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Abstract 

The emergence of Internet of Things (IoT)-enabled Wireless Sensor Networks (WSNs) has revolutionized 

real-time monitoring in various domains, from environmental surveillance to industrial automation. Cluster head (CH) 

selection is also a complex process to perform efficiently and with low energy consumption, most particularly in a 

large-scale dynamic network. The paper presents EdgeAware-CHNet, a new fusion-decompose architecture, 

implemented by deep learning that allows adaptive and intelligent CH selection, information privacy, and minimal 

energy costs. The proposed system involves deployment of a MobileNetV2-Temporal Convolutional Network (TCN) 

hybrid model at edge devices; these devices learn the local patterns of data, using which they coordinate updates of 

data based on the Federated Averaging (FedAvg) algorithm without raw data sharing. Further, the strategies of CH 

selection are improved using a Deep Q-Network (DQN)-based reinforcement optimization module on the basis of 

energy efficiency, latency, and feedback on packet delivery. The soft-attention layers reinforce the spatial 

prioritization of CH candidates, which can make the system dynamic to the topology variances and a dynamic 

workload. Full simulation demonstrates the superiority of EdgeAware-CHNet in the important performance scales as 

compared to traditional and learning-based baselines. This model suggested a 96.45% degree of accuracy of CH 

selection, the network lifetime of 1820 rounds, and a PDR of 97.22, which is considerably higher than such models 

as LEACH, TEEN, and DQN-CH. Due to the synergistic integration of federated intelligence, reinforcement learning, 

and edge-aware optimization, EdgeAware-CHNet is a highly efficient and secure framework that can be used to 

address present-day WSN deployments.  

Keywords: Federated Learning, Cluster Head Selection, IoT, Wireless Sensor Networks, Edge Computing, Deep 

Learning, DQN, Energy Efficiency, Packet Delivery Ratio, Attention Mechanism. 

1. Introduction 

The spread of the Internet of Things (IoT) has resulted in the multiplicative increase in connected devices, 

many of which are run in Wireless Sensor Networks (WSNs). Such networks include spatially dispersed sensor nodes 

sensing an environmental or physical condition including temperature, humidity, vibration, or motion and passing the 

data to a central sink node [1] [2] [3]. The field of autonomous operation as well as the possibility of functioning under 

extreme conditions or in remote areas allows WSNs to find widespread use in fields such as healthcare, agriculture, 

smart cities, industrial automation, and military surveillance. One of the basic issues within a WSN is energy 

management. Sensor node usually run off a limited battery supply and it is not always possible to recharge or replace 

the nodes. Therefore, methods of energy savings at the same time ensuring that there is no loss of communication 

delivery or high latency, are important to the sustainability of these networks. Cluster-based routing protocols are one 

of the energy-saving strategies which have drawn a lot of attention [4] [5] [6]. In such protocols, nodes are grouped to 



form clusters with a Cluster Head (CH) that collects and transmits data to the base station, thus decreasing unnecessary 

transmissions and energy [7]. 

Some clustering algorithms were proposed over the years. Conventional algorithms such as, LEACH (Low 

Energy Adaptive Clustering Hierarchy) TEEN (Threshold-sensitive Energy Efficient sensor Network protocol) and 

PEGASIS are probabilistic or threshold choosing CH. Albeit these techniques are computationally cheap, they are 

usually oblivious of contextual parameters like residual energy, link quality, and node centrality [8] [9]. They 

experience quick node depletion, imbalance in energy consumption, and poor routing of data. The most progress has 

been made in the recent entry of machine learning (ML) and deep learning (DL) processes into WSNs. Models 

including Random Forests, Support Vector Machines, Convolutional Neural Networks (CNNs) have been used both 

to increase CH selection accuracy as well as to predict network behavior [10] [11] [12]. Most ML/DL approaches are 

computationally centralized, which is problematic regarding privacy, particularly when the transmitted sensor 

information involves sensitive data: it might be sent to distant servers to undergo training. In addition, deep learning 

models are computationally demanding and are not well suited to run an edge device with a limited computing section 

[13] [14] [15]. Figure 1 illustrates the process of adaptive cluster head selection in a scalable IoT-enabled wireless 

sensor network. 

 

Figure 1. Adaptive Cluster Head Selection in IoT-Enabled WSNs 

Federated learning (FL) has thus become a revolutionary tool in dealing with such issues. The use of FL 

allows training several models on edge nodes without exchanging raw data, which allows preserving privacy and 

minimizing communication difficulties. Currently, available FL-based CH selection schemes such as FL-CH and FL-

BS are limited in terms of scalability, should not have dynamic feedback, and they never prioritize CH selection based 

on locations. Reinforcement learning incorporated in the selection of CHs has been promising. DQN Deep Q-

Networks enable agents to perform an optimized learning algorithm with respect to CH policies that uses a set long-

term rewards derived of networks states. These models are however time consuming with large amounts of training 

data and do not capture the temporal dependencies in the sensor behavior. In order to surpass the shortcomings of 

existing models, we suggest a highly flexible and realistic framework titled EdgeAware-CHNet. The framework 

presents a federated deep learning framework based on MobileNetV2 and Temporal Convolutional Networks (TCNs) 

to collect spatio-temporal features in an edge-level. FedAvg is used to aggregate these features to a global model that 

is used to make CH selection decisions. A reinforcement component based on the DQN approach is also introduced 



to update the CH selection policy according to the rewards provided by dynamic network. Attention mechanism is 

used to prioritize spatially significant nodes, to improve CH decision-making process further. This combination of FL, 

RL, and attention provides the resilience of CH selection strategy that is admirable and that consumes lower energy 

and is intelligent enough. 

