
Journal Pre-proof

Fault Tolerance Mechanism for Transient Faults in IoT based Traffic Data
Transaction

Sowjanya Lakshmi A and Vanipriya C H

DOI: 10.53759/7669/jmc202505191

Reference: JMC202505191

Journal: Journal of Machine and Computing.

Received 18 April 2025

Revised from 29 June 2025

Accepted 04 August 2025

Please cite this article as: Sowjanya Lakshmi A and Vanipriya C H, “Fault Tolerance Mechanism for Transient

Faults in IoT based Traffic Data Transaction”, Journal of Machine and Computing. (2025). Doi: https://

doi.org/10.53759/7669/jmc202505191.

This PDF file contains an article that has undergone certain improvements after acceptance. These

enhancements include the addition of a cover page, metadata, and formatting changes aimed at enhancing

readability. However, it is important to note that this version is not considered the final authoritative version of

the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting,

typesetting, and comprehensive review. These processes are implemented to ensure the article's final form is

of the highest quality. The purpose of sharing this version is to offer early visibility of the article's content to

readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may be

identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal remain in

effect.

© 2025 Published by AnaPub Publications.

Fault Tolerance Mechanism for Transient

Faults in IoT based Traffic Data Transaction
1Sowjanya Lakshmi A., 2Vanipriya C.H.

1,2Sir M. Visvesvaraya Institute of Technology
1sowjanya.engg@gmail.com, 2hod_mca@sirmvit.edu

Abstract - The rapid evolution of IoT in smart traffic systems introduces new vulnerabilities, where specifically, transient

faults caused by environmental interference and resource constraints. These faults threaten data integrity, system reliability

and real-time responsiveness. This paper presents a predictive Fault Tolerance Mechanism (FTM) based on

Communication-Induced Checkpointing (CIC) integrated with Long Short-Term Memory (LSTM) networks, tailored for

traffic-oriented IoT environments. The proposed Checkpoint at Intermediate Nodes (CIN) CIC-FTM framework places

checkpoints at intermediate nodes, based on LSTM-predicted fault likelihood, enabling lightweight and proactive recovery

while minimizing rollback overhead. The system architecture designed with IoT edge sensors, fog nodes and a centralized

coordination layer to support local fault detection, predictive analytics and consistent checkpoint management. Real-time

traffic and communication metadata are used for fault prediction, covering transient faults such as sequence mismatches,

checksum failures, presence of null character and out-of-range sensor values. Evaluation across network sizes of 5 to 100

nodes, demonstrates reduced checkpoint frequency by 70-85%, improved fault detection and prediction accuracy by ⁓92%

and efficient resource usage. Comparative analysis with existing CIC models confirms significant improvements in

recovery time, scalability and adaptability. This hybrid approach combines deep learning, real-time fault detection and

selective, proactive checkpointing, offering a robust, energy-efficient and deployment-ready solution for fault tolerant

smart traffic infrastructures.

Keywords – Transient faults, Fault Tolerance Mechanism, Communication- Induced Checkpointing, Long Short-Term

Memory Model, Deep Learning, Internet of Things, Traffic Data

I. INTRODUCTION

The swift expansion of Internet of Things (IoT) technologies has significantly introduced new vulnerabilities in the

reliability of traffic data transactions. IoT-based systems, defined by decentralized sensing and real-time communication,

are intrinsically susceptible to various faults. These faults arise from environmental interferences and internal system-level

inconsistencies, adversely impacting the integrity and timeliness of traffic-related information. Among the most significant

are transient faults- ephemeral faults frequently induced by environmental factors, such as, electromagnetic interference

and voltage variations [1], and prevalent in edge-based IoT systems due to constrained resources ad harsh operational

conditions [2]. These transient faults, although temporary, will disrupt communication streams, and risk data accuracy and

integrity. Communication related faults, including packet loss, latency and synchronization mismatches, are frequently

encountered in wireless sensor networks and multi-hop configurations, impeding reliable data flow across nodes [3]. Fault

symptoms in such environments manifest in varied forms, including sequence number mismatches, checksum

discrepancies, null character insertions and out-of-range sensor values-symptomatic of deeper communication and

processing anomalies [4]. At the node level, typical failures encompass abrupt crashes, stuck-at faults, energy depletion

and sensor malfunction due to extreme conditions [5], [4], [6].

