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Abstract -The use of robotic arms in mechatronic systems is quite common because of their precision and 

adaptability uses, but the control of such nonlinear and dynamic systems has been an uphill task because of the 

presence of uncertainties and external disturbances. In this regard, the proposed study will solve the mentioned 

problems by designing an effective adaptive control approach to improve the accuracy of trajectory tracking, the 

system energy consumption, and stability. The novelty of this study is to incorporate Echo State Network (ESN) 

with a hybrid met heuristic algorithm, which consists of Harris Hawks Optimisation (HHO) and Reptile Search 

Algorithm (RSA) to tune the important parameters of ESN, such as spectral radius, leakage rate and scaling of 

input. The described ESN-RSA-HHO framework will have a closed-loop architecture that will produce optimised 

torque commands to provide robust control of a 2-DOF robotic arm that operates under different operation 

conditions. Simulation has revealed that the ESN-RSA-HHO controller produces a root mean square tracking 

error of 0.012 rad, an energy saving of 28 per cent and an overshoot of 2.8 per cent, which is entirely better than 

the traditional PID control and LSTM-based control, as well as the non-optimised ESN models. The convergence 

behaviour and phase plane plot prove that the system can continue to be stable in even disturbed cases. The results 

confirm the efficiency of the suggested adaptive robot control framework and allow noting its future use in the 

mechatronic sphere. 

Keywords: Adaptive Mechanism, Echo State Network, Harris Hawks Optimisation, Reptile Search Algorithm, 

2-DOF Robotic Arms,  

I. INTRODUCTION 

Robotic systems have become indispensable in a wide spectrum of industries, revolutionising the ways of 

manufacturing, healthcare, aerospace and logistics. In manufacturing, robot arms are employed for assembly, 

welding, painting, and material handling, which enables high-speed and high-collective operations that exceed 

human abilities [1]. In healthcare, robots assist delicate surgical processes, rehabilitation remedies and laboratory 
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automation, where accuracy and stability are important. The aerospace industry depends on robotic systems to 

collect complex components, to conduct maintenance in dangerous environments, and even to assist in space 

exploration missions [2]. Similarly, logistics and warehousing sectors efficiently benefit from robotic systems for 

sorting, packaging and transportation. The root of these applications is the robotic arm, a highly versatile 

manipulator designed to perform complex, repetitive or dangerous tasks [3]. These weapons require an accurate 

and strong control mechanism to achieve high levels of accuracy, mastery and adaptability. These mechanisms 

should ensure smooth trajectory tracking, manage dynamic interaction with the environment, and maintain 

stability in external disturbances or the presence of system uncertainty. - As tasks become rapidly sophisticated – 

such as handling variable payloads or cooperating safely with humans – traditional control methods often 

decrease. This growing demand for autonomous and adaptive robotic weapons has catalysed research in advanced 

control strategies that are capable of meeting the challenges generated by non-linear dynamics, high degrees of 

independence and multi-purpose performance requirements [4]. 

Traditional control strategies such as proportional-integral-derivative (PID) and model predictive control (MPC) 

have long been the cornerstone of robotic arm control due to their simplicity, ease of implementation and 

effectiveness in structured, linear environments [5]. PID controllers, in particular, are widely used for tracking 

and status control because they provide a direct way to correct errors between desired and real positions. Similarly, 

the MPC provides benefits in involving obstacles by handling multi-perceived systems and predicting the 

behaviour of the future system on a finite time horizon [6]. Tuning PID benefits for optimal performance is also 

nontrivial and cannot be normalised in various functions or environments. MPC, while more sophisticated, suffers 

from computational overheads due to real-time adaptation requirements, which makes it less suitable for sharp 

and highly dynamic systems [7]. Its performance is very high on the accuracy of the system model, and impurities 

can cause sub- or unstable behaviour. Consequently, both PID and MPC struggle to meet modern robotic ARM 

control demands, where uncertainty, variable payload and human-robot cooperation are required for adaptability, 

strength and multi-purpose adaptation for the functions associated with the cooperation [8]. 

As mechatronic systems, including robot manipulators, become complex, robust and adaptive control strategies 

are needed that can accurately address nonlinear dynamics and external disturbances as well as parameter 

uncertainties in real time [9]. The familiar control techniques, such as PID controllers, are simple to implement, 

which is the reason why they are popular, but they have shown on many occasions to be unable to deliver 

satisfactory performance in such settings since they lack the natural flexibility and are unable to cope with high 

levels of nonlinearity. Recent innovation in artificial intelligence and bio-inspired algorithms promises to offer 

the solution to improve control systems [10]. In particular, the Echo State Networks (ESNs) models of reservoir 

computing offer an effective technique of reasoning about the time dynamics and system behaviour learning but 

with fewer computational demands. More so, bio-inspired techniques have demonstrated very good promise in 

optimising the parameters of complex systems and so are incredibly applicable in adaptive control [11]. 

In spite of these developments, there exists a gaping hole in the literature. The current state of the art in neural 

network controllers uses gradient-based optimisation whose representation and optimisation techniques have 

drawbacks associated with local minima and are not likely to capture multi-objective trade-offs between, e.g., 

tracking accuracy, energy consumption and stability. In addition, although evolutionary algorithms, such as Harris 

Hawks Optimisation (HHO) and Reptile Search Algorithm (RSA), have been shown to be successful in terms of 

optimisation on a single level, researchers have not examined their multi-level hybridisation to optimise the 

controllers of mechatronic systems based on deep learning. To resolve these challenges, the study proposes an 

adaptive control strategy based on ESN, in which hyperparameters are adapted using a hybrid HHO-RSA 

framework. Its purpose is to develop a strong, energy-skilled and stable controller for gate 2-DOFrl robotic arm, 

which is capable of achieving better trajectory tracking in nominal and disturbed conditions. The approach aims 

to combine the rapid convergence and exploration capabilities of HHO with the local refinement strength of the 

RSA, which can control the boundaries of the existing control functioning. The key contribution of the research 

are as follows: 

• A novel hybrid optimization algorithm combining Harris Hawks Optimization (HHO) and Reptile Search 

Algorithm (RSA) is developed to tune Echo State Network (ESN) parameters effectively. 

• An adaptive ESN-based control system is designed for a 2-DOF robotic arm to handle nonlinear 

dynamics and external disturbances in real time. 

• The proposed controller improves performance, achieving higher tracking accuracy, reduced energy 

consumption, and better stability compared to PID and LSTM controllers. 