1.1. Main Contribution of the Work 

• An original federated deep learning framework of CH selection in IoT based WSNs is proposed through 

MobileNetV2 and TCN. 

• Deep Q-Network-based reinforcement feedback module integration to dynamically optimize CH 

strategies. 

• Use of an attention mechanism to give priority to the spatially central and energy-rich nodes in selection 

of CHs. 

• The use of lightweight and resource-starved models at the edge to make decisions in real-time, without 

giving up energy. 

• Design of an energy-friendly load balancing and opportunistic routing scheme to reduce the latency and 

to extend the lifetime of the networks. 

Section 2 provides a survey of related studies, highlighting limitations in traditional and learning-based CH 

selection methods. Section 3 details the proposed EdgeAware-CHNet methodology, including sensor deployment, 

federated training, and adaptive optimization. Section 4 describes the results and discussion, including comparative 

performance metrics across ten models. Finally, Section 5 concludes the paper and outlines future directions for 

extending the framework in real-world WSN deployments. 

2. Related Work 

The ability of the Internet of Things (IoT) to send and receive data between devices means that it is essential 

in smart infrastructure, as well disaster response. In order to deal with energy efficiency in smart cities, this article 

proposes a hybrid genetic algorithm (GA)-based protocol that consists of greedy mutation strategy over IoT based 

heterogeneous wireless sensor networks (WSNs) [16]. The method uses weighted fitness criterion on the node density, 

remaining and average energy, as well as distance. Even more, the performance is boosted by a 3-tier node 

heterogeneity model and energy-efficient deployment strategy. The suggested approach increases network life by up 

to 31.41% more than the current GA-based algorithms, representing its sustainability of smart city systems. 

The Internet of Things (IoT) has been changing the face of agriculture, empowering it with real-time control 

over different factors influencing the environment such as temperature, humidity, and soil moisture, improving the 

process of crop management and yield. Nevertheless, sensor data is very huge, which poses cumbersome processing 

and communication problems [17]. An efficient clustering algorithm was presented with the modification of the fuzzy 

logic to determine cluster heads (CH) and an improved Crow swarm optimization algorithm (ECSO) in order to find 

the best data delivery path. Simulation output of a smart agricultural system indicates that this strategy yields better 

performance values-68 Mbps throughput and a 90.9% packet delivery indicator than the current approaches perform 

in terms of energy consumption and delay as well as communication integrity, thereby enhancing productivity and 

profitability. 

Wireless Sensor Networks (WSNs) and the Internet of Things (IoT) are revolutionary technologies that are 

redefining industries such as agriculture, healthcare, environment monitoring among others. IoT-based WSNs in 

agriculture comprise the application of a sensor in soil moisture monitoring, crop health, irrigation, and temperature 

that help make intelligent decisions and enhance yields. The performance however is hampered by the energy and 

memory constraints of sensors, especially on large scale deployments [18]. A solution to this is what we call EEDC, 

an Energy Efficient Data Communication with Region based hierarchical Clustering towards Efficient Routing 

(RHCER). The multi-tier structure also with the use of tier subdivision employs a multi-criteria decision to choose the 

head in the cluster for a balanced load distribution and multi-hop communication which is energy efficient. Through 

simulations, the energy saved by simulation is 31% and the drop ratio of packets increases to 38%. 



The Internet of Things (IoT) has revolutionized agriculture since it allows real-time tracking of environmental 

conditions such as temperature, moisture, humidity, and crop development. Although this enhances better decision-

making and grain production, the large amount of data that is collected is a challenge to handle [19].  That the use of 

modified fuzzy logic to select the cluster head (CH) and the use of Enhanced Crow Swarm Optimization (ECSO) as 

a means of optimal routing assisted by the Whale Optimization Algorithm (WOA). Throughput (68 Mbps), packet 

delivery ratio (90.9%), delay and energy efficiency have shown a improvement in simulation results of a smart 

agriculture scenario which outsmarts competitors when it comes to agricultural productivity and profitability. 

The major constraint in the IoT-enabled Wireless Sensor Networks (WSNs) is energy dissipation, and thus 

optimum utilization of energy is crucial to enhancing the lifespan of the network. Clustering is a suitable approach of 

load balancing and scalability. A scheme involving Genetic Algorithm (GA) proposed to overcome energy waste [20]. 

Stochastic Cluster Head Selection Model (SCHSM) uses the factors such as node energy, node distance, node density, 

node capacity in the fitness formula. Optimized in such a way as to be used on networks of multiple sink nodes that 

move, the protocol not only enhances the distribution of energy, but also reduces communication holes through some 

sort of sink location. There is also conformation on simulation results which show that the protocol improves network 

performance.  

3. Methodology 

EdgeAware-CHNet uses WSN nodes that are deployed in a dynamic environment using IoT facilities. 

Environmental and connectivity data are gathered at each node, and preprocessed locally. Each edge device is trained 

with a MobileNetV2-TCN model to have the ability to extract spatiotemporal features and weights on the model will 

be averaged with FedAvg. The global model is used to compute CH probabilities and attention weighting is also used. 

A Deep Q-Network improves on these choices according to rewards of the network such as latency and energy 

efficiency. The final CH list entails edge-aware routing and workload scheduling to get optimal WSN performance. 

Figure 2 shows the architecture of proposed model. 