Fault Tolerance Mechanisms (FTMs) are essential to mitigate such disruptions and ensure reliable traffic data transactions.

The traditional FTMs as surveyed in detail in later section, summarize the in-efficiencies making checkpointing strategy

more suitable for transient fault recovery by storing consistent system states for rollback operations. Further,

Communication-Induced Checkpointing (CIC) protocols have gained attention, as they are lightweight, where checkpoints

are triggered based on message dependencies rather than periodic synchronization.

The proposed Checkpoint at Intermediate Node (CIN) CIC-FTM integrates LSTM networks for predictive fault location

detection with CIC-based checkpointing to achieve proactive and intelligent fault tolerance, as detailed in proposed

methodology section. This hybrid approach selectively places checkpoints at intermediate nodes based on fault location

prediction, significantly reducing checkpoint frequency, rollback depth and communication overhead. The integration of

IoT edges, fog computing and cloud coordination technologies, the proposed framework ensures low-latency, reduced-

resource overheads and scalable fault transient recovery, making it suitable for real-time IoT based traffic applications in

smart cities, as proved in experimental analysis and results section.

II. WORK IN THIS AREA

To address the challenges with respect to transient faults and the recovery strategies in IoT based traffic applications in

smart cities, researchers have proposed a spectrum of fault tolerance mechanisms [7] tailors for resource-constrained and

delay-sensitive IoT environments. Software-Implemented Fault Tolerance (SIFT) techniques, such as, self-healing and

Auth
ors

 Pre-
Proo

f

mailto:2hod_mca@sirmvit.edu

Control Flow Checking (CFC) [8], [9], [10], Error Detection by Duplicated Instructions (EDDI), and time redundancy are

commonly adopted for lightweight fault mitigation in distributed systems. S-SWIFT-R, a Selective redundancy method,

targets only critical registers and data paths, thereby optimizing energy and memory usage [2]. Fault-tolerant routing

protocols and topology-aware communication mechanisms further enhance system robustness in dynamic network

topologies [3]. Traditional error detection methods, including checksum validation and parity bits, are effective but reactive

in nature [4]. To enable proactiveness, Machine Learning (ML) techniques have gained traction. Models, such as, Long

Short-Term Memory (LSTM) network, Random Forest Classifiers, Regression models, Transformer architectures and

Federated Learning frameworks have been employed to predict, classify and isolate faults in advance [4], [6], [11], [12].

These approaches capture spatiotemporal patterns in traffic and sensor data, allowing the system to pre-emptively address

fault occurrences.

Checkpointing remains a foundational mechanism in fault recovery, allowing systems to revert to a previous consistent

state. Traditional checkpointing approaches include full checkpointing, which saves the entire system state and incremental

checkpointing, which logs only changes since the last checkpoint. These strategies are crucial in transient fault scenarios

where rapid recovery is essential [13]. Application-aware checkpointing frameworks like MOARD [1] introduces a data-

object-centric resilience model, enabling intelligent checkpointing based on semantic fault impact. Other enhancements

include adaptive checkpointing, fuzzy logic-guided scheduling, and cloud-assisted checkpoint offloading for memory-

limited devices. Checkpointing strategies are broadly classified as coordinated, uncoordinated and Communication-

Induced. Coordinated checkpointing ensures system-wide consistency but incurs high overhead due to synchronization

requirements [4], [13]. Uncoordinated checkpointing provides flexibility but risks cascading rollbacks-domino effect.

Communication-Induced Checkpointing (CIC), by contrast, embeds checkpoint triggers within normal message flows,

thereby reducing synchronization costs and allowing for dynamic, non-blocking checkpoint placement [14].

Fundamental works [14] define CIC protocols using dependency vectors to ensure consistent snapshots and rollback-

dependency tracking to reduce unnecessary checkpointing. The Index-based strategies [15], the FINE protocol [16] extends

CIC by providing full communication histories to minimize checkpoint frequency while maintaining recovery precision.

Virtual checkpointing strategies [14] simulate state capture through message metadata, reducing physical storage demands.

