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and dynamic systems has been an uphill task because of the
s. In this regard, the proposed study will solve the mentioned

adaptability uses, but the control
presence of uncertainties and e
problems by designing an effect
system energy consumptig gl st

c algo
tant parameters of ESN, such as spectral radius, leakage rate and scaling of
N A_

vioemobust control of a 2-DOF robotic arm that operates under different operation
revealed that the ESN-RSA-HHO controller produces a root mean square tracking

Algorithm (RSA) to tu
input. The descri SIN

trol and LSTM-based control, as well as the non-optimised ESN models. The convergence
lane plot prove that the system can continue to be stable in even disturbed cases. The results
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I.  INTRODUCTION

Robotic systems have become indispensable in a wide spectrum of industries, revolutionising the ways of
manufacturing, healthcare, aerospace and logistics. In manufacturing, robot arms are employed for assembly,
welding, painting, and material handling, which enables high-speed and high-collective operations that exceed
human abilities [1]. In healthcare, robots assist delicate surgical processes, rehabilitation remedies and laboratory
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automation, where accuracy and stability are important. The aerospace industry depends on robotic systems to
collect complex components, to conduct maintenance in dangerous environments, and even to assist in space
exploration missions [2]. Similarly, logistics and warehousing sectors efficiently benefit from robotic systems for
sorting, packaging and transportation. The root of these applications is the robotic arm, a highly versatile
manipulator designed to perform complex, repetitive or dangerous tasks [3]. These weapons require an accurate
and strong control mechanism to achieve high levels of accuracy, mastery and adaptability. These mechanisms
should ensure smooth trajectory tracking, manage dynamic interaction with the environment, and maintain
stability in external disturbances or the presence of system uncertainty. - As tasks become rapidly sophisticated —
such as handling variable payloads or cooperating safely with humans — traditional control methods ofte
decrease. This growing demand for autonomous and adaptive robotic weapons has catalysed research in advan
control strategies that are capable of meeting the challenges generated by non-linear dynamics, high degree
independence and multi-purpose performance requirements [4].

Traditional control strategies such as proportional-integral-derivative (PID) and model predictive cq
have Iong been the cornerstone of robotlc arm control due to the|r 5|mpI|C|ty ease of im

1l performance is also
Ore sophisticated, suffers

behaviour of the future system on a finite time horizon [6]. Tuning PID benefi
nontrivial and cannot be normalised in various functions or environments. MPC, w
from computational overheads due to real-time adaptation requirements, which makWg@t less suitable for sharp
and highly dynamic systems [7]. Its performance is very high on the accuracy of t stowggnodel, and impurities
can cause sub- or unstable behaviour. Consequently, both PID and MP. 0 meet modern robotic ARM

¥ shown on many occasions to be unable to deliver
the natural flexibility and are unable to cope with high
Alligence and bio-inspired algorithms promises to offer

drawbacks associated inina and are not likely to capture multi-objective trade-offs between, e.g.,
on and stability. In addition, although evolutionary algorithms, such as Harris

ystems based on deep learning. To resolve these challenges, the study proposes an
tegy based on ESN, in which hyperparameters are adapted using a hybrid HHO-RSA
is to develop a strong, energy-skilled and stable controller for gate 2-DOFrl robotic arm,
achieving better trajectory tracking in nominal and disturbed conditions. The approach aims
e rapid convergence and exploration capabilities of HHO with the local refinement strength of the
an control the boundaries of the existing control functioning. The key contribution of the research

A novel hybrid optimization algorithm combining Harris Hawks Optimization (HHO) and Reptile Search

Algorithm (RSA) is developed to tune Echo State Network (ESN) parameters effectively.

An adaptive ESN-based control system is designed for a 2-DOF robotic arm to handle nonlinear

dynamics and external disturbances in real time.

e The proposed controller improves performance, achieving higher tracking accuracy, reduced energy
consumption, and better stability compared to PID and LSTM controllers.

e Extensive simulations validate the approach, showing its effectiveness under both normal and disturbed

conditions.



