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Abstract: 

Brain Tumor (BT) leads to disability in cognitive, motor, and social skills, and therefore, early diagnosis should 

be a milestone for treatment. In this work, a novel Federated Learning-based Convolutional Neural Network (FL-

CNN) model is proposed for Brain Tumor Classification (BTC) with FL serving as the framework for the model. 

The model is trained to distinguish between four classes of brain conditions: glioma, meningioma, pituitary 

adenoma, and non-neoplastic growth. Through the use of Federated Learning (FL), this method allows multiple 

Decentralized clients to cooperate in training the model without exchanging the raw medical data belonging to 

the patients. The provided dataset is derived from a training set containing 5707 images and a testing set containing 

1311 images, and both sets are labeled among four categories. The fully trained 2D-CNN model deals with pre-

processed MRI images in dimensions of 128×128 pixels and internalizes key attributes for identifying all forms 

of BT. As for understanding the model’s performance, we compute accuracy, precision, recall, and F1-score. The 

model achieved a peak validation accuracy of 97.48% with a precision, recall, and F1 score of 97.48%. Early 

stopping was applied at round 12 due to performance stagnation, preventing overfitting. The final global accuracy 

reached 97.48%, with a loss of 0.1483, demonstrating strong classification performance. The results exhibit that 

the federated strategy yields comparable classification accuracy with the conventional approach for distributed 

data and minimizes the violation of individual data privacy. Moreover, this work discusses the applicability of FL 

to medical image analysis, indicating that collaborative models in this area can provide a highly accurate 

performance while avoiding data aggregation. The following paper is intended to contribute to the improvement 

of privacy-preserving ML pertaining to medical diagnosis with regard to BTs. 

 
Keywords: FL, Brain Tumor Classification, Privacy-Preserving ML, Medical Image Analysis, Decentralized 

Learning, Healthcare AI. CNN. 

1. Introduction: 

One of the toughest challenges in medicine is that BTs are among the most diverse and challenging diseases to 

diagnose and treat because they are located in one of the most sensitive regions of the human body. Depending 

on their nature, BTs are classified into benign and malignant, but gliomas are the most frequent and deadly form 

of the latter. Among all gliomas, glioblastoma multiforme (GBM) is is regarded as a high-grade glioma; therefore, 

the prognosis is bleak, with the median survival time often less than 15 months even with comprehensive 

treatment, including surgery, radiation therapy, and chemotherapy [16]. Essential for proper management and 

treatment, the distinction of primary and secondary brain tumours is frequently challenging due to the current 

limitations of MRI scans [13]. New molecular and immunohistochemical markers have shown an increased 

understanding of tumor behavior, although incorporating them into clinical practice is costly and time-consuming 

[11]. Consequently, it is important to adopt sophisticated computational approaches, mainly ML, in boosting 

diagnosis precision and developing individualised treatment strategies [3]. 

Machine learning (ML), especially for the CNN model, has revealed that the detection and classification of BTs 

from MRI scans can be effectively automated. Some of these models can effectively process an enormous volume 
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of image data, determining tumor areas and subtypes with surgical precision [21]. However, one of the critical 

issues that has emerged in the design and training of effective ML is a lack of high-quality and diverse data to 

support its generalization to multiple patients. To obtain such datasets is challenging in the medical domain 

because of privacy or legal constraints and the scattered nature of healthcare organizations [1]. 

1.1. Role of FL in BTC: 

FL, in particular, seems to have the potential to alleviate the problem of working with immense volumes of 

significant variability and heterogeneity while still respecting users’ privacy. In the FL, as shown in Figure 1, the 

institutions do not actually transfer patient information [2][5]. Every institution stores its results on a local server 

but shares only the model parameters with the server, while protecting the identity of the patient’s medical history. 

This strategy employs multiple sources of data across different institutions, fostering multi-institutional 

collaborations in the BT research and enabling the generation of better and more generalizable models [6][7]. 

 

Figure 1: FL process overview 

As a result of FL, BTC serves an essential contribution to the training of ML models on distributed datasets 

without the violation of patient privacy. They resolve issues of data deficiency and confidentiality that have long 

plagued the creation of efficient ML solutions in healthcare to provide new possibilities for individualized 

approaches to patient management and better outcomes. 

1.2. Objectives 

 

• Develop an FL Model: Build a CNN-based FL model for BTC. 

• Classify Multiple BT Types: Accurately identify glioma, meningioma, pituitary tumor, and no tumor. 

• Enhance Patient Privacy: Use decentralized training to protect patient identity by excluding raw image 

data from direct sharing. 

• Demonstrate FL in Medical Applications: Show that FL and AI can be safely and effectively used for 

BT detection. 

 

1.3. Contributions 

 

• Innovative Use of FL: Introduces FL with CNNs for medical imaging, enabling secure collaboration in 

healthcare. 

• Robust Dataset Utilization: Uses a well-structured dataset (5,707 training and 1,311 testing images) 

distributed across four tumor types. 
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• Performance Evaluation: Establishes benchmarks for FL-based CNN models in medical diagnostics. 

• Privacy-Preserving ML: Demonstrates that high-accuracy models can be trained while maintaining 

patient data privacy. 

• Real-World Medical Impact: Highlights the potential of FL to improve early BT detection in clinical 

practice. 

• Future Research Directions: Suggests combining FL with other ML techniques to enhance accuracy and 

expand its application in medical imaging. 

 
2. Literature survey: 

The inclusion of FL in the diagnosis and classification of BTs has been included as a new approach to medical 

imaging because of the improvements that FL brings, such as data privacy and incorporation of distributed 

datasets. This paper reviews the literature with different research papers that work on the detection and 

segmentation of BTs using the FL methodologies. As such, FL helps numerous organizations to jointly build 

machine models of learning without disclosing anyone’s identity. This is particularly highly relevant to 

healthcare applications, as the importance of patients’ privacy cannot be overestimated. In their study, Sheller et 

al. emphasize that FL can be beneficial for multi-institutional settings, as the establishment of models trained on 

a more extensive data set can increase the accuracy of a medical diagnosis. Furthermore, Isik-Polat also shows 

that FL can attain a similar performance as the centralized approach in the test of BT segmentation, indicating 

that FL can work well for any dataset [1]. 