Recent advancements in CIC have adapted the model for edge-based IoT scenarios. Lightweight implementations minimize

memory footprints and computational overhead in constrained environments [17], [18]. Predictive CIC models integrate

ML-based fault forecasting to trigger checkpoints in advance, thus minimizing latency and reducing the chances of

inconsistent states [13]. Delayed CIC variants [19] defer checkpointing until fault confidence increases, preventing frequent

interruptions. CIAC-FTM, a hybrid framework combining LSTM-based prediction and CIC protocols, exemplifies this

trend by proactively placing checkpoints at intermediate nodes, most likely to experience fault [13]. Further enhancements

include fuzzy logic-based coordination mechanisms that use real-time metrics, such as, signal strength, battery level and

message drop rate to optimize checkpoint timing [2]. CIC mechanisms have also been embedded in mobile-aware fault

tolerance protocols for vehicular networks and urban sensing applications [20]. These systems dynamically adjust

checkpoint placement based on node mobility and network topology, making them ideal for traffic data transactions.

Communication Induced Checkpointing (CIC) offers significant advantages for IoT-based traffic system, such as, minimal

coordination overhead, localized rollback and scalability [16]. Unlike traditional global checkpointing methods, CIC

enables selective and reactive checkpoints based on communication events, making it well-suited for real-time, distributed

environments. It effectively prevents the domino effect using rollback-dependency tracking and dependency graph

management [16], [21]. However, CIC’s limitations include increased memory and processing overhead due to rollback

graph maintenance, particularly in resource-constrained edge devices [20]. Along with these, integrating machine learning

for fault prediction increases computational demands and risks false positives [2], [13]. Research has evolved from

foundational models [14], [16], [21], [22] to optimized CIC for real-time, embedded applications by integrating message

logging and scheduling techniques [17], [18], decentralized and learning-based CIC frameworks, such as, CIAC-FTM [13]

and mobile-aware CIC [20].

Comparative analyses reinforce CIC more efficient over traditional models such as SIFT, self-healing redundancy-based

methods [23], and standalone machine learning-based approaches [6], [12]. CIC excels in energy efficiency, rollback

management and adaptability to dynamic traffic conditions. Recent CIC advancements integrate LSTM, federated learning

[12] and digital twin frameworks [23] to enhance distributed, context aware fault tolerance. While deployment in

heterogeneous, time-critical IoT systems poses challenges, CIC remains a preferred strategy for mitigating transient faults.

Literature suggests that CIC, particularly when augmented with LSTM-based prediction, offers a scalable, fault-aware and

lightweight recovery mechanism. Its integration into real-time communication flows ensures robust, efficient fault

management in evolving smart traffic infrastructures.

III. PROPOSED MMETHODOLOGY

This research introduces a predictive, lightweight FTM tailored for IoT-based traffic data transactions. By integrating CIC

with deep learning, particularly LSTM models, the proposed architecture aims to enhance robustness against transient

faults while maintaining efficiency in resource-constrained environments. The approach dynamically places checkpoints

Auth
ors

 Pre-
Proo

f

at intermediate nodes, based on predicted fault likelihood, minimizing rollback overhead and reducing the frequency of

unnecessary checkpoints.

System Architecture

The proposed system architecture operates in a layered IoT environment designed for Smart traffic infrastructure. It consists

of interconnected sensors, edge computing nodes, fog gateways and centralized coordination unit as shown in fig (1), that

is built on the principle of decentralization, enabling local fault detection and response without relying heavily on

centralized control.

IoT Edge Layer, consists of Traffic sensors, that measuring vehicle count, speed, congestion index and environmental

parameters such as temperature and air quality. This layer also consists of transient fault detectors ad checkpointing agents

that implement local checkpoint capture and communication tagging mechanisms. Fog Computing Layer, has fog nodes,

act as intermediate processors between sensors and the cloud. This layer performs pre-processing, aggregation and fault

prediction using LSTM models, managing checkpoint coordination, storage and rollback control and monitor inter-node

communication to trigger CIC-based on message logs.

Fig 1: Proposed System Architecture

Central Coordination Layer, maintains fault pattern logs, historical transaction traces, model training and deployment of

LSTM-based predictors. Together, these layers provide a robust framework for distributed, predictive and low-latency fault

recovery in traffic-oriented IoT systems.

Data Collection Mechanism

The system collects both real-time and historical data to support effective transient fault detection and predictive analytics.

Real-time traffic data is gathered from edge sensors, including vehicle count, speed and traffic signal cycles. Environmental

data, such as temperature and humidity, is collected to provide contextual insight into fault occurrence patterns. Each

communication packet includes structured metadata-source and destination node IDs, sequence numbers, checksums,

payload length, timestamp. These communication logs are vital for detecting transient faults such as missing sequences or

corrupted data. The system maintains a sliding window of sensor data and communication metrics per node, which serves

as input to the LSTM model for fault forecasting.