• Extensive simulations validate the approach, showing its effectiveness under both normal and disturbed 

conditions. 
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Rest of Section 

• Section 2: Reviews recent adaptive control methods and bio-inspired optimization techniques for 

mechatronic systems, highlighting limitations of PID and traditional neural networks in handling 

nonlinear dynamics and external disturbances. 

• Section 3: Details the proposed ESN-RSA-HHO framework, including the robotic arm dynamic 

modeling, ESN architecture, and hybrid optimization process for tuning controller parameters. 

• Section 4: Presents experimental results and comparative analysis, showcasing tracking accuracy, energy 

efficiency, and stability improvements over baseline controllers. 

• Section 5: Concludes the study by emphasizing the effectiveness and robustness of the proposed 

approach, and discusses future directions such as real-world hardware implementation and scalability to 

higher-DOF systems. 

II. LITERATURE REVIEW 

Pan et al. [12] paper introduces a bio-inspired composite learning control strategy to enhance tracking precision 

in robotic manipulators through compensation of frictional uncertainties. Drawing inspiration from cerebellar 

learning mechanisms, the technique combines proportional feedback with a memory-based error model, allowing 

for accurate control without demanding high feedback gains. The technique was implemented on a DENSO 

industrial robot arm and met enhanced transient and steady-state performance. This method minimizes the use of 

energy and guarantees robustness without sophisticated model dependence. The research proves that biologically 

inspired control systems are capable of outperforming conventional PID methods in real-world robotics, paving 

the way for adaptive learning for real-time manipulation operations.  

Hu et al.[13] research combines Soft Actor-Critic (SAC), Long Short-Term Memory (LSTM), and Generative 

Adversarial Imitation Learning (GAIL) to develop a deep reinforcement learning framework for robotic trajectory 

control. The proposed model overcomes disturbances and complicated dynamics of robotic arms through learning 

from demonstrations of experts and real-time adaptation. Temporal dependencies are captured by the LSTM 

network, and GAIL optimizes the policy by imitation learning. The hybrid model is better in tracking precision, 

robustness, and constraint following compared to individual RL algorithms according to experiments. The method 

proves the efficacy of merging memory-based neural models with policy learning in adaptive control tasks in 

dynamic environments. 

Zhu et al. [14] introduce a control system for a bionic quadruped robot employing a Multi-Objective Whale 

Optimization Algorithm (MOWOA) to improve gait adaptability and energy efficiency. The robot has a 

biologically inspired parallel torso, and the control approach exploits model predictive control (MPC) optimized 

through MOWOA. This permits simultaneous optimization of multiple control goals like stability, speed, and 

energy efficiency. The paper proves enhanced motion coordination and environmental adaptability over diverse 

terrain conditions. This work highlights the potential of bio-inspired multi-objective optimization in improving 

the locomotion performance of advanced mechatronic systems like quadruped robots [14]. 

Boddhu et al.[15] presents evolutionary neurocontrollers for flapping-wing unmanned aerial vehicles (UAVs). 

The neural network parameters are optimized on aerodynamic stability, energy efficiency, and control smoothness 

using a multi-objective evolutionary algorithm. The work simulates dynamics of flapping flight and the 

performance of controllers in a variety of environmental conditions. Findings show that evolutionary deep 

learning methods facilitate adaptive behavior and fault tolerance and can thus be applied to highly nonlinear 

systems. While specifically discussing UAVs, the ideas are applicable to land-based mechatronic systems, 

justifying your proposal's application of sophisticated neural networks in adaptive control for robot arms or 

manipulators. 

Mompó Alepuz et al. [2] discusses progress in brain-inspired control systems, with special attention to biomimetic 

robotics. It classifies adaptive and hybrid control approaches in accordance with biological mechanisms like 

central pattern generators, cerebellar learning, and cortical modulation. The article details novel methods that 

merge neural networks and optimization approaches for real-time learning and control in uncertain conditions. It 

further analyzes the trade-offs between engineering feasibility and biologically plausible control. Although it does 

not introduce new implementations, it offers theoretical grounding and background for applying bio-inspired 
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neural structures such as Echo State Networks (ESN) and evolutionary algorithms to mechatronic systems, 

mirroring your work. 

Motoaki Hiraga et al. [16] examine the application of Echo State Networks (ESNs) for decentralized control of 

swarms of robots. According to their research, ESNs can learn behaviors through local learning and feedback in 

distributed multi-agent systems. Through the use of the reservoir computing function of ESNs, robots in the swarm 

can achieve adaptive, coordinated behavior with little time for training. The approach is bio-inspired, mimicking 

how simple neural circuits in animals produce collective behavior. Although applied to swarm robotics, the 

techniques are equally valuable for real-time adaptive control in single-robot mechatronic systems, especially in 

resource-constrained embedded environments. 

Y. Li et al. [17] proposes a novel fuzzy Echo State Network (ESN) model with online learning capabilities, 

designed to control redundant robotic manipulators. Motivated by cerebellar learning, the system progressively 

adjusts its weights on the basis of online feedback, and accuracy is enhanced with complex movements. The fuzzy 

layer makes the network more interpretable and also addresses nonlinearities well. Simulation and hardware 

results indicate that the model can easily adapt to varying tasks and environments with low computational expense. 

This paper is particularly germane to your study since it applies bio-inspired adaptive neural control directly to 

multi-degree-of-freedom robotic systems with online optimization efficiency. 

Tham et al. [18] investigate how Echo State Networks (ESNs) might be made to mimic the action of biological 

Central Pattern Generators (CPGs), the agents behind animals' rhythmic movements. The work shows that a well-

tuned ESN can produce stable oscillatory outputs required for walking or joint actuation without rhythmic inputs. 

The bio-inspired method makes the control system design of periodic motion robotic platforms less complex. The 

research offers foundational knowledge about employing ESNs as bio-inspired motor controllers and supports the 

promise of reservoir computing in adaptive as well as rhythmic control of activities such as walking or grasping. 

Banderchuk [19] paper introduces a hybrid control method that integrates classical robust control theory and 

learning with ESN to cope with uncertainties and sustained disturbances in nonlinear systems. The framework 

consists of a baseline robust controller and an ESN module with learning and compensation for modeling errors 

in real-time. The research illustrates that this hybrid strategy enhances stability and minimizes tracking error even 

in cases with uncertain external conditions. It is especially appropriate for robotic manipulators in dynamic 

settings. The combination of model-based and data-driven methods underpins the concept of adaptive ESN control 

with evolutionary tuning, such as in your intended work. 

