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n. Cross-validation confirmed the robustness of performance with minimal variance
%), and interpretability was supported through feature attribution. Behavioral profiling
revealed high central tendency in Analytical Thinking and wide dispersion in Ethical Conduct,
informing strategic prioritization. The proposed model delivers calibrated, interpretable, and
governance-compatible competency predictions, presenting a scalable solution for institutional

leadership development, risk management, and policy alignment. Experimental validation
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across 1,247 behavioral instances confirms the model’s effectiveness in bridging human capital
analytics with strategic decision processes.
Keywords: Behavioral Competency, Machine Learning, XGBoost, Strategic Governance,
Competency Profiling, Probabilistic Calibration, Human Capital Analytics
1. Introduction

Organizational performance in contemporary knowledge economies is increasin

determined by the behavioral competencies of individuals rather than solely by techni

capabilities or domain expertise [1]. As enterprises adapt to rapidly shifting market ¢ o
strategic priorities such as leadership effectiveness, adaptability, ethical condu &
agility have become essential drivers of sustained success [2]. Thes impact not

only internal operational cohesion but also external stakehol¥

lence, regulatory
compliance, and long-term innovation potential. Consequent the measurement,

development, and deployment of behavioral competencies w

performance, lacking the predictive granularity®equired for high-stakes decisions related to

leadership succession planning ional risk profiling, and regulatory alignment. As a
result, organizations face 3gMowing

can systematically cyd avioral attributes across large, diverse populations while

decision accountability [5].
s in Artificial Intelligence (AI) and Machine Learning (ML)

opportunities for competency analytics. Supervised learning

ses using both structured and unstructured data sources, such as psychometric
, communication patterns, 360-degree feedback, and HR information systems [6,
en properly calibrated, these models can deliver probabilistic predictions with
quantifiable confidence levels, enabling downstream applications in decision support,
performance management, and leadership development. However, the adoption of such
systems for governance purposes demands rigorous attention to fairness, reliability,

transparency, and actionable interpretability—criteria often unmet by black-box Al solutions

[8].



This research addresses these challenges by proposing a comprehensive, explainable,
and governance-compatible model for behavioral competency analytics grounded in ML. The
model integrates multi-source behavioral signals into an engineered feature space, employs
supervised classification models to infer competency classes, and generates probabilistic
outputs used to compute governance-aligned scores. Model development follows best practices
in cross-validation, calibration testing, and interpretability auditing to ensure the integrity

utility of predictions.

The study contributes to the literature by formalizing a competency modeh ,
that aligns technical rigor with strategic relevance. Unlike prior efforts that fo )
performance classification or psychometric diagnostics, the propQgl aroaSQais holistic,

5

evaluates model performance not only through standard accuracy ics but also through

linking individual-level behavioral insights to macro-level govel ectives. 1t further

probabilistic calibration measures and class-wise behavioral profiligl ensi®ing the robust and
responsible deployment of Al in human capital manage exts.

The remainder of this paper is organized as follows @#tc 2 rgfiews the existing literature

on behavioral competency models and 1 s in workforce analytics. Section 3

and considerations for deploy

2. Literature Review

rkforce systems, (2) competency modeling and behavioral measurement, and
erformance prediction and interpretability.
in Talent Analytics and Strategic Governance
The emergence of Al as a catalyst for workforce transformation has sparked growing
interest in intelligent talent analytics systems that can extract actionable insights from
behavioral and organizational data.

[9] Provide a comprehensive survey of Al techniques applied to talent analytics,

identifying core components such as data fusion, behavioral FE, model calibration, and



decision support integration. The study categorizes Al tools into predictive, prescriptive, and
adaptive analytics models, emphasizing the importance of transparency and explainability,
particularly in applications that impact promotion, compensation, and succession planning.
Their taxonomy establishes the theoretical foundation for integrating Al outputs into
governance workflows, where decisions must align with fairness and accountability standards.
Similarly, [10] explored technology acceptance through a behavioral lens using

models applied to fintech transaction data. Their study validates the use of decision trees

gradient boosting in modeling latent behavioral responses and confirms the effec y
probabilistic classifiers in capturing digital interaction patterns. These insi é
relevance of ML-based behavioral inference systems in broader g d fintech,

en

including education, human capital management, and competenc
2.2 Competency Modeling and Behavioral Structuring
dig

The transition from traditional competency assessments 1, Al-augmented

systems requires formal models for defining, measuring, dating behavioral indicators.

[11] proposed the Meta Al Literacy Scale (MAILS)

ghtrument for evaluating Al-

related competencies across cognitive, g1, strategic dimensions. Their model

introduces meta-competency categorict self-ré®ulation and situational awareness,
which closely align with enterprise-level Xg&ernance objectives. By grounding competency
definitions in psychological theory and empiric®esting, MAILS facilitates the transformation

of abstract behavioral traits intoffiiuagd le model features.

