑗)

max(𝑥𝑗)−min(𝑥𝑗)
       (5) 

where 𝑥𝑖𝑗 is the original value of the 𝑗-th feature for the 𝑖-th individual, and 

min(𝑥𝑗),max(𝑥𝑗) denote the minimum and maximum values of feature 𝑗 across the 

dataset. This maps all values into the [0, 1] range, preserving scale invariance across 

features. 

• Anonymization: Personally identifiable information (PII) was removed or tokenized 

to ensure ethical data handling and compliance with relevant regulations. Unique IDs 

were assigned to each participant using a cryptographic hash function. 

3.2.3 Feature Vector Construction 

After standardization, behavioral indicators were aggregated into a structured feature matrix: 

𝑋 =

[
 
 
 
𝑥1

𝑇

𝑥2
𝑇

⋮
𝑥𝑁

𝑇]
 
 
 
∈ ℝ𝑁×𝑑       (6) 

where each row vector 𝑥𝑖 ∈ ℝ𝑑  represents the cleaned, normalized behavioral profile 

of the 𝑖-th individual and each column corresponds to a specific behavioral or psychometric 

attribute. The matrix 𝑋 serves as the model input for the ML engine described in subsequent 

sections. 

3.2.4 Label Encoding and Class Balancing 

Competency labels 𝑦𝑖 ∈ 𝒞 were encoded using ordinal or categorical schemes 

depending on the model design. In cases of imbalanced class distribution, Synthetic Minority 

Over-sampling Technique (SMOTE) was applied to augment underrepresented classes, 

ensuring adequate representation during model training without distorting feature semantics. 

3.3 Feature Engineering 
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FE is a critical methodological step that transforms raw behavioral inputs into high-

dimensional, discriminative representations suitable for ML-based competency inference. This 

section outlines the design of domain-relevant behavioral features, the transformation of 

heterogeneous input types, and the dimensional reduction strategies employed to optimize 

model performance while maintaining interpretability. 

3.3.1 Behavioral Feature Taxonomy 

The behavioral features were classified into four functional categories, each capturing a 

distinct aspect of individual workplace behavior: 

• Linguistic Features (𝓕𝟏) : Extracted from textual sources such as emails and 

performance narratives using natural language processing (NLP). These include word 

frequency vectors, syntactic complexity, tone polarity, and sentiment scores. 

• Interactional Features (𝓕𝟐) : Derived from communication metadata including 

message response latency, participation in collaborative platforms, and meeting 

contribution frequency. 

• Psychometric Features (𝓕𝟑) : Numerical variables obtained from standardized 

assessments capturing personality traits, cognitive agility, and emotional intelligence 

metrics. 

• Historical and Structural Features (𝓕𝟒) : Attributes reflecting career progression, 

tenure, department, and previous role transitions. 

The complete feature vector for an individual 𝑥𝑖 is structured as: 

𝑥𝑖 = [ℱ1(𝑖), ℱ2(𝑖), ℱ3(𝑖), ℱ4(𝑖)] ∈ ℝ𝑑      (7) 

where 𝑥𝑖 is the concatenation of sub-vectors corresponding to each functional category for 

individual 𝑖, and 𝑑 denotes the total dimensionality of the feature space. 

3.3.2 Textual Embedding and NLP Feature Construction 

Textual inputs were processed using advanced embedding techniques. Each document 

or sentence associated with a behavioral record was vectorized using a pre-trained transformer-

based model (e.g., BERT), yielding dense representations: 

𝑧𝑡 = Embed(𝑇𝑡)         (8) 

where 𝑇𝑡 is the input text associated with time step 𝑡, and 𝑧𝑡 ∈ ℝℎ is the resulting 

contextual embedding with dimensionality ℎ. These embeddings were aggregated at the 

individual level through temporal averaging or attention-weighted pooling. 

Supplementary linguistic features, including polarity score, subjectivity, modal usage, 

and formality index, were also extracted using domain-tuned lexicons and rule-based NLP 

Auth
ors

 Pre-
Proo

f



libraries. 

3.3.3 Aggregation of Multi-Instance Features 

For individuals associated with multiple behavioral episodes (e.g., weekly reports or 

multiple feedback instances), a feature aggregation operation was defined as: 

𝑥𝑖 =
1

𝑛𝑖
∑  

𝑛𝑖
𝑡=1 𝑧𝑖𝑡        (9) 

where 𝑛𝑖 is the number of temporal observations for individual 𝑖, and 𝑧𝑖𝑡 is the feature vector 

derived from observation 𝑡. This ensures that each individual is represented by a single, 

temporally aggregated behavioral signature, regardless of the number of input records. 