Galván et al. [20]  examine the use of evolutionary multi-objective optimization (EMO) methods—more 

specifically NSGA-II and MOEA/D—to tune deep learning models to trace-prediction tasks. They optimize trade-

offs among accuracy, model complexity, and energy usage using CNN and LSTM architectures. The research 

discovers that evolutionary optimization yields more generalizable and energy-efficient models than standard 

training methods. While applying to trajectory prediction specifically, the techniques are applicable to training 

any deep neural controller with competing objectives. This work aligns with your objective of optimizing ESN 

parameters via hybrid multi-objective approaches such as HHO–RSA for robotic arm real-time control 

performance. 

W. K. Li et al. [21] article introduces a multi-objective evolutionary design approach for Central Pattern Generator 

(CPG) networks applied to biomimetic robotic fish. The authors optimize CPG parameters with Pareto-based 

algorithms in order to trade-off between goals such as swimming efficiency, stability, and manoeuvrability. The 

method replicates biological spinal control mechanisms and confirms its viability through simulation. While 

concentrating on aquatic movement, the paper demonstrates how bio-inspired oscillatory control structures can 

be optimized with evolutionary algorithms. This reinforces your combination of ESN-based rhythmic control for 

joint actuation and hybrid optimization techniques for multi-goal dynamic mechatronic systems 

Basterrech and Rubino [22]introduce an evolutionary approach to training Echo State Networks (ESNs) for time 

series prediction. Instead of using fixed reservoir parameters or gradient-based training, they evolve the network 

weights using metaheuristic algorithms to minimize inaccuracy and maximize robustness. It is computationally 

intensive but effective for nonlinear time-series data sets and demonstrates its potential in modeling dynamic 

systems. This research is in direct relevance to your own work because it supports applying hybrid bio-inspired 

optimization methods such as HHO–RSA to evolve parameters of ESN for adaptive control in robotic or 

mechatronic systems under real-time constraints. 
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III. PROPOSED FRAMEWORK ON BIO-INSPIRED ADAPTIVE CONTROL MECHANISMS IN 

MECHATRONIC SYSTEMS 

This research, the proposed Echo State Network (ESN) in the system setup, includes a 2-DOF robotic arm 

configured to evaluate the adaptive control mechanism, adapted to the Hybrid Harris Hawks–Reptile Search 

Algorithm (HHO-RSA). The robotic arm consists of two rigid links of 0.3 m and 0.2 m with a respective mass of 

1.2 kg and 0.8 kg, which are connected through the active rotary joints activated by high-torque DC servo motors, 

which are united for an accurate position and velocity response with 1024 PPR quadrature [23]. The system 

consists of current sensors (INA219) for the real-time monitoring of energy consumption and torque estimation, 

and an MPU9250 IMU has been occupied for end-influentially mounted dynamic states such as acceleration and 

adaptive control under orientation. The power supply is made through a regulated 24V DC source, in which the 

current handling is up to 5A to run both actuators firmly. The ESN controller is deployed within a Matlab/Simulink 

environment, which interfaces with the Mechatronic system model to generate torque commands, while the HHO-

RSA optimiser tunes the reservoir parameters, spectral radius and output weight in an offline phase before real-

time control execution. This setup enables verification of high-resolution sensor data collections and adaptive 

control strategy under various trajectory and disturbance landscapes, which ensures a strong evaluation of the 

proposed approach. Fig1 show present the proposed frame on bio-inspired adaptive control mechanisms in 

mechatronic systems:  

 

Fig 1. Proposed Framework on Bio-Inspired Adaptive Control Mechanisms in Mechatronic Systems  

3.1 Sensor Data Acquisition and Variables 

In the proposed system, sensor data acquisition is designed to capture the required variables required for training 

and evaluation of adapted ESN-based adaptive control using a hybrid HHO-RSA approach. The robotic arm is 

equipped with high-resolution rotary encoders (1024 PPR) on each joint to measure accurate angular positions 

and velocities, an MPU9250 Inertial Measurement Unit (IMU) to climb the final influence to catch the acceleration 

and orientation, and the INA219 current sensors unite [24]. The data collection process records the desired joint 

torque and target positions in the record input signal, while output reactions include real joint positions, velocity, 
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control errors and real-time energy use. To ensure high-loyal data for controller training, the system operates with 

a sample rate of 500 Hz, which captures enough temporary resolution to model dynamic behaviours accurately. 

Multiple trajectory profiles – steps, sinusoidal, and random reference inputs – are applied to the system to expose 

a variety of speed patterns and disturbances, causing the dataset to enrich the dataset and enable strong training 

and evaluation of the adaptive control strategy. The following Table 1 shows the sensor data requirements for 

adaptive control system:  

Table 1: Sensor Data Requirements for Adaptive Control System 

Sensor Type Unit Sampling Rate 

Rotary Encoder radians (°) 500 Hz 

Rotary Encoder 

(derived) 
rad/s 500 Hz 

IMU (MPU9250) m/s², degrees 500 Hz 

Current Sensor 

(INA219) 
Amperes (A) 500 Hz 

System Input 

Logger 
Nm or PWM (%) 500 Hz 

Voltage Sensor 

(optional) 
Volts (V) 100 Hz 

3.2 Data Acquisition and Pre-processing 

In the proposed adaptive control structure, data is acquired on the 2-DOF robotic ARM setup using a combination 

of high-resolution rotary encoders, an MPU9250 IMU, and INA219 current sensors to capture the dynamic 

reaction of the system under various trajectory profiles. Input signals in the dataset, such as the desired joint 

torques 𝜏𝑑(𝑡)  and target positions 𝜃𝑑(𝑡), as well as actual joint angles 𝜃(𝑡), velocities �̇�(𝑡), control errors 𝑒(𝑡) =
𝜃𝑑(𝑡) − 𝜃(𝑡), and energy consumption E(t). To ensure the quality of data, the signals are sampled at 500 Hz and 

initially processed to reduce the sensor noise. The Butterworth low-pass filter of another order is applied to 

eliminate high-existing components, mathematically computed using Eqn (1): 

𝑦(𝑡) =
𝑏0𝑥(𝑡)+𝑏1𝑥(𝑡−1)+𝑏2𝑥(𝑡−2)−𝑎1𝑦(𝑡−2)−𝑎2𝑦(𝑡−2)

𝑎0
    (1) 

Where the raw signal and the filtered output is denoted as x (t) and y (t).  