[12] further expandgl the cq, ncy modeling literature by proposing a hierarchical

model for Al literac constructivist theory and validated through iterative expert
formalizes the competency lifecycle—from conceptual model to

¥ outlines a roadmap for integrating assessment metrics into

applied context, [13] examined teaching competencies in higher education under
uence of Al integration. Their findings revealed a multidimensional competency model
encompassing technical fluency, communication, ethical reasoning, and instructional
adaptability. The study provides empirical validation of how Al exposure reshapes expected
behavioral attributes and proposes a practical basis for model training datasets that incorporate
domain-specific competency clusters.

2.3 ML for Behavioral Prediction and Interpretability



ML proposals are powerful tools for modeling non-linear relationships between
behavioral inputs and competency outcomes.

[14] Conducted a scientometric and empirical analysis on behavior-driven learning
performance prediction. The study compared models such as XGBoost, Random Forest (RF),
and neural networks, and identified XGBoost as the most stable and interpretable classifier
when paired with SHAP (SHapley Additive exPlanations) for feature attribution. Their findi
confirm the suitability of ensemble-based methods for modeling behavioral systems t

demand both predictive strength and decision transparency.

Supporting this, [15] demonstrated the efficacy of XGBoost in predicg

comprehension—a necessary feature in governance appli @'

2.4. Summary and Research Gap

outputs, and governance-

address model calibrajias interpretability, and domain-specific profiling within a single

s methodology is essential to operationalize behavioral competency analytics
egic and governance systems. The proposed methodology integrates ML with
avioral data mining to establish a systematic, scalable, and explainable model for
competency evaluation. This section outlines the conceptual foundation, data flow architecture,
modeling techniques, and evaluation protocols adopted in the construction of the Al-driven

competency analytics model.
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Figure 1: Conceptual Model



3.1 Conceptual Model

The conceptual model (Figure 1) establishes the theoretical and architectural basis for
integrating Al into behavioral competency modeling, linking individual-level attributes to
broader strategic governance outcomes. This integration is facilitated by a three-tiered system
encompassing behavioral signal acquisition, ML-based competency inference, and strategic
governance alignment.

Let the dataset denote a behavioral observation space.

D = {(x, y)}La
where x; € R represents the i-th individual's feature vector consistingg® d

indicators, and y; € C is the corresponding competency class labg @ pre ed set of

competency categories C = {cq,C5, ..., }. Here, N denotes the

P 4 )

class ¥; = f(x;), enabling

ber of observed
individuals in the dataset. The objective is to learn a function.

fiR4 = ¢

that maps each feature vector x; to its predicted cq

automated classification of behavioral profiles.

To evaluate strategic alignment, 4
derived competencies. Let 6; € R deno pact weight associated with the competency
category ¢j, and let p; denote the predic probability that an individual belongs to a
competency c;. The aggregate g nce alignment score Sy is given by:

3)

s a sCalar index capturing the strategic value contribution of a

_ k
Sg = 2j=1 9 pj

where S; € R repre
' are obtained from the softmax outputs of the trained model,

ined through expert elicitation or regression modeling linking

composed into three primary functional modules:

vioral Feature Extraction Layer (F) : Transforms raw inputs (e.g., textual
eedback, psychometrics, HR data) into standardized feature vectors x; using natural
language processing, signal aggregation, or embedding functions.

Competency Inference Engine (M): Implements the learned mapping f(:) via
supervised ML (e.g., RF, SVM, neural networks), producing class predictions y; and
probability vectors [py, ..., P]-



3. Governance Alignment Module (G) : Computes the final governance score S, based
on equation (3), enabling integration of competency analytics into executive
dashboards and decision systems.

The final output of the model is a structured mapping:

FooaM 4
D-R*->C-R 4
This end-to-end transformation facilitates data-driven SDM based on object

behavioral analytics.

governance insights. Subsequent sections describe the data

employed, and the system’s empirical validation.
3.2 Data Collection and Preprocessing
Accurate and high-quality data acquisition forms &[ion for any ML-based

behavioral competency analysis. This section d tif sources, structure, and

preprocessing protocols applied to the behgad tase for competency inference.

ical compliance, and consistency

3.2.1 Behavioral Data Sources

The behavioral data use ompetency modeling were drawn from a diverse set of

organizational repositories, ing a specific dimension of behavioral expression:
o Performance AppW@isal rts: Structured annual feedback forms containing
unication style, adaptability, and teamwork.