3.3.4 Dimensionality Reduction and Feature Selection 

To address feature redundancy and enhance generalization, a two-stage reduction strategy 

was employed: 

1. Unsupervised Projection: Principal Component Analysis (PCA) was first applied to 

reduce noise and decorrelate features while preserving maximum variance. 

2. Supervised Selection: Recursive Feature Elimination (RFE) with cross-validated 

wrapper models was employed to identify the most informative features concerning 

competency class prediction. 

Let 𝑅 be the final set of selected feature indices such that: 

𝑥𝑖
sel = 𝑥𝑖[𝑅] ∈ ℝ𝑑′

        (10) 

where 𝑥𝑖
sel  is the reduced feature vector and 𝑑′ < 𝑑 is the final dimensionality after 

selection. These selected features form the input to the classifier in the subsequent modeling 

phase. 

The resulting engineered feature space encapsulates multidimensional behavioral 

signals in a compact and interpretable format, allowing downstream ML to learn meaningful 

competency mappings. 

3.4 ML Models 

The core objective of this section is to formalize the predictive learning architecture 

employed for inferring behavioral competencies from engineered features. The proposed 

modeling pipeline integrates supervised classification algorithms with probabilistic outputs to 

map feature vectors to competency categories, as defined in Equation (2). This section presents 

the model selection criteria, training pipeline, and optimization strategies, with an emphasis on 

interpretability, accuracy, and alignment with strategic governance outcomes. 

3.4.1 Learning Objective and Loss Function 
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Given a labeled dataset 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁 , where each feature vector 𝑥𝑖 ∈ ℝ𝑑′

 

corresponds to a preprocessed behavioral profile, and each label 𝑦𝑖 ∈ 𝒞 = {𝑐1, 𝑐2, … , 𝑐𝑘} 

denotes a competency class, the classifier 𝑓:ℝ𝑑′
→ 𝒞 is trained to minimize the categorical 

cross-entropy loss: 

ℒ = −
1

𝑁
∑  𝑁

𝑖=1 ∑  𝑘
𝑗=1 𝛿(𝑦𝑖 = 𝑐𝑗) ⋅ log 𝑝𝑖𝑗     (11) 

where: 

• 𝑁 is the number of training instances, 

• 𝑘 is the total number of competency classes, 

• 𝛿(⋅) is the Kronecker delta function, 

• 𝑝𝑖𝑗 is the predicted probability that 𝑥𝑖 belongs to the class 𝑐𝑗, i.e., 𝑝𝑖𝑗 =

Pr(𝑦𝑖 = 𝑐𝑗 ∣ 𝑥𝑖). 

The output probabilities 𝑝𝑖𝑗 are obtained through a softmax transformation applied to the 

model's final layer. 

3.4.2 Model Architecture and Candidate Algorithms 

This subsection provides an in-depth exposition of the ML evaluated for behavioral 

competency classification. Each model architecture was selected based on its ability to capture 

complex nonlinearities, ensure interpretability for SDM, and support probabilistic output 

necessary for governance alignment calculations. The following classifiers were implemented 

and benchmarked: 

(a) Logistic Regression (LR): LR serves as the baseline model for classification and is 

characterized by its simplicity and interpretability. The model estimates the probability of a 

feature vector 𝑥𝑖 ∈ ℝ𝑑′
 belonging to each competency class 𝑐𝑗 ∈ 𝒞 using the logistic function: 

𝑝𝑖𝑗 =
exp (𝑤𝑗

𝑇𝑥𝑖+𝑏𝑗)

∑  𝑘
ℓ=1  exp (𝑤ℓ

𝑇𝑥𝑖+𝑏ℓ)
        (12) 

where: 

• 𝑤𝑗 ∈ ℝ𝑑′
 is the weight vector associated with the class 𝑐𝑗, 

• 𝑏𝑗 ∈ ℝ is the class-specific bias term, 

• 𝑘 is the total number of competency classes. 

The model's coefficients 𝑤𝑗 proposal direct interpretability regarding feature influence on 

classification decisions, making LR particularly suitable in compliance-sensitive governance 

applications. 
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(b) RF: RF is a decision tree-based ensemble classifier that builds multiple independent 

decision trees using bootstrap samples of the training data and random feature selection at each 

node. Each tree 𝑇𝑡 outputs a predicted class, and the final class prediction is determined via 

majority voting. Probabilistic outputs are computed as the normalized class frequencies across 

all trees: 

𝑝𝑖𝑗 =
1

𝑇
∑  𝑇

𝑡=1 𝛿(𝑇𝑡(𝑥𝑖) = 𝑐𝑗)        (13) 

where: 

• 𝑇 is the total number of trees in the forest, 

• 𝛿(⋅) is the Kronecker delta function, evaluating to 1 when the predicted class matches 

𝑐𝑗. 