 

Figure 2. Architecture of Proposed Model 

3.1. Sensor Deployment and Network Initialization 



EdgeAware-CHNet remains anchored on the strategic positioning of heterogeneous wireless sensor network 

(WSN) nodes that are IoT-enabled. These sensor nodes are dispersed across an area of varying sizes of monitoring, 

which is often modeled as a 500m width by 500m length since most applications use this size of the field, however, 

to suit the applications need the framework can be scaled to a larger or smaller area. The deployment assumes different 

densities of the nodes, such as from sparse to ultra-dense nodes, to present realistic scenarios of the scalability 

challenges. Nodes have a special sensing system that is custom to the environmental monitors like a temperature, 

humidity, vibration, or motion sensor. A given identifier is introduced to each node, and it is set at a few geographic 

coordinates randomly or with the help of a grid structure that enables a proper spatial distribution. Besides a 

geographical position, nodes will be initialized with remaining batteries at different levels, namely between 0.5 and 

1.0 J, simulating different battery levels. To emulate the short-range transmission body seen in energy-constrained 

WSNs, their range of communication is normally limited to 50 meters. There is also disparity in hard ware features 

i.e. CPU speed, memory size, sensing interval in the sensor nodes. The system distinguishes common nodes and 

gateway nodes or edge servers that are intermediaries between the WSN and the cloud. These edge servers are more 

computationally and storage-sufficient, and they become very vital in both the federated learning process and cluster 

administration. The parameter initialization of node mobility in mobile sensor setup and assignment of neighbor lists 

in accordance with their vicinity and link quality is also part of initialization procedure. 

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

                                             (1) 

Where 𝑑𝑖𝑗  is the Euclidean distance between nodes 𝑖 and 𝑗 and (𝑥𝑖 , 𝑦𝑖), (𝑥𝑗 , 𝑦𝑗) are coordinates of nodes 𝑖 

and 𝑗. 

3.2. Data Acquisition and Local Preprocessing 

After the integration and initialization of the nodes, monitoring and data acquisition becomes constant. Every 

node in the network measures environmental factors e.g. temperature, humidity, sound, or gas, at a regular time 

interval depending on the nature of sensor. At the same time, it collects metadata that is essential in handling the 

network, such as Received Signal Strength Indicator (RSSI), Signal-to-Noise Ratio (SNR), link quality, battery level 

and mobility index (of mobile nodes). These data points are not only necessary when performing analysis specific to 

application, but they are also significant in sustaining health and structure of the network. Raw sensor data however 

are typically prone to noise following physical interference, hardware inaccuracies, and environmental influence. 

Thus, the nodes will perform lightweight local preprocessing to enhance the integrity of data prior to training the 

models. 

𝑧 =
𝑥 − 𝜇

𝜎
                                 (2) 

 Where 𝑥 is the raw input value, 𝜇 is the mean of the feature, 𝜎 is the standard deviation of the feature and 𝑧 

is the normalized output. The preprocessing pipeline starts with anomaly detection which is performed with a filter 

based on moving average to remove temporary upward and downward fluctuations in data values. Outliers outside of 

a particular threshold of standard deviations are removed or smoothed according to local heuristics. Then the data is 

filtered and afterward, Z-score normalization is performed in order to make the data standard, so that features like 

RSSI or battery levels have a zero mean and unit variance. This avoids the feature dominance, and the local training 

convergence is faster. Location updates in mobile WSN are also normalized around prior movement centroid in order 

to maintain context that is consistent. Timestamps are synced with the lightweight protocols to make time-series 

consistencies of edge model inputs. The locally preprocessed information is next inserted into a temporary sliding 

buffer having a fixed window size, so that this information is accessible in training the local model and also said 

information is not unnecessarily duplicated in the memory. 

3.3. Local Edge Model Construction 

In order to facilitate the decentralized intelligence in WSNs, a lightweight model can be located in each edge 

node, and the model can learn and make decisions in the local level. In contrast to the CNN-BiLSTM models and 

variants, that, despite being efficient, might require a lot of processing resources, EdgeAware-CHNet has a more cost-



efficient architecture, the MobileNetV2-Temporal Convolution Network (TCN) hybrid. MobileNetV2 is the ladder to 

extracting feature/characteristics-rich and spatial representations of structured sensor data. It also utilizes depth wise 

separable convolutions which help to decrease the number of parameters and computational requirements thus, it is 

well-suited to resource-constrained environments at the edge. 

𝑦(𝑡) = ∑ 𝑥(𝑡 − 𝑟 ⋅ 𝑘) ⋅ 𝑤(𝑘)

𝐾−1

𝑘=0

                           (2) 

Where 𝑦(𝑡) is the output at time 𝑡, 𝑥 is the input signal, 𝑤(𝑘) is the kernel weights, 𝑟 is the dilation rate and 

𝐾 is the Kernel size. The Temporal Convolution Network (TCN) on top of MobileNetV2 exploits the time-based 

dependencies encountered in sequential data like RSSI or battery level trends. TCNs also employ the causal 

convolution and dilation to conserve temporality and long-term memory, but unlike LSTMs and GRUs do not employ 

recurrent connections. This architecture thereby, lowers the latency and heightens parallelism throughout training and 

inference. The end-product of the hybrid model is an output of low-dimensional feature vector containing the spatial 

features of the local surrounding and the temporal features of node. They are computed as the quality scores assigned 

to nodes these feature vectors are used to determine whether the node will be selected as a Cluster Head (CH) or not. 

In order to avoid over fitting as well as to avoid overloading the local node, early stop conditions and drop out 

regularization are used. The data are not exchanged, as a part of the trained model parameters are transferred to the 

edge server in the case of federated aggregation. 