: Multi-source evaluations collected from supervisors, peers, and

mmunication Logs: Linguistic and sentiment features extracted from
orate emails, meeting transcripts, and internal messaging platforms.
ychometric Assessments: Standardized test scores reflecting traits such as openness,
conscientiousness, and emotional stability.

HRIS Metadata: Demographic attributes, promotion timelines, and tenure records,

used for auxiliary features and stratification.
These multi-source inputs contribute to the generation of a unified behavioral profile vector

x; € R? as defined in Equation (1).



3.2.2 Data Cleaning and Anonymization
Raw data collected from multiple systems often contains inconsistencies, missing values,
and identifying information. A formal cleaning process was applied:
e Imputation: Missing values were filled using a hybrid approach that combined
statistical mean imputation for numeric fields with the mode for categorical variables,

ensuring statistical consistency while minimizing data leakage.

e Deduplication: Records with identical identifiers and timestamp overla
removed to avoid redundancy.
e Normalization: All numerical features were scaled using min-max nqg¥aliz
norm _ _ Xij—min(x;)

ij - max(x;)—-min(x;)

X

where x;; is the original value of the j-th feature for -th individual, and
min(xj), max(xj) denote the minimum and maximum Vev 0 ture j across the

dataset. This maps all values into the [0, 1] rangg @‘ ing scale invariance across

features.

e Anonymization: Personally ident T8
to ensure ethical data handling § Q

were assigned to each participant u

pfoN@ation (PII) was removed or tokenized
ance relevant regulations. Unique IDs
a cryptographic hash function.

3.2.3 Feature Vector Constructio

After standardization, behavior{finds s were aggregated into a structured feature matrix:

x{
T

2 e (6)
‘T

0 or x; € R? represents the cleaned, normalized behavioral profile

of thy A d each column corresponds to a specific behavioral or psychometric

ix X serves as the model input for the ML engine described in subsequent

el Encoding and Class Balancing

Competency labels y; € C were encoded using ordinal or categorical schemes
depending on the model design. In cases of imbalanced class distribution, Synthetic Minority
Over-sampling Technique (SMOTE) was applied to augment underrepresented classes,
ensuring adequate representation during model training without distorting feature semantics.

3.3 Feature Engineering



FE is a critical methodological step that transforms raw behavioral inputs into high-
dimensional, discriminative representations suitable for ML-based competency inference. This
section outlines the design of domain-relevant behavioral features, the transformation of
heterogeneous input types, and the dimensional reduction strategies employed to optimize
model performance while maintaining interpretability.

3.3.1 Behavioral Feature Taxonomy
The behavioral features were classified into four functional categories, each captyin

distinct aspect of individual workplace behavior:

e Linguistic Features (¥,) : Extracted from textual sources such e
performance narratives using natural language processing ([ F s Jude word
frequency vectors, syntactic complexity, tone polarity, and scores.
e Interactional Features (F,) : Derived from communicati8 etadata including
message response latency, participation in collaborativg@blatfolms, and meeting
contribution frequency.
e Psychometric Features (F3;) : Numericgfifvar tained from standardized
assessments capturing personalit e agility, and emotional intelligence
metrics.
e Historical and Structural Feature 4) © Attributes reflecting career progression,

tenure, department, and prgigous role traffsitions.

The complete feature vector

x; = [F1(D), F» (D), F5(D),

ual x; is structured as:

] e (7

sub-vectors corresponding to each functional category for

otes the total dimensionality of the feature space.

®)
where T, is the input text associated with time step t, and z, € R" is the resulting
contextual embedding with dimensionality h. These embeddings were aggregated at the
individual level through temporal averaging or attention-weighted pooling.

Supplementary linguistic features, including polarity score, subjectivity, modal usage,

and formality index, were also extracted using domain-tuned lexicons and rule-based NLP



libraries.
3.3.3 Aggregation of Multi-Instance Features
For individuals associated with multiple behavioral episodes (e.g., weekly reports or

multiple feedback instances), a feature aggregation operation was defined as:

Xi = n%z;il Zit 9)

where n; is the number of temporal observations for individual i, and z;; is the feature ve
derived from observation t. This ensures that each individual is represented by
temporally aggregated behavioral signature, regardless of the number of input r

3.3.4 Dimensionality Reduction and Feature Selection

To address feature redundancy and enhance generalization, a pduc strategy

was employed:

1. Unsupervised Projection: Principal Component Analysis (Pl‘;

reduce noise and decorrelate features while preservg um variance.
2. Supervised Selection: Recursive Feature El E) with cross-validated
wrapper models was employed to idgatify moNgy ative features concerning

competency class prediction.

as first applied to

Let R be the final set of selected feature uch that:

x$¢! = x,[R] € RY (10)

sel
i

where x;° 1is the reduc re vector and d’ < d is the final dimensionality after
selection. These selected fegr rm input to the classifier in the subsequent modeling
phase.
feature space encapsulates multidimensional behavioral

pretable format, allowing downstream ML to learn meaningful

objective of this section is to formalize the predictive learning architecture
or inferring behavioral competencies from engineered features. The proposed
mo pipeline integrates supervised classification algorithms with probabilistic outputs to
map feature vectors to competency categories, as defined in Equation (2). This section presents
the model selection criteria, training pipeline, and optimization strategies, with an emphasis on
interpretability, accuracy, and alignment with strategic governance outcomes.