RF is robust to noisy features and non-linear class boundaries and inherently performs 

feature selection during tree construction, improving model stability and interpretability. 

(c) Extreme Gradient Boosting (XGBoost): XGBoost is a gradient-boosted ensemble 

learning algorithm that builds decision trees sequentially, where each new tree corrects the 

residual errors of the previous ones. The model optimizes a regularized objective function using 

a second-order Taylor approximation of the loss: 

ℒ (𝑡) ≈ ∑  𝑁
𝑖=1 [𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡)     (14) 

where: 

• 𝑔𝑖 = 𝜕ℒ𝑖
(𝑡−1)

/𝜕�̂�𝑖 is the first-order gradient, 

• ℎ𝑖 = 𝜕2ℒ𝑖
(𝑡−1)

/𝜕�̂�𝑖
2 is the second-order Hessian, 

• 𝑓𝑡 is the prediction of the 𝑡-th tree, 

• Ω(𝑓𝑡) is the regularization term controls model complexity. 

XGBoost is well-suited for behavioral datasets due to its ability to handle heterogeneous 

features, high dimensionality, and strong resistance to overfitting through regularization and 

shrinkage techniques. 

(d) Multilayer Perceptron (MLP): The MLP is a fully connected feedforward neural network 

capable of learning complex nonlinear mappings from feature inputs to competency class 

outputs. The model comprises an input layer, one or more hidden layers, and an output layer 

with a Softmax activation function. The transformation in each layer is given by: 

ℎ(𝑙) = 𝜎(𝑊(𝑙)ℎ(𝑙−1) + 𝑏(𝑙))        (15) 

where: 

• ℎ(𝑙) denotes the activation vector of the 𝑙-th layer, 
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• 𝑊(𝑙), 𝑏(𝑙) are the weight matrix and bias vector of the 𝑙-th layer, 

• 𝜎(⋅) is a nonlinear activation function (e.g., ReLU, tanh), 

• ℎ(0) = 𝑥𝑖
sel  is the input feature vector. 

The output layer applies a SoftMax function to produce the class probability vector 𝐩𝑖. 

MLPs are particularly powerful for learning latent relationships in high-dimensional behavioral 

data; however, they require careful tuning to avoid overfitting. 

Each classifier was implemented with a unified interface to allow consistent training, 

evaluation, and interpretability analysis. The diversity in model complexity—from linear (LR) 

to deep neural (MLP)—ensures a balanced assessment of predictive accuracy versus 

interpretive transparency, aligning with the dual objectives of strategic governance and 

behavioral insight generation. 

3.4.3 Training Protocol and Cross-Validation 

The training protocol is designed to ensure generalizable learning of behavioral 

competency patterns from structured feature vectors. This subsection formalizes the model 

training pipeline, defines the cross-validation strategy for robustness verification, and outlines 

the hyperparameter optimization schemes adopted for each candidate model. The methodology 

emphasizes reproducibility, fairness across competency classes, and mitigation of overfitting 

risks. 

Data Partitioning Strategy 

The complete dataset 𝒟 = {(𝑥𝑖
sel , 𝑦𝑖)}𝑖=1

𝑁
, comprising the selected features 𝑥𝑖

sel ∈ ℝ𝑑′
 and 

corresponding class labels 𝑦𝑖 ∈ 𝒞, was partitioned using stratified sampling to preserve class 

distribution: 

• Training Set (70%): Used for model fitting and parameter learning. 

• Validation Set ( 15% ): Employed for hyperparameter tuning and early stopping. 

• Test Set (15%): Held out for final performance evaluation. 

Stratification ensures that rare competency classes are adequately represented across all 

folds, maintaining class balance during training and evaluation. 

Cross-Validation and Hyperparameter Optimization 

A 5-fold stratified cross-validation strategy was employed within the training partition 

to evaluate the model's stability across folds. For each candidate algorithm, an exhaustive grid 

search was conducted over a defined parameter space. The best parameter combination was 

selected based on macro-averaged F1-score on the validation folds, which accounts for 

imbalanced class distributions. 
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Let 𝒫𝑚 denote the parameter space for model 𝑚, and ℳ𝑚(𝜙) be the model instance 

trained with hyperparameter configuration 𝜙 ∈ 𝒫𝑚. The optimal configuration 𝜙∗ is 

determined by: 

𝜙∗ = arg max
𝜙∈𝒫𝑚

  F1macro (ℳ𝑚(𝜙))       (16) 

where F1macro (⋅) denotes the macro-averaged F1-score computed across the 5 validation folds. 

To mitigate overfitting, early stopping was applied based on validation loss for neural models. 