3.4. Federated Learning-Based Model Aggregation 

EdgeAware-CHNet incorporates a Federated Learning (FL) in order to optimize the global model globally 

to reduce overhead in data transmission and maintain privacy. Unlike uploading the raw sensitive data to a central 

storage or server, every node would train the MobileNetV2-TCN model independently on their local data. Once the 

local model training of a specified epochs has been performed, the nodes transmit the current weight of this model 

into a subsequent aggregator, which is, in most cases, using a more powerful edge server or gateway node. 

𝑤𝑡+1 = ∑
𝑛𝑘

𝑛
𝑤𝑡

(𝑘)

𝐾

𝑘=1

                                 (3) 

Where 𝑤𝑡+1 is the aggregated model weights at round 𝑡 + 1, 𝑤𝑡
(𝑘)

 is the model weights from client 𝑘 at round 

𝑡, 𝑛𝑘 is the number of samples at client 𝑘 and 𝑛 = ∑ 𝑛𝑘
𝐾
𝑘=1  is the total number of samples across clients. These updates 

are aggregated into a single global model by the server via the Federated Averaging (FedAvg) algorithm. FedAvg 

takes an average of the parameters of the local model which are weighted by the number of the samples each node in 

training used. This approach guarantees that models of more active nodes will have a relatively bigger impact on the 

worldwide update. This model is subsequently redistributed to the nodes, so the network performs the same 

throughout. In addition to ensure additional security, lightweight homomorphic encryption can optionally be used to 

encrypt model updates. This federated paradigm is able to guarantee that sensitive sensor data in the node would not 

be available outside the node but still support collective intelligence so that CH can be better predicted and systems 

are more responsive. The global model hence progressively optimizes on several rounds, including various patterns 

of node behavior and environmental situations in the network. 

3.5. Adaptive Cluster Head (CH) Probability Estimation 

The selection of Cluster Head (CH) plays an important role in the energy efficiency and performance of 

WSN. With the global trained federated model, a probability of being chosen as a CH is computed on every node by 

means of several variables such as the remaining energy, degree of connectivity, mean link quality, and node centrality 

within its surrounding area. The MobileNetV2-TCN network produces a node quality score, normalized across the 

cluster, to obtain CH probability. 

𝑃𝐶𝐻
(𝑖)

=
𝛼𝐸𝑖 + 𝛽𝐷𝑖 + 𝛾𝐶𝑖

∑ (𝛼𝐸𝑗 + 𝛽𝐷𝑗 + 𝛾𝐶𝑗)𝑁
𝑗=1

                         (4) 



Where  𝑃𝐶𝐻
(𝑖)

 is the probability of node 𝑖 being selected as CH, 𝐸𝑖 is the residual energy of node 𝑖, 𝐷𝑖  is the 

degree centrality of node 𝑖, 𝐶𝑖 is the connectivity strength, 𝛼, 𝛽, 𝛾 are weighting factors, and 𝑁 is the total number of 

nodes. A soft attention mechanism is incorporated into the edge server in order to develop spatial awareness and 

dynamic adaptability. Such a layer is interested in the spatial elements that play the role in CH selection e.g., nodes 

close to the cluster centroid or stable link structure. The attention mechanism uses the weights on each feature 

dimension, depending on how well the prior selection outcomes of CH were attained by the feature dimension. These 

weights are dynamically adjusted at every federated training round making the system to concentrate on features of 

more relevance to the prevailing network situations (e.g. high mobility vs. stationary deployment). Cluster Heads in 

each specific round are defined as nodes in a cluster with the highest probability of CH, but with the constraint of 

enabling nodes with remarkable performance not to be chosen early due to the rotation scheme. 

𝑓𝑖 = ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑞𝑖
𝑇𝑘𝑗) ⋅ 𝑣𝑗

𝑛

𝑗=1

                                (5) 

 Where 𝑓𝑖 is the attention-enhanced feature representation for node 𝑖 and 𝑞𝑖 , 𝑘𝑗 , 𝑣𝑗 are query, key and value 

vectors and 𝑛 is the total number of features. 

3.6. Reinforcement Feedback Optimization 

A Deep Q-Network (DQN) complement (a reinforcement learning module) is integrated to enhance the 

process of CH selection further and make it time-sensitive appropriate to real-time network performance requirements. 

This module runs at server end and constantly reviews the performance of previous CHs. The state vector given to the 

DQN framework contains an aggregate of performance indicators like energy consumption, packet delivery ratio, 

communication delay, and CH rotation frequency. The action space will have strategies of selection such as retain 

current CHs, rotate CHs or merge neighboring clusters. 

𝑅𝑡 = 𝜆1 ⋅ Δ𝐸 + 𝜆2 ⋅ 𝑃𝐷𝑅𝑡 − 𝜆3 ⋅ 𝐿𝑡                           (6) 

 Where 𝑅𝑡 is the reward at time 𝑡, Δ𝐸 is the energy savings compared to previous round, 𝑃𝐷𝑅𝑡 is the packet 

delivery ratio at time 𝑡, 𝐿𝑡 is the latency at time 𝑡, and 𝜆1, 𝜆2, 𝜆3 are tunable weights. A reward function computes the 

effects on the performance of the system when an action is carried out. As the example, when energy consumption is 

reduced to the minimum and delivery ratio is maximized, high reward is assigned. The DQN adjusts its Q-values so 

that it can use them to decide on the CH to choose in the future. This reinforcement loop works parallel to federated 

training and offers a second round of optimization, so that the network can learn autonomously to find the most 

effective cluster formation strategies on its own based on the changing conditions in the environment or operating 

circumstances. 

