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Abstract - In the last few years, a surge in IoT applications has ramped up the need for effective and dependable 

data transmission in LoRa-based systems. Yet, traditional resource allocation methods in LoRa systems face major 

drawbacks such as higher packet loss, interference, excessive energy use, limited coverage, slow transmission 

speeds, and increased operational expenses. To tackle these issues, this study introduces a new hybrid optimisation 

framework that combines Hybrid Reinforcement Learning, named as Double Deep Q-Learning based Actor-Critic 

mechanism (Hy-DeoQ-AC), with a hybrid Levy Flight Assisted Rabbit optimisation algorithm (Hy-LevRBO). 

Hy-DeoQ-AC mechanism learns optimal network configurations dynamically by engaging with the environment, 

concentrating on key transmission parameters like spreading factor, transmission power, and channel selection to 

satisfy strict Quality of Service (QoS) requirements of IoT devices. Additionally, the hybrid optimisation gains 

from Hy-LevRBO, which fine-tunes chosen parameters and boosts capability to evade local optima. Thus, this 

combined strategy greatly enhances energy efficiency, maximises throughput, extends transmission range, and 

reduces latency in LoRa networks. The Comprehensive experimental analysis attains a throughput of 

56.8471(bits/s), energy efficiency of 16.1364 (bits/J), which confirms the proposed model's superiority and 

achieves better performance across various metrics. This research offers an energy-efficient solution for IoT 

communications. 

Keywords - Q learning, long-range network, Levy Flight, Rabbit optimisation, Actor critic approach. 

I. INTRODUCTION

The rise of Internet of Things (IoT) assurances to combine 22 billion devices, and long-range (LoRa) will 

successfully manage it in 2025 [1]. LoRa is efficiently used in cellular data networks and areas such as 

manufacturing and academia to offer improved communication [2]. LoRa appliance offers lower development 

cost and power consumption. The chirp spread spectrum approach uses various spreading factors (SF) in LoRa 

with lower energy consumption [3]. It helps enhance the efficiency of the network. In LoRa technology, the 

network performance and battery life of LoRa network devices are improved by using physical layer operations 

[4]. In IoT, customisation and resource allocations are critical parts. Some example limitations, like fewer shared 

resources, inaccurate radio influences, and limited intrinsic networks, disturb resource allocation [5].   

These causes enhance heterogeneity and quality of service (QoS) about hardware diversity. Concurrence problems 

have increased in the development of LoRa [6]. By considering signal-to-noise ratio (SNR), the server improves 

communication power and modifies SF for enhancing energy efficiency, airtime, and data transmission speed [7]. 

To increase the efficiency of the resource, the transmit power is changed at each stage [8]. A wide range of IoT 

technologies requires several connected devices for data transmission based on resource allocation [9]. To increase 

resource efficiency, a convincing resource allocation scheme is needed for channel conflict avoidance, and an 

intelligent resource allocation framework is essential [10].  
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The existing frameworks for resource allocation in LoRa suffer from high channel usage, computational cost, and 

decreased network capacity while allocating the resources to large networks [11]. The previous resource allocation 

algorithms offer less QoS. It reduces the network’s robustness. Some lightweight techniques for SFs produce 

inaccurate reliability [12]. The goal of the traditional system is to statistically minimise the probabilities of two or 

more communications overlapping in frequency and time [13]. Existing LoRa networks must increase reliability 

and control overhead since they are still implemented based on network size. Additionally, the main goal of a 

scheduling strategy is to enhance reliability by allocating transmission slots with minimal cost [14]. Yet, 

traditional networks enhance overhead and computational cost [15]. The interactions with educational settings, 

such as user volume, colour, and service quality requirements, are issues of existing approaches [15].  

