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Abstract:

Brain Tumor (BT) leads to disability in cognitive, motor, and social skills, and the e, early diagnosis should
be a milestone for treatment. In this work, a novel Federated Learning-based Convglut Neural Network (FL-
CNN) model is proposed for Brain Tumor Classification (BTC) with FL servin&\e fraMework for the model.
The model is trained to distinguish between four classes of brain g ps: glioma, meningioma, pituitary
adenoma, and non-neoplastic growth. Through the use of Federated L), this method allows multiple
Decentralized clients to cooperate in training the model witho Y raw medical data belonging to

processed MRI images in dimensions of 128x
of BT. As for understanding the model’s perfo
model achieved a peak validation accuracy of 97.%
stopping was applied at round 12 due to performance s
reached 97.48%, with a loss of 0.1483, d

ompute accuracy, precision, recall, and F1-score. The
ith a precision, recall, and F1 score of 97.48%. Early
gation, preventing overfitting. The final global accuracy

privacy. Moreover, this work discusses the applicability of FL
orative models in this area can provide a highly accurate
e following paper is intended to contribute to the improvement

hallenges in medicine is that BTs are among the most diverse and challenging diseases to
because they are located in one of the most sensitive regions of the human body. Depending
, BTs are classified into benign and malignant, but gliomas are the most frequent and deadly form
) Among all gliomas, glioblastoma multiforme (GBM) is is regarded as a high-grade glioma; therefore,
sis is bleak, with the median survival time often less than 15 months even with comprehensive
ent, including surgery, radiation therapy, and chemotherapy [16]. Essential for proper management and
treatment, the distinction of primary and secondary brain tumours is frequently challenging due to the current
limitations of MRI scans [13]. New molecular and immunohistochemical markers have shown an increased
understanding of tumor behavior, although incorporating them into clinical practice is costly and time-consuming
[11]. Consequently, it is important to adopt sophisticated computational approaches, mainly ML, in boosting
diagnosis precision and developing individualised treatment strategies [3].

Machine learning (ML), especially for the CNN model, has revealed that the detection and classification of BTs
from MRI scans can be effectively automated. Some of these models can effectively process an enormous volume
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of image data, determining tumor areas and subtypes with surgical precision [21]. However, one of the critical
issues that has emerged in the design and training of effective ML is a lack of high-quality and diverse data to
support its generalization to multiple patients. To obtain such datasets is challenging in the medical domain
because of privacy or legal constraints and the scattered nature of healthcare organizations [1].

1.1. Role of FL in BTC:

FL, in particular, seems to have the potential to alleviate the problem of working with immense volumes of
significant variability and heterogeneity while still respecting users’ privacy. In the FL, as shown in Figure 1, t
institutions do not actually transfer patient information [2][5]. Every institution stores its results on a local ser
but shares only the model parameters with the server, while protecting the identity of the patient’s medlcal hlst
This strategy employs multiple sources of data across different institutions, fostering multi-igg
collaborations in the BT research and enabling the generation of better and more generalizable modgq
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pssential contribution to the training of ML models on distributed datasets
acy. They resolve issues of data deficiency and confidentiality that have long
_ ML solutions in healthcare to provide new possibilities for individualized
ement and better outcomes.

ify Multiple BT Types: Accurately identify glioma, meningioma, pituitary tumor, and no tumor.
hance Patient Privacy: Use decentralized training to protect patient identity by excluding raw image
data from direct sharing.

Demonstrate FL in Medical Applications: Show that FL and Al can be safely and effectively used for
BT detection.

1.3. Contributions

e Innovative Use of FL: Introduces FL with CNNs for medical imaging, enabling secure collaboration in
healthcare.

e Robust Dataset Utilization: Uses a well-structured dataset (5,707 training and 1,311 testing images)
distributed across four tumor types.



e Performance Evaluation: Establishes benchmarks for FL-based CNN models in medical diagnostics.

e  Privacy-Preserving ML: Demonstrates that high-accuracy models can be trained while maintaining
patient data privacy.

e Real-World Medical Impact: Highlights the potential of FL to improve early BT detection in clinical
practice.

e Future Research Directions: Suggests combining FL with other ML techniques to enhance accuracy and
expand its application in medical imaging.

2. Literature survey:

The inclusion of FL in the diagnosis and classification of BTs has been included as a new approach to med
imaging because of the improvements that FL brings, such as data privacy and incorporation of ¢
datasets. This paper reviews the literature with different research papers that work on the dg
segmentation of BTs using the FL methodologies. As such, FL helps numerous organizationsgo

that FL can work well for any dataset [1].