To train the LSTM model, controlled fault injection is conducted during initial deployments. Faults (F1-F4) are introduced

based on realistic probabilistic distributions. Each fault event is labelled with fault types, timestamp, node ID and relevant

communication context. The labelled dataset forms the basis for supervised training of the LSTM network. Checkpoints

are induced only when a fault is predicted or detected. The system embeds checkpoint flags within regular traffic messages

to avoid communication overhead. This piggybacking approach enables seamless integration of checkpoint coordination

with normal network operation.

Transient Fault Detection and Recovery

The transient fault detection module is responsible for identifying short-lived, non-permanent faults that disrupt data

reliability in intelligent transport applications. The system detects transient fault types – (i) Sequence number fault (F1),

identified when packets arrive out of order, suggesting message loss or duplication and fault detection is performed through

sequential comparison. (ii) Checksum fault (F2), occurs when computed and received checksums differ, indicating data

corruption and fault is detected using Cyclic Redundancy Check (CRC). (iii) Null character fault (F3) arises from bit flips

Auth
ors

 Pre-
Proo

f

causing null bytes in the payload and this fault is detected via buffer parsing. Out-of-range data fault (F4) occurs when

sensor data exceeds defined thresholds (θ) and fault is detected using rule-based validation. Each node executes a local

fault monitor comprising- data validator, that detects F2 and F4 faults using logical checks, sequence tracker, that logs

recent message IDs to identify F1 faults, payload scanner, that parses buffers to detect F3 faults and fault signal generator,

that sends fault signals to fog nodes on detection. Fault events are logged with timestamps and node IDs. Recoverable

transient faults are resolved using rollback, while suspicious fault patterns are forwarded to the LSTM predictor for

proactive handling.

Algorithm 1: Transient Fault Detection

Input: Stream of traffic data packets. Output: Fault log with fault type, timestamp, node ID

Step1: Initialize fault_log[]

Step2: For each packet: a. Validate sequence number → log F1, if mismatch

 b. Verify checksum → log F2, if mismatch

 c. Parse payload → log F3, if null character

 d. Validate payload range → log F4, if out-of-rangea

Step3: Append detected faults to fault_log

Step4: Return fault_log

Fault Prediction with LSTM

The LSTM-based fault predictor forecasts future faults based on temporal patterns in traffic data and communication

anomalies. Based on time-series data, LSTM networks model the dependencies and patterns, that conventional rule-based

systems cannot capture. Input features (per time step) are vehicle count, speed, congestion level, checksum validity,

sequence validity, fault occurrence flag, signal cycle, time of day, weather conditions, node ID (encoded). The LSTM

model has (i) input layer, that accepts time-series input with ‘n’ features across ‘T’ time steps. (ii) LSTM layers, that

captures long-term dependencies and patterns in fault-prone behavior. (iii) Dense output layer, that outputs probability of

a fault at each node in the next interval ‘Y_t+1’. The activation functions used are ‘tanh’ in LSTM layers and sigmoidal in

output layer.

Let the input sequence of traffic data features be: X = {x1, x2, …, xT} where xt ϵ Rn (1)

Each xt include, xt = [seq_not,checksumt,null_flagt,range_statust,timestampt] (2)

The LSTM computes hidden states at time stamp t, ht = LSTM(xt, ht-1, ct-1), (3)

where ct is cell state at time stamp t

The final output is ŷ = σ(WohT + bo) (4)

where, σ is sigmoid activation function, Wo, bo is weight and bias of output layer.

The LSTM prediction output is integrated with the checkpointing system. At runtime, the predictor receives a sliding

window of features and output the fault probability for the next interval. Nodes exceeding a threshold (θ) are marked as

fault-prone, prompting proactive checkpointing. Checkpoints are triggered under, any of these either scenario- LSTM

predicts a downstream node fault (P_fault ≥ θ), communication fault is detected (checksum/sequence error), repeated

transient faults observed at a node. Checkpoint metadata includes: node ID, timestamp, message buffer, fault type,

dependency vector. Checkpoints are stored either locally or offloaded to fog and cloud nodes and old checkpoints are

purged after ewer stable checkpoints are confirmed. CIC Header include: fault probability, dependency vector and

checkpoint flag.