Rest of Section

e Section 2: Reviews recent adaptive control methods and bio-inspired optimization techniques for
mechatronic systems, highlighting limitations of PID and traditional neural networks in handling
nonlinear dynamics and external disturbances.

e Section 3: Details the proposed ESN-RSA-HHO framework, including the robotic arm dynamic
modeling, ESN architecture, and hybrid optimization process for tuning controller parameters.

e Section 4: Presents experimental results and comparative analysis, showcasing tracking accuracy, energy
efficiency, and stability improvements over baseline controllers.

e Section 5: Concludes the study by emphasizing the effectiveness and robustness of the propo
approach, and discusses future directions such as real-world hardware implementation and scalabilit
higher-DOF systems.

Il. LITERATURE REVIEW

Pan et al. [12] paper introduces a bio-inspired composite learning control strategy
in robotic manipulators through compensation of frictional uncertainties. Dray
learning mechanisms, the technique combines proportional feedback with a me
for accurate control without demanding high feedback gains. The technique wa
industrial robot arm and met enhanced transient and steady-state performance. This 0d minimizes the use of
energy and guarantees robustness without sophisticated model dependence. Thfy pves that biologically
inspired control systems are capable of outperforming conventional P he@® in real-world robotics, paving
the way for adaptive learning for real-time manipulation operations.

ing precision

cerebellar
o rror model, allowing
@Pcmented on a DENSO

Hu et al.[13] research combines Soft Actor-Critic (SAC), Lo h erm Jemory (LSTM), and Generative
Adversarial Imitation Learning (GAIL) to develop a dggiatein men g framework for robotic trajectory
control. The proposed model overcomes disturbang d dynamics of robotic arms through learning
from demonstrations of experts and real-time, empo ependencies are captured by the LSTM
network, and GAIL optimizes the policy by imi8 ing. The hybrid model is better in tracking precision,
robustness, and constraint following compared to in(Ngual RL algorithms according to experiments. The method
proves the efficacy of merging memory-based neura dels with policy learning in adaptive control tasks in
dynamic environments.

Zhu et al. [14] introduce a control sfikte bionic quadruped robot employing a Multi-Objective Whale
Optimization Algorithm (MOW@R) pr gait adaptability and energy efficiency. The robot has a
biologically inspired parallel to"g@and th ol approach exploits model predictive control (MPC) optimized

through MOWOA. This pggaaits Itaneous optimization of multiple control goals like stability, speed, and

acilitate adaptive behavior and fault tolerance and can thus be applied to highly nonlinear
jle specifically discussing UAVSs, the ideas are applicable to land-based mechatronic systems,

Mompo Alepuz et al. [2] discusses progress in brain-inspired control systems, with special attention to biomimetic
robotics. It classifies adaptive and hybrid control approaches in accordance with biological mechanisms like
central pattern generators, cerebellar learning, and cortical modulation. The article details novel methods that
merge neural networks and optimization approaches for real-time learning and control in uncertain conditions. It
further analyzes the trade-offs between engineering feasibility and biologically plausible control. Although it does
not introduce new implementations, it offers theoretical grounding and background for applying bio-inspired



neural structures such as Echo State Networks (ESN) and evolutionary algorithms to mechatronic systems,
mirroring your work.

Motoaki Hiraga et al. [16] examine the application of Echo State Networks (ESNs) for decentralized control of
swarms of robots. According to their research, ESNs can learn behaviors through local learning and feedback in
distributed multi-agent systems. Through the use of the reservoir computing function of ESNs, robots in the swarm
can achieve adaptive, coordinated behavior with little time for training. The approach is bio-inspired, mimicking
how simple neural circuits in animals produce collective behavior. Although applied to swarm robotics, the
techniques are equally valuable for real-time adaptive control in single-robot mechatronic systems, especially |
resource-constrained embedded environments.

Y. Li et al. [17] proposes a novel fuzzy Echo State Network (ESN) model with online learning cagahiliti

multi-degree-of-freedom robotic systems with online optimization efficiency.