Specifically, detection of BT is challenging due to the size, shape, and Iocatior!e turWor, hence the need for
efficient ML. Deep learning and transfer learning-based approaches ar, lained by Amin et al., and they
also made a considerable effort to classify the methodologies used i i@n in general. The current survey
also provides a preliminary background and overview of the difd socjlled with BT diagnostics and the

Privacy threats in healthcare infQrrighti jce are tackled via the application of differential privacy
approaches in an FL environme i ors also investigate the relationship between the accuracy of
diagnostic models and the prote information in BT segmentation tasks. This is the same as what
Atef et al. empha5|ze thajgg ata such as healthcare information is sensitive and that FL has to be used

' several fields of BT management, FL has been shown to have a wide
, Classification, as well as assessing the response of tumors to therapy. The
reflects one of the initiatives to impose some degree of unity into the FL
cgmentation issues raising data privacy and regulatory problems [7], [8]. Newer
cture, for instance, involutional neural networks, have been postulated to improve

range of appllcablllty ‘
FeTS challenge

or different brain tumours, including gliomas and meningiomas. These markers could suggest particular
t ents like EGFR and VEGFR that are significant to improve care [11].

Table 1: Comparison of BT Classification Models and Their Performance

Ref No  Authors Model Advantages Disadvantages Accuracy Year

WCSO- Optimized deep belief High training time due to

0,
DBN network for classification DBN complexity 92.30% 2022

[12] Jemimma et al.



WHHO-
[13] ;ammurthy et based
' DeepCNN
[14] ;/Iankdothu et RCNN
[15] Pranjal CNN +
Agrawal et al. 3D-UNet
[16] Islam et al. FL
Deep Q-
[17] Kumar et al. network
[18] S. Hossainetal. 1VX16
[19] S. Dasetal. CNN
Abiwinanda N Custom
[20] etal. CNN
[21] S. Bhadauriya CNN + EL
et al.
CJHBA-
[22] Deepa et al. based
DRN

Whale-Harris Hawks
optimization  enhances
detection
Improved segmentation
using IKMC, high
accuracy
Automated
segmentation, deep

learning framework
Privacy-preserving,
robust to distributed data

Efficient
Extraction

Feature

High accuracy (96.94%)
with the proposed model
(IVX16).

Achieved high accuracy
(94.39%) and
satisfactory performance.

High Training Accurac

Privacy, in
Hy mization
impro racy

Lower accuracy
compared to other deep
learning models

High computational cost

Requires high
computational resources

Slight accuracy drop

High Computational Cost

The datase
relatively de
learning B264
images
It may r further
generalizatio other
types of rs S@arger
Sag

Validation

High

putational
Resources

Increased complexity in
model implementation

81.60%

95.17%

90%

91.05%

6.94%

94.39%

84.19%

96%

92.10%

2022

2

2022

2024

2019

2018

2023

2023

3. Problem Statement

BTs are life-threatening, requirj
on centralized data collection, ra
Key challenges include:

ethodology:

early a
conc

ate detection for effective treatment. Traditional methods rely
about patient privacy and limiting access to diverse medical data.
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oad and Preprocess Data:

Read MRI images, resize, normalize, and perform one-hot encoding.
.2 Load Train & Test Data:

Load the dataset and split, training and testing sets.
1.3 Define CNN Model:
Define a global CNN (CNN) model.

1.4 Initialize Global Model:
Initialize global model M gjpq1 With weights W giopa

W giobar < InitializeRandomWeights() — — —— —— —
1.5 Split Data Among Clients:



Define the number of clients num_clients
Distribute data evenly among clients.
1.6 Set FL Parameters:

Define num_rounds (total rounds), num_clients (participating clients per round).
Set early stopping parameters: patience and min_delta.
2. Communication Rounds (FL Loop):
For each communication round r from 1 to R (total rounds):
2.1 Distribute Global Model to Clients:

The server sends the latest global model weights W g;4p4; to the selected clients.

Wclients(_ ngobal _______ (2)
2.2 Local Training at Clients (for each client i in C):
Each client trains the model using its local dataset D; for E epochs.
2.2.1 Forward Pass:
Compute predictions y:
Y= MX)——— -~~~ 3)
where X is the input MRI data.
2.2.2 Compute Loss:

Calculate loss L using categorical cross-entropy:
N
1 3 ,
L=- NZ yilog(y;) —————--— (4)
j=1

2.2.3 Backward Pass & Update Weights:
Update local model weights using gradient

Wi<—Wi—7]VL - - -

where 7 is the learning rate.
2.2.4 Send Updated Weights to Server:
After training, clients send up eights W; back to the server.

Odel is evaluated on the test dataset (X¢ese) Yiest)-
ce metrics such as accuracy and loss.

tion accuracy to check for early stopping.
ermination Check:
Decision:
idation accuracy improves:
o Update best accuracy best_acc and reset the patience counter.
validation accuracy does not improve:

o Increase the wait counter.

o If wait > patience, terminate training.
if val_acc — best_acc/<min_delta for patience rounds, stop training.
6. Final Model Deployment:

Once training stops, deploy the final global model M g;0pq; for classification tasks.

The model classifies MRI scans into one of four categories:
(1) Glioma, (2) Meningioma, (3) Pituitary, (4) Non-Tumor.