After filtering, all variables are normalised to the limit [0, 1]. Using min-max scaling to improve the stability and 

convergence of Echo State Network (ESN) during training and computed using Eqn (2): 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
      (2) 

Where the minimum and maximum observed value in the dataset is denoted as 𝑥𝑚𝑎𝑥  𝑎𝑛𝑑 𝑥𝑚𝑖𝑛.  

To prepare time-series data for the ESN reservoir, generalised signals are divided into overlapping time windows 

creating input-output pairs (𝑈𝑖 , 𝑌𝑖) to training. Each input sequence is calculated using Eqn (3) – (4): 

𝑈𝑖 = [𝑢(𝑡𝑖), 𝑢(𝑡𝑖 + 1), … . , 𝑢(𝑡𝑖 + 𝑤 − 1)]    (3) 

𝑌𝑖 = [𝑦(𝑡𝑖), 𝑦(𝑡𝑖 + 1), … . , 𝑦(𝑡𝑖 + 𝑤 − 1)]    (4) 

Where u (t) control is input and y (t) is the related system reaction to the window. These preprocessed datasets, 

the hybrid Harris Hawks-Reptile Search Algorithm (HHO-RSA), enable the strong training and evaluation of the 

optimised ESN controller. 

3.3 System Modelling and Echo State Network Integration 
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In this research, we developed an adaptive control structure for the 2-DOF robotic arm that operates in a planner 

scope. The system integrates a dynamic model of a robotic arm with an intelligent controller based on an Echo 

State Network (ESN), which is adapted to a combination of Harris Hawks Optimisation (HHO) and Reptiles 

Search Algorithm (RSA) using a hybrid evolutionary algorithm. The dynamic model of the robotic arm is obtained 

using the Lagrangian formulation, which captures its nonlinear characteristics, inertia, Coriolis effects and 

gravitational forces. This model provides a realistic representation of the manipulator's behaviour under separate 

input torque and disturbances [25]. ESN acts as a core controller in the system, using a certain recurrent reservoir 

network with the input signal to process input signals to include tracking errors, their derivatives and previous 

control actions. The reservoir maps these inputs into high-dimensional interior states, and only the output weight 

is adjusted to generate adaptive torque commands for robotic joints. To customise the performance of ESN, the 

Harris Hawks – Reptile Search (HHRS) hybrid optimiser is employed. This gives efficient tuning of significant 

hyper parameters, including spectral radius, input scaling, leakage rate and output weight of the reservoir, to 

reduce tracking errors and ensure smooth energy-skilled operations. The entire control architecture operates in a 

closed loop, where the real-time sensor response from the joint encoder and current sensor is constantly fed to the 

ESN controller. This enables the robotic arm to follow the desired trajectory with high precision, adapting to 

dynamic uncertainties and external disturbances [26]. The simulations were made using Matlab/Simulink to 

validate the proposed approach under various trajectory profiles and states of disturbance. The 2-DOF robotic arm 

has been modernised as a planner manipulator, made up of two rigid links associated with rotary joints, which 

enables speed in a two-dimensional aircraft. The dynamic behaviour of this system is taken using Lagrangian 

formulation, which is an energy-based method for the installation of manipulator’s motion. Lagrangian 𝐿 is 

defined as the difference between the total kinetic energy (𝑇) and potential energy (𝑉) of the system. The 

Lagrangian L is represented in Eqn (5): 

𝐿 = 𝑇 − 𝑉     (5) 

Where the total kinetic energy of the system and the total potential energy is denoted as T and V.  

In our system, the 2-DOF robotic arm contains two rigid links active by rotary joints, each of which contributes 

to the overall kinetic energy of the mechanism. The kinetic energy link arises from both translational speed of 

mass and rotational motion about joints. Keeping in mind the speed in a planner scope, energy contribution is 

calculated relative to the centre of mass and rotational inertia of each link. This makes the base to capture the 

dynamic behaviour of the hand in speed, which is necessary for accurate control design. The kinetic energy T of 

the robotic arm is given by: 

𝑇 =
1

2
𝑚1�̇�1

2 +
1

2
𝐼1�̇�1

2 +
1

2
𝑚2�̇�2

2 +
1

2
𝐼2(�̇�1 + �̇�2)    (6) 

In Eqn (6), the masses of link 1 and link 2 is denoted as 𝑚1 𝑎𝑛𝑑 𝑚2,  the linear velocities of the centers of mass 

of link 1 and link 2 is denoted as �̇�1 𝑎𝑛𝑑 �̇�2. The moments of inertia about the centers of mass for link 1 and link 

2 is denoted as 𝐼1 𝑎𝑛𝑑 𝐼2 and the joint angular velocities is defined as �̇�1 𝑎𝑛𝑑 �̇�2. 

The robotic arm moves in the horizontal plane, and all the mass of links is affected by gravity and adds to the 

potential energy of the system. The overall potential energy depends on the position of the centres of mass of the 

links with respect to the fixed base frame. It is of great importance that this energy representation can be used to 

determine the influence of gravity on the motion of the manipulator, and the dynamic equation of the manipulator 

can be worked out to design the control. The potential energy V of the robotics arm is represented using the 

following Eqn (7): 

𝑉 = 𝑚1𝑔𝑙𝑐1 cos 𝜃1 + 𝑚1𝑔[𝑙1 cos 𝜃1 + 𝑙𝑐2 cos(𝜃1 + 𝜃2)]   (7) 

In Eqn (7), the gravitational acceleration is denoted as g, the distanced from the joints to the center of mass 

between the link (1 and 2) is denoted as 𝑙𝑐1 𝑎𝑛𝑑 𝑙𝑐2. 

The equations of speed for the robotic arm are obtained by applying the Euler-Lagrange equation to each joint: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜃�̇�
) −

𝜕𝐿

𝜕�̇�𝑖
= 𝜏𝑖     (8) 
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The above Eqn (8) leads to the coupled non-linear dynamic equation as represented in Eqn (9): 

𝑀 (𝜃)�̈� + 𝐶(𝜃, �̇�)�̇� + 𝐺 (𝜃) = 𝜏     (9) 

In Eqn (9), the inertia matrix representing the system mass distribution is denoted as 𝑀 (𝜃) and the coriolis and 

centrifugal matrix is denoted as 𝐶(𝜃, �̇�) this helps in accounting for dynamic coupling and velocity-dependent 

effects. The gravity torque vector is denoted as 𝐺 (𝜃) and finally the vectors control torques applies at the joints 

is denoted as 𝜏 =  [𝜏1, 𝜏2]𝑇. 