Specifically, detection of BT is challenging due to the size, shape, and location of the tumor, hence the need for 

efficient ML. Deep learning and transfer learning-based approaches are clearly explained by Amin et al., and they 

also made a considerable effort to classify the methodologies used in BT detection in general. The current survey 

also provides a preliminary background and overview of the difficulties associated with BT diagnostics and the 

role of FL in them. In addition, Aggarwal also presents a work of a transfer learning model with an FL framework 

that keeps data privacy while classifying brain tumours from heterogeneously distributed data, pointing out the 

application of FL in the clinic [2], [3]. The use of FL is also evidenced within the context of medical imaging by 

other investigations done to compare the performance of the federated and centralized learning frameworks. Thus, 

based on the flags raised by Denissen et al., the authors report that FL can achieve similar or equivalent accuracy 

to a centralized model in tumor segmentation and further strengthen the feasibility of FL in clinical research. 

Further, Mahlool and Abed use the concept of CNN under the federated environment for the diagnosis of BTs, as 

explained by Hsu and colleagues, the potential of deep learning in conjunction with FL [4], [5]. 

 

Privacy threats in healthcare informatics practice are tackled via the application of differential privacy 

approaches in an FL environment. Li and co-authors also investigate the relationship between the accuracy of 

diagnostic models and the protection of patients’ information in BT segmentation tasks. This is the same as what 

Atef et al. emphasize, that privileged data such as healthcare information is sensitive and that FL has to be used 

to address the risks involved [6], [7]. In several fields of BT management, FL has been shown to have a wide 

range of applicability: segmentation, classification, as well as assessing the response of tumors to therapy. The 

FeTS challenge described by Pati reflects one of the initiatives to impose some degree of unity into the FL 

endeavors based on the tumor segmentation issues raising data privacy and regulatory problems [7], [8]. Newer 

improvements in model structure, for instance, involutional neural networks, have been postulated to improve 

on the efficiency of BTC with little computational need. It stimulates a current concern about enhancing deep 

learning models in the medical field, as Zhang et al., who propose cyclic model pre-training techniques as a 

solution to increasing FL efficiency [9], [10]. 

Most common and fatal among these are gliomas, and the molecular profiling of the tumors has taken centrality 

for their treatment. Richterová et al. describe the importance of molecular and immunohistochemical diagnostic 

criteria for different brain tumours, including gliomas and meningiomas. These markers could suggest particular 

treatments like EGFR and VEGFR that are significant to improve care [11].  

Table 1: Comparison of BT Classification Models and Their Performance 

Ref No Authors Model Advantages Disadvantages Accuracy Year 

[12] Jemimma et al. 
WCSO-

DBN 

Optimized deep belief 

network for classification 

High training time due to 

DBN complexity 
92.30% 2022 
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[13] 
Rammurthy et 

al. 

WHHO-

based 

DeepCNN 

Whale-Harris Hawks 

optimization enhances 

detection 

Lower accuracy 

compared to other deep 

learning models 

81.60% 2022 

[14] 
Vankdothu et 

al. 
RCNN 

Improved segmentation 

using IKMC, high 

accuracy 

High computational cost 95.17% 2022 

[15] 
Pranjal 

Agrawal et al. 

CNN + 

3D-UNet 

Automated 

segmentation, deep 

learning framework 

Requires high 

computational resources 
90% 2022 

[16] Islam et al. FL 
Privacy-preserving, 

robust to distributed data 
Slight accuracy drop 91.05% 2023 

[17] Kumar et al. 
Deep Q-

network 

Efficient Feature 

Extraction  
High Computational Cost 95.40% 2022 

[18] S. Hossain et al. IVX16 

High accuracy (96.94%) 

with the proposed model 

(IVX16).  

The dataset size is 

relatively small for deep 

learning models (3264 

images). 

96.94% 2024 

[19] S.  Das et al. CNN 

Achieved high accuracy 

(94.39%) and 

satisfactory performance. 

It may require further 

generalization for other 

types of tumors or larger 

datasets 

94.39% 2019 

[20] 
Abiwinanda N 

et al. 

Custom 

CNN 
High Training Accuracy  

Lower Validation 

Accuracy 
84.19% 2018 

[21] 
S. Bhadauriya 

et al. 
CNN + FL Privacy-Preserving 

Requires High 

Computational 

Resources 

96% 2023 

[22]  Deepa et al. 

CJHBA-

based 

DRN 

Hybrid optimization 

improves accuracy 

Increased complexity in 

model implementation 
92.10% 2023 

 

3. Problem Statement 

BTs are life-threatening, requiring early and accurate detection for effective treatment. Traditional methods rely 

on centralized data collection, raising concerns about patient privacy and limiting access to diverse medical data. 

Key challenges include: 

• Data Privacy: Sharing medical data is restricted due to privacy laws, making it difficult to build large, 

diverse datasets for training. 

• Accurate Classification: Misclassification can lead to incorrect treatment decisions, highlighting the need 

for highly accurate models. 

• FL Integration: Using FL allows decentralized training while maintaining privacy, but challenges exist 

in aggregating updates from multiple sources while ensuring high model quality. 

This research proposes FL with CNNs to address these issues, ensuring privacy-preserving, accurate BT 

classification. 

4. Methodology: 
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Figure 2: Proposed Methodology 

FL Algorithm  

1. Initialization Phase: 

1.1 Load and Preprocess Data: 

Read MRI images, resize, normalize, and perform one-hot encoding. 

1.2 Load Train & Test Data: 

Load the dataset and split, training and testing sets. 

1.3 Define CNN Model: 

Define a global CNN (CNN) model. 

1.4 Initialize Global Model: 

Initialize global model 𝑴𝒈𝒍𝒐𝒃𝒂𝒍  with weights 𝑾𝒈𝒍𝒐𝒃𝒂𝒍  

𝑾𝒈𝒍𝒐𝒃𝒂𝒍 ← 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆𝑹𝒂𝒏𝒅𝒐𝒎𝑾𝒆𝒊𝒈𝒉𝒕𝒔()  − − − − − − −(1)   

1.5 Split Data Among Clients: 
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Define the number of clients 𝒏𝒖𝒎_𝒄𝒍𝒊𝒆𝒏𝒕𝒔 

Distribute data evenly among clients. 

1.6 Set FL Parameters: 

 

Define 𝒏𝒖𝒎_𝒓𝒐𝒖𝒏𝒅𝒔 (total rounds), 𝒏𝒖𝒎_𝒄𝒍𝒊𝒆𝒏𝒕𝒔 (participating clients per round). 

Set early stopping parameters: patience and min_delta. 

2. Communication Rounds (FL Loop): 

For each communication round 𝒓 from 1 to R (total rounds): 

2.1 Distribute Global Model to Clients: 

 

The server sends the latest global model weights 𝑾𝒈𝒍𝒐𝒃𝒂𝒍  to the selected clients. 