Additionally, model-specific regularization mechanisms were activated, such as: 

• L2 penalty for LR and MLP, 

• Maximum tree depth and learning rate constraints for ensemble models, 

• Dropout layers in MLP to suppress co-adaptation of neurons. 

Table 1 below summarizes the tuned parameters and their optimal values for each model based 

on validation performance. 

Table 1: Optimized Training Parameters for Candidate Models 

Model Hyperparameter Value(s) Tested 

Optimal 

Value 

Selected 

LR 
Regularization 

strength (CCC) 

[0.01,0.1,1,10,100][0.01, 0.1, 1, 10, 

100][0.01,0.1,1,10,100] 
1.0 

RF Number of trees [100,200,300][100, 200, 300][100,200,300] 200 

 Max tree depth 
[5,10,20,None][5, 10, 20, 

None][5,10,20,None] 
10 

 Min samples split [2,5,10][2, 5, 10][2,5,10] 5 

XGBoost 
Learning rate 

(η\etaη) 

[0.01,0.05,0.1][0.01, 0.05, 

0.1][0.01,0.05,0.1] 
0.05 

 Max depth [4,6,8][4, 6, 8][4,6,8] 6 

 Subsample ratio [0.6,0.8,1.0][0.6, 0.8, 1.0][0.6,0.8,1.0] 0.8 

 
Number of 

boosting rounds 
[100,200,300][100, 200, 300][100,200,300] 200 

MLP 
Hidden layers 

structure 

[(64),(128,64),(128,128,64)][(64), (128,64), 

(128,128,64)][(64),(128,64),(128,128,64)] 
(128, 64) 

 
Activation 

function 
ReLU, tanh ReLU 

 Dropout rate [0.1,0.2,0.3][0.1, 0.2, 0.3][0.1,0.2,0.3] 0.2 
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 Batch size [32,64,128][32, 64, 128][32,64,128] 64 

 Epochs [50,100,200][50, 100, 200][50,100,200] 

100 (with 

early 

stopping) 

 

Each model was trained using the optimal hyperparameters. 𝜙∗ and then retrained on the 

combined training + validation data before final evaluation on the test set. The following 

subsection presents the metrics used to quantify predictive performance and interpret the 

classification results. 

3.5 Evaluation Metrics 

The evaluation of ML-based behavioral competency models requires a comprehensive 

set of metrics that reflect not only predictive accuracy but also fairness, robustness, and 

alignment with organizational objectives. This section presents the quantitative indicators used 

to assess model performance on the test set, along with formal definitions and interpretative 

justifications. 

3.5.1 Classification Performance Metrics 

Given the multi-class nature of competency classification, performance is evaluated using 

standard classification metrics computed over the test set 𝒟test = {(𝑥𝑖
sel , 𝑦𝑖)}𝑖=1

𝑁𝑡
, where 𝑁𝑡 

denotes the number of test instances. The following indicators are employed: 

• Accuracy: The proportion of correctly predicted competency labels: 

 Accuracy =
1

𝑁𝑡
∑  

𝑁𝑡
𝑖=1 𝛿(�̂�𝑖 = 𝑦𝑖)       (17) 

where �̂�𝑖 is the predicted label, and 𝛿(⋅) is the Kronecker delta function. 

• Precision, Recall, and F1-score: Computed per class 𝑐𝑗 ∈ 𝒞, then averaged using 

macro and weighted schemes: 

• Precision (𝑃𝑗) for class 𝑐𝑗 is the fraction of true positives among all predicted 

positives: 

𝑃𝑗 =
𝑇𝑃𝑗

𝑇𝑃𝑗+𝐹𝑃𝑗
        (18) 

• Recall (𝑅𝑗) is the fraction of true positives among all actual positives: 

𝑅𝑗 =
𝑇𝑃𝑗

𝑇𝑃𝑗+𝐹𝑁𝑗
        (19) 

• F1-Score (𝐹1𝑗) is the harmonic mean of precision and recall: 

𝐹1𝑗 =
2⋅𝑃𝑗⋅𝑅𝑗

𝑃𝑗+𝑅𝑗
        (20) 
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• Macro-Averaged F1-Score: Computes the unweighted mean of class-wise F1-scores: 

F1macro =
1

𝑘
∑  𝑘

𝑗=1 𝐹1𝑗        (21) 

• Weighted F1-Score: Weights each class-wise F1-score by its support: 

F1weighted = ∑  𝑘
𝑗=1

𝑁𝑗

𝑁𝑡
⋅ 𝐹1𝑗        (22) 

where 𝑁𝑗 is the number of instances in the class 𝑐𝑗, and 𝑁𝑡 = ∑  𝑘
𝑗=1 𝑁𝑗. These metrics provide 

a balanced assessment that penalizes poor performance on minority classes, ensuring fairness 

in competency classification. 