3.7. Edge-Aware Load Balancing and Scheduling 

In order to avoid overloading some CHs, as well as provide fair distribution of energy, the edge server has a 

load balancing and scheduling mechanism. The edge server will reassign nodes such that no CH is overloaded based 

on node quality scores, traffic patterns and approximate predicted workload. The time-based workload trend is also 

considered by this scheduling engine: the time-series forecasting methods (e.g., Prophet or ARIMA) are used to predict 

the high communication periods. 

𝐿𝑖 = ∑
𝑅𝑗

𝑅𝑖
𝑗∈𝐶𝑖

                                           (7) 

Where 𝐿𝑖 is the load on CH 𝑖, 𝐶𝑖 is the set of member nodes in cluster 𝑖, 𝑅𝑗 is the data rate of node 𝑗, and 𝑅𝑖 

is the data capacity of CH 𝑖. To alleviate the load during high-load occasions, temporary micro-clusters can be created 

under secondary CHs to transfer the traffic offloaded by overloaded areas. Additionally, the scheduling engine 

contains sleep-wake where non-critical sensor nodes go in to suffer a sleep mode in off-peak time. The system 

monitors the feedback of the DQN module and local edge models to dynamically optimise distribution of load, 

communications, and use of resources. 



3.8. Communication and Routing Optimization 

The last stage of EdgeAware-CHNet is to provide secure and low-power consuming connections among 

Cluster Heads and central sink node. Custom routing protocol is utilized and designed based on a hybrid cost function, 

which integrates Euclidean distance, residual energy, and link stability. Every CH considers the potential routing 

paths, and chooses the one that requires the least amount of total cost to the sink. 

𝐶𝑜𝑠𝑡𝑖𝑗 = 𝛼 ⋅ 𝑑𝑖𝑗 + 𝛽 ⋅ (
1

𝐸𝑖

)                               (8) 

Where 𝐶𝑜𝑠𝑡𝑖𝑗 is the communication cost between nodes 𝑖 and 𝑗, 𝑑𝑖𝑗  is the distance, 𝐸𝑖 is the residual energy 

of sender node and 𝛼, 𝛽 are tunable weighting parameters. In order to improve the fault tolerance and reduce the 

latency, the concept of opportunistic forwarding is also proposed, which means back up CHs will be selected to relieve 

the forwarding role during communication breakdown. The system also runs multipath routing when the traffic is high 

to overcome traffic congestion and loss of data. The dynamic updates of routing tables are performed on the basis of 

periodical health-check and node status broadcast packets. A TTL (Time-To-Live) counter is incorporated in packet 

headers to detect routing loops and delay so as to avoid them, and the input to the reinforcement module can be used 

to impose a penalty on unstable paths. The advantages of this communication strategy are high reliability and low 

latency of data transfer combined with energy conservation which is essential in long term WSN sustainability. 

𝑃𝑡𝑥 = 𝑃0 + 𝜂 ⋅ 𝑑𝛾                                        (9) 

Where 𝑃𝑡𝑧 is the transmission power, 𝑃0 is the base power consumption, 𝜂 is the medium-specific constant, 

𝑑 is the distance to receiver and 𝛾 is the path loss exponent. 

3.9. Novelty of the Work 

The EdgeAware-CHNet is the first to combine the federated deep learning, reinforcement feedback 

optimization, and spatial attention mechanism in an adaptive Cluster Head (CH) selection scheme in scalable Internet 

of Things (IoT)-enabled WSNs. In comparison to the currently existing models that utilize fixed thresholds or 

centralized training, EdgeAware-CHNet allows achieving privacy-preserving distributed intelligence through the 

training of MobileNetV2-TCN models at the edge and aggregation with FedAvg. This makes it possible to learn in 

the real-time without exposing raw data to various environments. The framework specially employs a Deep Q-

Network (DQN) to be able to constantly optimize CH selection policies according to development in network 

conditions including energy, latency and PDR values. Another feature is a soft-attention architecture that introduces 

the priority of spatially important nodes, improving CH selection context and fairness. Its edge-optimized design 

makes it deployable even in nodes that have few resources. Such amalgamation of federated learning, reinforcement 

adaptation, and spatial intelligence is an original, scalable, and safe method of intelligent WSN management. 

Algorithm: EdgeAware-CHNet – Federated Adaptive Cluster Head Selection 

Input: 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝐾}: Set of WSN nodes, 𝐷𝑘 is the local dataset at node 𝑛𝑘 .  

    𝐸𝑘 , 𝐶𝑘 , 𝐷𝑘 are residual energy, connectivity, and centrality of node 𝑛𝑘. 

    𝑇 is the number of federated training rounds. 

Output: 𝑃𝐶𝐻 = {𝑃𝐶𝐻
(1)

, 𝑃𝐶𝐻
(2)

, … , 𝑃𝐶𝐻
(𝐾)

} is the CH selection probabilities 

     𝐶𝐻 ⊆ 𝑁 is the set of selected Cluster Heads 

 

Initialization 

 For each 𝑛𝑘 ∈ 𝑁 



  Assign initial energy 𝐸𝑘 ∈ [0.5,1.0], location (𝑥𝑘 , 𝑦𝑘), and transmission range 𝑅 

  𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2
    // Calculate pairwise distance 

Data Acquisition and Preprocessing 

 Each node 𝑛𝑘 acquires RSSI, SNR, battery level, and connectivity metrics from 𝐷𝑘 

  𝑧 =
𝑥−𝜇

𝜎
         // Normalize using Z-score 

Local Model Training (MobileNetV2-TCN) 

 Train local MobileNetV2-TCN model  𝑀𝑘 on  𝐷𝑘 using causal convolution: 

  𝑦(𝑡) = ∑ 𝑥(𝑡 − 𝑟 ⋅ 𝑖) ⋅ 𝑤(𝑖)𝐾−1
𝑘=0  

Federated Aggregation (FedAvg) 

 Transmit 𝑤𝑘 ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 from 𝑀𝑘 to aggregator. 