𝑾𝒄𝒍𝒊𝒆𝒏𝒕𝒔← 𝑾𝒈𝒍𝒐𝒃𝒂𝒍 − − − − − − −(2)  

2.2 Local Training at Clients (for each client 𝒊 in 𝑪): 

Each client trains the model using its local dataset 𝑫𝒊 𝑓𝑜𝑟 𝑬 epochs. 

2.2.1 Forward Pass: 

Compute predictions  �̂�: 

 �̂� =  𝑴𝒊(𝑿) − − − − − − − (3) 
where 𝑿 is the input MRI data. 

2.2.2 Compute Loss: 

Calculate loss 𝑳 using categorical cross-entropy: 

𝑳 = − 
𝟏

𝑵
∑ 𝒚𝒋 𝒍𝒐𝒈(�̂�𝒋)

𝑵

𝒋=𝟏

 − − − − − − − (4) 

2.2.3 Backward Pass & Update Weights: 

Update local model weights using gradient descent:  

 𝑾𝒊 ←  𝑾𝒊 –  𝜼𝜵𝑳     − − − − − − − (5) 

where η is the learning rate. 
2.2.4 Send Updated Weights to Server: 

After training, clients send updated weights 𝑾𝒊 back to the server. 

3. Aggregation & Global Model Update (FedAvg): 

The server aggregates the received client weights using Federated Averaging (FedAvg) 

𝑾𝒈𝒍𝒐𝒃𝒂𝒍 ←  
𝟏

|𝑪|
 ∑ 𝑾𝒊

𝒊 𝝐 𝑪

− − − − − − − (6) 

Here, |𝑪| is the number of clients that participated in this round.  
4. Global Model Evaluation: 

4.1 Evaluate Global Model on Test Data 

The updated global model is evaluated on the test dataset (𝑿𝒕𝒆𝒔𝒕, 𝒀𝒕𝒆𝒔𝒕). 
Compute performance metrics such as accuracy and loss. 

4.2 Compute Validation Metrics: 

Extract validation accuracy to check for early stopping. 

5. Early Stopping & Termination Check: 

5.1 Early Stopping Decision: 

If validation accuracy improves:  

o Update best accuracy 𝒃𝒆𝒔𝒕_𝒂𝒄𝒄 and reset the patience counter. 

If validation accuracy does not improve:  

o Increase the wait counter. 

o If 𝒘𝒂𝒊𝒕 > 𝒑𝒂𝒕𝒊𝒆𝒏𝒄𝒆, terminate training. 

if ∣𝑣𝑎𝑙_𝑎𝑐𝑐 − 𝑏𝑒𝑠𝑡_𝑎𝑐𝑐∣ < 𝑚𝑖𝑛_𝑑𝑒𝑙𝑡𝑎 for 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 rounds, stop training. 

6. Final Model Deployment: 

Once training stops, deploy the final global model 𝑴𝒈𝒍𝒐𝒃𝒂𝒍  for classification tasks. 

The model classifies MRI scans into one of four categories: 

(1) Glioma, (2) Meningioma, (3) Pituitary, (4) Non-Tumor. 
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4.1. Dataset Preparation and Experimental Setup: 

The federated learning simulations were conducted on Google Colab Pro+ using a TPU v2-8 with High-RAM 

configuration. This environment provided accelerated computation for local client training and global model 

aggregation. The FL simulation was implemented using TensorFlow 2.12 and Python 3.10 in a single-machine, 

multi-client logical partitioning framework. This setup allowed efficient parallel training of the CNN models 

across three simulated clients. 

The first step in the chosen methodology is data preprocessing, with the dataset being the basis for training the 

CNN model. The effectiveness of a model in improving from the current data and predicting new data by 

generalization solely depends on the kind of dataset prepared. 

4.2. Data Collection:  

This BTC task uses the BT MRI Dataset from Kaggle. It is a combination of figshare, SARTAJ, and Br35H dataset 

images with 4 classifications, such as gliomas, meningiomas, pituitary tumors, and no tumors, as shown in Figure 

3(a). The data set provided here is how a model will be trained and tested.  In detail, the training set consists of 

1321 gliomas, 1339 meningiomas, 1457 pituitary tumours, and 1595 non-tumor images, and a total of 5707 images 

for training. For testing purposes, the database contains 300 gliomas, 306 meningiomas, 300 pituitary tumors, and 

405 non-tumor images, for a total of 1311 images [23]. 

It also means that the differential diagnosis of BT classes will not be oversimplified because the given dataset 

contains both BT types and normal scans sufficient to teach the characteristics of each class to the model. That is 

why the data is divided into train and test sets was carried out to analyze the model’s ability to adapt to new data. 

The use case supports comprehensive performance evaluation due to the diversification of data; FL is especially 

relevant when several clients/sources’ data are united while preserving privacy. This dataset can be useful while 

developing a reliable multi-class classification model that will require timely and correct diagnosis of different 

types of BTs from MRI. 

 

Figure 3(a): Four Categories: Glioma, Meningioma, No Tumor, and Pituitary 

4.1.1. Image Pre-processing: 

To ensure that every image is of the same size, we resize them to 128 * 128 pixels in size as shown in figure 3(b) 

and (c). This is important because CNNs require inputs of fixed sizes to be fed into them at all times, thus the 

scaling.  
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𝑰𝒓𝒆𝒔𝒊𝒛𝒆𝒅 = 𝑹𝒆𝒔𝒊𝒛𝒆 (𝑰𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 , (𝟏𝟐𝟖, 𝟏𝟐𝟖)) 

Normalization: Here, normalization consists of simply dividing the pixel values by 255 so that all of these values 

are in the 0 to 1 interval. This normalization aids the convergence of model training and averts problems that 

pertain to the differences in the scale of inputs.  

𝑰𝒏𝒐𝒓𝒎 =
𝑰𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍

𝟐𝟓𝟓
 

Label Encoding: The category labels are then changed into a label-encoded format to enable multi-class 

classification by encoding the label. It is crucial to encode such labels, which are hereby transformed into a binary 

matrix with each class having a column. 

 𝒍𝒂𝒃𝒆𝒍𝒐𝒏𝒆𝒉𝒐𝒕
=  [

𝟏, 𝟎, 𝟎, 𝟎
𝟎, 𝟏, 𝟎, 𝟎
𝟎, 𝟎, 𝟏, 𝟎
𝟎, 𝟎, 𝟎, 𝟏

] 

 
[1,0,0,0] 𝑖𝑠 glioma , [0,1,0,0] 𝑖𝑠 meningioma , [0,0,1,0] 𝑖𝑠 no tumor, [0,0,0,1] 𝑖𝑠 pituitary tumor 
 

 
Figure 3 (b): Original image             Figure 3 (c): Normalized image 

 

In addition to resizing and normalization, data augmentation techniques such as random rotations (±15°), 

horizontal flipping, and brightness shifts were applied to improve generalization and reduce overfitting. 