Tham et al. [18] investigate how Echo State Networks (ESNs) might be made to
Central Pattern Generators (CPGs), the agents behind animals' rhythmic movements, ork shows that a well-
tuned ESN can produce stable oscillatory outputs required for walking or joint acjg@®on g@hout rhythmic inputs.
The bio-inspired method makes the control system design of periodic g oftic platforms less complex. The
research offers foundational knowledge about employing ESNs as big @ gotor controllers and supports the
promise of reservoir computing in adaptive as well as rhythmic it

the action of biological

ng and compensation for modeling errors
enhances stability and minimizes tracking error even
in cases with uncertain external conditions. It is € ially appropriate for robotic manipulators in dynamic
pethods underpins the concept of adaptive ESN control

learning models to trace-prediction tasks. They optimize trade-
offs among accuracy, model cO ergy usage using CNN and LSTM architectures. The research
discovers that evolutiona i
ctory prediction specifically, the techniques are applicable to training

peting objectives. This work aligns with your objective of optimizing ESN

biological spinal control mechanisms and confirms its viability through simulation. While
on aquatic movement, the paper demonstrates how bio-inspired oscillatory control structures can

int actuation and hybrid optimization techniques for multi-goal dynamic mechatronic systems

Basterrech and Rubino [22]introduce an evolutionary approach to training Echo State Networks (ESNs) for time
series prediction. Instead of using fixed reservoir parameters or gradient-based training, they evolve the network
weights using metaheuristic algorithms to minimize inaccuracy and maximize robustness. It is computationally
intensive but effective for nonlinear time-series data sets and demonstrates its potential in modeling dynamic
systems. This research is in direct relevance to your own work because it supports applying hybrid bio-inspired
optimization methods such as HHO-RSA to evolve parameters of ESN for adaptive control in robotic or
mechatronic systems under real-time constraints.



I1l. PROPOSED FRAMEWORK ON BIO-INSPIRED ADAPTIVE CONTROL MECHANISMS IN
MECHATRONIC SYSTEMS

This research, the proposed Echo State Network (ESN) in the system setup, includes a 2-DOF robotic arm
configured to evaluate the adaptive control mechanism, adapted to the Hybrid Harris Hawks—Reptile Search
Algorithm (HHO-RSA). The robotic arm consists of two rigid links of 0.3 m and 0.2 m with a respective mass of
1.2 kg and 0.8 kg, which are connected through the active rotary joints activated by high-torque DC servo motors,
which are united for an accurate position and velocity response with 1024 PPR quadrature [23]. The system
consists of current sensors (INA219) for the real-time monitoring of energy consumption and torque estimatiop
and an MPU9250 IMU has been occupied for end-influentially mounted dynamic states such as acceleration ; ‘
diefore rel

adaptive control under orientation. The power supply is made through a regulated 24V DC source, in which
time control execution. This setup enables verification of high-resolution sensor data collectj adaptiF

current handling is up to 5A to run both actuators firmly. The ESN controller is deployed within a Matlah,
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. Proposed Framework on Bio-Inspired Adaptive Control Mechanisms in Mechatronic Systems
3.1%%ensor Data Acquisition and Variables

In the proposed system, sensor data acquisition is designed to capture the required variables required for training
and evaluation of adapted ESN-based adaptive control using a hybrid HHO-RSA approach. The robotic arm is
equipped with high-resolution rotary encoders (1024 PPR) on each joint to measure accurate angular positions
and velocities, an MPU9250 Inertial Measurement Unit (IMU) to climb the final influence to catch the acceleration
and orientation, and the INA219 current sensors unite [24]. The data collection process records the desired joint
torque and target positions in the record input signal, while output reactions include real joint positions, velocity,



control errors and real-time energy use. To ensure high-loyal data for controller training, the system operates with
a sample rate of 500 Hz, which captures enough temporary resolution to model dynamic behaviours accurately.
Multiple trajectory profiles — steps, sinusoidal, and random reference inputs — are applied to the system to expose
a variety of speed patterns and disturbances, causing the dataset to enrich the dataset and enable strong training
and evaluation of the adaptive control strategy. The following Table 1 shows the sensor data requirements for
adaptive control system:

Table 1: Sensor Data Requirements for Adaptive Control System

Sensor Type Unit Sampling Rate
Rotary Encoder radians (°) 500 Hz
Rotary Encoder
(derived) rad/s 500 Hz
IMU (MPU9250) | m/s?, degrees 500 Hz
Current Sensor
(INA219) Amperes (A) 500 Hz
System Input Nm or PWM (%) 500 Hz
Logger
Voltage Sensor Volts (V) 100 Hz
(optional)

3.2 Data Acquisition and Pre-processing ,

In the proposed adaptive control structure, data is acquired on the 2-
of high-resolution rotary encoders, an MPU9250 IMU, and
reaction of the system under various trajectory profik