P_fault = {
1, 𝑖𝑓 ŷ ≥ 𝜃
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 where θ = 0.65 (5)

Let N = {n1, n2, …, nk} be the nodes along from source to sink.

CCIN = {ni ϵ N | (P_fault (ni) ≥ θ} (6)

Algorithm 2: LSTM-based Fault Prediction

Input: Historical traffic data, communication logs. Output: Predicted fault location probabilities

Step1: Normalize features

Step2: Generate sequences of window size W

Step3: train LSTM model with sequences

Step4: At runtime: a. Input latest sequence to model

 b. Receive P_fault for each node

 c. If P_fault≥θ: mark node as fault-prone, trigger checkpoint at preceding node

Step5: Checkpoint placement – Checkpoint at Intermediate Node (CIN)

Auth
ors

 Pre-
Proo

f

Algorithm 3: Checkpoint Placement Protocol (CIN CIC-FTM)

Input: LSTM outputs, communication metadata. Output: Triggered checkpoints

Step1: Monitor packets at each node

Step2: Extract metadata

Step3: If fault_risk ≥ θ → trigger CIN checkpoint

Step4: If checksum or sequence fault → trigger forced checkpoint

Step5: Save checkpoint locally or offload

Step6: Propagate checkpoint state downstream

Step7: Update upstream dependency for rollback

This proactive checkpoint placement ensures minimal recovery latency and prevents cascading errors from transient faults.

The CIN strategy enables selective and predictive checkpointing by placing checkpoints one hop before predicted faulty

nodes. This minimizes rollback distance and resource usage while maintaining system consistency.

IV. EXPERIMENTAL ANALYSIS & RESULTS

The experimental simulation for proposed model is done on the Google Colab platform using Python 3.7 and designed to

evaluate the performance of the proposed CIN CIC-FTM using LSTM in the context of IoT-based traffic data transactions.

The architecture simulates a layered IoT environment as shown in fig (1). LSTM fault predictor is trained on 7000+ real-

world traffic and transient fault logs and 80% of the data is used for training and 20% for testing purposes. Simulation

experiments are conducted on networks of varying sizes: 5, 10, 50 and 100 nodes, to emulate small to large-sale urban

traffic deployments. The LSTM model used for fault prediction is trained for 1000 epochs with following hyperparameters

selected- learning rate 0.001, sequence length 5, batch size 64, activation function ReLu, dropout 0.2.

To assess the fault tolerance capabilities of CIN CIC-FTM in IoT-based traffic data transactions, the following metrics are

recorded – (i) number of checkpoints placed |C|, that reflects checkpoint efficiency, (ii) memory consumption (MB), that

assesses resource utilization.

Let M be the memory used per checkpoint and Tcp be the checkpoint time,

Memorytotal = M . |C|, Timecp = Tcp . |C| (7)

(iii) CPU Utilization (%), that measures computational overhead during active monitoring

Let CLSTM be CPU cost of prediction, Cchkpt be cost of checkpointing,

CPUtotal = α . CLSTM + β . Cchkpt (α + β =1) (8)

(iv) Checkpointing Time (ms), is the time taken to create and store checkpoint data, (v) Rollback Time (ms), is the time to

revert to a previous fault-free state

Let Tr be the rollback time, D is the Dependency depth and λ is time per node rollback,

Tr = D. λ (9)

(v) Recovery Time (ms), is the total time for fault isolation, rollback, and transaction resumption,

Trec = Tcp + Tr + Trestart , where, Trestart is the time to resume normal execution after rollback (10)

(vi) Prediction Accuracy, that measures LSTM classification precision,

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (11)

(vii) F1 Score, that evaluates the balance between precision and recall,

F1 score = 2 .
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 , (12)

where, Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, and Recall =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (13)

where, TP is True Positive, TN is True Negative, FP is False Positive and FN is False Negative

Result Analysis

This section evaluates the performance of the proposed CIC CIC-FTM integrated with LSTM prediction in IT-based traffic

data transactions. The results are analysed across varying network sizes (5 to 100 nodes), focusing on accuracy, checkpoint

efficiency, rollback latency and resource utilization as shown in fig (2). A comparative study with conventional CIC

methods is also conducted as shown in Table 1. The findings demonstrate the proposed systems’ efficiency in minimizing

overhead while enhancing real-time fault tolerance and recovery in transient fault scenarios.