Motivation 

The Internet of Things (IoT) will connect 30+ billion devices by 2030 with long-range (LoRa) technology as the 

primary management system. LoRa is widely utilised in cellular networks, industry, and academia to improve 

communication. Wireless sensor networks (WSN) adopting low-power wide area networks (LPWAN) such as 

long-range (LoRa) WAN, help to improve communication standards. LoRa has been used to gather sensor data 

for many applications, such as environmental monitoring. Owing to the presence of interference and congestion 

with the development of IoT devices, the existing LoRa system is also impacted by these issues. The conventional 

resource allocation-based data transmission in LoRa has many challenges, including security, server dependence, 

network connectivity, coverage, and limited resource capabilities. Existing systems mainly suffered from high 

computational load and communication latency issues. To overcome these issues, a novel optimal hybrid 

reinforcement learning-assisted resource allocation in LoRa is proposed. The main contributions of the work are: 

● To review existing studies and analyse existing models and gaps. 

● To develop an efficient reinforcement learning-based algorithm for optimal resource allocation in LoRa 

systems for energy efficiency and performance optimisation. 

● To introduce a Double Deep Q-Learning-based actor critic mechanism with Levy-assisted bio-inspired 

optimisation for creating optimal resource allocation policies.  

● To evaluate the proposed model's effectiveness through extensive simulation, we analyse key 

performance metrics such as energy consumption, latency, throughput, signal-to-interference-plus-noise 

ratio (SINR), and transmission rate. 

The structure of the manuscript is organised as follows: Section 2 reviews the existing approaches and techniques, 

Section 3 provides a thorough explanation of the proposed model, Section 4 examines and deliberates outcomes 

obtained from the proposed approach, and Section 5 concludes with a summary of findings and future scope of 

this research. 

II. RELATED WORKS 

Azizi et al. [16] explored a reinforcement learning based resource allocation model to adjust their transmission 

parameter. The optimisation algorithm includes two stages, namely exploitation and exploration. These phases 

help to allocate the resources in LoRa. From the simulation results, it is evident that the suggested framework 

provides better results compared to traditional algorithms in terms of packet delivery ratio and convergence speed. 

Limitations of this study are high computational cost, scalability, and adaptability challenges. Rao and Sunder 

[17] minimised power transmission and increased data transfer rate in LoRa networks by using a reinforcement 

learning approach-based system. The approach was used for finding variables during the transmission of data. An 

effective hybrid coati with an energy valley strategy tuned these parameters. The tuned parameter was applied to 

the terminal hubs. Parameter optimisation was used to enhance the throughput and reduce the energy usage. 

However, the challenge of the suggested system includes supporting only low data rates and complex optimisation 

challenges. Minhaj et al. [18] implemented a new way of allocating the SF and transmission power to the devices 

by joining a decentralised and centralised technique with two independent learning procedures. Transmission 

power was allocated centrally by decreasing the contextual bandit problem using machine learning (ML) 

techniques. The reinforcement learning (RL) technique assigned the SF parameter to the network devices. The 

designed system provided higher accuracy and lower energy usage for large, congested networks than current 

state-of-the-art algorithms. High packet loss ratio is the main issue of this system. Gava et al. [19] provided a 

novel resource optimisation scheme in LoRa for maintaining costs and implementation complexity. Performance 
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investigations were carried out in LoRa using LoRa repeaters to improve the coverage. Total execution time and 

energy usage were minimised by adjusting parameters like transmission power, spreading factor, and bandwidth. 

However, maintaining a balance between energy efficiency and data collecting takes time and effort. Mahesh et 

al. [20-23] suggested a co-optimal Q-reinforcement learning (CO-QL) model as a resource allocation mechanism. 

Here, Q-reinforcement learning was utilised to learn the information about nodes, and COA helps to choose the 

optimal action for enhancing the reward. This approach helps to improve packet delivery rate performance. The 

performances, such as packet success ratio (PSR), packet collision rate (PCR), time, delay, and energy, were 

evaluated and compared with recent research models. High latency was one of the major limitations in this model. 

Table 1 defines the performance evaluation of the proposed and existing models [24-25]. 