3.5.2 Probabilistic Calibration Metrics 

Since the governance alignment score in Equation (3) relies on SoftMax probabilities, the 

model's ability to produce well-calibrated class probabilities is also evaluated. Two key 

calibration metrics are employed: 

• Logarithmic Loss (Log Loss): 

LogLoss = −
1

𝑁𝑡
∑  

𝑁𝑡
𝑖=1 log (𝑝𝑖,𝑦𝑖

)       (23) 

where 𝑝𝑖,𝑦𝑖
 is the predicted probability assigned to the true class 𝑦𝑖 for sample 𝑖. Lower values 

indicate better probabilistic accuracy. 

• Brier Score: 

 Brier =
1

𝑁𝑡
∑  

𝑁𝑡
𝑖=1 ∑  𝑘

𝑗=1 (𝑝𝑖𝑗 − 𝛿(𝑦𝑖 = 𝑐𝑗))
2

      (24) 

This score measures the mean squared error between predicted probabilities 𝑝𝑖𝑗 and the 

true class indicator. It captures both calibration and discrimination aspects of probabilistic 

outputs. 

4. Results and Analysis 

All experiments were conducted on a high-performance workstation equipped with an 

Intel Core i9-12900K CPU (16 cores, 3.20 GHz), 64 GB of DDR5 RAM, an NVIDIA RTX 

3090 GPU (24 GB VRAM), and a 2 TB NVMe SSD, operating on Ubuntu 22.04 LTS (64-bit). 

Deep learning models, such as MLP, were GPU-accelerated, while ensemble and linear models 

were executed on the CPU for compatibility with standard enterprise systems. The 

implementation was carried out in Python 3.10.12 using Scikit-learn 1.3.0, XGBoost 1.7.6, and 

PyTorch 2.0.1. Preprocessing and NLP features were managed using spaCy 3.6.0 and the 

HuggingFace Transformers library version 4.31.0. Result visualizations rendered using 

Matplotlib 3.7.2 and Seaborn 0.12.2. Data manipulation relied on NumPy 1.25.0 and Pandas 

2.0.3, while hyperparameter optimization and experiment logging were facilitated through 
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Optuna 3.2.0 and MLflow, respectively. All experiments used fixed random seeds to ensure 

reproducibility, with environment isolation managed via conda. 

 

Figure 2: ML model performance 

4.1 Classification Accuracy Metrics 

Accurate classification of behavioral competencies is fundamental to the effectiveness 

of AI-driven analytics for strategic governance (Table 2). This subsection presents the 

classification performance results of the four candidate ML models—LR, RF, XGBoost, and 

MLP—trained on engineered behavioral features. The evaluation is based on overall accuracy, 

macro- and weighted-average F1-scores, and class-specific precision-recall metrics. 

Additionally, statistical significance testing is employed to validate observed performance 

differences and confirm the reliability of the results. 
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Table 2: Classification Performance Metrics by Algorithm 

Algorithm 
Overall 

Accuracy 

Macro-Avg 

Precision 

Macro-Avg 

Recall 

Macro-Avg 

F1-Score 

Weighted F1-

Score 

LR 0.742 0.738 0.731 0.734 0.741 

RF 0.816 0.823 0.809 0.816 0.818 

XGBoost 0.834 0.841 0.828 0.834 0.836 

MLP 0.789 0.796 0.782 0.789 0.791 

The classification results, as presented in Figure 2, demonstrate the comparative 

performance of four ML models in predicting behavioral competency classes. Among the 

evaluated algorithms, XGBoost achieved the highest overall accuracy of 0.834, outperforming 

RF (0.816), MLP (0.789), and LR (0.742). In terms of macro-averaged F1-score, which equally 

weights performance across all classes regardless of their support, XGBoost again led with 

0.834, indicating balanced performance across diverse competency categories. This is further 

corroborated by its weighted F1-score of 0.836, reflecting strong predictive power even when 

adjusted for class distribution. The heatmap shown in Figure 3 illustrates the relationship 

between the algorithm and the metric for the aforementioned performance. 