3.4.1 Learning Objective and Loss Function



Given a labeled dataset D = {(x;,y;)}",, where each feature vector x; € RY
corresponds to a preprocessed behavioral profile, and each label y; € C = {cy,cy, ..., C}
denotes a competency class, the classifier f: R% - € is trained to minimize the categorical

cross-entropy loss:
L=—23N, T, 8(i=¢)-log by (1)
where:
e N is the number of training instances,
e k is the total number of competency classes, O
e §() is the Kronecker delta function, &
‘ ¥ ¢,

e p; is the predicted probability that x; belongs to

Pl"(yi = Cj | xi).
The output probabilities p;; are obtained through a softmax tnlorm ion applied to the
model's final layer.

3.4.2 Model Architecture and Candidate Algorit

This subsection provides an in-d st of the ML evaluated for behavioral

competency classification. Each model® ¢ was sclected based on its ability to capture
complex nonlinearities, ensure interpretab for SDM, and support probabilistic output
necessary for governance alignmeggcalculation¥WThe following classifiers were implemented

and benchmarked:

(a) Logistic Regression ): L es as the baseline model for classification and is

characterized by its d interpretability. The model estimates the probability of a

ping to each competency class ¢; € C using the logistic function:

(12)

€ R is the class-specific bias term,
k is the total number of competency classes.

The model's coefficients w; proposal direct interpretability regarding feature influence on
classification decisions, making LR particularly suitable in compliance-sensitive governance

applications.



(b) RF: RF is a decision tree-based ensemble classifier that builds multiple independent
decision trees using bootstrap samples of the training data and random feature selection at each
node. Each tree T; outputs a predicted class, and the final class prediction is determined via

majority voting. Probabilistic outputs are computed as the normalized class frequencies across

all trees:
pij = %ZZ=1 8(Te(x) = ;) (13)
where:
e T is the total number of trees in the forest, Q
e §() is the Kronecker delta function, evaluating to 1 when the ictSQlass es
G-
RF is robust to noisy features and non-linear class boundarie nherently performs

feature selection during tree construction, improving model stabil? rpretability.

(¢) Extreme Gradient Boosting (XGBoost): XGBoo adient-boosted ensemble
learning algorithm that builds decision trees sequengal crdfach new tree corrects the
residual errors of the previous ones. The mod sar zed objective function using
a second-order Taylor approximation ofg4
1
£O =0 gifeCe) + 2hif2 ()| +Q (14)
where:
—ApE1) 5. :
e g, =0L; /0y is thefirs gradient,
o h;= 62L§t_1)/6§/l the s -order Hessian,

-th tree,

ts. The model comprises an input layer, one or more hidden layers, and an output layer
with a Softmax activation function. The transformation in each layer is given by:

hO = a(W(l)h(l‘l) + b(l)) (15)
where:

o h® denotes the activation vector of the I-th layer,



o W®, bW are the weight matrix and bias vector of the I-th layer,

e (') is a nonlinear activation function (e.g., ReLU, tanh),

o h©® = x5 is the input feature vector.

The output layer applies a SoftMax function to produce the class probability vector p;.
MLPs are particularly powerful for learning latent relationships in high-dimensional behavioral
data; however, they require careful tuning to avoid overfitting.

Each classifier was implemented with a unified interface to allow consistent

evaluation, and interpretability analysis. The diversity in model complexity—from @
racy o 4
govegmance an

The training protocol is designed to ensure gen 'zallearnlng of behavioral

to deep neural (MLP)—ensures a balanced assessment of predictive

S
interpretive transparency, aligning with the dual objectives of 4 d
behavioral insight generation.

3.4.3 Training Protocol and Cross-Validation

competency patterns from structured feature vectors. T tion formalizes the model

training pipeline, defines the cross-validation stratcg§tor s verification, and outlines

the hyperparameter optimization schemes or candidate model. The methodology

emphasizes reproducibility, fairness acr Petency classes, and mitigation of overfitting
risks.