Table 1. Performance analysis of proposed and existing approaches 

Author Techniques Merits Demerits 

Azizi et al. [16] Reinforcement learning Improves 

convergence speed 

Scalability issues 

Rao and Sunder [17] Coati algorithm Less power 

transmission 

Complex 

optimisation 

challenge 

Minhaj et al. [18] Machine learning + 

Reinforcement learning 

Low energy usage Takes more time for 

execution 

Gava et al. [19] Resource optimisation 

approach 

Reduced execution 

time 

Balancing energy 

efficiency is 

challenging 

Mahesh et al. [20] Q-reinforcement learning Improves energy 

efficiency 

High delay  

 

Research Gap 

Existing research faces various limitations, which are discussed as follows: Azizi et al. concentrated on allocating 

resources with an optimisation algorithm that had phases for exploration and exploitation, but they encountered 

difficulties with scalability and high processing costs. Some other existing models have enhanced data transfer 

rates and minimised power consumption using optimisation strategies but struggled with low data support and 

complex optimisation issues. Minhaj et al. combined centralised and decentralised learning for SF and power 

allocation, achieving high accuracy but suffering from a high packet loss ratio [26]. Gava et al. introduced a novel 

optimisation scheme using LoRa repeaters, yet balancing energy efficiency and data collection remained 

challenging. Mahesh et al. proposed a CO-QL model that improved packet delivery but suffered from high latency. 

Despite advancements, key research gaps include addressing computational complexity, scalability, adaptability, 

optimisation trade-offs, and ensuring reliable transmission in large-scale and dynamic LoRa networks. 

III. PROPOSED METHODOLOGY 

The proposed approach utilises the LoRa system to minimise transmission power, which is effectively identified 

by Hybrid reinforcement learning, namely, Double deep Q-Learning based actor critic mechanism (Hy-DeoQ-

AC). Here, the Hy-DeoQ-AC mechanism is used to solve LoRa challenges, and it aims to optimise the allocation 

of network resources like transmission power, spreading factor, and channel. This approach helps to allocate the 

transmission power, spreading factor, and channel for IoT devices to enhance quality of service requirements. The 

appropriate parameters are selected from the Hy-DeoQ-AC model, which is properly tuned by the Hybrid Levy 

flight assisted rabbit optimisation algorithm (Hy-LevRBO). This approach helps to tune the network resources of 

the model. The tuning process helps to increase the energy efficiency, throughput, and transmission range and 

reduce latency [27-28]. The server in the LoRa is matched by the agents generated by the Hy-DeoQ-AC model. 

Then, transmission parameters are given to the network terminal hub after the agents in the Hy-DeoQ-AC are 

generated. Throughput, energy efficiency, latency, and transmission rate are analysed using this optimisation 
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strategy. The proposed model optimises resource allocation in LoRa-based Non-Orthogonal Multiple Access 

(NOMA) networks by dynamically adjusting transmission power, spreading factor, and channel selection to 

enhance QoS. RL operates by training agents to interact with the environment, where the Hy-DeoQ-AC 

mechanism leverages a double deep Q learning based actor critic framework to balance the exploration and 

exploitation for optimal decision making. Hy-LevRBO mechanism fine-tunes the network parameters, improving 

energy efficiency, throughput, and transmission range while reducing latency. The trained RL agents match the 

server in LoRa, optimising transmission parameters for terminal hubs.  

System Model 

A single LoRa [21] model consists of a duplex gateway and fixed LoRa end devices. The LoRa system is divided 

into three classes D  E   F . The network model of LoRa is defined in Fig. 1. 

Smart printer

Smart camera Smart meter

Smart phone

Acknowledgment

Shared access

LoRa Gateway

Network server

Application server 1

Application server 2

Low Power Wide Area Network

 

Fig 1. LoRa network model 

The end devices are evenly distributed around the gateway and are classified as class D devices. Most of the time, 

these end devices remain in sleep mode to conserve battery life. They only wake up to perform uplink 

transmissions when a new packet is received. Fig. 2 defines the architecture of resource allocation in LoRa. 
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Fig 2. Architecture of Resource Allocation 

Each end device carries out an uplink transmission during the system training phase, and each one receives 

downlink acknowledgement from the gateway. They assume that the gateway sends acknowledgements separately 

from the uplink channel to avoid interference between downlink acknowledgements and uplink transmissions. 