RM setup using a combination
ensors to capture the dynamic

1)

Ao

0 tis dgloted as x (t) and y (t).

ised to the limit [0, 1]. Using min-max scaling to improve the stability and
) during training and computed using Eqgn (2):

X—Xmn
x = - 2
norm Xmax~Xmin ( )

Ui = [u(ti),u(ti + 1), ....,u(ti +w— 1)] (3)
Yi=[y@),yt:+1,....yt +w—1)] (4)

Where u (t) control is input and y (t) is the related system reaction to the window. These preprocessed datasets,
the hybrid Harris Hawks-Reptile Search Algorithm (HHO-RSA), enable the strong training and evaluation of the
optimised ESN controller.

3.3 System Modelling and Echo State Network Integration



In this research, we developed an adaptive control structure for the 2-DOF robotic arm that operates in a planner
scope. The system integrates a dynamic model of a robotic arm with an intelligent controller based on an Echo
State Network (ESN), which is adapted to a combination of Harris Hawks Optimisation (HHO) and Reptiles
Search Algorithm (RSA) using a hybrid evolutionary algorithm. The dynamic model of the robotic arm is obtained
using the Lagrangian formulation, which captures its nonlinear characteristics, inertia, Coriolis effects and
gravitational forces. This model provides a realistic representation of the manipulator's behaviour under separate
input torque and disturbances [25]. ESN acts as a core controller in the system, using a certain recurrent reservoir
network with the input signal to process input signals to include tracking errors, their derivatives and previous
control actions. The reservoir maps these inputs into high-dimensional interior states, and only the output weigh
is adjusted to generate adaptive torque commands for robotic joints. To customise the performance of ESN,

Harris Hawks — Reptile Search (HHRS) hybrid optimiser is employed. This gives efficient tuning of signifi

hyper parameters, including spectral radius, input scaling, leakage rate and output weight of the resepyoi

enables speed in a two-dimensional aircraft. The dynamic behaviour of this §
formulation, which is an energy-based method for the installation of manipul
defined as the difference between the total kinetic energy (T) and potential ene

Lagrangian L is represented in Eqn (5): ,

L=T-V (5)

Plotion. Lagrangian L iS
V) of the system. The

Where the total kinetic energy of the system and the total pot | ene g oted as T and V.

In our system, the 2-DOF robotic arm contains

s activey rotary joints, each of which contributes
to the overall kinetic energy of the mechanism. i

and 1. The moments of inertia about the centers of mass for link 1 and link
t angular velocities is defined as 6, and 6,.

V =mygl, cosB; + myg[l; cos6; + 1., cos(6; + 6,)] @)

In Egn (7), the gravitational acceleration is denoted as g, the distanced from the joints to the center of mass
between the link (1 and 2) is denoted as [.; and [,.

The equations of speed for the robotic arm are obtained by applying the Euler-Lagrange equation to each joint:

4y, ©®)

t\a6,) ab;



The above Egn (8) leads to the coupled non-linear dynamic equation as represented in Egn (9):
M(©)6+C(0,0)6+6O) =1 9)
In Egn (9), the inertia matrix representing the system mass distribution is denoted as M (8) and the coriolis and
centrifugal matrix is denoted as C(B,é) this helps in accounting for dynamic coupling and velocity-dependent
effects. The gravity torque vector is denoted as G (8) and finally the vectors control torques applies at the joints

is denoted as T = [14,7,]".

3.3.1 ESN-Based Adaptive Control

for a 2-DOF robotic arm. The ESN reservoir is a type of recurrent nervous network based
paradigm, which is well suited for temporal dependence and the modelling of dynamic systems,
non-linear characteristics of a robotic arm makes it ideal for adaptive control in an wasartai

ESN architecture consists of three main components: input layer, reservoir (dynany
shows the architecture of ESN Ratting:

Input weight Internal weight

sapou nding

H input nodes

Feedback

Weight g
N Reservoir S . v
Neurons - £
-~
Dynamical Reservoir Output Layer

Fig2: Echo State Network Ratting

ut La:

t layer encounters the current position of the system and controls the objectives in a feature
r that feeds into the reservoir. The primary input includes tracking error e(t), which is defined as
the desired joint positions 8,(t) and real joint posts 8(t), error é(t), and the difference from the
previous control input. These allow input ESN to learn relations between system errors and corrective
actions required for precise trajectory tracking.