Data Partitioning Strategy

N

The complete dataset D i comprising the selected features x5 € R? and

corresponding class labels C, partitioned using stratified sampling to preserve class

distribution:

et % sed for model fitting and parameter learning.
15% ): Employed for hyperparameter tuning and early stopping.

5%): Held out for final performance evaluation.

ensures that rare competency classes are adequately represented across all
aining class balance during training and evaluation.

alidation and Hyperparameter Optimization

A 5-fold stratified cross-validation strategy was employed within the training partition
to evaluate the model's stability across folds. For each candidate algorithm, an exhaustive grid
search was conducted over a defined parameter space. The best parameter combination was
selected based on macro-averaged Fl-score on the validation folds, which accounts for

imbalanced class distributions.



Let #,, denote the parameter space for model m, and M,,,(¢) be the model instance

trained with hyperparameter configuration ¢ € P,. The optimal configuration ¢* is

determined by:
¢" = arg max Flyuero (Mm(4)) (16)

where F1,,,.;, (*) denotes the macro-averaged F1-score computed across the 5 validation folds

To mitigate overfitting, early stopping was applied based on validation loss for neural mod

Additionally, model-specific regularization mechanisms were activated, such as:
e L2 penalty for LR and MLP,

e Maximum tree depth and learning rate constraints for ensemble e

e Dropout layers in MLP to suppress co-adaptation of neuro

Table 1 below summarizes the tuned parameters and their optimal v each model based
on validation performance.
Table 1: Optimized Training Parameters f; (ate Models
Optimal
Model Hyperparameter e(s Value
Selected
LR Regularization ,1,10,100][0.01, 0.1, 1, 10, Lo
strength (CCC) 01[0.01,0.1,1,10,100]
RF Number of tree 100,200,300][100, 200, 300][100,200,300] 200

[5,10,20,None][5, 10, 20,
None][5,10,20,None]

[2,5,10][2, 5, 10][2,5,10] 5

[0.01,0.05,0.1][0.01, 0.05,

Max tree gWbth 10

0.05
0.1][0.01,0.05,0.1]
[4,6,8][4, 6, 8][4,6,8] 6
ubsample ratio [0.6,0.8,1.0][0.6, 0.8, 1.0][0.6,0.8,1.0] 0.8

Number of
' [100,200,300][100, 200, 300][100,200,300] 200
boosting rounds

Hidden layers  [(64),(128,64),(128,128,64)][(64), (128,64),

(128, 64)
structure (128,128,64)][(64),(128,64),(128,128,64)]
Activation
ReLU, tanh ReLU
function

Dropout rate [0.1,0.2,0.3][0.1, 0.2, 0.3][0.1,0.2,0.3] 0.2




Batch size [32,64,128][32, 64, 128][32,64,128] 64
100 (with
Epochs [50,100,200][50, 100, 200][50,100,200] carly

stopping)

Each model was trained using the optimal hyperparameters. ¢p* and then retrained on

combined training + validation data before final evaluation on the test set. The fo Qw1

subsection presents the metrics used to quantify predictive performance and i

classification results.
3.5 Evaluation Metrics

The evaluation of ML-based behavioral competency mode K a comprehensive

set of metrics that reflect not only predictive accuracy but also fal@ess, robustness, and
alignment with organizational objectives. This section presents theﬁltita ve indicators used
to assess model performance on the test set, along with initions and interpretative

justifications.

3.5.1 Classification Performance Metri

Given the multi-class nature of co assification, performance is evaluated using

. . . N
standard classification metrics computed oV@athe test set Doy = {(xisel 'yi)}i:f where N;

denotes the number of test insta he following indicators are employed:

o : 1 oijgctly predicted competency labels:

(17)

(18)

e Recall (Rj) is the fraction of true positives among all actual positives:
__TPj
J T TP+FN; (19)

e FI-Score (F 1 j) is the harmonic mean of precision and recall:

F1;, = =13 (20)

Pj+Rj



e Macro-Averaged F1-Score: Computes the unweighted mean of class-wise F1-scores:
1
Flmacro = EZ?:l Flj (21)
e Weighted F1-Score: Weights each class-wise F1-score by its support:

Nj

_ vk
Flweighted - Zj:l N_t: ) Fl] (22)
where N; is the number of instances in the class ¢;, and N, = 25?:1 N;. These metrics provi

a balanced assessment that penalizes poor performance on minority classes, ensuring g
in competency classification.