The LoRa system specifies two receive windows 1S  and 2S . These windows help determine confirmed traffic 

within the network. In the second receive window, 2S  end devices wait for an acknowledgement that saves 

channel resources and energy. The symbol duration of LoRa is based on bandwidth BW  and the spreading factor 

SF .  The LoRa symbol duration tV  is calculated using Equation (1). 

BW
V

SF

t

2
=                                                         (1) 

The gateway sends out acknowledgements at a set spreading factor. The variable 
0F  indicates the path loss 

exponent in LoRa communication range, which is influenced by path loss. The path loss pathP is calculated using 

Equation (2). 
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Here, LoRa frequency is noted by h and the link budget budP  is measured using Equation (3). 
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Here, 
sP  refers to transmission power and ),( cxtgU s

represents receiver sensitivity, which is influenced by 

bandwidth and spreading factor. The lowest power needed to detect the signal is the receiver sensitivity. Calculate

0SNR  using Equation (4). 

 

0

0
O

G
SNR bit=                                              (4) 

Here, 
0O the noise power density. The parameter is taken to 

bitsbit VUG .= .  The received power is represented 

by 
sU  , and the bit duration is indicated by  

bitV . The formula above is rephrased using Equation (5). 

cxvmog

U
SNR

tg

s

...

2.
0 =                                                (5) 

where the term 
sU  is evaluated using Equation (6). 

tgs

cxVmoSNR
U

2

....0=                                       (6) 

Here, receiver sensitivity ),( cxtgUs
is analysed using Equation (7). 

cxVmogtgSNR

otgSNRcxtgU s

...).(

).(),( 0

=

=
                               (7) 

Here, the Kelvin constant, noise, and temperature are represented by m , og and V . The path loss factor f is 

calculated using Equation (8). 
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Here, higher spreading factor values are utilised to achieve extended LoRa ranges. Therefore, the range of LoRa 

is enhanced according to the spreading factor. The specifics of LoRa modulation and the precise radio environment 

are recorded during uplink transmission. Every conceivable LoRa parameter is employed to minimise packet loss 

in uplink transmission.  

 

Problem Formulation 

Throughput 

The throughput is referred to as the total number of tasks which are processed for a given period. It is the 

essential factor for system performance assessments and reliability, which is expressed as, 


=

=
N

x

tp TCT
1

                                                           (9) 

Where, tC  is mentioned by the completed tasks are mentioned and T is represented as the starting time of the 

execution of the task 
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Energy efficiency 

Energy efficiency is all about how much data gets transmitted successfully for each unit of energy used during 

the transmission. It is defined as, 

 

tot

succ

F

E
EE =                                                 (10) 

Here, 
succE defines total successfully delivered bits and 

totF  denotes total energy consumed in transmission. 

 

Latency  

It is computed by the amount of time required to send a packet from the source to the destination. It encompasses 

processing, waiting, and transmission delays, which are calculated as 

tt HrBrDelay )()( −=                               (11) 

Here, 
tBr)( denotes packet arrival time and 

tHr)( is the generation time. 

 

Transmission Rate 

The transmission rate is measured by how much data is successfully received over a certain period.  

)1.( PLRRTR c −=                                   (12) 

 

Here, 
cR denotes raw data rate, and PLR  is the packet loss ratio. 

 

Resource allocation by Hybrid reinforcement learning, namely Double deep Q-Learning based actor critic 

mechanism 

 