4.1.2. CNN Model Architecture 

Table 2 presents the architecture of the model, and it is the most vital when it comes to improving the efficiency 

of the classification task. The features derived by a well-designed CNN can be used for successful classification 

and increase the performance of the model. 

Table 2: CNN Model Layer Specifications 

Layer Type Filters Kernel Activation Output Shape 

Conv2D Convolution 32 3x3 ReLU (128, 128, 32) 

MaxPooling2D Pooling - 3x3 - (42, 42, 32) 

Conv2D Convolution 64 3x3 ReLU (42, 42, 64) 

MaxPooling2D Pooling - 3x3 - (14, 14, 64) 

Flatten Flattening - - - (12544,) 

Dense Fully Connected 128 - ReLU (128,) 

Dense Fully Connected 4 - Softmax (4,) 

Architecture Components: 
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• Convolutional Layers: In this work, the input images are first passed through two convolutional layers 

to extract features. Even convolutional layers are able to produce several filters for creating feature maps, 

considering spatial hierarchies in the images to be learnt. 

𝑺(𝒊, 𝒋) = (𝑰 ∗ 𝑲)(𝒊, 𝒋) =  ∑ ∑ 𝑰

𝒏

(𝒊 + 𝒎, 𝒋 + 𝒏)𝑲(𝒎, 𝒏)

𝒎

− − − − − − − (7) 

 
Where I is the input, and K is the convolutional kernel. 
 

Activation Function: The ReLU activation function adds non-linearity to the model so as to allow the model to 

analyze figures that are complex and may be hidden in the data. It is defined as: 

𝒇(𝒙) = 𝐦𝐚𝐱 (𝟎, 𝒙)  − − − − − − − (8) 

Max Pooling Layer: In practice, after each CNN layer, there is a max pooling operation to reduce the size of 

feature maps while maintaining important features. 

𝑷(𝒊, 𝒋) = 𝐦𝐚𝐱
(𝒎,𝒏)𝝐 𝒘𝒊𝒏𝒅𝒐𝒘 

𝑺(𝒊 + 𝒎, 𝒋 + 𝒏) − − − − − − − (9) 

 

Flattening Layer: Following the pooling layers, the feature maps undergo a process of flattening into a one-

dimensional vector, which is subsequently utilized as input for the fully connected layers. 

Dense Layers: The flattened output is transmitted through dense layers, which are fully connected. The concluding 

layer utilizes a softmax activation function to generate probabilities for the four distinct classes. 

𝒚𝒊 =
𝒆𝒛𝒊

∑ 𝒆𝒛𝒋𝑪
𝒋=𝟏

− − − − − − − (10) 

 

where 𝑧𝑖  represents the output of the last dense layer and C denotes the number of classes. 

4.1.3. FL Setup 

To harness the power of FL as shown in figure 1 and 2, the methodology involves distributing the training process 

across multiple clients, each with its local dataset. This setup aims to enhance privacy and reduce communication 

costs. 

• Client Distribution and Data Heterogeneity Handling: To simulate a federated learning environment, the 

dataset was divided equally among three clients, with each client receiving a unique subset of data for 

local training, as illustrated in Figure 4. The distribution followed an IID (Independent and Identically 

Distributed) approach, ensuring that all clients received a representative sample of each class. This 

approach eliminates class imbalance across clients and simplifies convergence during global model 

aggregation. Although IID partitioning does not reflect the complexity of real-world medical 

heterogeneity, it serves as a baseline to evaluate the core performance of the FL-CNN model before 

extending it to non-IID scenarios in future work. 

• Local Model Training: Clients train their models independently for multiple epochs, allowing them to 

capture meaningful patterns from their respective datasets. 

• Model Aggregation:  After training, clients send their model weights to the central server. Using the 

FedAvg algorithm, these weights are combined to update and refine the global model [24]. Auth
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Figure 4: Class distribution per client 

The dataset was evenly divided among three simulated clients, each receiving approximately 1,902 training 

samples and 437 testing samples covering all four tumor classes.  

Local Training 

All the clients train their local model on the allocated dataset. Local training lets the model learn from each client's 

data distribution, boosting generalization. 

Training Procedure: 

Epochs: Each client trains its local model for a fixed number of epochs. During each epoch, the model adjusts its 

weights based on training data loss. 

Loss Function: it is a categorical cross-entropy, which compares the anticipated and actual probability 

distributions.  

𝑳(𝒚, �̂�) = − ∑ 𝒚𝒊 𝒍𝒐𝒈(�̂�𝒊)

𝑪

𝒊=𝟏

− − − − − − − (11) 

Optimizer: The Adam optimizer is employed for weight updates.  

𝜽𝒕+𝟏 =  𝜽𝒕 −
𝜼

√𝒗𝒕 + 𝝐
 𝒎𝒕 − − − − − − − (12) 

where 𝑚𝑡 and 𝑣𝑡 represent the 1st and 2nd moments of the gradients, and 𝜂 represents the learning rate.  

4.2. Aggregated Global Model 

The aggregated global model represents the collective knowledge learned from all clients. It is periodically 

updated with the averaged weights from local models, facilitating a better generalization as shown in Figure 2. 

Our model adopts the Federated Averaging (FedAvg) optimization strategy to aggregate local model updates 

while ensuring convergence and stability across distributed clients. 

Process: 

• Model Weight Aggregation: After each communication round, the server gets weights from all the local 

clients and finds the average. This updated model is expected to perform better due to diverse training 

inputs.  
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•  Global Model Evaluation: A separate test dataset is utilized after each communication round to assess 

the global model's performance and monitor its progress. Accuracy, precision, recall, and other 

parameters are assessed. 

4.3. Evaluation Metrics 

After each training round, numerous metrics are calculated to evaluate the model. These measures reveal the 

model's tumor classification abilities. They are 

1.  𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏
=  

𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
 − − − − − − −(13) 

2. 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

𝑻𝑷+𝑭𝑷
 − − − − − − −(14) 

3. 𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝑷

𝑻𝑷+𝑭𝑵
 − − − − − − −(15) 

4. 𝑭𝟏 = 𝟐 ×  
𝑷𝒓𝒆𝒄𝒆𝒔𝒊𝒐𝒏 ×𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒆𝒔𝒊𝒐𝒏 +𝑹𝒆𝒄𝒂𝒍𝒍
 − − − − − − −(16) 

 

 

5. Results and Discussion: 

Table 3 outlines the weight aggregation process across multiple rounds in an FL setup. Initially, clients receive 

global weights 𝑊0, which are either randomly initialized or pre-trained. Each client then trains locally, producing 

updated local weights 𝑊𝑡
1, 𝑊𝑡

2, 𝑊𝑡
3, which are averaged to form the new global weight 𝑊𝑡+1. This iterative 

process continues for multiple rounds. 