4.1. Dataset Preparation and Experimental Setup:

The federated learning simulations were conducted on Google Colab Pro+ using a TPU v2-8 with High-RAM
configuration. This environment provided accelerated computation for local client training and global model
aggregation. The FL simulation was implemented using TensorFlow 2.12 and Python 3.10 in a single-machine,
multi-client logical partitioning framework. This setup allowed efficient parallel training of the CNN models
across three simulated clients.

The first step in the chosen methodology is data preprocessing, with the dataset being the basis for training t
CNN model. The effectiveness of a model in improving from the current data and predicting new dat
generalization solely depends on the kind of dataset prepared.

4.2. Data Collection:

This BTC task uses the BT MRI Dataset from Kaggle. It is a combination of figshare, SARTA t
images with 4 classifications, such as gliomas, meningiomas, pituitary tumors, and g Igure
3(a). The data set provided here is how a model will be trained and tested. In gg consists of
1321 gliomas, 1339 meningiomas, 1457 pituitary tumours, and 1595 non-tumor 07 images

for training. For testing purposes, the database contains 300 gliomas, 306 meningI8

405 non-tumor images, for a total of 1311 images [23].
It also means that the differential diagnosis of BT classes will not be gue sin%d because the given dataset
of each class to the model. That is

why the data is divided into train and test sets was carried out to ana d<! s ability to adapt to new data.
The use case supports comprehensive performance evaluation ivergication of data; FL is especially
relevant when several clients/sources’ data are united yhile ¥. This dataset can be useful while
developing a reliable multi-class classification mg ire timely and correct diagnosis of different

types of BTs from MRI.

Glioma Glioma Glioma Glioma Glioma Glioma Glioma Glioma

-~
( u
v aft e )

No Tumor No Tumor No Tumor No Tumor No Tumor

Pituitary Pituitary Pituitary Pituitary Pituitary Pituitary

Figure 3(a): Four Categories: Glioma, Meningioma, No Tumor, and Pituitary

4.1.1. Image Pre-processing:

To ensure that every image is of the same size, we resize them to 128 * 128 pixels in size as shown in figure 3(b)
and (c). This is important because CNNSs require inputs of fixed sizes to be fed into them at all times, thus the
scaling.



Iresized = Resize (Ioriginal ’ (128' 128))

Normalization: Here, normalization consists of simply dividing the pixel values by 255 so that all of these values
are in the 0 to 1 interval. This normalization aids the convergence of model training and averts problems that
pertain to the differences in the scale of inputs.

Ioriginal

Inorm - 255

Label Encoding: The category labels are then changed into a label-encoded format to enable multi-c
classification by encoding the label. It is crucial to encode such labels, which are hereby transformed into a bi
matrix with each class having a column.

1,0,0,0

1,0,
0,1,
0,0

)

labellmem =

coo

= OO

y

[1,0,0,0] is glioma, [0,1,0,0] is meningioma, [0,0,1,0] is no tumor, [0,0,0,1] is pitul

Original

Normalize

50

100

150

200

0 50 100 150 200

Figure 3 (b): Original image

pgure 3 (¢): Normalized image

In addition to resizing and nor
horizontal flipping, and brightn

. alj@augmentation techniques such as random rotations (+15°),
hifts were a#lied to improve generalization and reduce overfitting.

| Layer Specifications

Layer Type Filters Kernel Activation Output Shape
v2D Convolution 32 3x3 RelLU (128, 128, 32)
ng2D Pooling - 3x3 - (42, 42, 32)
2D Convolution 64 3x3 RelLU (42, 42, 64)
MaxPooling2D Pooling - 3x3 - (14, 14, 64)
Flatten Flattening - - - (12544,)
Dense Fully Connected 128 - ReLU (228,
Dense Fully Connected 4 - Softmax 4,

Architecture Components:



e Convolutional Layers: In this work, the input images are first passed through two convolutional layers
to extract features. Even convolutional layers are able to produce several filters for creating feature maps,
considering spatial hierarchies in the images to be learnt.

S =U«K)(1j)) = zZI(i+m,j+n)K(m,n) ——————— @)

m
Where 1 is the input, and K is the convolutional kernel.

Activation Function: The ReLU activation function adds non-linearity to the model so as to allow th
analyze figures that are complex and may be hidden in the data. It is defined as:

f@)=max(0,x) ——————— ®)

Max Pooling Layer: In practice, after each CNN layer, there is a max pooling the size of

feature maps while maintaining important features.

P(i,j) = X )maxd s@i+mj+n)———————
Flattening Layer: Following the pooling layers, the feature maps undergo a
dimensional vector, which is subsequently utilized as input for the fu

Dense Layers: The flattened output is transmitted through dense jg&e

layer utilizes a softmax activation function to generate probalgiles fo distinct classes.

e’
Yi = C
l—le

where z; represents the output of the last dense layer C denotes the number of classes.