Auth
ors

 Pre-
Proo

f

Table 1. CIN CIC-FTM Performance Metrics

Fig 2: CIN CIC-FTM Performance Metrics across Network Sizes

Checkpoints Increase proportionally with node size, but are minimized by LSTM-based prediction. Less than 15-30% of

the nodes require checkpoints. Memory and CPU usage grow with scale, yet remain within efficient thresholds.

Checkpointing, Rollback and Recovery Times increase but benefit from optimized intermediate node placement. Accuracy

and F1 Score improve, on an average of 92% and 91% respectively, due to robust LSTM fault prediction and optimized

rollback scope.

The comparative analysis of the existing CIC-FTM approaches, as surveyed with the proposed CIN CIC-FTM is as shown

in Table 2.

Table 2. Comparison between existing CIC-FTMs and proposed CIN CIC-FTM

Criterion Existing CIC-FTMs Proposed CIN CIC-FTM using LSTM

Checkpoint

triggering

Based on communication dependency graphs,

checkpoints induced when dependency, violates

consistency [14], [16]

Checkpoint triggered proactively using LSTM based

fault prediction, as per equation (5) and confirmed

by packet metadata

Node

selection

Result in either system-wide or communication

path-wide checkpoints, especially in dense

graphs [14], [15], [16], [17], [18].

CIN places checkpoints selectively at intermediate

nodes just before predicted fault nodes, minimizing

rollback depth

Fault

detection

Relies on flow density fluctuations [8], [9], [10],

time series clustering, log parsing and message

tracking, ML based [12], reactive [11]

Predictive based on LSTM learns from historical

data patterns

Checkpoint

frequency

Medium-high depending on message rate and

dependency violations [6], [12], [19], [23]

Reduced by ⁓70-85% due to LSTM-based prediction

and threshold-triggering

Rollback

overhead

Cascading rollback depending on granularity

like indexing, FINE, [16], [21].

Limited rollback scope through upstream

dependency tracking and rollback depth

optimization (equation (9))

Resource

utilization

Moderate and involve overhead from tracking

dependency vectors and logs [6], [12], [19]

Comparatively more efficient, supported by

equation (8) in real-time IoT

Auth
ors

 Pre-
Proo

f

Adaptability

to real-time

IoT

Limited adaptability, since baseline CIC lacks

ML integration [16], [21]

High adaptability due to integrated Deep learning

model- LSTM, fog-layer orchestration and scalable

cloud-based coordination

Scalability Scales well in static distributed systems, suffers

in mobile and rapidly-changing IoT

environments [16], [21]

Highly scalable in traffic networks, tested on 5-100

nodes with stable performance

Accuracy in

fault

location

detection

Typically, <85% in CIC-only mechanisms due to

reactive nature [6], [12], [19], [23]

Achieves ⁓92% accuracy and ⁓91% F1-score across

scales due to time-series modeling by LSTM

Integration Lacks synergy with AI and ML models [16], [21] Fully integrated with IoT stack, ML pipeline and

real-time orchestration

Real-world

deployment

readiness

Requires protocol tuning, message-logging

overhead in IoT systems

Ready for deployment in resource-constrained IoT

with lightweight design and cloud-fog offloading.

This comparison justifies, that, the traditional CIC methods like FINE [16] and Helary et al. [21] methods ensure rollback

consistency but lack efficiency in reducing checkpoint overhead. By integrating predictive LSTM models [13] and cloud-

fog orchestration, the proposed CIN CIC-FTM achieves intelligent, real-time fault tolerance tailored for smart city

applications.

V. CONCLUSION

The proposed CIN CIC-FTM mechanism, integrates with LSTM-based fault prediction, demonstrates significant

improvements over conventional CIC methods for handling transient faults in IoT-based traffic data environments.

Traditional CIC protocols limitations as highlighted in comparison Table 1, are reactive in nature. In contrast, the CIN

CIC-FTM architecture introduces a proactive fault tolerance model by combining deep learning-based prediction with

lightweight, intermediate-node checkpointing. This results in over 70% reduction in checkpoint overhead and up-to 45%

faster recovery times. The model, also minimizes communication latency through selective checkpoint placement and

piggybacking strategies, maintaining scalability even in large, dense IoT networks. Evaluation results further confirm the

system’s better performance, achieving ⁓92% fault detection accuracy and ⁓0.91 F1-score across node sizes from 5-100.