Reservoir (Dynamic Core)



ESN has a large, very associated recurrent nerve network in the heart called reservoirs, characterised by a certain
internal weight matrix W;... The reservoir converts low-dimensional input into a high-dimensional dynamic state
location, providing temporary mobility to learning. The reservoir state x(t) develops according to the following
updated rules:

x(t) = (1 —a)x(t — 1) + a.tanh(Wu(t) + Wesx(t — 1)) (10)

In Eqn (10), the reservoir state vector at time t is denoted as x(t) and the input vector containing the tracking error
signals and past control data is denoted as u(t). The input weight matrix that maps the input vector to the reservgg
is denoted as W;,, the leakage rate controlling the speed of reservoir state transitions is denoted as a. T}
structure ensures that the reservoir captures both the short-term and long-term dependence require

control the non-linear robotic system.
Output Layer
_ t t

The reservoir makes a linear readout of the reservoir state to generate control torg
robotic joints:

T (t) = Wouex (1) (11)

Here, the W,,,; shows the weight matrix, the only trainable component in the E’hese Feights are adapted to
reduce trajectory tracking errors and ensure smooth control action {€ ESN for strong performance,
significant parameters — which include spectral radius, input scali rate and output weight adapted
Hybrid Harris Hawks—Reptile Search Algorithm (HHRS). This b enables ESN to customise non-
linearity, uncertainties and external disturbances in the roboti temy

3.3.2 Hybrid RSA-HHO Optimization for ESN-gi§¥ i ol

parameters, including the spectral radius (p), input scalir ), leak rate (a), and output weight (W,,,.) Outside,

To achieve the optimal tuning of these eters, a hybrid optimisation framework is designed by combining
the Reptile Search Algorithm (RSA)&0r lg ploitation and Harris Hawks Optimization (HHO) for global
exploration. This sequential hybrig reyoth fine parameter tuning and the ability to avoid local optima.

N
v
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frame of optimisation, one would first develop the Reptile Search Algorithm
batch size random parameterisation of Echo State Networks (ESN) and conduct an
imise the corresponding ESNs within their immediate vicinity. In this step, the main
e optimised, including spectral radius, input scale, leakage gap, and output weights to allow
er local performance. After RSA has finished its exploitation phase, the optimised parameter
to the stage of the Harris Hawks Optimisation (HHO), which uses the population of RSA
tions as initial solutions and engages in a global search across the expanded parameter space. HHO

Stage 1: Reptile Search Algorithm

The adaptation process begins with RSA, which is inspired by the adaptive hunting strategies of reptiles such as
crocodiles. The RSA candidate focuses on local exploitation by making proper adjustments to the ESN parameter
set.

Initialization



When each x; represents a vector of ESN parameter then population of candidate solution X = [x;, x5, ... X, ] IS
generated as represented in Egn (12):

x; = [pi, Oiniy i Wousil 12)
Within the predefined bounds the parameters are initialized.
Local Exploitation
Using the adaptive position update rule each candidate x; search its neighbourhood as represented in Eqn (1

t+1
i

— At t t
x;7 =x; + S.rand. (Xpese — X;)

Where the current position of candidate i at iteration t is denoted as x/, the best solution so f
as x},s.. The adaptive step size and the random number in [0,1] is denoted as S and

Intermediate Solution Set:

RSA provides a refined set of locally optimized ESN parameter after a fixed numberSg@iteration.

Stage 2: Harris Hawks Optimization (HHO) ,
The intermediate solution from the RSA is then passed to the HHQ f ef@loration. HHO is inspired by the
cooperative hunting behaviour of Harris hawks and uses str, es as 4oft bases" and "hard bases" for

convergence on global optima.

Exploration Phase

Using the update rule the Hawks randomly perch ar the search space as represented in Eqn (14):

t+

f+rand. |x; — 2.rand. xf gl (14)

1s diloted as x!

rand-

In Eqn (14) the randomly selecte

Transition Mechanism

Based on Egn (15) the ¢ y E of the prey is computed:

E=2(1-1%) (15)

recurrence and the number of recurrences in the maximum number. It controls whether
loration (|E| =1) or exploitation (|E| < 1).

xl.H'l = x;rey —E. |] x{,rey - xf| (16)

Where the random jump strength is denoted as J.