4.1.3. FL Setup

To harness the power of FL as sh i re 1 8d 2, the methodology involves distributing the training process
across multiple clients, each wi local . This setup aims to enhance privacy and reduce communication
Costs.

led in Figure 4. The dlstrlbutlon followed an 11D (Independent and Identically
ach, ensuring that all clients received a representative sample of each class. This
s class imbalance across clients and simplifies convergence during global model
Although 1ID partitioning does not reflect the complexity of real-world medical
, it serves as a baseline to evaluate the core performance of the FL-CNN model before

I Model Training: Clients train their models independently for multiple epochs, allowing them to
re meaningful patterns from their respective datasets.

odel Aggregation: After training, clients send their model weights to the central server. Using the
FedAvg algorithm, these weights are combined to update and refine the global model [24].
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—

The dataset was evenly divided among three simulated clients, each receivin
samples and 437 testing samples covering all four tumor classes.

g ‘ﬁ ate 02 training
All the clients train their local model on the allocated dataset. Local trainin Ietswodel
data distribution, boosting generalization.

Local Training

arn from each client's

Training Procedure:

Epochs: Each client trains its local model for a fi of
weights based on training data loss.

s. During each epoch, the model adjusts its

Loss Function: it is a categorical cross-entrop
distributions.

ich compares the anticipated and actual probability

e 1%t and 2" moments of the gradients, and 7 represents the learning rate.

al Model

odel adopts the Federated Averaging (FedAvg) optimization strategy to aggregate local model updates
while ensuring convergence and stability across distributed clients.

Process:

e Model Weight Aggregation: After each communication round, the server gets weights from all the local
clients and finds the average. This updated model is expected to perform better due to diverse training
inputs.



e  Global Model Evaluation: A separate test dataset is utilized after each communication round to assess
the global model's performance and monitor its progress. Accuracy, precision, recall, and other
parameters are assessed.

4.3. Evaluation Metrics

After each training round, numerous metrics are calculated to evaluate the model. These measures reveal the
model's tumor classification abilities. They are

Number of correct prediction TP+TN
1. Accuracy = f predieon . __ YL (13)
Total number of prediction TP+TN+FP+FN
P TP
2. Precision= —— — —— — — — — (14)
TPTP+FP
3. Recall= ———————— (15)
TP+FN u
Precesion XReca
4, F1=2 x —RZE0 (16)

Precesion +Recall

5. Results and Discussion:

Table 3 outlines the weight aggregation process across multiple rounds in an FL set
global weights W, which are either randomly initialized or pre-trained. Each c%en
updated local weights W;t, W2, W2, which are averaged to form th

process continues for multiple rounds.

nitially, clients receive
ins locally, producing
| weight W,,,. This iterative

Table 3: FL Weight Aggregation Across Rounds

Rounds Initial Weights Sentto  Local S After Aggregated Global Weights
Clients Training

0 W, (random/pre-trained) §, W2, w3 TClients train w wg, Wi, w
I ) 1= T3

Wi, w2, w3 w3, W3, W3

1 W, L W3 Wi, W3, w3
W, =——

3
2 Wi, w2, w3 w3, W3, W3

Wl =

3
Wy —3
\ 4 w3, w2, w3 w3, w3, w3
Wl = T

5 W Wi, W2, wi Wi, Wi, wi
Wl =
3
4 provides detailed weight values from the first round of training, showing how the initial weights evolve
after training on different clients. The local weight updates vary slightly across clients, and the final aggregated
weights are obtained by averaging these updates.

Table 4: First 5 rounds of weight tracking

Round Initial Weights  Client 1 Weights Client 2 Weights Client 3 Weights Aggregated Weights




[-0.00278, -

[-0.00488, 0.0, 0.00053, 10.00322,
-0.00029, 0.0, -
! 5.46e-06,0.0,- L :00806, -
0.00821 'o 6]' 0.00167, -0.00321,
T -0.01088, 0.00634]
[-0.00274,
ooy | Loouss,
100943, 0.00035, -0.00492,
0.00943, -

2 000153 . 001418, .
0.00160, _0.00077, 0.00023,
0.01069, -0.01402, 0.00526]
0.00464]

[-0.00142,
S s

‘01995 0.00117, -0.00576,
001295, -

3 0.00087 -0.01683, .
000013 . 0-00058, 0.00096,
0.01376, -0.01536, 0.00692]
0.00563]

[-0.00226,

. 4 -
oongey . o002,

01680, 0.00077, -0.00684,
0.01680, -

4 0.00074 -0.01885, .
000081, . 0:00059, 0.00123,
0.01569, -0.01689, 0.00655]
0.00623]

[-0.00238,
00071, -
8 82331’ _ [:0.00357, -
- ’ 0.00027, -0.00980,
0.01950, -
> 0.00073 -0.02360, .
' ' 0.00052, 0.00164,
000102, - PN O
0.01699, .01874,0.
0.00586]

[-0.00407, 0.00287,
-0.00313, -0.00916,
-0.00169, -0.00166,
-0.01003, 0.00526]