Memory and CPU usage, and energy consumption are significantly optimized, in fog-based architectures. The hybrid

design of CIN CIC-FTM, which integrates both predictive intelligence- LSTM and edge-cloud orchestration, makes it

highly suitable for real-time smart traffic systems. Supported by experimental validation and literature, the proposed

approach offers a robust, scalable and intelligent fault-tolerant solution for next-generation IoT infrastructures.

References
[1]. Luanzheng Guo, Dong Li, “MOARD: Modeling Application Resilience to Transient Faults on Data Objects,” License CC BY-NC-ND 4.0,

DOI:10.48550/arXiv.2102.06899, 2021.

[2]. Mohaddaseh Nikseresht, Jens Vankeirsbilck, Jeroen Boydens, “A Study on Selective Implementation Approaches for Soft Error Detection

Using S-SWIFT-R,” MDPI, Electronics, MDPI, https://doi.org/10.3390/electronics11203380, 2022

[3]. Natalie Temene, Andreas Naoum, Charalampos Sergiou, et al., “A Fault Tolerant Node Placement Algorithm for WSNs and IoT Networks,”

Elsevier, Computer Networks, Volume 254, December 2024.

[4]. Kodanda Rama Sastry Jammalamadaka, Bhupati Chokara, Sasi Bhanu Jammalamadaka, Balakrishna Kamesh Duvvuri, “Making IoT Networks

Highly Fault-Tolerant Through Power Fault Prediction, Isolation and Composite Networking in the Device Layer,” MDPI, J. Sens. Actuator

Netw., https://doi.org/10.3390/jsan14020024, 2025

[5]. Michael Norris, Z.Berkay Celik, Prasanna Venkatesh, et al., “IoTRepair: Flexible Fault Handling in Diverse IoT Deployments,” ACM

Transactions on Internet of Things, https://doi.org/10.1145/3532194, 2022

[6]. Adisu Mulu Seba, Ketema Adere Gemeda, Perumalla Janaki Ramulu, “Prediction and Classification of IoT Sensor Faults using Hybrid Deep

Learning Model”, Springer Nature, 2024.

[7]. J. Dongarra, T. Herault, Y. Robert, “Fault Tolerance Techniques for High-Performance Computing,” Computer Communications and

Networks, Springer, pp. 3–85, 2015.

[8]. Kieran Kalair, Colm Connaughton, “Anomaly Detection and Classification in Traffic Flow Data from Fluctuations in the Flow–Density

Relationship,” Elsevier, Transportation Research Part C: Emerging Technologies, https://doi.org/10.1016/j.trc.2021.103178, 2021.

[9]. Iman Taheri, Saeed Asadi Bagloee, Majid Sarvi, Neema Nassir, “Traffic Anomaly Detection: Exploiting Temporal Positioning of Flow-

Density Samples,” IEEE Transactions on Intelligent Transportation Systems, DOI:10.1109/TITS.2023.3322695, 2023

[10]. Mohammad Bawaneh, Vilmos Simon, “Machine Learning-Based Anomaly Detection in Smart City Traffic: Performance Comparison and

Insights,” Proceedings of the 11th International Conference on Vehicle Technology and Intelligent Transport Systems, DOI:

10.5220/0013141100003941, 2025

[11]. Ying Lin, “Design of urban road fault detection system based on artificial neural network and deep learning,” Frontiers in Neuroscience,

DOI:10.3389/fnins.2024.1369832, 2024.

[12]. Rehan Khan, Umer Saeed, Insoo Koo, “FedLSTM: A Federated Learning Framework for Sensor Fault Detection in Wireless Sensor

Networks,” MDPI, Electronics, https://doi.org/10.3390/electronics13244907, 2024.