3.3.1 ESN-Based Adaptive Control 

In the proposed control architecture, an Echo State Network (ESN) is used to generate adaptive torque commands 

for a 2-DOF robotic arm. The ESN reservoir is a type of recurrent nervous network based on a computing 

paradigm, which is well suited for temporal dependence and the modelling of dynamic systems. Its ability to catch 

non-linear characteristics of a robotic arm makes it ideal for adaptive control in an uncertain environment. The 

ESN architecture consists of three main components: input layer, reservoir (dynamic core), and output layer.. Fig2 

shows the architecture of ESN Ratting: 

 

Fig2: Echo State Network Ratting 

Input Layer 

The input layer encounters the current position of the system and controls the objectives in a feature 

vector that feeds into the reservoir. The primary input includes tracking error 𝑒(𝑡), which is defined as 

the desired joint positions 𝜃𝑑(𝑡) and real joint posts 𝜃(𝑡), error �̇�(𝑡), and the difference from the 

previous control input. These allow input ESN to learn relations between system errors and corrective 

actions required for precise trajectory tracking. 

Reservoir (Dynamic Core) 
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ESN has a large, very associated recurrent nerve network in the heart called reservoirs, characterised by a certain 

internal weight matrix 𝑊𝑟𝑒𝑠. The reservoir converts low-dimensional input into a high-dimensional dynamic state 

location, providing temporary mobility to learning. The reservoir state 𝑥(𝑡) develops according to the following 

updated rules: 

𝑥(𝑡) = (1 − 𝛼)𝑥(𝑡 − 1) + 𝛼. tanh(𝑊𝑖𝑛𝑢(𝑡) + 𝑊𝑟𝑒𝑠𝑥(𝑡 − 1))   (10) 

In Eqn (10), the reservoir state vector at time t is denoted as 𝑥(𝑡) and the input vector containing the tracking error 

signals and past control data is denoted as 𝑢(𝑡). The input weight matrix that maps the input vector to the reservoir 

is denoted as 𝑊𝑖𝑛, the leakage rate controlling the speed of reservoir state transitions is denoted as 𝛼. This 

structure ensures that the reservoir captures both the short-term and long-term dependence required to 

control the non-linear robotic system. 

Output Layer 

The reservoir makes a linear readout of the reservoir state to generate control torque applied to output layer 

robotic joints: 

𝜏 (𝑡) = 𝑊𝑜𝑢𝑡𝑥(𝑡)      (11) 

Here, the 𝑊𝑜𝑢𝑡 shows the weight matrix, the only trainable component in the ESN. These weights are adapted to 

reduce trajectory tracking errors and ensure smooth control action. To fix the ESN for strong performance, 

significant parameters – which include spectral radius, input scaling, leakage rate and output weight adapted 

Hybrid Harris Hawks–Reptile Search Algorithm (HHRS). This adaptation process enables ESN to customise non-

linearity, uncertainties and external disturbances in the robotic system. 

3.3.2 Hybrid RSA–HHO Optimization for ESN-Based Adaptive Control 

In the proposed adaptive control strategy for the 2-DOF robotic arm, the Echo State Network (ESN) serves as a 

core controller to generate torque commands. The performance of ESN is highly dependent on its hyper 

parameters, including the spectral radius (𝜌), input scaling (𝜎𝑖𝑛), leak rate (𝛼), and output weight (𝑊𝑜𝑢𝑡) Outside, 

To achieve the optimal tuning of these parameters, a hybrid optimisation framework is designed by combining 

the Reptile Search Algorithm (RSA) for local exploitation and Harris Hawks Optimization (HHO) for global 

exploration. This sequential hybridisation ensures both fine parameter tuning and the ability to avoid local optima. 
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Fig 3. HHRS Optimization 

Within the envisioned hybridised frame of optimisation, one would first develop the Reptile Search Algorithm 

(RSA) that would initiate a batch size random parameterisation of Echo State Networks (ESN) and conduct an 

adaptive local search to optimise the corresponding ESNs within their immediate vicinity. In this step, the main 

hyper parameters can be optimised, including spectral radius, input scale, leakage gap, and output weights to allow 

the ESN to attain better local performance. After RSA has finished its exploitation phase, the optimised parameter 

sets are transferred to the stage of the Harris Hawks Optimisation (HHO), which uses the population of RSA 

optimised solutions as initial solutions and engages in a global search across the expanded parameter space. HHO 

adopts exploration and exploitation solutions based on collaborative foraging of Harris hawks to evade local 

minima and become close to globally ideal solutions. The above Fig3 shows the HHRS optimization:  

Stage 1: Reptile Search Algorithm 

The adaptation process begins with RSA, which is inspired by the adaptive hunting strategies of reptiles such as 

crocodiles. The RSA candidate focuses on local exploitation by making proper adjustments to the ESN parameter 

set. 

Initialization 
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When each 𝑥𝑖  represents a vector of ESN parameter then population of candidate solution 𝑋 = [𝑥1, 𝑥2, … . 𝑥𝑛] is 

generated as represented in Eqn (12): 

𝑥𝑖 = [𝜌𝑖 , 𝜎𝑖𝑛𝑖 , 𝛼𝑖 , 𝑊𝑜𝑢𝑡𝑖]     (12) 

Within the predefined bounds the parameters are initialized. 

Local Exploitation 

Using the adaptive position update rule each candidate  𝑥𝑖 search its neighbourhood as represented in Eqn (13): 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑆. 𝑟𝑎𝑛𝑑. (𝑥𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡)    (13) 

Where the current position of candidate i at iteration t is denoted as 𝑥𝑖
𝑡, the best solution so far and it is denoted 

as 𝑥𝑏𝑒𝑠𝑡
𝑡 . The adaptive step size and the random number in [0,1] is denoted as S and rand.  

Intermediate Solution Set: 

RSA provides a refined set of locally optimized ESN parameter after a fixed number of iteration.  

Stage 2: Harris Hawks Optimization (HHO) 

The intermediate solution from the RSA is then passed to the HHO for global exploration. HHO is inspired by the 

cooperative hunting behaviour of Harris hawks and uses strategies such as "soft bases" and "hard bases" for 

convergence on global optima. 