A reinforcement learning [29][300] agent is divided into two main parts as actor (policy) and critic (value 

function). The main goal of using Hybrid Reinforcement Learning with double deep Q-Learning-based actor-

critic (Hy-DeoQ-AC) for resource allocation is to enhance how network resources are used in LoRa-based IoT 

networks. LoRa is crucial to efficiently allocate key parameters like transmission power, spreading factor, and 

channel to satisfy increasing needs for energy efficiency, higher throughput, lower latency, and wider transmission 

range. Hy-DeoQ-AC mechanism addresses these issues by learning the best resource allocation strategies through 

ongoing interaction with the network environment. This smart and adaptive method results in more intelligent and 

sustainable IoT communication in resource-limited settings like LoRa networks. The double deep Q learning part 

helps reduce the overestimation bias by using two Q networks as one for action selection and another for 

evaluation. This results in steadier learning and more dependable decision-making. Through repeated interactions 

with the environment, the reinforcement learning agents figure out how to allocate network resources in a way 

that optimises energy use, boosts throughput, cuts down latency, and guarantees stable transmission rates. During 

the learning phase, the gradient of performance is estimated directly with respect to the actor parameters that are 

then adjusted to enhance performance. On the other hand, critic methods depend on approximating the value 

function by finding near near-optimal solution to the Bellman equation, which helps derive a near-optimal policy. 

Still, these methods often lack reliable assurances for achieving convergence and finding the optimal policy, even 

if a good approximation of the value function is created. The actor component provides advantages in convergence 

performance and the ability to compute continuous actions, while the critic uses an approximation framework to 

estimate a value function, which offers low variance insights into performance and is then used to update actor 

policy parameters. Actor-critic methods are recognised as policy gradient methods, boasting better convergence 

properties than critic-only methods. Moreover, due to variance reduction, actor-critic methods converge faster. In 

Q-learning, the Q-value is a key component of the learning algorithm. For smaller problems, a Q value pair 

),( bUQ can be stored in computer memory. But for larger problems, the number of Q-value pairs can become 

huge or even infinite. So, it is not practical to keep all possible pairs in memory; estimating Q value is crucial 

when using Q-learning. The aim is to learn behaviour and to allocate resources, which is why we suggest using 

actor-critic network to achieve both value and behaviour estimation. The Critic network handles value estimation. 
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When agents choose an action and find themselves in a new state, the critic network estimates potential action 

values based on the current state to assist the agent in deciding the next action.  The Actor network is akin to the 

critic network, but it estimates behaviour distribution when the agent reaches a new state and takes an appropriate 

action based on the feedback from the critic network from the previous step. To solve issues faced in Q learning, 

actor critic network is used. 

Actor-critic methods 

The actor-critic framework employs two networks or function approximators to develop and finalise the training 

of the agent, which proves effective in continuous action control tasks. Fig. 3 defines the Actor-Critic approach. 

Buffer Environment

Target

Actor

Current

Actor

Actor

Target

Q1 & Q2

Current

Q1 & Q2

Critic

Loss Q

Current

Actor

Explorer

Action

Mixing

+

Loss Actor Loss Explorer

2 3

21

 

Fig 3. Actor-critic mechanism 

Both the Q-based value function approach and the policy gradient approach can utilise actor-critic framework. 

The actor represents an action policy network )(U , while the critic serves as an estimate of current action value 

),( bUQ  or state value )(UW . 

Value function method 

In the value function method, the agent computes the current value function ),( bUQ directly, where Q

represents the action value for the current action and state. This is optimised using Bellman ( ) 2, zbUQ tt − , 

where ),(max 11 buQrZ tBbt
+= +



+  . Therefore, the current action value function ),( bUQ is always 

moving closer to the optimal action value function ),( 1 buQ t


+


. The critic objective is outlined in Equation (13). 

])),())(,(),([()( 2

~),,( buQuuQburQJ Eubu   −+=                    (13) 

 

Here,   denotes the parameter of the value function network Q ,   denotes the parameter of the action policy 

network  , E and describes the state-action domain of the environment. The action policy network aims to 
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choose an action that maximises the Q value function in the current state. The actor's objective is defined in 

Equation (14) 

))](,([)( ~ uuQJ Eu   =                               (14) 

Deep deterministic policy gradient (DDPG) is a classic value function algorithm that uses a target network to 

enhance training stability and manages target network update rate through soft updates. The goal of its value 

function is presented in Equation (15) 

])),())(ˆ,(ˆ),([()( 2

~),,( buQuuQburQJ cuBu   −+=                    (15) 

Here  Q̂ ,  ˆ corresponds to target networks, c denotes the experience relay buffer gotten by the agent 

interacting with the environment. Temporal difference error (TD) is suggested by minimising the value function, 

implementing policy delays, and adding target noise to reduce overestimation bias. Therefore, its value function 

objective is represented by Equation (16). 