3.5.2 Probabilistic Calibration Metrics

Since the governance alignment score in Equation (3) relies on
model's ability to produce well-calibrated class probabilities 1

calibration metrics are employed:

e Logarithmic Loss (LLog Loss): ,
LoglLoss = — N%Z?’:tl log (pi,yi) (23)
where p; . is the predicted probability assig true ; for sample i. Lower values
indicate better probabilistic accuracy.

e Brier Score:
Brier = Nitzﬁvzfl ko (P - 8(y= cj))2 (24)

This score measures t e%red error between predicted probabilities p;; and the

true class indicator. It cafQlces bo ibration and discrimination aspects of probabilistic
outputs.

4. Results and Anz

cfpc n ¢ conducted on a high-performance workstation equipped with an
1 900K®PU (16 cores, 3.20 GHz), 64 GB of DDR5 RAM, an NVIDIA RTX
4 VRAM), and a 2 TB NVMe SSD, operating on Ubuntu 22.04 LTS (64-bit).

Intel
309
ee

P ing' models, such as MLP, were GPU-accelerated, while ensemble and linear models
cg¥cuted on the CPU for compatibility with standard enterprise systems. The
mentation was carried out in Python 3.10.12 using Scikit-learn 1.3.0, XGBoost 1.7.6, and
PyTorch 2.0.1. Preprocessing and NLP features were managed using spaCy 3.6.0 and the
HuggingFace Transformers library version 4.31.0. Result visualizations rendered using
Matplotlib 3.7.2 and Seaborn 0.12.2. Data manipulation relied on NumPy 1.25.0 and Pandas

2.0.3, while hyperparameter optimization and experiment logging were facilitated through



Optuna 3.2.0 and MLflow, respectively. All experiments used fixed random seeds to ensure

reproducibility, with environment isolation managed via conda.

Overall Accuracy by Algorithm

Macro-Average Precision by Algorithm
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Figure 2: ML model performance

curate classification of behavioral competencies is fundamental to the effectiveness
en analytics for strategic governance (Table 2). This subsection presents the

ification performance results of the four candidate ML models—LR, RF, XGBoost, and

MLP—trained on engineered behavioral features. The evaluation is based on overall accuracy,

macro- and weighted-average F1-scores,

Additionally, statistical significance testing

and class-specific precision-recall metrics.

is employed to validate observed performance

differences and confirm the reliability of the results.



Table 2: Classification Performance Metrics by Algorithm

Overall Macro-Avg Macro-Avg Macro-Avg Weighted F1-
Algorithm
Accuracy Precision Recall F1-Score Score
LR 0.742 0.738 0.731 0.734 0.741
RF 0.816 0.823 0.809 0.816 0.818
XGBoost 0.834 0.841 0.828 0.834 0.836
MLP 0.789 0.796 0.782 0.789 0.791

The classification results, as presented in Figure 2, demonstrate the co

0.834, indicating balanced performance across diverse competency catS@gries. This is further

corroborated by its weighted F1-score of 0.836, reflecting strong ictive power even when

adjusted for class distribution. The heatmap shown in illustrates the relationship
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Figure 3: Algorithm vs metrics

Table 3: Class-wise Performance Metrics for XGBoost (Best Performing Model)



Competency Class Precision Recall F1-Score Support Class Distribution

Leadership (L) 0.867 0.843 0.855 298 23.9%
Communication (C) 0.821 0.856 0.838 267 21.4%
Analytical Thinking (A) 0.893 0.879 0.886 241 19.3%
Adaptability (Ad) 0.798 0.821 0.809 223 17.9%
Ethical Conduct (E) 0.826 0.742 0.782 218 17.5%
Macro Average 0.841 0.828 0.834 1,247

Weighted Average 0.842 0.834 0.836 1,247

A detailed examination of class-wise performance for XGBoost
reveals particularly high precision and recall for the Analytical

0.886) and the Leadership class (F1 score = 0.855), highlightin el's sensitivity to

cognitive and strategic behavioral indicators. Despite being the leaXg@gupported category,

Ethical Conduct was predicted with a reasonable F1-score 7 ough a relatively lower
recall of 0.742 indicates occasional under-classificatio ro-average and weighted-
average scores for precision, recall, and F1-score on aligned, further confirming

the model's class-wise reliability.