Exploration Phase 

Using the update rule the Hawks randomly perch around the search space as represented in Eqn (14): 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟𝑎𝑛𝑑. |𝑥𝑖
𝑡 − 2. 𝑟𝑎𝑛𝑑. 𝑥𝑟𝑎𝑛𝑑

𝑡 |    (14) 

In Eqn (14) the randomly selected candidate is denoted as 𝑥𝑟𝑎𝑛𝑑
𝑡 . 

Transition Mechanism 

Based on Eqn (15) the escape energy E of the prey is computed:  

𝐸 = 2 (1 −
𝑡

𝑇
)     (15) 

Where 𝑡 is the current recurrence and the number of recurrences in the maximum number. It controls whether 

Hawks emphasises exploration (|𝐸| ≥1) or exploitation (|𝐸| < 1). 

Exploitation Phase 

During the exploitation mode, the hawks surround the prey and update their positions as represented in Eqn 

(16):   

𝑥𝑖
𝑡+1 = 𝑥𝑝𝑟𝑒𝑦

𝑡 − 𝐸. |𝐽. 𝑥𝑝𝑟𝑒𝑦
𝑡 − 𝑥𝑖

𝑡|    (16) 

Where the random jump strength is denoted as J. 

Multi-Objective Fitness Function 
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Both RSA and HHO use a multi-purpose fitness function 𝐽 Each candidate is to evaluate the ESN parameter set 

as mentioned in Eqn (17): 

𝐽 = 𝛼1. 𝑀𝑆𝐸𝑡𝑟𝑎𝑐𝑘 + 𝛼2 𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 + 𝛼3(1 − 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑐𝑜𝑟𝑒)  (17) 

Where 𝑀𝑆𝐸𝑡𝑟𝑎𝑐𝑘  denote the Mean squared error between the desired and actual trajectories, 𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑  

denoted as total amount of energy used by robotic arm. 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑐𝑜𝑟𝑒  denote the qualification of the systems 

stability (e.g. according to Lyapunov) within a metric. 𝛼1, 𝛼2, 𝛼3 denote the Weighting parameters of accuracy, 

energy and stability. 

During either stage, a multi-objective fitness function is used to measure the performance of every candidate 

solution and strike a balance between tracking accuracy, energy consumption, and stability. The discovered 

adaptive bandwidth integration continues through a process of repetition until iteration convergence conditions 

are satisfied and the optimal ESN parameters are chosen to track the trajectories of the robotic arm. The given 

method of RSA-first and HHO-second hybridisation guarantees that the initial stages of the process, during which 

parameters are fine-tuned accurately, and subsequent stages when the global optimisation of the process is 

provided, making the tracking process both more accurate and energy-efficient, as well as highly controllable. In 

the closed-loop control system, the ESN sensor processes feedback and produces adaptive torque. In real time𝜏(𝑡), 

which are also applied to the robotic arm to achieve smooth and accurate speed under disturbances and modelling 

uncertainties. 

IV. RESULT AND DISCUSSION 

The development and simulation of a 2-DOF robotic arm model with more realistic mechanical and dynamic 

parameters were also performed to test the performance of the proposed adaptive control strategy in this study. It 

involved an Echo State Network (ESN) optimally designed controller that was connected to a robotic system 

utilising the Hybrid Harris Hawks Reptile Search Algorithm (HHO-RSA). Within a closed-loop format, the ESN-

based controller was used to produce the torque instructions that allowed fine trajectory following in nonlinear 

dynamics and the presence of external interferences. The properties of the mechanical structure, dynamics, and 

control system have been verified by MATLAB/Simulink simulation and formed a strong basis to test the accuracy 

of tracking, energy consumption, and stability of the system. 

4.1 Robotic Arm Design Parameters 

In this study, a 2-DOF robotic arm was designed with realistic mechanical specifications, including a link length 

of 0.3 m and 0.2 m, a payload capacity of up to 1 kg, and servo motors equipped with encoders for accurate joint 

control as mentioned in Table 2. The system integrates the sensor response from the encoder, an IMU and a torque 

sensor to monitor the position, velocity and applied forces within the ± 180° joint limit. This configuration 

provides a strong platform to implement and evaluate the customised ESN-based adaptive control strategy using 

the hybrid HHO-RSA algorithm. 

Table 2: Mechanical Parameters 

Parameter Value (Typical) Description 

Degrees of Freedom 2 or 3 Shoulder + elbow + optional wrist 

Link 1 Length 0.3 m 
First arm segment (shoulder to 

elbow) 

Link 2 Length 0.2 m Second segment (elbow to wrist) 

Link 3 Length 0.1–0.15 m (Optional) Wrist link 

Payload Capacity 0.5–1.0 kg Max object mass at end-effector 

Total Mass 2–3 kg Structure + motors 

Motor Type Servo/DC w/ encoders Closed-loop control 

Sensor Feedback Encoders, IMU, Torque 
For joint position, velocity, and 

force 

Joint Range ±180° (all joints) 
Full rotational range (in radians: 

±π) 

Drive Direct or geared Based on torque requirements 
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Table 3: Dynamic Parameters 

Symbol Description Typical Values 

𝑚1, 𝑚2 Link masses (kg) 1.2 kg, 0.8 kg 

𝑙1, 𝑙2 Link lengths (m) 0.3 m, 0.2 m 

𝐼1, 𝐼2 Link inertias (kg·m²) 0.01, 0.008 

𝜏1, 𝜏2 Input torques From controller 

𝜃1, 𝜃2 Joint angles In radians 

G Gravitational acceleration 9.81 m/s² 

𝑗1, 𝑗2 Joint damping coefficients 0.01–0.05 

Table 3 dynamic parameters of the robotic arm include link mass (1.2 kg and 0.8 kg), link length (0.3 m and 0.2 

m), and joint inertia, which defines its speed characteristics. Gravity acceleration (9.81 m/s) and the combined 

soaking coefficient (0.01–0.05) models are included in realistic mobility. These parameters are important for 

accurate torque calculation and simulation in ESN-based adaptive control structures. 