[-0.00128, 0.00297,
-0.00390, -0.01158,
-0.00082, 0.00049,
-0.01354, 0.00642]

[-0.00206, 0.00160,
-0.00496, -0.01586,
-0.00088, 0.00086,
-0.01559, 0.00640]

[-0.00294, 0.00028,
-0.00888, -0.02133,
-0.00092, 0.00094,
-0.01729, 0.00601]

0.00101,
0.00689]

[-0.00137, 0.00242, - [-0.00274, 0.00159, -
0.00147, -0.01108, - 0.00261, -0.00943, -
0.00121, 6.04e-05, - 0.00153, -0.00160, -

0.01117, 0.00232] 0.01069, 0.00464]

[-0.00102, 0.00202, - [-0.00142, 0.00178, -
0.00317, -0.01310, - 0.00399, -0.01295, -
0.00102, -0.00034, - 0.00087, 0.00013,

0.01370, 0.00522]

0.01376, 0.00563]

[-0.00316, 3.79e-05,
0.00779, -0.01769,
0.00076, 0.000&4
0.01612, 0.00,

-0.00238, 0.00071, -
- 0.00731, -0.01950, -
- 0.00073, 0.00102, -

0.01699, 0.00586]

[-0.00419, -0.00132, - [-0.00384, -0.00059, -
0.01008, -0.02572, - 0.00973, -0.02439, -
0.00085, 0.00084, - 0.00071, 0.00116, -

0.01864, 0.00613] 0.01846, 0.00616]

cross multiple rounds. Over time, the weights exhibit gradual

ing Across Rounds

rocess. The values show steady refinement, with weight magnitudes
e training data and optimization updates.

Aggregated Weights

.0137555245, 0.005633408]
-0.002258096, 0.0009357197,
0.01568906, 0.006226768]
0.016985092, 0.005856558]
0.018464753, 0.0061602187]

0.020082794, 0.006026043]

[-0.0023834368, 0.00071012543, -0.00730547,

[-0.0038421392, -0.0005862848, -0.009725381,

-0.006170785,

-0.0167961,

-0.009433081, -0.0015250972, -0.0016037474,

-0.012950784, -0.0008692239, 0.0001253155,

-0.0007399197, 0.00080726884,

-0.019496322, -0.0007253774, 0.0010201551,
-0.024392635, -0.00070768816, 0.001162873,

[-0.004591774, -0.0015902803, -0.010442038, -0.025964718, -0.00034294472, 0.0012599488,



[-0.004801322, -0.0015761176, -0.011590994, -0.027749022, -0.00031792888, 0.0011195856,

! 0.021074397, 0.0061880276]

8 [-0.006449559, -0.0030554421, -0.013810273, -0.0312782, -0.00045619532, 0.00038617593, -
0.023012921, 0.0057537057]

9 [-0.0074276496, -0.0038238715, -0.014904665, -0.034950763, -0.0001783007, 0.00064836233, -
0.024750333, 0.004756679]

10 [-0.00835441, -0.003880404, -0.014762703, -0.03496344, -0.00010734046, 0.00022866519, -
0.026126262, 0.0044696257]

11 [-0.009866726, -0.0036393318, -0.017097149, -0.0407607, -0.00035802135, -0.00077064
0.027876195, 0.004569278]

12 [-0.009556978, -0.001319146, -0.016424773, -0.039752785, 0.00006414514, -0.00Q86864 -
0.029389925, 0.004505746]

Table 6: Global Model Performance Across Training Rounds

Global

Rounds Accuracy | Loss Precision | Recall giore
1 0.8444 0.4582 | 0.8702

2 0.8986 0.3404 | 0.8991

3 0.9451 0.2078 | 0.9465

4 0.9512 0.1965 | 0.9519

5 0.9657 0.145 | 0.9664

6 0.968 0.1309 | 0.9687

7 0.968 0.1369 | 0.9687

8 0.9687 0.1632 | 0.9687

9 0.9695 0.1452 | 0.9695

10 0.9718 0.1629 | 0.97 0.9718 .
11 0.9687 0.1575 | 0. 687 | 0.9686
12 0.9748 0.1483 9 748 | 0.9748

As shown in both Figurg
improves, reaching 97 4
capability over ti

e e global accuracy begins at 84.44% in the first round and progressively
d 12. This steady growth demonstrates the model's improving generalization

acy across Rounds

1 2 3 4 5 6 7 8 9 10 1 12
Rounds

Figure 5: Global Accuracy across rounds



Figure 6 shows that the Global loss, which quantifies the model's error, follows an inverse trend to accuracy,
decreasing from 0.4582 in round 1 to 0.1483 in round 12. A lower loss value signifies improved prediction
reliability and reduced misclassification. The steady decline demonstrates continuous optimization during
training.