 𝑤𝑡+1 = ∑
𝑛𝑘

𝑛
𝑤𝑡

(𝑘)𝐾
𝑘=1      // Aggregate global model 

 Broadcast updated weights 𝑤𝑡+1 to all nodes. 

CH Probability Estimation 

 For each node compute CH selection score: 

  𝑃𝐶𝐻
(𝑖)

=
𝛼𝐸𝑘+𝛽𝐷𝑘+𝛾𝐶𝑘

∑ (𝛼𝐸𝑗+𝛽𝐷𝑗+𝛾𝐶𝑗)𝑁
𝑗=1

 

   𝑓𝑖 = ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑞𝑖
𝑇𝑘𝑗) ⋅ 𝑣𝑗

𝑛
𝑗=1     // Enhance with attention 

Reinforcement Optimization (DQN-based) 

 Initialize Q-table with state 𝑠𝑡 as network status and action 𝑎𝑡 ∈ {𝑟𝑜𝑡𝑎𝑡𝑒, 𝑟𝑒𝑡𝑎𝑖𝑛, 𝑚𝑒𝑟𝑔𝑒} 

 𝑅𝑡 = 𝜆1 ⋅ Δ𝐸 + 𝜆2 ⋅ 𝑃𝐷𝑅𝑡 − 𝜆3 ⋅ 𝐿𝑡   // Compute reward 

 Update Q-values using Bellman equation. 

Load Balancing and Scheduling 

 𝐿𝑘 = ∑
𝑅𝑗

𝑅𝑘
𝑗∈𝐶𝑖

      // Estimate load 

 If 𝐿𝑘 > 𝜏 (threshold)  

  Reassign members to balance load 

Communication and Routing Optimization 

 𝐶𝑜𝑠𝑡𝑖𝑗 = 𝛼 ⋅ 𝑑𝑖𝑗 + 𝛽 ⋅ (
1

𝐸𝑖
)    // Compute route cost 

 Determine minimal-cost route from CH to sink node using Dijkstra’s or ACO-based heuristic. 

Return: Selected Cluster Heads 𝐶𝐻, and their selection probabilities 𝑃𝐶𝐻  

End Algorithm 



4. Results and Discussions 

EdgeAware-CHNet is a privacy preserving, scalable and adaptable framework that performs adaptive 

selection of cluster heads (CH) in IoT-enabled Wireless Sensor Network (WSNs). The essence of it is the combination 

of federated deep learning and edge-aware optimization to contribute to the network lifespan, energy efficiency, and 

well-balanced communication in dynamically varying sensor systems. The first step consists of heterogeneous sensor 

nodes that are distributed over a geographical area and which are initialized with the available energy, start position, 

and transmission capacity. These nodes constantly keep track of environmental or application specific parameters as 

well as gathering crucial metadata including signal strength, down to battery state and neighbor connections. Local 

preprocessing is done using features such as anomaly filtering, normalization to obtain clean and uniform data to feed 

the models. Figure 3 illustrates the spatial distribution of sensor nodes, with selected Cluster Heads (CHs) highlighted 

in red based on probabilistic criteria. 

 

Figure 3. Cluster Head (CH) Selection among Deployed Sensor Nodes 

Lightweight MobileNetV2-TCN model is trained by each edge node on locally gathered information. 

According to temporal and spatial attributes, these models learn to develop patterns which determine how well CH is 

suited, and thus optimal. The trained model weights can be transferred, say on a regular basis, to a capable edge server 

and simply averaged by using the Federated Averaging algorithm without sharing raw data. This is privacy-saving 

and overhead communicating factor can be considerably decreased.  The attention mechanisms augment the global 

model, which computes the CH probability on every node. Deep Q-Network (DQN) reinforcement module will also 

define the best strategy of CH selection depending on the rewards such as energy efficiency, successful delivery, and 

latency. The system also forecasts communication loads and that makes the scheduling and routing balanced. Lastly, 

a hybrid cost-based routing framework is formed that is interpretive, low latency, and can support the forwarding of 

data efficiently and lengthens network lifetime. EdgeAware-CHNet thereby facilitates intelligent, adaptive and 

sustainable operations of the current IoT-WSNs. 

Table 1: CH Selection Accuracy Comparison 

Model Accuracy (%) 

EdgeAware-CHNet 96.45 



LEACH 82.34 

SEP 84.21 

TEEN 85.76 

PEGASIS 81.33 

DEEC 86.45 

HEED 83.29 

PSO-CHS 90.67 

FL-CH 92.14 

DQN-CH 91.55 

 

Table 1 and Figure 4 shows the CH selection accuracy of edgeAware-CHNet to the nine benchmark 

protocols. The proposed model demonstrates the maximum accuracy of 96.45%, which beats such conventional 

schemes as LEACH (82.34%) and PEGASIS (81.33%), which are based on the use of the fixed thresholds and do not 

follow the intelligent learning process. Other models that are slightly better because of the underlying consideration 

of residual energy like some as SEP, TEEN, and HEED though are not dynamically well adjusted to choosing the next 

suitable path in a varying networks. The learning-based methods, PSO-CHS, FL-CH, and DQN-CH, are more 

accurate, with results of up to 92.14%, but such methods do not meet the privacy-predicting training characteristics of 

federated learning. 