]])),())(ˆ,(,ˆmin),([()( 2

2,1
~),,( buQuuQburQJ

jj
cuBu   −++= 

=
                (16) 

Here  Q̂ ,  ˆ agree to target networks, the relay buffer is defined as c ,  ),),,0((~ˆ 2 ddNclipQ −  which 

denotes random action noise following a clipped Gaussian distribution. 

Policy gradient method 

The policy gradient approach involves utilising the current action policy network that engages with the 

environment and gathers trajectory data  . The agent computes policy gradient and tweaks parameters, which 

can boost the chances of picking a higher value action and keep optimising for a better policy. The critic represents 

the state value function )(UW , where W  indicates the average state value that is linked to the current state. The 

goal of the state value is illustrated in Equation (17). 

]))()(([)( 2

~, ttu uwuRWJ
T  

−=                     (17) 

Here,  =

−=
n

tk k

tk

t ruR )( denotes the cumulative reward of states tu ,  and defines current policy 

sampling in the environment.  

))]((log))()(([)(
~,

USUWURJ tt
Tu  


−=


                      (18) 

Here, the actor adjusts action selection probability in terms of state value and objective as defined in Equation 

(18) 

Fine-tuning by the Hybrid Levy flight assisted rabbit optimisation algorithm 

Rabbit optimisation algorithm [23][25] is mainly based on two laws of rabbit survival found in nature as detour 

foraging and random hiding. This hybrid approach improves energy efficiency, throughput, and minimises delay 

and transmission rate.  The Hybrid Levy Flight Assisted Rabbit optimisation algorithm (Hy-LevRBO) is designed 

to refine network parameters chosen by a reinforcement learning model. However, the Hy-DeoQ-AC mechanism 

sets initial best resource allocation, such as transmission power, spreading factor, and channel. Also, fine-tuning 

is essential to enhance performance and adjust to changing network conditions. Hy-LevRBO merges two effective 

strategies. One strategy is the rabbit optimisation Algorithm (RBO), which draws inspiration from the clever 

foraging habits of rabbits. The second strategy is Levy flight, which is a random walk method based on the Levy 
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distribution that enables occasional long jumps during the search process. This capability assists the algorithm in 

avoiding local optima and seeking out a wider range of solutions. The fitness function is defined as, 

 ),(max throughputefficiencyenergyimizationFitness =                  (19) 

Foraging is an exploration tactic that helps rabbits avoid being spotted by predators by munching on grass close 

to their nests. On the other hand, random hiding involves rabbits relocating to different burrows to conceal 

themselves better. Every search algorithm kicks off with an initialisation process. If design variable size is 

considered  as a dimension D , the artificial search agent colony size is considered n , and the upper and lower 

limits as UB  and LB , initialisation proceeds as follows, 

DkLBLBUBry kkkkj ,....,2,1,).(, =+−=


                        (20)        

Here, kjy ,


 represents the position of the dimension of 

thi  search agent and r is a random number provided 

alongside it. The metaheuristic algorithm primarily focuses on two processes as exploration and exploitation, 

whereas detour foraging mainly emphasises the exploration phase. Detour foraging refers to each search agent's 

inclination to wander around the parameter and randomly explore another search agent's location within the group 

to gather sufficient information. Below is the updated formula for detour foraging, 

11)).05.0.(5.0())()(.()()1( NrroundtytyrtytW ijjj ++−+=+


            (21) 

BMr .=                                           (22) 

)2sin().( 2

)
1

( 2

max rffM
T

t



−

−=                                         (23) 

 drmanddmk
else

mHkif
kB .,.....,1,......,1

0

)(1
)( 3==



 ==

=                  (24) 

)(drandqH =                              (25) 

)1,0(~1 Nn                            (26) 