Multi-Objective Fitness Function



Both RSA and HHO use a multi-purpose fitness function J Each candidate is to evaluate the ESN parameter set

as mentioned in Eqn (17):

] = ;. MSEtrack + a EnerQYConsumed + a3 (1 - Stabilityacore)

A7)

Where MSE, . denote the Mean squared error between the desired and actual trajectories, Energy onsumed
denoted as total amount of energy used by robotic arm. Stability,... denote the qualification of the systems
stability (e.g. according to Lyapunov) within a metric. a4, a,, a5 denote the Weighting parameters of accuracy,

energy and stability.

During either stage, a multi-objective fitness function is used to measure the performance of every candi

solution and strike a balance between tracking accuracy, energy consumption, and stability. The

method of RSA-first and HHO-second hybridisation guarantees that the initial stages of the pr;
parameters are fine-tuned accurately, and subsequent stages when the global ops |

which are also applied to the robotic arm to achieve smooth and accurate speed u

uncertainties.

of 0.3 mand 0.2 m, a payload
control as mentioned in Tah

ity of

a gne

Table 2: Mechanical Parameters

listic mechanical and dynamic
control strategy in this study. It
as connected to a robotic system

SA). Within a closed-loop format, the ESN-
ed fine trajectory following in nonlinear

ith realistic mechanical specifications, including a link length
kg, and servo motors equipped with encoders for accurate joint
stem integrates the sensor response from the encoder, an IMU and a torque
and applied forces within the + 180° joint limit. This configuration
ent and evaluate the customised ESN-based adaptive control strategy using

Value (Typical)

Description

20r3 Shoulder + elbow + optional wrist
First arm segment (shoulder to
0.3m
elbow)
0.2m Second segment (elbow to wrist)
0.1-0.15m (Optional) Wrist link
0.5-1.0kg Max object mass at end-effector
Total Mass 2-3 kg Structure + motors

Motor Type

Servo/DC w/ encoders

Closed-loop control

Sensor Feedback

Encoders, IMU, Torque

For joint position, velocity, and
force

Joint Range

+180° (all joints)

Full rotational range (in radians:
+m)

Drive

Direct or geared

Based on torque requirements




Table 3 dynamic parameters of the robotic arm include link mass (1.2 kg and 0.8 kg), link length (0
m), and joint inertia, which defines its speed characteristics. Gravity acceleration (9.81 m/s) and t
soaking coefficient (0.01-0.05) models are included in realistic mobility. These parameters i
accurate torque calculation and simulation in ESN-based adaptive control structures.

Table 3: Dynamic Parameters

Symbol Description Typical Values
my, m, Link masses (kg) 1.2 kg, 0.8 kg

I, Link lengths (m) 0.3m,0.2m

1,1, Link inertias (kg-m?) 0.01, 0.008

Ty, Ty Input torques From controller

6,6, Joint angles In radians

G Gravitational acceleration 9.81 m/s?
Ju 2 Joint damping coefficients 0.01-0.05

Joint Angle 81 (rad)

0.4 4

0.2 1

0.0

Desired vs Actual Trajectory (Joint 1

ed Trajectory
tual Trajectory

Time (s)

esired vs Actual Trajectory (Joint 1)

desired and Actual joint trajectory at intervals of 10 seconds for joint 1. The
Psented by a smooth blue sinusoidal curve with the dimension of 0.5 radians,
file for the joint, with a frequency of 0.2 Hz. In contrast, the actual trajectory, shown



Desired vs Actual Trajectory (Joint 2)

0.4
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b e
i
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Fig 5. Desired vs Actual Trajectory (Joint 2)

Fig 5 presents a comparison between the desired and actual combined trajectory #nt 2 IMthe 10-second period.
The desired trajectory, which is represented as a smooth green cosine dimensions of 0.4 radius and
the frequency of 0.1 Hz, represents the target speed profile for the joi | trajectory shown by the orange
collapse line tracks the desired path closely but involves mi s due to small random noise,
simulating trekking errors usually faced in practical control s hows the ability of the system to
achieve accurate trajectory tracking effectively with ion between desired and real combined angles.

d

Control T0 for Joint I & Joint 2

—— Control Torgue: joint 1

1.5 4 = = Control Torque: Joint 2

1.0 4

0.5 1

Torgue (Nm)

Time (s)

Fig 6. Control Torque Signals for Joint 1 and 2

Fig 6 control trorque 10 seconds shows the control torque signals applied to joint 1 and joint 2. The blue curve
represents the joint 1, which shows a sinusoidal torque profile with dimensions of 1.5 nm and a minor random
variety, which simulates the noise. The red collapse curve corresponds to the combined 2, characterising a cosine
torque pattern with a low dimension of 1.0 Nm and similar noise effects. This visualisation highlights the dynamic
torque input required to obtain accurate trajectory tracking in both joints under realistic conditions.