Table 3: FL Weight Aggregation Across Rounds 

 

Rounds Initial Weights Sent to 

Clients 

Local Weights After 

Training 

Aggregated Global Weights 

0 Ѡ0 (random/pre-trained) Ѡ0
1, Ѡ0

2, Ѡ0
3 (Clients train 

locally) Ѡ1 =
Ѡ0

1, Ѡ0
2, Ѡ0

3

3
 

1 Ѡ1 Ѡ1
1, Ѡ1

2, Ѡ1
3 

Ѡ1 =
Ѡ1

1, Ѡ1
2, Ѡ1

3

3
 

2 Ѡ2 Ѡ2
1, Ѡ2

2, Ѡ2
3 

Ѡ1 =
Ѡ2

1, Ѡ2
2, Ѡ2

3

3
 

3 Ѡ3 Ѡ3
1, Ѡ3

2, Ѡ3
3 

Ѡ1 =
Ѡ3

1, Ѡ3
2, Ѡ3

3

3
 

4 Ѡ4 Ѡ4
1, Ѡ4

2, Ѡ4
3 

Ѡ1 =
Ѡ4

1, Ѡ4
2, Ѡ4

3

3
 

5 Ѡ5 Ѡ5
1, Ѡ5

2, Ѡ5
3 

Ѡ1 =
Ѡ5

1, Ѡ5
2, Ѡ5

3

3
 

Table 4 provides detailed weight values from the first round of training, showing how the initial weights evolve 

after training on different clients. The local weight updates vary slightly across clients, and the final aggregated 

weights are obtained by averaging these updates. 

Table 4: First 5 rounds of weight tracking 

Round Initial Weights Client 1 Weights Client 2 Weights Client 3 Weights Aggregated Weights 
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1 

[-0.00488, 0.0, 
-0.00029, 0.0, -
5.46e-06, 0.0, -
0.00821, 0.0] 

[-0.00278, -
0.00053, -0.00322, 
-0.00806, -
0.00167, -0.00321, 
-0.01088, 0.00634] 

[-0.00407, 0.00287, 
-0.00313, -0.00916, 
-0.00169, -0.00166, 
-0.01003, 0.00526] 

[-0.00137, 0.00242, -
0.00147, -0.01108, -
0.00121, 6.04e-05, -
0.01117, 0.00232] 

[-0.00274, 0.00159, -
0.00261, -0.00943, -
0.00153, -0.00160, -
0.01069, 0.00464] 

2 

[-0.00274, 
0.00159, -
0.00261, -
0.00943, -
0.00153, -
0.00160, -
0.01069, 
0.00464] 

[-0.00195, 
0.00035, -0.00492, 
-0.01418, -
0.00077, 0.00023, 
-0.01402, 0.00526] 

[-0.00128, 0.00297, 
-0.00390, -0.01158, 
-0.00082, 0.00049, 
-0.01354, 0.00642] 

[-0.00102, 0.00202, -
0.00317, -0.01310, -
0.00102, -0.00034, -
0.01370, 0.00522] 

[-0.00142, 0.00178, -
0.00399, -0.01295, -
0.00087, 0.00013, -
0.01376, 0.00563] 

3 

[-0.00142, 
0.00178, -
0.00399, -
0.01295, -
0.00087, 
0.00013, -
0.01376, 
0.00563] 

[-0.00155, 
0.00117, -0.00576, 
-0.01683, -
0.00058, 0.00096, 
-0.01536, 0.00692] 

[-0.00206, 0.00160, 
-0.00496, -0.01586, 
-0.00088, 0.00086, 
-0.01559, 0.00640] 

[-0.00316, 3.79e-05, -
0.00779, -0.01769, -
0.00076, 0.00060, -
0.01612, 0.00536] 

[-0.00226, 0.00094, -
0.00617, -0.01680, -
0.00074, 0.00081, -
0.01569, 0.00623] 

4 

[-0.00226, 
0.00094, -
0.00617, -
0.01680, -
0.00074, 
0.00081, -
0.01569, 
0.00623] 

[-0.00243, 
0.00077, -0.00684, 
-0.01885, -
0.00059, 0.00123, 
-0.01689, 0.00655] 

[-0.00294, 0.00028, 
-0.00888, -0.02133, 
-0.00092, 0.00094, 
-0.01729, 0.00601] 

[-0.00178, 0.00108, -
0.00620, -0.01831, -
0.00066, 0.00089, -
0.01678, 0.00501] 

[-0.00238, 0.00071, -
0.00731, -0.01950, -
0.00073, 0.00102, -
0.01699, 0.00586] 

5 

[-0.00238, 
0.00071, -
0.00731, -
0.01950, -
0.00073, 
0.00102, -
0.01699, 
0.00586] 

[-0.00357, -
0.00027, -0.00980, 
-0.02360, -
0.00052, 0.00164, 
-0.01874, 0.00545] 

[-0.00377, -
0.00017, -0.00930, 
-0.02385, -0.00075, 
0.00101, -0.01801, 
0.00689] 

[-0.00419, -0.00132, -
0.01008, -0.02572, -
0.00085, 0.00084, -
0.01864, 0.00613] 

[-0.00384, -0.00059, -
0.00973, -0.02439, -
0.00071, 0.00116, -
0.01846, 0.00616] 

Table 5 tracks the aggregated global weights across multiple rounds. Over time, the weights exhibit gradual 

adjustments, reflecting the learning process. The values show steady refinement, with weight magnitudes 

increasing or decreasing depending on the training data and optimization updates. 