 

Figure 3: Algorithm vs metrics 

Table 3: Class-wise Performance Metrics for XGBoost (Best Performing Model) 

Auth
ors

 Pre-
Proo

f



Competency Class Precision Recall F1-Score Support Class Distribution 

Leadership (L) 0.867 0.843 0.855 298 23.9% 

Communication (C) 0.821 0.856 0.838 267 21.4% 

Analytical Thinking (A) 0.893 0.879 0.886 241 19.3% 

Adaptability (Ad) 0.798 0.821 0.809 223 17.9% 

Ethical Conduct (E) 0.826 0.742 0.782 218 17.5% 

Macro Average 0.841 0.828 0.834 1,247 100.0% 

Weighted Average 0.842 0.834 0.836 1,247 100.0% 

A detailed examination of class-wise performance for XGBoost, as shown in Table 3, 

reveals particularly high precision and recall for the Analytical Thinking class (F1 score = 

0.886) and the Leadership class (F1 score = 0.855), highlighting the model's sensitivity to 

cognitive and strategic behavioral indicators. Despite being the least supported category, 

Ethical Conduct was predicted with a reasonable F1-score of 0.782, though a relatively lower 

recall of 0.742 indicates occasional under-classification. The macro-average and weighted-

average scores for precision, recall, and F1-score are consistently aligned, further confirming 

the model's class-wise reliability. 

Table 4: Statistical Significance Analysis of Model Performance Differences 

Model Comparison 
Accuracy 

Difference 

95% Confidence 

Interval 

p-

value 
Significance 

XGBoost vs RF +0.018 [0.008, 0.028] 0.003 ** 

XGBoost vs MLP +0.045 [0.032, 0.058] <0.001 *** 

XGBoost vs LR +0.092 [0.076, 0.108] <0.001 *** 

RF vs MLP +0.027 [0.014, 0.040] 0.001 *** 

The statistical validity of XGBoost’s superiority is confirmed through pairwise 

significance testing summarized in Table 4 and Figure 4. The difference in accuracy between 

XGBoost and the next-best model, RF, is +0.018, with a 95% confidence interval of [0.008, 

0.028] and a p-value of 0.003, indicating statistical significance at the 0.01 level. Comparisons 

with MLP (+0.045, p < 0.001) and LR (+0.092, p < 0.001) reveal even more pronounced 

differences, suggesting that the performance gains are both substantial and statistically robust. 

Even the difference between RF and MLP (+0.027, p = 0.001) is significant, indicating that 

ensemble methods consistently outperform neural and linear baselines within this domain. Auth
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a) b) 

Figure 4: Statistical significance analysis: a) CI and b) p-values 

4.2 Cross-validation Results 

Cross-validation is an essential diagnostic mechanism used to assess a model’s 

generalizability and stability across different partitions of the training data. This section 

presents the results of a 5-fold stratified cross-validation procedure applied to all four 

classification models—LR, RF, XGBoost, and MLP—based on accuracy and macro-averaged 

F1-scores. The results quantify intra-model variance, confidence bounds, and score ranges, 

enabling a comprehensive evaluation of model robustness before deploying the test set. 

As shown in Table 5, XGBoost consistently achieved the highest mean cross-validation 

accuracy of 0.829, with a standard deviation of 0.015, indicating strong predictive stability 

across folds. The 95% confidence interval for XGBoost ranged from 0.811 to 0.847, 

demonstrating narrow error bounds. In contrast, RF recorded a slightly lower mean accuracy 

of 0.811 with a higher variance (±0.018), and MLP followed with a mean of 0.784 and the most 

significant standard deviation (±0.026), suggesting greater fold-to-fold variability. LR had the 

lowest mean performance (0.738 ± 0.021), consistent with its linear limitation in modeling 

high-dimensional behavioral dynamics. 

Table 5: 5-Fold Cross-Validation Performance Summary 

Algorithm 
Mean 

Accuracy 

Std 

Deviation 

95% CI 

Lower 

95% CI 

Upper 

CV Score 

Range 

LR 
0.738 ± 

0.021 
0.021 0.712 0.764 

[0.711, 

0.759] 

RF 
0.811 ± 

0.018 
0.018 0.789 0.833 

[0.789, 

0.834] 
Auth

ors
 Pre-

Proo
f



XGBoost 
0.829 ± 

0.015 
0.015 0.811 0.847 

[0.812, 

0.846] 

MLP 
0.784 ± 

0.026 
0.026 0.752 0.816 

[0.751, 

0.819] 

 

a) b) 

Figure 5: 5-fold cross validation: a) 95% CI and  b) Range 

Table 6: Detailed Cross-Validation Results by Fold 

Algorithm Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean ± SD 

Accuracy Scores       

LR 0.759 0.724 0.711 0.742 0.753 0.738 ± 0.021 

RF 0.834 0.805 0.789 0.816 0.811 0.811 ± 0.018 

XGBoost 0.846 0.821 0.812 0.837 0.829 0.829 ± 0.015 

MLP 0.819 0.751 0.768 0.796 0.786 0.784 ± 0.026 

Macro F1-Scores       

LR 0.751 0.718 0.705 0.736 0.747 0.731 ± 0.020 

RF 0.827 0.798 0.783 0.809 0.805 0.804 ± 0.017 

XGBoost 0.839 0.815 0.806 0.831 0.823 0.823 ± 0.014 

MLP 0.812 0.745 0.762 0.789 0.779 0.777 ± 0.025 

Table 6 and Figure 6 present fold-wise accuracy and macro F1-scores for each model, 

further illustrating the relative consistency of ensemble methods compared to neural and linear 

counterparts. XGBoost achieved its best accuracy in Fold 1 (0.846) and its lowest in Fold 3 