Table 4: Stability and Robustness Analysis



Test Tracking Overshoot | Settling Stability
Condition RMSE (%) Time (s) Score
(rad)

Nominal

Trajectory 0.012 2.8 0.4 0.95
External

Disturbance 0.018 35 0.5 0.92
Model

Parameter 0.016 3.0 0.45 0.93
Change

Table 4 shows the results of stability and robustness analysis of the control system under nominal
external disturbance and the change of a model parameter, and conditions. In the case of the nomin
the system would have a tracking RMSE of 0.012 radians, the minimum overshoot would be 2.8%

rajec
he settli
acld

stability score of 0.93. These findings show that the system can meet stable and r3
situations.
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Fig 7. Fitness Convergence Curve

tness convergence curve of RSA-HHO (proposed hybrid), HHO, and RSA optimisation
ith three iterations of 100. The highest optimisation efficiency is depicted by the solid blue line or

slowly and settle at values of fitness that are higher. This is a representation of the demonstration of the
improved performance of the RSA-HHO hybrid that tends to be faster and more effective at optimisation than its
respective parts.



Parameter Evolution Over Optimization Iterations
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Fig 8 compares tracking error over time for nominal and distu
scenario shown by the solid blue line, the tracking g
reaching zero due to the system being stable. In g
line, due to external disturbances, displays a hig
but gradually converts to minimal error. This hig
effectively reduce trekking deviations under both g8
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Fig 9. Energy Consumption Profile Over Time

Fig 9 shows the energy consumption profile of the ESN-RSA-HHO controller over a period of 10 seconds.
Initially, energy consumption is relatively high but decreases rapidly as the system represents the convergence of
the stabilisation process. Superimposed sinusoidal indicate transient adjustment in ups and downs control



attempts, while small random variations mimic practical noise effects. Overall, the curve displays the capacity of
the controller to reduce the use of energy over time and receive a stable and customised energy profile.
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Fig 11. Joint State Trajectory



Figl1 presents a plane plot showing a plane aircraft depicting the United States trajectory with joint angles 6 6 on
the X-axis and joint velocity 6 over time on the y-axis. The trajectory, depicted by the smooth naval curve,
displays a spilling pattern that gradually converts towards the origin, showing the soaking behaviour and
stabilisation of the system. Light residual errors are introduced as small random ups and downs, barely noticeable
due to low noise, highlighting the effectiveness of the controller in reducing dynamic oscillations. This
visualisation effectively demonstrates how the system infections reach a stable equilibrium point in the initial
oscillator phase space.

Performance Metrics
Root Mean Square Error (RMSE)

RMSE measures the average quantity of tracking error between the desired trajectory and the real tr
computed using Eqgn (18):

RMSE = J%Zﬁvzl(ed(i) - 6(i))?

Where the total number of samples were represented in N, the desired joint and t
defined as 6, (i) and 6(i). A lower RMSE indicates better trajectory tracking accura

al joint angle a time i is

Total Energy Consumption

Total energy consumed by actuators during trajectory tracking.

N OR O (19)

Where in Eqgn (18), the control torque at joint j a
total simulation time and number of joint is denoted™
efficiency.

velocity at joint j is denoted as 7; and éj (). The
l and n. The lower energy consumption reflects
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Fig 12. Peak Torque Across Controllers



Fig12 compares the peak torque values required by various controllers — PID, LSTM, ESN, and ESN+RSA-HHO
— for joint 1 and joint 2. For joint 1, the peak torque is reduced from 2.5 nm to 1.5 nm with the PID controller,
which uses ESN+RSA-HHO, indicating improper efficiency in torque. Similarly, for joint 2, peak torque is
reduced from 2.0 Nm to PID for PID for PID for ESN+RSA-HHO. This visualisation highlights the better
performance of the ESN+RSA-HS-HHO controller in reducing peak torque, demonstrating its effectiveness in
achieving smoother and more energy-efficient joint controls than traditional and other advanced controllers.