 

Figure 4. CH Selection Accuracy Comparison 

Our superior performance can be explained by the high quality of EdgeAware-CHNet, which depends on the 

use of federated deep learning as well as the soft attention-based feature selection and probability refinement using 

the DQN. Such a high accuracy guarantees the best node selection, which has a direct bearing on the longevity of the 

network, energy balance, and quality of communications, and thus the system is sound when it comes to real-life 

applications of IoT-WSN even in different confinements. 

Table 2: Network Lifetime Comparison (Rounds Until First Node Dies) 



Model Network Lifetime (Rounds) 

EdgeAware-CHNet 1820 

LEACH 1203 

SEP 1267 

TEEN 1298 

PEGASIS 1155 

DEEC 1344 

HEED 1229 

PSO-CHS 1603 

FL-CH 1708 

DQN-CH 1664 

 

Table 2 and Figure 5 measures the lifetime of the network as number of rounds until death of the first node. 

EdgeAware-CHNet holds the most rounds (1820) comparatively to LEACH (1203) and SEP (1267). These traditional 

procedures have the tendency of overwhelming certain nodes leading to early exhaustion of energy. Both DEEC and 

TEEN have an improved performance (12981344 rounds) because of the energy-awareness of CH choice. Among the 

models based on learning, PSO-CHS, FL-CH, and DQN-CH only have decent lifetimes (1603-1708 rounds) inferior 

to EdgeAware-CHNet.  

 

Figure 5. Network Lifetime Comparison 

The most impactful one is the reinforcement learning-backed feedback loop with which EdgeAware-CHNet 

is continuously training the CH selection strategy according to the current real-time levels of energy efficiency as well 

as network latency and/or throughput. Also, federated model updates save on communication overhead, which further 

helps to make the nodes last long. The significant increase of network lifetime shows that the proposed model is useful 

to deliver the energy load in a balanced manner and prevent some nodes to be overloaded, hence increases the energy 

sustainability of the whole networks used in critical monitoring systems. 



Table 3: Average Energy Consumption 

Model Avg. Energy Consumption (J) 

EdgeAware-CHNet 0.31 

LEACH 0.56 

SEP 0.52 

TEEN 0.49 

PEGASIS 0.61 

DEEC 0.47 

HEED 0.53 

PSO-CHS 0.38 

FL-CH 0.33 

DQN-CH 0.35 

 

Table 3 and Figure 6 performs an analysis of average energy consumed by each protocol in the operation. 

The average energy consumption of the EdgeAware-CHNet is the lowest (0.31 J) compared to the traditional approach 

like LEACH (energy=0.56 J) and PEGASIS (energy=0.61 J) where frequent re-clustering or long routes are involved. 

Although the protocols such as DEEC and TEEN consume relatively little energy (with values of about 0.47-0.49 J), 

they do not adapt to dynamic workloads in real time. Such models as FL-CH and DQN-CH also show satisfactory 

performance (0.3310.35 J), but they are much slower than the EdgeAware-CHNet. This enhancement is credible to 

intelligent selection of CH considering node centrality, link stability and estimated load thus being able to minimize 

retransmission and localized communication.  

 

Figure 6. Average Energy Consumption 

Federated learning paradigm does not involve transmitting raw data to centralized servers, which eliminates 

energy depletion in forwarding data. Energy minimisation of the model demonstrates that it is well suited to a resource 

constrained setting, e.g. remote sensing, or industry Internet of Things, where recharging a battery is impractical. 



Table 4: Packet Delivery Ratio (PDR%) 

Model PDR (%) 

EdgeAware-CHNet 97.22 

LEACH 81.65 

SEP 83.4 

TEEN 84.35 

PEGASIS 80.12 

DEEC 85.67 

HEED 82.39 

PSO-CHS 91.44 

FL-CH 94.32 

DQN-CH 93.12 

 

In Table 4 and Figure 7, the Packet Delivery Ratio (PDR), which defines the quality of the data sent is shown. 

The PDR delivered by EdgeAware-CHNet is the highest of all 97.22%, which is superior to that of traditional schemes, 

such as PEGASIS (80.12%) and LEACH (81.65%), whose performance can be easily reduced as more packets may 

be dropped because of path selection in cases of inefficiencies or node energy depletion. Such models as DEEC, SEP, 

and HEED increase the transmission rate slightly (up to 85.67%) by choosing the nodes using the energy level or 

density of the neighborhood.  

 

Figure 7. Packet Delivery Ratio Comparison 

The most successful ones belong to the PSO-CHS, FL-CH, and DQN-CH with the PDR values of 91-94%, 

which make use of clever tricks but are deprived of the ability to adjust routing in real-time conditions. The outstanding 

PDR of EdgeAware-CHNet is because of the hybrid routing algorithm it supports which has a cost-priority-aware 

routing algorithm and a multi path routing capability, which will avoid faulty or congested nodes. Besides, there is 



link stability as attention-based CH prediction module minimizes packet retransmissions. A combination of these 

mechanisms leads to a high reliability state, and the suggested model is perfectly suited to such mission-critical 

systems as smart health care, industrial automation, or environmental monitoring. 