Table 4: Statistical Significanc® K of Model Performance Differences

Accuracy 95% Confidence p-
Model Comparison Significance
Dj nce Interval value
XGBoost vs RF [0.008, 0.028] 0.003 ok
XGBoost vs MLP + [0.032, 0.058] <0.001 otk
XGBoost vs L -0.092 [0.076, 0.108] <0.001 otk
RF vs ML +0.027 [0.014, 0.040] 0.001 ok

dity of XGBoost’s superiority is confirmed through pairwise

marized in Table 4 and Figure 4. The difference in accuracy between

(+0.045, p < 0.001) and LR (+0.092, p < 0.001) reveal even more pronounced
ences, suggesting that the performance gains are both substantial and statistically robust.
Even the difference between RF and MLP (+0.027, p = 0.001) is significant, indicating that

ensemble methods consistently outperform neural and linear baselines within this domain.
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4.2 Cross-validation Results

Cross-validation is an essential diagnostic mechanism us 0 assess a model’s
generalizability and stability across different partitions of the trgpin ta. This section
presents the results of a 5-fold stratified cross-valida, cedure applied to all four
classification models—LR, RF, XGBoost, and MLP—gga! n aglluracy and macro-averaged

F1-scores. The results quantify intra-mod @ confidtrice bounds, and score ranges,

stneSgpefore deploying the test set.

Table 5: 5-Fold Cross-Validation Performance Summary

Mean Std 95% CI 95% CI CV Score
Accuracy Deviation Lower Upper Range
0.738 + [0.711,
0.021 0.712 0.764
0.021 0.759]
0.811 + [0.789,
0.018 0.789 0.833

0.018 0.834]




0.829 + [0.812,

XGBoost 0.015 0.811 0.847
0.015 0.846]
0.784 + [0.751,
MLP 0.026 0.752 0.816
0.026 0.819]
ifl-::I::cr::fa-‘:;I\iudiit‘:\il;g";ecr;:rf?:iaer:acceeS;::e‘:":lgg Cross-Validation Score Ranges and Mean Accuracy
n.aa = . f{,Tf; P'::’J:::Z:; LRI 10.751, 0.819]

0.411

=018
0.82 J-
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+0
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Figure 5: 5-fold cross validation: a) 95 b) Range
Table 6: Detailed Cross-Vali n Fold
Algorithm Fold1 F Fold4 FoldS5 Mean=+SD
Accuracy Scores
LR 0.759 0.742  0.753  0.738 +0.021

RF 0.805 70.789 0816  0.811 0.811+0.018
XGBoost 21 0812 0.837 0.829 0.829+0.015
MLP 751 0768  0.796  0.786  0.784 +0.026

Macro F1-Sco

0.718 0.705 0.736  0.747  0.731 +£0.020
0.798  0.783 0.809 0.805 0.804=+0.017
0.815 0.806 0.831 0.823 0.823+0.014
0.745 0.762 0.789  0.779  0.777 £ 0.025

Je 6 and Figure 6 present fold-wise accuracy and macro F1-scores for each model,
fu glustrating the relative consistency of ensemble methods compared to neural and linear
erparts. XGBoost achieved its best accuracy in Fold 1 (0.846) and its lowest in Fold 3
(0.812), with all folds scoring above 0.81. The corresponding macro F1-scores remained tightly
clustered, with a mean of 0.823 + 0.014, indicating that XGBoost retained balanced precision-

recall performance even on folds with different data compositions. RF also showed low



dispersion, with accuracy ranging between 0.789 and 0.834, and a macro F1-score mean of
0.804 +0.017.

The MLP displayed slightly higher volatility. Its accuracy ranged from 0.751 to 0.819,
with a wider standard deviation of 0.026 and corresponding macro F1-score fluctuation (0.745
to 0.812). This indicates sensitivity to data partitioning, possibly due to overfitting on smaller
training subsets. LR, while consistent, showed the lowest overall fold-wise results, reaffirmy
its limitations in capturing nonlinear behavioral competencies.
4.3 Probabilistic Calibration Evaluation

In competency-based analytics, classification outputs must not only be ra

risk-informed deployment.

Table 7: Probabilistic

)0 formance Metrics

Log Brier d Maximum Reliability
Algorithm
Loss Score on Error Calibration Error Index
LR 0.742 0.186 0.132 0.868
RF 0.624 0. 0.029 0.089 0.911
XGBoost 0.591 0.025 0.078 0.922
MLP 0.687 0.038 0.115 0.885
The calibratig 0 ce of all four models is summarized in Table 7 and Figure 6,

using four quantitat ors: Logarithmic Loss, Brier Score, Expected Calibration Error

(ECE),

K
O
e

e

bration Error (MCE), along with a derived Reliability Index that

conWplence alignment.
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Among the evalualS@amodels, as shown in Figure 7, XGBoost exhibits the best
calibration perfo

indicating bot p@robability predictions and low mean squared deviation from the

orresponding Reliability Index of 0.922 confirms that XGBoost's confidence
highly trustworthy, making it ideal for decision scenarios where risk-adjusted
g 1s essential.
RF closely follows, with a slightly higher log loss of 0.624 and ECE of 0.029, showing
that ensemble methods maintain strong calibration due to their averaging behavior. MLP,
though competitive in classification accuracy, underperforms in calibration with a log loss of
0.687 and ECE of 0.038, likely due to overconfident softmax outputs and limited
regularization. LR, while inherently probabilistic, yields the highest log loss (0.742) and



maximum calibration error (0.132), revealing suboptimal performance in modeling class

probability distributions for high-dimensional behavioral features.
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Figure 7: Calibration Curve compar¥gas for each of the compared models