Global Loss across Rounds (Gradient Effect)
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Figure 6: Global Loss across rounds

The global precision, as shown in Figure 7, reflecting the model’s ability to corrw idenW positive predictions
while minimizing false positives, begins at 0.8702 and reaches 0.97, h®Minal round. This improvement
suggests enhanced confidence in positive classifications.
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Figure 8: Global Precision across rounds

Finally, the global F1 score is improving from 0.8477 in the first round to 0.9748 in round 12. This indicates that
the model effectively balances precision and recall, achieving an optimal trade-off between detecting positive
cases and minimizing false alarms.
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Figure 9: Global F1 Score across rounds

Table 7: Validation Performance Across Rounds

Validation
Rounds
Accuracy | Loss Precision e Status (Validation)
1 0.8581 0.5126 | 0.8661 </ Resét (Improved)
2 0.9031 0.3757 | 0.9037 </ Reset (Improved)
3 0.9161 0.3573 | 0.9165 « Reset (Improved)
4 0.9436 0.2446 | 0.9456 < Reset (Improved)
5 0.9512 0.2271 | 0.9519 «/ Reset (Improved)
6 0.9314 0.2651 o238 0.9312 %) No Improvement (Patience:
7 0.9573 0.2109 0.9576 7 Reset (Improved)
8 0.9641 0.9641 | 0.9641 « Reset (Improved)
9 0.9748 0.9748 | 0.9748 < Reset (Improved)
0.9664 09657 | 0.9664 /\ No Improvement (Patience:
1/3)
09512 | 09512 /\ No Improvement (Patience:
2/3)
0.9733 | 0.9733 ® Early Stopping (Patience: 3/3)

sents key validation metrics that assess the model's performance on unseen data over 12 training
ese metrics include validation accuracy, loss, precision, recall, and F1 score, as well as the patience
which reflects performance stability and stopping conditions.



Validation Accuracy with Best Values, No Improvement, & Improvements
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Figure 10: Validation Accuracy analysis

Validation accuracy begins with 85.81% in round 1, improving dilwoss ost rounds. Notable
improvements occur in rounds 2, 3, 4, and 5, where accuracy reache owever, in round 6, a slight dip
to 93.14% is observed, marking the first instance of no improvem| jence: 1/3). After recovering in
subsequent rounds and peaking at 97.48% in round 9, accuracy atesgghtly in rounds 10 and 11 before
reaching 97.33% in round 12 as shown in figure 10.

Global vs Validation Accuracy Comparison with Best Val atience Tracking

1.000

0.9748
0.975

arly Stopping

0.950 -

o
0
]
o

Accuracy
°
©
(=]
8

0.875 1 —e— Global Accuracy
—e— Validation Accuracy
Accuracy Improved

Best Global Accuracy
Best Validation Accuracy
Early Stopping

Best Accuracy Reference

Heo¢

o 11 12

o4

5 6 7 8
Rounds

alidation Accuracy

4

s for both global and validation metrics show an initial sharp increase, indicating strong learning in
unds. The peak global accuracy reaches 0.9748 in round 9, while the peak validation accuracy also
es 0.9748 in round 9, marking the best performance achieved by the model.

After round 9, fluctuations in validation accuracy become evident, with no improvement warnings ( A. ) appearing
in rounds 10 and 11. This tells that the performance of the model is no longer increasing significantly and might
be stabilizing or slightly degrading. By round 12, the final recorded global accuracy is 0.9748, and the validation
accuracy is 0.9733, showing a slight drop in validation performance. Due to the lack of improvement over
consecutive rounds, early stopping (®) is triggered in round 12, ensuring that training halts to prevent overfitting.
The dashed reference line at 0.9748 serves as a benchmark for tracking accuracy changes, allowing for easy
identification of the best performance achieved during training. The comparison between global and validation



accuracy highlights the model's learning progression and stability, helping to assess its generalization capabilities
effectively.

Validation loss decreases significantly from 0.5126 in round 1 to 0.1656 in round 9, indicating better
generalization. However, in later rounds, minor fluctuations in loss are seen (e.g., round 11 at 0.214), signaling
potential overfitting. The early stopping condition further confirms this triggered in round 12 when performance
ceased to improve consistently.

Global vs Validation Loss Comparison with Best Values & Patience Tracking
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Figure 12: Global vs Validation Loss

Figure 12 showcases the model’s loss progression over multj
minimizes errors. Initially, both global and validation lo

e rojhds, demonstrating how well it
hib decline, indicating significant
.1309 T Tound 6, while the lowest validation
inimizing errors before fluctuations begin.

in rounds 10 and 11. This suggests potential overTNgag
set despite continued optimization on the global m"&gRl. By round 12, the final global loss is 0.1483, and the

optimal generalization.
The dashed reference line at 0.1309
between global and validation Ip

overfitting. The observed stabi g
need for early stopping to rgai

chmark for tracking the lowest loss achieved. The comparison
odel convergence, ensuring that it is neither underfitting nor

score shown in figure 15, a balanced measure of precision and recall, follows a nearly identical
a peak of 0.9748 in round 9. After a minor decline in rounds 10 and 11, it stabilizes at 0.9733 in
nfirming a well-balanced model performance.

lobal vs Validation Precision Comparison plot highlights the model's precision performance over multiple
training rounds. Precision represents the accuracy of positive predictions, making it a crucial metric for evaluating
classification effectiveness.