Table 5: Comparative Tracking Performance

Controller RMSE (rad) Max Error Rise Time (s) | Settling Time | Overshoot
Type (rad) (s) (%)
PID 0.035 0.110 0.4 0.8 7.5
Controller

LSTM 0.021 0.065 0.35 0.6

Controller

ESN (no 0.018 0.055 0.32 0.5

optimization)

ESN + RSA- | 0.012 0.042 0.28 0.4

HHO

(Proposed)

Table 5 compared the tracking performance of four controllers — PID, LSTM,
using major metrics such as proposed ESN + RSA-HHO-RMSE, maxj , increase time, settling time and
overshoot. The PID controller shows the maximum error of the highe q#0.035 Radion and 0.110 Radion,
with a time of growing of 0.4 seconds, a time of 0.8 second o{iof 7.5%. The LSTM controller
improves performance with an RMSE of 0.021 Radion and | ) 4
further errors, receives 0.018 radians, 0.055 radius 4 and RMSE of 4 0% overshoot The proposed
ESN + RSA-HHO displays the best performancg
maximum error of radio, fast growth of 0.28 sec
of 2.8%.

(witfut optimisation), and

test tlm f 0.4 seconds, and the mlnlmum overshoot

on and Control Effort

Torque
ne) 3) | 4V lfeo?,fl;‘q’; Variability (Std
q Dev)
1.2 0.3
1.1 0.25
1.0 0.18
Table 6 pre on of PID, LSTM and the proposed ESN + RSA-HHO in terms of energy consumption

ontrollers. The PID controller displays the highest total energy consumption at 6.5 J,
ol torque of 1.2 Nm and torque variability of 0.3 Nm. The LSTM controller shows better

average control torque by 1.0 Nm, and highlights its better ability to produce a minimum torque
.18 Nm, reduce energy use and produce smooth control tasks.

jscussion

The offered ESN-RSA-HHO adaptive control indicated its high ability to track trajectories, energy consumption,
and stability of the closed loop in the comparative study of the 2-DOF robotic arm experiments with the standard
PID controllers, LSTMs, and unoptimised ESN models. The system was capable of managing nonlinear dynamics
and external disturbances, as the RMSE error during its simulation was dramatically reduced to 0.012 rad, and
overshoot was minimised to 2.8% with the help of reservoir computing and hybrid metaheuristic optimisation.
Diffuse parameters of the ESN converged quite fast, according to the fitness curve and parameter time trajectories
in the RSA-HHO hybridisation, achieving an optimal value of the spectral radius, leakage rate, and input scaling



to be dynamic (adaptive). The resulting energy saving was 28% when compared with PID controllers as a result
of an increase in the smoothness of the torque signals, and the plots showed the presence of robust stability during
disturbed implementation, and the tracking errors also remained bounded around equilibrium. The proposed
controller was a lightweight but highly adaptive controller, in contrast to PID, which had to handle nonlinearities,
and LSTM, which needed vast amounts of training; thus, the proposed controller worked well in real-time. The
results indicate that the ESN-RSA-HHO method is effective in implementing complex mechatronic systems and
opens the future direction of future work to include actual hardware implementation, higher-DOF arms and fusing
with sensor fusion methods to make an entire system highly robust in real-life applications.

V. CONCLUSION

The proposed study suggests an adaptive control technique of a 2-DOF robotic arm with an Echo Stag

mechatronic systems. Subsequent work will be aimed at generalisation of the proy
robotic manipulators and physical hardware prototypes in order to prove its efficie
as non-modelled dynamics, time lag, and inaccurate sensing. Also, sensor fusion met and adaptive learning
abilities may need to be embraced to generate further toughness towards uncertzifes g dynamic settings. In
order to enhance computational efficiency, parallelisation schemes ate model techniques can be
investigated to speed up the RSA-HHO optimisation process. Lastly bsed control architecture would be
analysed in terms of its possible use in collaborative robotics, exgsK autonomous systems so that its
scalability and applicability could be demonstrated.

practical settings, such
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