Table 5: Aggregated Weights Tracking Across Rounds 

Round Aggregated Weights 

1 
[-0.002739094, 0.0015855689, -0.0026081933, -0.009433081, -0.0015250972, -0.0016037474, -

0.010694027, 0.0046384493] 

2 
[-0.0014167269, 0.0017809821, -0.003999807, -0.012950784, -0.0008692239, 0.0001253155, -

0.0137555245, 0.005633408] 

3 
[-0.002258096, 0.0009357197, -0.006170785, -0.0167961, -0.0007399197, 0.00080726884, -

0.01568906, 0.006226768] 

4 
[-0.0023834368, 0.00071012543, -0.00730547, -0.019496322, -0.0007253774, 0.0010201551, -

0.016985092, 0.005856558] 

5 
[-0.0038421392, -0.0005862848, -0.009725381, -0.024392635, -0.00070768816, 0.001162873, -

0.018464753, 0.0061602187] 

6 
[-0.004591774, -0.0015902803, -0.010442038, -0.025964718, -0.00034294472, 0.0012599488, -

0.020082794, 0.006026043] 

Auth
ors

 Pre-
Proo

f



7 
[-0.004801322, -0.0015761176, -0.011590994, -0.027749022, -0.00031792888, 0.0011195856, -

0.021074397, 0.0061880276] 

8 
[-0.006449559, -0.0030554421, -0.013810273, -0.0312782, -0.00045619532, 0.00038617593, -

0.023012921, 0.0057537057] 

9 
[-0.0074276496, -0.0038238715, -0.014904665, -0.034950763, -0.0001783007, 0.00064836233, -

0.024750333, 0.004756679] 

10 
[-0.00835441, -0.003880404, -0.014762703, -0.03496344, -0.00010734046, 0.00022866519, -

0.026126262, 0.0044696257] 

11 
[-0.009866726, -0.0036393318, -0.017097149, -0.0407607, -0.00035802135, -0.0007706478, -

0.027876195, 0.004569278] 

12 
[-0.009556978, -0.001319146, -0.016424773, -0.039752785, 0.00006414514, -0.00036864122, -

0.029389925, 0.004505746] 

 

Table 6: Global Model Performance Across Training Rounds 

Rounds 

Global  

Accuracy Loss Precision  Recall 
F1 

Score 

1 0.8444 0.4582 0.8702 0.7979 0.8477 

2 0.8986 0.3404 0.8991 0.897 0.8991 

3 0.9451 0.2078 0.9465 0.9451 0.9448 

4 0.9512 0.1965 0.9519 0.9504 0.9511 

5 0.9657 0.145 0.9664 0.9649 0.9656 

6 0.968 0.1309 0.9687 0.9672 0.9679 

7 0.968 0.1369 0.9687 0.9672 0.9679 

8 0.9687 0.1632 0.9687 0.9687 0.9686 

9 0.9695 0.1452 0.9695 0.9695 0.9694 

10 0.9718 0.1629 0.9718 0.9718 0.9717 

11 0.9687 0.1575 0.9687 0.9687 0.9686 

12 0.9748 0.1483 0.9748 0.9748 0.9748 

 

As shown in both Figure 5 and table 6, the global accuracy begins at 84.44% in the first round and progressively 

improves, reaching 97.48% by round 12. This steady growth demonstrates the model's improving generalization 

capability over time. 

 

Figure 5: Global Accuracy across rounds 
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Figure 6 shows that the Global loss, which quantifies the model's error, follows an inverse trend to accuracy, 

decreasing from 0.4582 in round 1 to 0.1483 in round 12. A lower loss value signifies improved prediction 

reliability and reduced misclassification. The steady decline demonstrates continuous optimization during 

training. 

 

Figure 6: Global Loss across rounds 

The global precision, as shown in Figure 7, reflecting the model’s ability to correctly identify positive predictions 

while minimizing false positives, begins at 0.8702 and reaches 0.9748 by the final round. This improvement 

suggests enhanced confidence in positive classifications.  

 

 
Figure 7: Global Precision across rounds 

Similarly, global recall, as shown in Figure 8, measures the model’s effectiveness in capturing all relevant positive 

instances, shows a significant increase from 0.7979 to 0.9748, indicating better sensitivity to positive cases over 

time. 
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Figure 8: Global Precision across rounds 

Finally, the global F1 score is improving from 0.8477 in the first round to 0.9748 in round 12. This indicates that 

the model effectively balances precision and recall, achieving an optimal trade-off between detecting positive 

cases and minimizing false alarms. 

 

Figure 9: Global F1 Score across rounds 

 

Table 7: Validation Performance Across Rounds 

Rounds 
Validation  

Accuracy Loss Precision Recall F1 Score Patience Status (Validation) 

1 0.8581 0.5126 0.8661 0.8535 0.8598 ✅ Reset (Improved) 

2 0.9031 0.3757 0.9037 0.9024 0.9031 ✅ Reset (Improved) 

3 0.9161 0.3573 0.9165 0.913 0.9148 ✅ Reset (Improved) 

4 0.9436 0.2446 0.9456 0.9413 0.9434 ✅ Reset (Improved) 

5 0.9512 0.2271 0.9519 0.9512 0.9515 ✅ Reset (Improved) 

6 0.9314 0.2651 0.9327 0.9298 0.9312 
⚠️ No Improvement (Patience: 
1/3) 

7 0.9573 0.2109 0.958 0.9573 0.9576 ✅ Reset (Improved) 

8 0.9641 0.1768 0.9641 0.9641 0.9641 ✅ Reset (Improved) 

9 0.9748 0.1656 0.9748 0.9748 0.9748 ✅ Reset (Improved) 

10 0.9664 0.1739 0.9672 0.9657 0.9664 
⚠️ No Improvement (Patience: 
1/3) 

11 0.9512 0.214 0.9512 0.9512 0.9512 
⚠️ No Improvement (Patience: 
2/3) 

12 0.9733 0.1715 0.9733 0.9733 0.9733 🛑 Early Stopping (Patience: 3/3) 

Validation Metrics Analysis 

Table 7 presents key validation metrics that assess the model's performance on unseen data over 12 training 

rounds. These metrics include validation accuracy, loss, precision, recall, and F1 score, as well as the patience 

status, which reflects performance stability and stopping conditions. 
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Figure 10: Validation Accuracy analysis 
 

Validation accuracy begins with 85.81% in round 1, improving steadily across most rounds. Notable 

improvements occur in rounds 2, 3, 4, and 5, where accuracy reaches 95.12%. However, in round 6, a slight dip 

to 93.14% is observed, marking the first instance of no improvement (   Patience: 1/3). After recovering in 

subsequent rounds and peaking at 97.48% in round 9, accuracy again fluctuates slightly in rounds 10 and 11 before 

reaching 97.33% in round 12 as shown in figure 10. 

 

 
Figure 11: Global vs Validation Accuracy  

 

Figure 11 illustrates the model's performance over multiple training rounds, tracking how well it generalizes. The 

accuracy trends for both global and validation metrics show an initial sharp increase, indicating strong learning in 

the early rounds. The peak global accuracy reaches 0.9748 in round 9, while the peak validation accuracy also 

reaches 0.9748 in round 9, marking the best performance achieved by the model. 

 

After round 9, fluctuations in validation accuracy become evident, with no improvement warnings (  ) appearing 

in rounds 10 and 11. This tells that the performance of the model is no longer increasing significantly and might 

be stabilizing or slightly degrading. By round 12, the final recorded global accuracy is 0.9748, and the validation 

accuracy is 0.9733, showing a slight drop in validation performance. Due to the lack of improvement over 

consecutive rounds, early stopping (🛑) is triggered in round 12, ensuring that training halts to prevent overfitting. 