Here, )1( +tWj


 indicates the new position of the search agent, jy


signifies the location of  

thj search agent and 

shows artificial rabbits at various other random locations. 
maxt  is the highest number of iterations and randq  

indicates a random arrangement from dto1 a random permutation of integers. 1r  , 2r and 3r are random 

numbers ranging from 0 to 1. M stands for running length, which is the speed of movement during detour 

foraging. 1n  follows a standard normal distribution. The perturbation is primarily shown by a normal distribution 

of random numbers of 1n . Random hiding is mainly modelled after the exploration phase of the algorithm, where 

the search agent typically digs several search spaces and randomly selects one to hide in to lower the chances of 

being preyed upon. Initially, the outline method by which rabbits search agents creates search space. The 
thj

search agent generates 
thi  search space by, 

 

)(..)()1(, tyhItytC jjij


+=+                              (27)               

 

2

max

max 1
n

T

tT
I

+−
=                                (28) 
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)1,0(~2 Nn                              (29) 

 

dmk
else

ikif
kh ,......,1

0

1
)( =



 ==

=                      (30) 

Here diandNj ,.....,1,......,1 == , and 2n adheres to the standard normal distribution. I represents a 

hidden parameter gradually decreasing from 
max/11 Tto with random perturbations.  The formula for updating 

the random hiding method is displayed as, 
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Here )1( +tWj


 is the updated position of the search agent, )(, tc rj


 which indicates a randomly chosen search 

space from d the search space created by the search agent for concealment. 4r and 
5r are  random numbers 

provided within range of 0 to 1. Once two update strategies are applied, refresh the position of 
thj search agent 

using Equation (34). 
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Here, this equation shows an adaptive update. The search agent instinctively decides whether to remain where it 

is or shift to a new spot based on the adaptation value. In an optimisation algorithm, populations tend to focus on 

the exploration phase at the beginning and switch to an exploitation phase in the middle and later stages. Artificial 

Rabbit Optimisation (ARO) uses the energy of the search agent to create a finding scheme as the search agent 

energy diminishes over time, effectively mimicking the transition from exploration to exploitation. The way to 

define the energy factor in the search agent algorithm is, 

r
In

t

t
tZ

1
.1.4)(

max

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







−=                            (35) 

 

Here,  r  represents a specific random number and r falls within the range of (0, 1). The hybrid of Levy flight 

with rabbit optimisation leverages strengths to enhance algorithm accuracy. Levy flights are commonly used in 

advanced optimisation algorithms to enhance exploration and avoid local optima. Levy flight operator is primarily 

noted for producing a regular random number, which is usually a small number but can occasionally be a large 

random number. This random number generation rule can assist different update strategies in introducing 

dynamics and escaping local solutions. The Levy distribution is defined as, 

20,~)( 1 = −− tvtlevy                           (36) 

Here, t  represents step length, which can be determined using Equation (37). The equations for calculating the 

step size of the Levy flight are provided in Equations (37)–(40). 
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1=w                                                  (40) 

Here, 
v and 

w are defined as stated in Equations (39) and (40). Both v and w follow Gaussian distributions 

with a mean of 0 and variances of  
2

V  and 
2

w  as indicated in Equation (39).   represents the standard Gamma 

function, while  is the correlation parameter typically set to 1.5. In the random hiding phase, substitute 4r  

random numbers with those generated by the Levy flight strategy. Since this stage is about exploitation, 

incorporate Levy flight into the strategy to prevent rabbit optimisation from getting stuck in local candidate 

solutions during the exploitation phase. Moreover, it enhances the adaptability of the random hiding stage.  

njtytClevyRtytW jrjjj ,.....,1)),()().(..()()1( , =−+=+


                (41) 

Here, Equation (41) outlines the random hidden phase based on Levy flight, where  is fixed parameter is set to 

0.1. The Pseudocode is defined in Algorithm 1. 

The structure of artificial rabbit optimisation 

Start 

Input: Channel, transmission power, spreading factor 

The search agent parameters include the number of search agents n and maxT . 