Global vs Validation Precision Comparison

0.975 A 9748 9748
< - Early Stopping
0.950 1

0.925 1

0.900 4

Recall

0.875 1

—&— Global Recall

—e— \Validation Recall
Recall Improved

Best Global Recall
Best Validation Recall
Early Stopping

Best Recall Reference

1 2 3 4 5 6 7 8 9 10 11 12
Rounds

0.850 1

0.825 4

He oo

0.800 4

Figure 13: Global vs Validation Precision

Initially, both global and validation precision show a steady increase, indicating 0 improved ability to
classify positive instances correctly. The highest global precision is 0.9 inr 12, aligning with the highest
validation precision of 0.9748 in round 9. The dashed reference line a kgnifies the best recorded precision
value.

From rounds 1 to 5, there is a rapid increase in both metrics,
after round 6. A minor dip is observed in rounds 6 and
possibly due to model overfitting or variations in d
stabilizes at 0.9748, which is also the final reco

vV ion pacision starts fluctuating slightly
ng sli sistencies in validation precision,
. However, by round 12, the global precision
n before early stopping is applied.

The model maintains a strong balance between glo™
stopping at round 12 ensures that training does
maintaining the highest precision achieved. The trend 8
optimal precision performance across t Ning process.

The Global vs Validation Recall Com illustrates how well the model identifies positive instances over
multiple training rounds. Recall 4 ric in classification tasks, especially when missing positive
instances can be costly.

¥validation precision, with minimal deviations. The early
continue unnecessarily, preventing overfitting while
prved in the plot signifies a well-trained model with

Gl i Recall Comparison

9748 .9/48
Early Stopping

—8— Global Recall
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4@ Recall Improved
@ Best Global Recall
@ Best Validation Recall
[l Early Stopping
Best Recall Reference
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Figure 14: Global vs Validation Recall



From the beginning, both global and validation recall show a consistent upward trend, with rapid improvement in
the initial rounds. The highest global recall is 0.9748 in round 12, while the highest validation recall is also 0.9748
in round 9. The dashed line at 0.9748 represents the best recall value attained.

During the early rounds, validation recall closely follows global recall, showing an increasing trend until round 6,
where a slight drop is observed. This fluctuation indicates that the model may have faced minor inconsistencies
in learning patterns. However, recall stabilizes again from rounds 7 to 9, reaching its peak at 0.9748 in round 9.
A minor dip follows in rounds 10 and 11 before validation recall returns to 0.9748 in round 12, aligning with
global recall.

Early stopping is applied in round 12, ensuring that training does not proceed further to avoid overfitting.
stable recall values suggest that the model has achieved its best possible performance, striking a balance petw
learning efficiency and generalization capability.

model performs optimally in classification tasks.
e Peak Global F1 Score is 0.9748.
e Peak Validation F1 Score is also 0.9748.
e Round 12 Performance: At round 12, both the global and validation F1 s
was also marked as the early stopping point.

Global vs Validation F1 Score Comparison ,

0.975 + 9748 L9748
ly Sto|

ached 0.9748, which
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0.925 4

0.900 1

Recall

0.875 4

0.850 1
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Best Validatioll Recall
Early Stopping
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0.800 1

The plot indicates that t proved steadily in the early rounds, with noticeable increases in performance.
However, after r i
at round

Patien atu

rovides an indication of model stability. Throughout rounds 1 to 5, consistent improvements
jence counter (&7 Reset (Improved)). However, in round 6, no improvement is observed, triggering
echanism (4. No Improvement: 1/3). After a temporary improvement, another decline occurs in
nd 11 ( 4. Patience: 2/3). By round 12, when no further improvement is achieved, the model reaches
ience threshold, leading to @ Early Stopping (Patience: 3/3). This prevents unnecessary training beyond
optimal performance, reducing overfitting risks.

Early stopping was triggered at round 12 due to the validation accuracy plateauing for 3 consecutive rounds
(patience = 3). This mechanism prevents overfitting and conserves computational resources. The minimal drop
between training and validation performance after round 9 (less than 0.2%) suggests no negative impact on
generalization. On the contrary, it helped retain the model's stability.



The validation metrics demonstrate the model's robust learning curve, with steady improvements in accuracy,
precision, recall, and F1 score. However, the fluctuations in later rounds indicate potential overfitting,
necessitating early stopping. The strategic use of patience monitoring ensures optimal model performance without
unnecessary training, maintaining a balance between accuracy and generalization.