Auth
ors

 Pre-
Proo

f

https://www.researchgate.net/scientific-contributions/Luanzheng-Guo-2189987001
https://www.researchgate.net/scientific-contributions/Dong-Li-2118500740?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/deref/https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0%2F?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
http://dx.doi.org/10.48550/arXiv.2102.06899
https://doi.org/10.3390/electronics11203380
https://www.sciencedirect.com/journal/computer-networks
https://www.sciencedirect.com/journal/computer-networks/vol/254/suppl/C
https://doi.org/10.3390/jsan14020024
https://dl.acm.org/doi/10.1145/3532194
https://dl.acm.org/doi/10.1145/3532194
https://dl.acm.org/doi/10.1145/3532194
https://doi.org/10.1145/3532194
https://link.springer.com/article/10.1007/s42452-024-05633-7#auth-Adisu_Mulu-Seba-Aff1
https://link.springer.com/article/10.1007/s42452-024-05633-7#auth-Ketema_Adere-Gemeda-Aff1
https://link.springer.com/article/10.1007/s42452-024-05633-7#auth-Perumalla_Janaki-Ramulu-Aff2
https://www.sciencedirect.com/journal/transportation-research-part-c-emerging-technologies
https://www.researchgate.net/profile/Iman_Taheri6?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Saeed-Bagloee
https://www.researchgate.net/scientific-contributions/Majid-Sarvi-79455121
https://www.researchgate.net/profile/Neema-Nassir
https://www.researchgate.net/journal/IEEE-Transactions-on-Intelligent-Transportation-Systems-1558-0016?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
http://dx.doi.org/10.1109/TITS.2023.3322695
https://www.researchgate.net/scientific-contributions/Ying-Lin-2281523607?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
http://dx.doi.org/10.3389/fnins.2024.1369832
https://doi.org/10.3390/electronics13244907

[13]. A. Sowjanya Lakshmi, C. Vani Priya, and G. Gupta, “Communication Induced Checkpointing Based Fault Tolerance Mechanism – a Review

and CIAC-FTM Framework in IoT Environment,” International Conference on Computing, Communication, and Intelligent Systems

(ICCCIS), doi: 10.1109/ICCCIS56430.2022.10037637, 2022.

[14]. Kim Do-Hyung, Park Chang-Soon, “A Communication-Induced Checkpointing Algorithm using Virtual Checkpoint on Distributed Systems,”

IEEE Xplore, Parallel and Distributed Systems, proceedings, DOI 10.1109/ICPADS.2000.857693, 2000.

[15]. G. M. D. Vieira, I. C. Garcia, L. E. Buzato, “Systematic Analysis of Index-based Checkpointing Algorithms using Simulation,” SCTF ’01:

Proc. of the IX Brazilian Symposium on Fault-Tolerant Computing, pp. 31–42, 2001.

[16]. Y. Luo and D. Manivannan, “FINE: A Fully INformed and Efficient Communication-Induced Checkpointing Protocol for Distributed

Systems,” Journal of Parallel and Distributed Computing, doi: 10.1016/j.jpdc.2008.07.012, 2009.

[17]. J. Ahn, “Communication-Induced Checkpointing with Message Logging Beyond the PieceWise Deterministic (PWD) Model for Distributed

Systems,” Electronics, doi: 10.3390/electronics10121428, 2021.

[18]. B. H. Sababha, O. A. Rawashdeh, “Evaluation of Communication Induced Checkpointing in Resource Constrained Embedded Systems,”

Proceedings of the ASME Design Engineering Technical Conference, doi: 10.1115/DETC2011-48634, 2011.

[19]. A. C. Simón, S. E. Pomares Hernandez, J. R. Perez Cruz, et al., “Self-Healing in Autonomic Distributed Systems based on Delayed

Communication-Induced checkpointing,” International Journal of Autonomous and Adaptive Communications Systems, doi:

10.1504/IJAACS.2016.079621, 2016.

[20]. N. Malhotra, M. Bala, “Fault-Tolerant Communication Induced Checkpointing and Recovery Protocol using IoT,” Tech Science Press,

Intelligent Automation & Soft Computing, doi: 10.32604/iasc.2021.019082, 2021.

[21]. J.M. Hélary, A. Mostefaoui, R. H. B. Netzer, M. Raynal, “Communication-based Prevention of Useless Checkpoints in Distributed

Computations,” Distributed Computing, doi: 10.1007/s004460050003, 2000.

[22]. F. Quaglia, R. Baldoni, B. Ciciani, “On the No-Z-Cycle Property in Distributed Executions,” Journal of Computer and System Sciences, doi:

10.1006/jcss.2000.1720, 2000.

[23]. Tanish Baranwal, Srihari Varada, Santanu Das, Mohammad R. Haider, “Fault-Tolerant IoT System Using Software-Based “Digital Twin”,”

arxiv, 2025.

Auth
ors

 Pre-
Proo

f

https://www.researchgate.net/scientific-contributions/Park-Chang-Soon-31952683
http://dx.doi.org/10.1109/ICPADS.2000.857693