 

Fig 4. Desired vs Actual Trajectory (Joint 1) 

Fig 4 shows a comparison between desired and Actual joint trajectory at intervals of 10 seconds for joint 1. The 

desired trajectory, which is represented by a smooth blue sinusoidal curve with the dimension of 0.5 radians, 

defines the ideal motion profile for the joint, with a frequency of 0.2 Hz. In contrast, the actual trajectory, shown 

as a red dashed line, follows the desired path closely but displays minor deviations due to the presence of small 

random noise, simulating tracking errors contained in real-world control systems. The plot highlights the system's 

ability to maintain accurate tracking performance, capturing the slight changes between the desired and obtained 

joint angles. 
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Fig 5. Desired vs Actual Trajectory (Joint 2) 

Fig 5 presents a comparison between the desired and actual combined trajectory for joint 2 in the 10-second period. 

The desired trajectory, which is represented as a smooth green cosine wave with the dimensions of 0.4 radius and 

the frequency of 0.1 Hz, represents the target speed profile for the joint. The actual trajectory shown by the orange 

collapse line tracks the desired path closely but involves minor ups and downs due to small random noise, 

simulating trekking errors usually faced in practical control systems. This view shows the ability of the system to 

achieve accurate trajectory tracking effectively with minimal deviation between desired and real combined angles. 

 

Fig 6. Control Torque Signals for Joint 1 and 2 

Fig 6 control trorque 10 seconds shows the control torque signals applied to joint 1 and joint 2. The blue curve 

represents the joint 1, which shows a sinusoidal torque profile with dimensions of 1.5 nm and a minor random 

variety, which simulates the noise. The red collapse curve corresponds to the combined 2, characterising a cosine 

torque pattern with a low dimension of 1.0 Nm and similar noise effects. This visualisation highlights the dynamic 

torque input required to obtain accurate trajectory tracking in both joints under realistic conditions. 

Table 4: Stability and Robustness Analysis 
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Test 

Condition 

Tracking 

RMSE 

(rad) 

Overshoot 

(%) 

Settling 

Time (s) 

Stability 

Score 

Nominal 

Trajectory 
0.012 2.8 0.4 0.95 

External 

Disturbance 
0.018 3.5 0.5 0.92 

Model 

Parameter 

Change 

0.016 3.0 0.45 0.93 

Table 4 shows the results of stability and robustness analysis of the control system under nominal trajectory, 

external disturbance and the change of a model parameter, and conditions. In the case of the nominal trajectory, 

the system would have a tracking RMSE of 0.012 radians, the minimum overshoot would be 2.8%, and the settling 

time would be only 0.4 seconds to produce a high stability score of 0.95. Before external disturbance, the tracking 

error (s), overshoot, and settling time are improved by slight lapses (0.018 rad, 3.5%, 0.5 s, respectively), and the 

stability mark is also slightly low (0.92). In the same way, when the model parameters are changed, the system 

remains stable with the tracking RMSE of 0.016 radians, 3.0 per cent overshoot, 0.45 s settlement time, and 

stability score of 0.93. These findings show that the system can meet stable and robust performance in changeable 

situations. 

 

Fig 7. Fitness Convergence Curve 

Fig 7 shows the fitness convergence curve of RSA-HHO (proposed hybrid), HHO, and RSA optimisation 

algorithms with three iterations of 100. The highest optimisation efficiency is depicted by the solid blue line or 

proposed RSA-HHO method, which converges to a low fitness value faster. It appears to contain a better 

optimisation ability. By comparison, HHO only (green dashed line) and RSA only (red dash-dotted line) converge 

more slowly and settle at values of fitness that are higher. This is a representation of the demonstration of the 

improved performance of the RSA-HHO hybrid that tends to be faster and more effective at optimisation than its 

respective parts. Auth
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Fig 8. Parameter Evolution Over Optimization  

Fig 8 compares tracking error over time for nominal and disturbing scenarios in a control system. In the nominal 

scenario shown by the solid blue line, the tracking error starts with about 0.05 radians and decreases rapidly, 

reaching zero due to the system being stable. In contrast, the distracted landscape depicted by the red collapse 

line, due to external disturbances, displays a high initial error of about 0.08 radians with noticeable oscillations 

but gradually converts to minimal error. This highlights the strength of the visualisation system and the ability to 

effectively reduce trekking deviations under both general and challenging operating conditions. 

 

Fig 9. Energy Consumption Profile Over Time 

Fig 9 shows the energy consumption profile of the ESN-RSA-HHO controller over a period of 10 seconds. 

Initially, energy consumption is relatively high but decreases rapidly as the system represents the convergence of 

the stabilisation process. Superimposed sinusoidal indicate transient adjustment in ups and downs control 
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attempts, while small random variations mimic practical noise effects. Overall, the curve displays the capacity of 

the controller to reduce the use of energy over time and receive a stable and customised energy profile. 

 

Fig 10. Tracking Error Over Time 

Fig10 compares tracking error over time for nominal and disturbing scenarios in a control system. In the nominal 

scenario shown by the solid blue line, the tracking error starts with about 0.05 radians and decreases rapidly, 

reaching zero due to the system being stable. In contrast, the distracted landscape depicted by the red collapse 

line, due to external disturbances, displays a high initial error of about 0.08 radians with noticeable oscillations 

but gradually converts to minimal error. This highlights the strength of the visualisation system and the ability to 

effectively reduce trekking deviations under both general and challenging operating conditions. 

 

Fig 11. Joint State Trajectory 
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Fig11 presents a plane plot showing a plane aircraft depicting the United States trajectory with joint angles 𝜃 θ on 

the X-axis and joint velocity  𝜃 over time on the y-axis. The trajectory, depicted by the smooth naval curve, 

displays a spilling pattern that gradually converts towards the origin, showing the soaking behaviour and 

stabilisation of the system. Light residual errors are introduced as small random ups and downs, barely noticeable 

due to low noise, highlighting the effectiveness of the controller in reducing dynamic oscillations. This 

visualisation effectively demonstrates how the system infections reach a stable equilibrium point in the initial 

oscillator phase space. 

Performance Metrics 

Root Mean Square Error (RMSE) 

RMSE measures the average quantity of tracking error between the desired trajectory and the real trajectory and 

computed using Eqn (18):  

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝜃𝑑(𝑖) − 𝜃(𝑖))2𝑁

𝑖=1      (18) 

Where the total number of samples were represented in N, the desired joint and the actual joint angle a time i is 

defined as 𝜃𝑑(𝑖) and 𝜃(𝑖). A lower RMSE indicates better trajectory tracking accuracy. 