(0.812), with all folds scoring above 0.81. The corresponding macro F1-scores remained tightly 

clustered, with a mean of 0.823 ± 0.014, indicating that XGBoost retained balanced precision-

recall performance even on folds with different data compositions. RF also showed low 
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dispersion, with accuracy ranging between 0.789 and 0.834, and a macro F1-score mean of 

0.804 ± 0.017. 

The MLP displayed slightly higher volatility. Its accuracy ranged from 0.751 to 0.819, 

with a wider standard deviation of 0.026 and corresponding macro F1-score fluctuation (0.745 

to 0.812). This indicates sensitivity to data partitioning, possibly due to overfitting on smaller 

training subsets. LR, while consistent, showed the lowest overall fold-wise results, reaffirming 

its limitations in capturing nonlinear behavioral competencies. 

4.3 Probabilistic Calibration Evaluation 

In competency-based analytics, classification outputs must not only be accurate but also 

well-calibrated to reflect reliable confidence estimates. Probabilistic calibration ensures that 

the predicted probabilities produced by a model correspond meaningfully to empirical 

frequencies, which is critical for governance applications that rely on probability-weighted 

decision scoring (Equation (3)). This section evaluates the calibration quality of each model 

using multiple probabilistic metrics, highlighting their implications for interpretability and 

risk-informed deployment. 

Table 7: Probabilistic Calibration Performance Metrics 

Algorithm 
Log 

Loss 

Brier 

Score 

Expected 

Calibration Error 

Maximum 

Calibration Error 

Reliability 

Index 

LR 0.742 0.186 0.047 0.132 0.868 

RF 0.624 0.151 0.029 0.089 0.911 

XGBoost 0.591 0.143 0.025 0.078 0.922 

MLP 0.687 0.169 0.038 0.115 0.885 

The calibration performance of all four models is summarized in Table 7 and Figure 6, 

using four quantitative indicators: Logarithmic Loss, Brier Score, Expected Calibration Error 

(ECE), and Maximum Calibration Error (MCE), along with a derived Reliability Index that 

measures overall confidence alignment. 
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Figure 6: calibration performance analysis 

Among the evaluated models, as shown in Figure 7, XGBoost exhibits the best 

calibration performance, achieving the lowest log loss of 0.591 and Brier score of 0.143, 

indicating both sharpness in probability predictions and low mean squared deviation from the 

true labels. Furthermore, its Expected Calibration Error (ECE) is 0.025, and Maximum 

Calibration Error (MCE) is 0.078, suggesting high reliability even at extreme probability 

thresholds. The corresponding Reliability Index of 0.922 confirms that XGBoost's confidence 

outputs are highly trustworthy, making it ideal for decision scenarios where risk-adjusted 

weighting is essential. 

RF closely follows, with a slightly higher log loss of 0.624 and ECE of 0.029, showing 

that ensemble methods maintain strong calibration due to their averaging behavior. MLP, 

though competitive in classification accuracy, underperforms in calibration with a log loss of 

0.687 and ECE of 0.038, likely due to overconfident softmax outputs and limited 

regularization. LR, while inherently probabilistic, yields the highest log loss (0.742) and 
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maximum calibration error (0.132), revealing suboptimal performance in modeling class 

probability distributions for high-dimensional behavioral features. 

 

Figure 7: Calibration Curve comparisons for each of the compared models 

4.3 Behavioral Competency Profiling 

Understanding the statistical distribution and structural characteristics of predicted 

behavioral competencies is crucial for translating model outputs into actionable insights that 

inform workforce strategy and governance alignment. This section presents a quantitative 

profile of each predicted competency class based on distributional properties, normality 

assessments, and interquartile variation. The goal is to characterize intra-class score dynamics, 

detect distributional anomalies, and support targeted interventions within specific behavioral 

domains. 