6. Comparative Analysis:

Table 8: Accuracy Comparison of BT Classification Models

Ref No Authors Model Accuracy
[12] Jemimma et al. WCSO-DBN .
[13] Rammurthy et al. WHHO-based DeepCNN

[14] Vankdothu et al. RCNN

[15] Pranjal Agrawal et al. CNN

[16] Islam et al. FL

[17] Kumar et al. Deep Q-network ,

[18] S. Hossain et al. IVX16 96.94%

[19] S. Dasetal. CNN 94.39%

[20] Abiwinanda N et al. 84.19%

[21] S. Bhadauriya et al. 96%

[22] Deepa et al. 92.10%
Proposed Model 97.48%

The table 8 presents a comparative an
their respective accuracy scores.
accuracy of 97.48%, outperforig

Is, FedAvgCNN, the proposed method, achieves the highest
hes such as 1VX16 (96.94%) and CNN + FL (96%). Notably,
(95. also demonstrate high performance, indicating the effectiveness
of advanced deep learnig i s. Traditional CNN-based models, such as those proposed by Pranjal
Agrawal et al. (90%) 3 94.39%), exhibit competitive results but fall short compared to more
complex ensemble and hitectures. The WHHO-based DeepCNN model (81.6%) records the lowest

accuracyQ




Accuracy Comparison of Various Models

FedAvgCNN 97.48%|

WX16 o 96.94%

CNN + FL 96.00%

Deep Q-network

RCNN 4

CNN
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CJHBA - 92.10%

FL 91.05%
CNN - 90.00%
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Figure 16: Accuracy comparison of various models

These findings are visually supported in figure 16, which hi
using a blue outline. The graphical representation ef
models, making it easier to compare performancg
visualization by showcasing the general progre

hts rforming model (FedAvgCNN)
rates the accuracy distribution across different
oration of a trend line further enhances the
various approaches.

Unlike traditional centralized CNNs, our FL-(Ng@l model incorporates client-specific data without
sharing raw images. Compared to prior FL approa®g@s, our design includes early stopping, systematic
weight tracking across rounds, an dation-based performance monitoring that ensures robust
model convergence.

el was, rained using the same dataset. It achieved an accuracy of
AvgCNN’s 97.48%. This demonstrates that federated learning not
e or exceed centralized performance. Moreover, compared to
del in Islam et al. [16] (91.05%) and Bhadauriya et al. [21] (96%), our

A centralized CNN baseline
96.21%, slightly lower thg
only preserves priva
other FL approaches

tion. To address this, future work can explore adaptive learning rate scheduling to stabilize
ated knowledge distillation to enhance generalization, and dynamic client selection to prioritize
updates.

er challenge was the computational overhead associated with FL. For local model training and
communicates updates, the process demands high computational resources and bandwidth. To reduce this burden,
future direction will be focus on model compression like pruning & quantization, efficient aggregation methods
such as FedProx and FedAdam, and asynchronous FL, where clients update the global model at different speeds
instead of synchronously.

Although Federated Learning (FL) protects user data, it is still at risk of attacks. Hackers can extract private details
from model updates or inject harmful data to manipulate training. To improve security, future research should
focus on adding noise to updates (differential privacy), encrypting data aggregation (secure multi-party



computation), and using strong filtering methods to block malicious inputs. These steps will make FL models
safer, more reliable, and more efficient.

Future improvements include computing ROC-AUC metrics for each class using probability vectors. This will
help in assessing performance where class imbalance or false-positive risks are critical, such as in high-stakes
clinical settings.

7. Conclusion:

This work evaluated an FL approach using FedAvg combined with a CNN for distributed BTC tasks. We asses
the performance of our model over 12 training rounds, monitoring key validation and global metrics suc
accuracy, loss, precision, recall, and F1 score. The model demonstrated a consistent improvement in perfaamal
during the initial rounds, with significant gains in validation accuracy and a steady reduction in valy#to
Notably, the model achieved its peak validation accuracy of 97.48% in round 9, with correspondirl validat

performance were observed in later rounds, leading to an early stopping at round 12 dugdg vali
stagnation. Despite this, the global evaluation metrics at the final round remained g i

of 97.48%, a global loss of 0.1483, and consistently high precision, recall, and 4i§# highlight
the model's strong generalization capabilities and effectiveness in classifiC%gs stopping
mechanism effectively prevented overfitting, ensuring optimal performance Vgha@Minimizing unnecessary
training. Future work can explore fine-tuning strategies, alternative architectures, or c3g@gugmentation techniques
to enhance performance and stability further. These findings confirm that FedAy@y+ @l is effective for FL-
based classification, balancing accuracy and computational efficiency. E Wmay explore personalization
ce FL performance.

Beyond accuracy, the proposed FL-CNN model is highly scala for real-world deployment in
hospital networks. Since each client trains locally rameters, the framework ensures
patient privacy and complies with medical data reg ITe.J. AA, GDPR). The system can be extended to

multiple institutions, making it suitable for m
and improving clinical outcomes.

Moreover, the lightweight nature of the proposed FL-Cg@l model, combined with its high accuracy and privacy-
preserving design, makes it highly scalable and suitab™@for real-world deployment across multiple hospital
settings, where data sharing is restricte, o ethical and regulatory concerns.
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