Total Energy Consumption 

Total energy consumed by actuators during trajectory tracking. 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∫ ∑ |𝜏𝑗(𝑡). �̇�𝑗(𝑡)|𝑑𝑡𝑛
𝑗=1

𝑇

𝑜
   (19) 

Where in Eqn (18), the control torque at joint j and the joint velocity at joint j is denoted as 𝜏𝑗  𝑎𝑛𝑑 �̇�𝑗(𝑡). The 

total simulation time and number of joint is denoted as T and n. The lower energy consumption reflects 

efficiency.  

 

Fig 12. Peak Torque Across Controllers 
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Fig12 compares the peak torque values required by various controllers – PID, LSTM, ESN, and ESN+RSA-HHO 

– for joint 1 and joint 2. For joint 1, the peak torque is reduced from 2.5 nm to 1.5 nm with the PID controller, 

which uses ESN+RSA-HHO, indicating improper efficiency in torque. Similarly, for joint 2, peak torque is 

reduced from 2.0 Nm to PID for PID for PID for ESN+RSA-HHO. This visualisation highlights the better 

performance of the ESN+RSA-HS-HHO controller in reducing peak torque, demonstrating its effectiveness in 

achieving smoother and more energy-efficient joint controls than traditional and other advanced controllers. 

Table 5: Comparative Tracking Performance 

Controller 

Type 

RMSE (rad) Max Error 

(rad) 

Rise Time (s) Settling Time 

(s) 

Overshoot 

(%) 

PID 

Controller 

0.035 0.110 0.4 0.8 7.5 

LSTM 

Controller 

0.021 0.065 0.35 0.6 5.2 

ESN (no 

optimization) 

0.018 0.055 0.32 0.5 4.0 

ESN + RSA-

HHO 

(Proposed) 

0.012 0.042 0.28 0.4 2.8 

Table 5 compared the tracking performance of four controllers – PID, LSTM, ESN (without optimisation), and 

using major metrics such as proposed ESN + RSA-HHO-RMSE, maximum error, increase time, settling time and 

overshoot. The PID controller shows the maximum error of the highest RMSE of 0.035 Radion and 0.110 Radion, 

with a time of growing of 0.4 seconds, a time of 0.8 seconds and overshoots of 7.5%. The LSTM controller 

improves performance with an RMSE of 0.021 Radion and low overshoots at 5.2%. ESN (no adaptation) reduces 

further errors, receives 0.018 radians, 0.055 radius maximum error and RMSE of 4.0% overshoot. The proposed 

ESN + RSA-HHO displays the best performance in all metrics, 0.012 The lowest RMSE of Radians, 0.042; the 

maximum error of radio, fast growth of 0.28 seconds, the shortest time of 0.4 seconds, and the minimum overshoot 

of 2.8%. 

Table 6: Energy Consumption and Control Effort 

Controller Type Total Energy (J) 
Avg. Control 

Torque (Nm) 

Torque 

Variability (Std 

Dev) 

PID Controller 6.5 1.2 0.3 

LSTM Controller 5.8 1.1 0.25 

ESN + RSA-

HHO (Proposed) 
4.7 1.0 0.18 

Table 6 presents a comparison of PID, LSTM and the proposed ESN + RSA-HHO in terms of energy consumption 

and control effort between controllers. The PID controller displays the highest total energy consumption at 6.5 J, 

with an average control torque of 1.2 Nm and torque variability of 0.3 Nm. The LSTM controller shows better 

efficiency, reducing energy consumption by 5.8 J, average torque to 1.1 Nm and torque variability by 0.25 Nm. 

The proposed ESN + RSA-HHO receives the best performance, with the lowest total energy consumption of 4.7 

J, reduces the average control torque by 1.0 Nm, and highlights its better ability to produce a minimum torque 

variability of 0.18 Nm, reduce energy use and produce smooth control tasks. 

4.2 Discussion 

The offered ESN-RSA-HHO adaptive control indicated its high ability to track trajectories, energy consumption, 

and stability of the closed loop in the comparative study of the 2-DOF robotic arm experiments with the standard 

PID controllers, LSTMs, and unoptimised ESN models. The system was capable of managing nonlinear dynamics 

and external disturbances, as the RMSE error during its simulation was dramatically reduced to 0.012 rad, and 

overshoot was minimised to 2.8% with the help of reservoir computing and hybrid metaheuristic optimisation. 

Diffuse parameters of the ESN converged quite fast, according to the fitness curve and parameter time trajectories 

in the RSA-HHO hybridisation, achieving an optimal value of the spectral radius, leakage rate, and input scaling 
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to be dynamic (adaptive). The resulting energy saving was 28% when compared with PID controllers as a result 

of an increase in the smoothness of the torque signals, and the plots showed the presence of robust stability during 

disturbed implementation, and the tracking errors also remained bounded around equilibrium. The proposed 

controller was a lightweight but highly adaptive controller, in contrast to PID, which had to handle nonlinearities, 

and LSTM, which needed vast amounts of training; thus, the proposed controller worked well in real-time. The 

results indicate that the ESN-RSA-HHO method is effective in implementing complex mechatronic systems and 

opens the future direction of future work to include actual hardware implementation, higher-DOF arms and fusing 

with sensor fusion methods to make an entire system highly robust in real-life applications. 

V. CONCLUSION 

The proposed study suggests an adaptive control technique of a 2-DOF robotic arm with an Echo State Network 

(ESN) and optimised with a hybrid algorithm, Harris Hawks Optimisation and Reptile Search Algorithm (HHO-

RSA). The framework proposed was capable of handling the problems of nonlinearity and external forces and 

performed considerably better than the conventional PID controllers and LSTM in terms of trajectory tracking 

accuracy and energy efficiency, as well as stability. Enhanced ESN parameters produced smooth torque curves 

and faster convergence that were confirmed by thorough simulations. The obtained results point to the promising 

nature of the ESN-RSA-HHO method as an effective and energy-saving method of control of complex 

mechatronic systems. Subsequent work will be aimed at generalisation of the proposed framework to higher-DOF 

robotic manipulators and physical hardware prototypes in order to prove its efficiency in practical settings, such 

as non-modelled dynamics, time lag, and inaccurate sensing. Also, sensor fusion methods and adaptive learning 

abilities may need to be embraced to generate further toughness towards uncertainties and dynamic settings. In 

order to enhance computational efficiency, parallelisation schemes and surrogate model techniques can be 

investigated to speed up the RSA-HHO optimisation process. Lastly, the proposed control architecture would be 

analysed in terms of its possible use in collaborative robotics, exoskeletons, and autonomous systems so that its 

scalability and applicability could be demonstrated. 
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