Table 5: Latency Comparison 

Model Latency (ms) 

EdgeAware-CHNet 39.6 

LEACH 61.4 

SEP 58.2 

TEEN 55.3 

PEGASIS 64.7 

DEEC 53.5 

HEED 57.9 

PSO-CHS 45.1 

FL-CH 42.3 

DQN-CH 44.7 

 

Table 5 and Figure 8 reveals that EdgeAware-CHNet has the shortest latency and is lower by more than 20 

ms, compared to traditional models, which include PEGASIS (64.7 ms), LEACH (61.4 ms), and SEP (58.2 ms). The 

major problems of these models are long transmission paths or over-head in the control. Hierarchical architectures 

also cause TEEN and DEEC to have small reductions in latency but show latency around 53 to 55 ms. Among the 

techniques developed in the recent years, FL-CH and DQN-CH delay decreases to 42.3 ms and 44.7 in comparison to 

EdgeAware-CHNet, respectively.  

 

Figure 8. Latency Comparison 

The enhanced latency performance is attributed to dynamic CH scheduling, in that, the nodes are balanced 

according to the workload that is predicted, and the hybrid routing makes the hop count minimal. Additionally, the 



federated architecture will decentralize computation; hence, it evades unwarranted central delays. Queuing is further 

reduced by the data forwarding which is based on opportunity. Streamlined latency has been the key to real-time use 

cases such as smart surveillance, industrial control or disaster responses, and this finding anchors EdgeAware-CHNet 

in time-sensitive IoT-WSN applications. 

4.1. Discussion 

 The performance of EdgeAware-CHNet demonstrated the benefits of its EdgeAware design over traditional 

and state-of-the-art models on all major performance metrics using simulation results. The most significant one is CH 

selection accuracy of 96.45% that is much faster compared to LEACH (82.34%), SEP (84.21%), and even state-of-

the-art models such as DQN-CH (91.55%). The improved accuracy is accredited both to the MobileNetV2-TCN 

hybrid that attains fine-grained spatiotemporal variations of sensor data, and the federated strategy which guarantees 

that the learning is extracted within various and heterogeneous node conditions. EdgeAware-CHNet manages up to 

1820 before the first node failure, as compared with 1203 (LEACH), 1298 (TEEN), and 1664 (DQN-CH) as far as 

network lifetime is concerned. That shows that the program can spare nodes to absorb energy evenly and does not 

involve overwhelming specific CHs. The role of attention mechanism is crucial in this way because its priority is 

assigned to nodes that have enough residual energy and central locales thus leading to balanced rotation of CH. 

The mean energy consumption is powerfully low of 0.31 J, which indicates that the framework is precise as 

well as resource-saving. Competing models are much more energy hungry (e.g. PEGASIS at 0.61 J) mostly because 

of inefficient routing and re-clustering. The DQN feedback loop also increases the energy efficiency of EdgeAware-

CHNet by learning to avoid actions that eat into battery reserves and costs the network dearly. Moreover, the 

EdgeAware-CHNet Packet Delivery Ratio (PDR) is logged at 97.22, the value among all the tested models. It is 

especially important in such mission-critical areas as healthcare or disaster monitoring where data integrity is not a 

compromise. The values achieved by models such as HEED, PEGASIS are lower because of network fragmentation 

and instability of paths, whereas, EdgeAware-CHNet practically optimizes the routing paths based on the quality of 

links and their workload forecasts. 

The second important metric is latency, and once more, EdgeAware-CHNet leads with the average delay of 

39.6 ms. With opportunity forwarding and proactive edge-aware load scheduling, opportunism tends to reduce 

queuing delay and congestions. This is in sharp contrast to 64.7ms delay experienced in PEGASIS which employs 

sequential forwarding based on chains, and hence producing greater variability in delay. Such findings confirm the 

fundamental notion of this study: finding an adaptive, federated, and edge-aware system of selecting CHs can 

considerably lie structure the performance of WSN, both in terms of accuracy, efficiency, and scale. All these 

components, including federated deep learning, DQN-based optimization, and more, synergistically lead to this 

performance gain. The simulations also confirm that EdgeAware-CHNet retains its overall advantage over different 

densities of nodes and mobility patterns, demonstrating robustness and scalability. 

5. Conclusion and Future Work  

 The proposed study presented EdgeAware-CHNet as a novel federated deep learning architecture that would 

optimize cluster head (CH) selection in scalable IoT-enabled Wireless Sensor Networks. Designed based on 

combining MobileNetV2-TCN as a local spatiotemporal feature, federated aggregation with FedAvg, attention-guided 

prioritizing, and reinforcement learning feedback by DQN, the model shows a significant improvement in 

performance. This is confirmed by simulation outcomes, wherein the CH selection accuracy gains 96.45%, the 

network lifetime growths to 1820 rounds, and the packet delivery ratio is 97.22%, and evidently surpasses other 

representative models such as LEACH, FL CH, and DQN CH. Among the best moments about EdgeAware-CHNet 

could be privacy-preserving federated composition, which qualifies it as a good solution to a sensitive data-wise 

application like healthcare or military WSNs. Moreover, it is edge-aware and has a low computational burden, which 

makes it implementable in the real-time on nodes with limited resources. Subsequent research will be aimed at 

practical implementation in terms of hardware realizations of the model (for example, sacrificing Raspberry Pi and 

ES32-based sensors), in order to test the model efficacy on such physical limitations. Furthermore, it will be desirable 

to examine how adversarial robustness can be applied to protection against spoofing or Byzantine nodes in federated 

systems, as well as how to use the model with heterogeneous sensor modalities (e.g., vision, sound, motion). Overall, 



EdgeAware-CHNet is a privacy preserving, smart, and scalable platform of the future generation of IoT-WSNs, and 

such combination of performance, adaptability, and sustainability is hard to beat. 
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