The dashed reference line at 0.9748 serves as a benchmark for tracking accuracy changes, allowing for easy 

identification of the best performance achieved during training. The comparison between global and validation 
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accuracy highlights the model's learning progression and stability, helping to assess its generalization capabilities 

effectively.  

 

Validation loss decreases significantly from 0.5126 in round 1 to 0.1656 in round 9, indicating better 

generalization. However, in later rounds, minor fluctuations in loss are seen (e.g., round 11 at 0.214), signaling 

potential overfitting. The early stopping condition further confirms this triggered in round 12 when performance 

ceased to improve consistently. 

 

 
Figure 12: Global vs Validation Loss  

 

Figure 12 showcases the model’s loss progression over multiple training rounds, demonstrating how well it 

minimizes errors. Initially, both global and validation loss exhibit a sharp decline, indicating significant 

improvements in learning. The lowest global loss is recorded at 0.1309 in round 6, while the lowest validation 

loss is 0.1656 in round 9, which represents the best performance in minimizing errors before fluctuations begin. 

After round 9, validation loss shows instability, with noticeable fluctuations and an increasing trend, particularly 

in rounds 10 and 11. This suggests potential overfitting, where the model starts performing worse on the validation 

set despite continued optimization on the global model. By round 12, the final global loss is 0.1483, and the 

validation loss is 0.1715, reflecting a slight increase from the lowest recorded values. Due to consecutive rounds 

of no significant improvement, early stopping is triggered in round 12, preventing further training to maintain 

optimal generalization. 

The dashed reference line at 0.1309 serves as a benchmark for tracking the lowest loss achieved. The comparison 

between global and validation loss helps assess model convergence, ensuring that it is neither underfitting nor 

overfitting. The observed stabilization in global loss while validation loss increases slightly further supports the 

need for early stopping to maintain the model's reliability. 
 

Validation Precision, Recall, and F1 Score Analysis 

 

The validation precision shown in figure 13 measures the accuracy of positive predictions, starts at 0.8661 in 

round 1 and improves steadily, reaching a peak of 0.9748 in round 9. However, slight decreases are observed in 

rounds 10 and 11 before stabilizing at 0.9733 in round 12. 

Figure 14 illustrates the validation recall, which measures the model's effectiveness in recognizing actual positive 

cases. It starts at 0.8535 in round 1 and rises to 0.9748 by round 9. However, a slight decline in rounds 10 and 11 

indicates some misclassifications in the later stages. 

The validation F1 score shown in figure 15, a balanced measure of precision and recall, follows a nearly identical 

trend, reaching a peak of 0.9748 in round 9. After a minor decline in rounds 10 and 11, it stabilizes at 0.9733 in 

round 12, confirming a well-balanced model performance. 

 

The Global vs Validation Precision Comparison plot highlights the model's precision performance over multiple 

training rounds. Precision represents the accuracy of positive predictions, making it a crucial metric for evaluating 

classification effectiveness. Auth
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Figure 13: Global vs Validation Precision  

 

Initially, both global and validation precision show a steady increase, indicating the model’s improved ability to 

classify positive instances correctly. The highest global precision is 0.9748 in round 12, aligning with the highest 

validation precision of 0.9748 in round 9. The dashed reference line at 0.9748 signifies the best recorded precision 

value. 

From rounds 1 to 5, there is a rapid increase in both metrics, but validation precision starts fluctuating slightly 

after round 6. A minor dip is observed in rounds 6 and 10, suggesting slight inconsistencies in validation precision, 

possibly due to model overfitting or variations in dataset complexity. However, by round 12, the global precision 

stabilizes at 0.9748, which is also the final recorded validation precision before early stopping is applied. 

 

The model maintains a strong balance between global and validation precision, with minimal deviations. The early 

stopping at round 12 ensures that training does not continue unnecessarily, preventing overfitting while 

maintaining the highest precision achieved. The trend observed in the plot signifies a well-trained model with 

optimal precision performance across the training process. 

The Global vs Validation Recall Comparison plot illustrates how well the model identifies positive instances over 

multiple training rounds. Recall is a crucial metric in classification tasks, especially when missing positive 

instances can be costly. 

 

Figure 14: Global vs Validation Recall  
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From the beginning, both global and validation recall show a consistent upward trend, with rapid improvement in 

the initial rounds. The highest global recall is 0.9748 in round 12, while the highest validation recall is also 0.9748 

in round 9. The dashed line at 0.9748 represents the best recall value attained. 

 

During the early rounds, validation recall closely follows global recall, showing an increasing trend until round 6, 

where a slight drop is observed. This fluctuation indicates that the model may have faced minor inconsistencies 

in learning patterns. However, recall stabilizes again from rounds 7 to 9, reaching its peak at 0.9748 in round 9. 

A minor dip follows in rounds 10 and 11 before validation recall returns to 0.9748 in round 12, aligning with 

global recall. 

 

Early stopping is applied in round 12, ensuring that training does not proceed further to avoid overfitting. The 

stable recall values suggest that the model has achieved its best possible performance, striking a balance between 

learning efficiency and generalization capability. 

 

The Global vs Validation F1 Score Comparison plot illustrates the changes in global and validation F1 scores 

across multiple training rounds. The F1 score is a crucial metric that balances precision and recall, ensuring the 

model performs optimally in classification tasks. 

• Peak Global F1 Score is 0.9748. 

• Peak Validation F1 Score is also 0.9748. 

• Round 12 Performance: At round 12, both the global and validation F1 scores reached 0.9748, which 

was also marked as the early stopping point. 

 

Figure 15: Global vs Validation F1 Score  

The plot indicates that the model improved steadily in the early rounds, with noticeable increases in performance. 

However, after round 9, the validation F1 score fluctuated slightly, leading to the implementation of early stopping 

at round 12 to prevent overfitting. 

Patience Status and Early Stopping 

 

The patience status provides an indication of model stability. Throughout rounds 1 to 5, consistent improvements 

reset the patience counter (✅ Reset (Improved)). However, in round 6, no improvement is observed, triggering 

the patience mechanism (   No Improvement: 1/3). After a temporary improvement, another decline occurs in 

rounds 10 and 11 (   Patience: 2/3). By round 12, when no further improvement is achieved, the model reaches 

its patience threshold, leading to 🛑 Early Stopping (Patience: 3/3). This prevents unnecessary training beyond 

optimal performance, reducing overfitting risks. 