4.3 Behavioral Competency P

Understanding the 1 digibution and structural characteristics of predicted
behavioral competencies is translating model outputs into actionable insights that

vernance alignment. This section presents a quantitative

assessme 1 uartile variation. The goal is to characterize intra-class score dynamics,
detect Ztrib al anomalies, and support targeted interventions within specific behavioral
do S.

Table 8: Competency Class Distribution Statistics

Shapiro-
Mean Std
petency Class Frequency Percentage Skewness Kurtosis Wilk p-
Score Deviation
value
Leadership (L) 298 23.9% 0.743 0.187 -0.421 2.156 0.023
Communication
267 21.4% 0.768 0.174 -0.389 2.089 0.041

©




Analytical

241 19.3% 0.791 0.163 -0.512 2.487 0.018
Thinking (A)
Adaptability (Ad) 223 17.9% 0.729 0.198 -0.356 1.967 0.067
Ethical Conduct
218 17.5% 0.712 0.201 -0.298 1.823 0.089
(E)
Population Total 1,247 100.0% 0.749 0.185 -0.395 2.104 0.035

Table 8 presents descriptive distribution metrics for each predicted competency cla
The most frequent class was Leadership (23.9%), followed by Communication (21.4%), w
Ethical Conduct (17.5%) was the least common. The highest mean competency g

observed in Analytical Thinking (u = 0.791), indicating that participants assignggt

exhibited the strongest behavioral performance, as determined by

probabilities. Conversely, Ethical Conduct recorded the lowest m 12 ), Qpggesting
relatively lower predicted competency strength in this domain.

All competency classes exhibit negative skewness (e. for Analytical

Thinking), indicating a left-tailed distribution concentrate igher score values, which

is consistent with the high-performing behavioral popydat mpd. Kurtosis values for most
classes exceed 2.0, confirming moderate i
e 7 ). Shapiro-Wilk p-values, all below

g, indicate significant deviation from normality

>

, with Analytical Thinking

displaying the most leptokurtic profile

0.10 (except Adaptability and Ethical Co

in most classes, confirming the presence of asY@metric or heavy-tailed score structures.

Table 9 tency Score Quartile Analysis
2 Q3 Outlier
IQR Range
Median) (75th) Count
0.756 0.887  0.275 0.742 12
0.781 0901 0.267 0.698 8
0.672 0.803 0.923  0.251 0.687 6
(Ad) 0.578 0.734 0.869  0.291 0.789 15
thicagponduct (E) 0.547 0.718 0.856 0309 0.823 18

o further explore within-class variability, Table 9 provides a quartile-based breakdown
of “predicted competency scores. The interquartile ranges (IQR) highlight dispersion
characteristics, with Ethical Conduct and Adaptability exhibiting the widest spreads (IQR =
0.309 and 0.291, respectively). These classes also recorded the highest outlier counts, with 18
and 15 instances falling outside 1.5 X IQR bounds, suggesting greater behavioral diversity or

noise within these categories. The highest median scores were again associated with Analytical



Thinking (Q2 = 0.803), followed by Communication (Q2 = 0.781), which supports earlier
findings from Table 8. By contrast, Ethical Conduct has the lowest median (Q2 = 0.718),
reinforcing its relative underperformance. The range of scores within each class confirms that
behavioral differentiation is meaningfully captured by the model, as seen in Adaptability (range

= 0.789) and Ethical Conduct (range = 0.823), where wide intervals reflect high intra-

®,

BN structured

class variability.

5. Conclusion and Future Work

This study developed and validated an ML-based model for inferring

competencies from multidimensional organizational data, with the stratcg@ ob

enhancing decision-making and governance. By integrating st
behavioral indicators into a unified feature space, the propo enabléd robust
classification of individual competencies across five critical mains: Leadership,
Communication, Analytical Thinking, Adaptability, and Ethica,)nd t. A comparative
evaluation of multiple classification models reveale cgsemble-based algorithms,
particularly XGBoost, demonstrated superior accurgff a asgdise balance, with a macro-

ting further confirmed the model’s

signals. The proposed model ethodological gap between qualitative behavioral

assessment and quantitag¥e ana enabling institutions to integrate competency

intelligence into progsge

S

ning, leadership development, and workforce governance.

Moreover, the proH utputs from the classification models facilitate alignment with
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