Table 8: Competency Class Distribution Statistics 

Competency Class Frequency Percentage 
Mean 

Score 

Std 

Deviation 
Skewness Kurtosis 

Shapiro-

Wilk p-

value 

Leadership (L) 298 23.9% 0.743 0.187 -0.421 2.156 0.023 

Communication 

(C) 
267 21.4% 0.768 0.174 -0.389 2.089 0.041 
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Analytical 

Thinking (A) 
241 19.3% 0.791 0.163 -0.512 2.487 0.018 

Adaptability (Ad) 223 17.9% 0.729 0.198 -0.356 1.967 0.067 

Ethical Conduct 

(E) 
218 17.5% 0.712 0.201 -0.298 1.823 0.089 

Population Total 1,247 100.0% 0.749 0.185 -0.395 2.104 0.035 

Table 8 presents descriptive distribution metrics for each predicted competency class. 

The most frequent class was Leadership (23.9%), followed by Communication (21.4%), while 

Ethical Conduct (17.5%) was the least common. The highest mean competency score was 

observed in Analytical Thinking (μ = 0.791), indicating that participants assigned to this class 

exhibited the strongest behavioral performance, as determined by model-derived softmax 

probabilities. Conversely, Ethical Conduct recorded the lowest mean ( 𝜇 = 0.712 ), suggesting 

relatively lower predicted competency strength in this domain. 

All competency classes exhibit negative skewness (e.g., -0.512 for Analytical 

Thinking), indicating a left-tailed distribution concentrated toward higher score values, which 

is consistent with the high-performing behavioral population sampled. Kurtosis values for most 

classes exceed 2.0, confirming moderate to high peakedness, with Analytical Thinking 

displaying the most leptokurtic profile ( 𝜅 = 2.487 ). The Shapiro-Wilk p-values, all below 

0.10 (except Adaptability and Ethical Conduct), indicate significant deviation from normality 

in most classes, confirming the presence of asymmetric or heavy-tailed score structures. 

Table 9: Competency Score Quartile Analysis 

Competency Class 
Q1 

(25th) 

Q2 

(Median) 

Q3 

(75th) 
IQR Range 

Outlier 

Count 

Leadership (L) 0.612 0.756 0.887 0.275 0.742 12 

Communication (C) 0.634 0.781 0.901 0.267 0.698 8 

Analytical Thinking 

(A) 
0.672 0.803 0.923 0.251 0.687 6 

Adaptability (Ad) 0.578 0.734 0.869 0.291 0.789 15 

Ethical Conduct (E) 0.547 0.718 0.856 0.309 0.823 18 

To further explore within-class variability, Table 9 provides a quartile-based breakdown 

of predicted competency scores. The interquartile ranges (IQR) highlight dispersion 

characteristics, with Ethical Conduct and Adaptability exhibiting the widest spreads (IQR =

0.309 and 0.291, respectively). These classes also recorded the highest outlier counts, with 18 

and 15 instances falling outside 1.5 × IQR bounds, suggesting greater behavioral diversity or 

noise within these categories. The highest median scores were again associated with Analytical 
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Thinking (Q2 = 0.803), followed by Communication (Q2 =  0.781),which supports earlier 

findings from Table 8. By contrast, Ethical Conduct has the lowest median (Q2 = 0.718), 

reinforcing its relative underperformance. The range of scores within each class confirms that 

behavioral differentiation is meaningfully captured by the model, as seen in Adaptability (range 

=  0.789) and Ethical Conduct (range =  0.823), where wide intervals reflect high intra-

class variability. 

5. Conclusion and Future Work 

This study developed and validated an ML-based model for inferring behavioral 

competencies from multidimensional organizational data, with the strategic objective of 

enhancing decision-making and governance. By integrating structured and unstructured 

behavioral indicators into a unified feature space, the proposed system enabled robust 

classification of individual competencies across five critical domains: Leadership, 

Communication, Analytical Thinking, Adaptability, and Ethical Conduct. A comparative 

evaluation of multiple classification models revealed that ensemble-based algorithms, 

particularly XGBoost, demonstrated superior accuracy and class-wise balance, with a macro-

averaged F1-score of 0.834. Statistical significance testing further confirmed the model’s 

advantage over both linear and neural architectures, establishing its reliability for deployment 

in high-stakes organizational settings. FE strategies—such as NLP embeddings, psychometric 

aggregation, and dimensionality reduction—proved essential in capturing latent behavioral 

signals. The proposed model bridges a methodological gap between qualitative behavioral 

assessment and quantitative analytics, enabling institutions to integrate competency 

intelligence into promotion planning, leadership development, and workforce governance. 

Moreover, the probabilistic outputs from the classification models facilitate alignment with 

strategic performance indicators through data-driven scoring functions.  

Future research should investigate the integration of longitudinal behavioral data, real-time 

feedback loops, and adaptive learning mechanisms to facilitate continuous competency 

development. Additionally, cross-domain generalization and ethical model auditing remain 

important areas for advancing trust in AI-enabled human capital analytics. 
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