 

Early stopping was triggered at round 12 due to the validation accuracy plateauing for 3 consecutive rounds 

(patience = 3). This mechanism prevents overfitting and conserves computational resources. The minimal drop 

between training and validation performance after round 9 (less than 0.2%) suggests no negative impact on 

generalization. On the contrary, it helped retain the model's stability. 
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The validation metrics demonstrate the model's robust learning curve, with steady improvements in accuracy, 

precision, recall, and F1 score. However, the fluctuations in later rounds indicate potential overfitting, 

necessitating early stopping. The strategic use of patience monitoring ensures optimal model performance without 

unnecessary training, maintaining a balance between accuracy and generalization. 

6. Comparative Analysis: 

Table 8: Accuracy Comparison of BT Classification Models 

 

The table 8 presents a comparative analysis of various deep learning models used for BT classification, along with 

their respective accuracy scores. Among the models, FedAvgCNN, the proposed method, achieves the highest 

accuracy of 97.48%, outperforming other approaches such as IVX16 (96.94%) and CNN + FL (96%). Notably, 

Deep Q-network (95.4%) and RCNN (95.17%) also demonstrate high performance, indicating the effectiveness 

of advanced deep learning architectures. Traditional CNN-based models, such as those proposed by Pranjal 

Agrawal et al. (90%) and S. Das et al. (94.39%), exhibit competitive results but fall short compared to more 

complex ensemble and FL-based architectures. The WHHO-based DeepCNN model (81.6%) records the lowest 

accuracy. 

Ref No Authors Model Accuracy 

[12] Jemimma et al. WCSO-DBN 92.3% 

[13] Rammurthy et al. WHHO-based DeepCNN 81.6% 

[14] Vankdothu et al. RCNN 95.17% 

[15] Pranjal Agrawal et al. CNN 90% 

[16] Islam et al. FL 91.05% 

[17] Kumar et al. Deep Q-network 95.4% 

[18] S. Hossain et al. IVX16 96.94% 

[19] S.  Das et al. CNN 94.39% 

[20] Abiwinanda N et al. Custom CNN 84.19% 

[21] S. Bhadauriya et al. CNN + FL 96% 

[22]  Deepa et al. CJHBA 92.10% 

                    Proposed Model FedAvgCNN 97.48% 
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Figure 16: Accuracy comparison of various models  

 
These findings are visually supported in figure 16, which highlights the best-performing model (FedAvgCNN) 

using a blue outline. The graphical representation effectively illustrates the accuracy distribution across different 

models, making it easier to compare performance trends. The incorporation of a trend line further enhances the 

visualization by showcasing the general progression of accuracy across various approaches. 

Unlike traditional centralized CNNs, our FL-CNN model incorporates client-specific data without 

sharing raw images. Compared to prior FL approaches, our design includes early stopping, systematic 

weight tracking across rounds, and validation-based performance monitoring that ensures robust 

model convergence. 

A centralized CNN baseline model was also trained using the same dataset. It achieved an accuracy of 

96.21%, slightly lower than our FedAvgCNN’s 97.48%. This demonstrates that federated learning not 

only preserves privacy but can achieve or exceed centralized performance. Moreover, compared to 

other FL approaches like the model in Islam et al. [16] (91.05%) and Bhadauriya et al. [21] (96%), our 

approach improves both accuracy and model convergence behavior. 

Limitations and Future Work 

One limitation of our model was performance fluctuations in later rounds, where accuracy and loss varied, leading 

to early stopping. This issue may arise due to factors like overfitting, learning rate instability, or differences in 

client data distribution. To address this, future work can explore adaptive learning rate scheduling to stabilize 

training, federated knowledge distillation to enhance generalization, and dynamic client selection to prioritize 

high-quality updates. 

Another challenge was the computational overhead associated with FL. For local model training and 

communicates updates, the process demands high computational resources and bandwidth. To reduce this burden, 

future direction will be focus on model compression like pruning & quantization, efficient aggregation methods 

such as FedProx and FedAdam, and asynchronous FL, where clients update the global model at different speeds 

instead of synchronously. 

Although Federated Learning (FL) protects user data, it is still at risk of attacks. Hackers can extract private details 

from model updates or inject harmful data to manipulate training. To improve security, future research should 

focus on adding noise to updates (differential privacy), encrypting data aggregation (secure multi-party 
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computation), and using strong filtering methods to block malicious inputs. These steps will make FL models 

safer, more reliable, and more efficient. 

Future improvements include computing ROC-AUC metrics for each class using probability vectors. This will 

help in assessing performance where class imbalance or false-positive risks are critical, such as in high-stakes 

clinical settings. 

7. Conclusion: 

This work evaluated an FL approach using FedAvg combined with a CNN for distributed BTC tasks. We assessed 

the performance of our model over 12 training rounds, monitoring key validation and global metrics such as 

accuracy, loss, precision, recall, and F1 score. The model demonstrated a consistent improvement in performance 

during the initial rounds, with significant gains in validation accuracy and a steady reduction in validation loss. 

Notably, the model achieved its peak validation accuracy of 97.48% in round 9, with corresponding validation 

precision, recall, and F1 score all at 97.48%, indicating a well-balanced classifier. However, slight fluctuations in 

performance were observed in later rounds, leading to an early stopping at round 12 due to validation performance 

stagnation. Despite this, the global evaluation metrics at the final round remained robust, with a global accuracy 

of 97.48%, a global loss of 0.1483, and consistently high precision, recall, and F1 scores. These results highlight 

the model's strong generalization capabilities and effectiveness in classification tasks. The early stopping 

mechanism effectively prevented overfitting, ensuring optimal performance while minimizing unnecessary 

training. Future work can explore fine-tuning strategies, alternative architectures, or data augmentation techniques 

to enhance performance and stability further. These findings confirm that FedAvg + CNN is effective for FL-

based classification, balancing accuracy and computational efficiency. Future work may explore personalization 

techniques, adaptive aggregation, and privacy-preserving mechanisms to enhance FL performance. 

Beyond accuracy, the proposed FL-CNN model is highly scalable and adaptable for real-world deployment in 

hospital networks. Since each client trains locally and shares only model parameters, the framework ensures 

patient privacy and complies with medical data regulations (e.g., HIPAA, GDPR). The system can be extended to 

multiple institutions, making it suitable for multi-hospital collaborations, thereby accelerating early diagnosis 

and improving clinical outcomes. 

Moreover, the lightweight nature of the proposed FL-CNN model, combined with its high accuracy and privacy-

preserving design, makes it highly scalable and suitable for real-world deployment across multiple hospital 

settings, where data sharing is restricted due to ethical and regulatory concerns. 
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