Randomly initialise a group of search agents  jy  and calculate jg  

 Identify the best search agent. 

While maxtt  do 

          For  ntoj 1= do 

               Calculate energy factor Z using Equation (35). 

             If 1Z then 

                 Randomly select a search agent from the entire group. 

                 Update the search agent position using Equation (34). 

         Else 

                 Generate d search space and randomly choose one based on Equation (33). 

                  Implement a random hiding strategy according to Equation (31). 

                  Calculate the fitness value of the search agent's position. 

                  Update the search agent position using Equation (34). 

              End if 

         End for 

         Look for the best search agent. 

         1+= tt  

            The Levy flight is included in Equation (41) to enhance accuracy. 

End while 

Stop  

Output:  Improve energy efficiency, minimise latency 
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IV. RESULTS AND DISCUSSION 

The superiority of the proposed approach is demonstrated by evaluating the complete performance of the proposed 

approach with different existing models. The proposed model of LoRa is implemented using the NS3 tool. 

Performance metrics like delay, energy consumption, energy efficiency, execution time, remaining resources, 

SINR, throughput, and transmission rate [24] are evaluated and compared with recent research models.  The 

proposed model's efficiency is analysed by different existing approaches. Table 2 denotes the simulation 

parameters of the proposed model.  

Table 2. Simulation parameter 

 

Parameter  

Number of values 

used 

Channel  1-20 

Power transmission 0-1 

IoT device 5 

Gateway  1 

Spread factor  0-1 

 

Performance evaluation of the proposed model along with existing approaches 

The proposed model performance is analysed with existing approaches like Powered by energy harvesting-quality 

of service (PEH-QoS), classic Q learning, and Modified Q learning. 

 

 

 Fig 4. Energy consumption 

Energy consumption evaluation is defined in Fig. 4. The graph shows how energy consumption compares across 

different node densities for four models. As the number of nodes increases from 20 to 100, all models see a 

significant rise in energy use.  PEH-QoS struggles with resource allocation because its static design leads to higher 

energy consumption, especially at denser node setups. Classic Q learning is more dynamic but has issues with 

slow convergence and less effective exploration strategies that result in moderate energy savings but not enough 

adaptability in crowded networks. Modified Q learning does better than the classic version by improving update 

strategies, but it still faces problems with premature convergence and can get stuck in local optima, which causes 

a sharp rise in energy use as node numbers increase. The proposed model uses a hybrid double deep Q-learning 

based actor critic (Hy-DeoQ-AC) method along with hybrid Levy flight assisted rabbit optimisation (Hy-

LevRBO). It shows improved performance by optimising key transmission parameters like transmission power, 

spreading factor, and channel selection in real time. This optimisation approach facilitates efficient exploration of 

the solution space and precise exploitation of the best configurations, greatly reducing energy consumption even 
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as node density goes up. By striking a good balance between exploration and exploitation, the proposed model 

keeps energy use low across all node variations, which effectively addresses the main shortcomings of the existing 

models. 

 

Fig 5. Energy Efficiency 

Fig. 5 illustrates how energy efficiency (bits/Joule) changes with increasing node density for various approaches. 

As the number of nodes increases, all techniques experience energy efficiency drops due to more interference, 

congestion, and poor resource allocation in PEH-QoS consistently shows low energy efficiency, which makes it 

a poor fit for dense IoT settings. Classic Q learning does better than PEH-QoS by using a learning-based approach 

but faces issues with limited learning depth, which leads to inefficient resource allocation when network stress 

rises. Modified Q learning improves the Q value update process but still doesn’t have enough global search 

capability, resulting in lower energy efficiency as node density increases. The proposed model achieves much 

higher energy efficiency across all node densities. This allows the model to effectively find the best parameter 

configurations through reinforced exploration and detailed local search. The hybrid Hy-LevRBO tuning 

mechanism ensures that even with rising network loads, the selected transmission parameters maintain higher data 

rates compared to energy consumption, which solves scalability issues faced by existing approaches. 

 

 

Fig. 6. Delay 

Fig. 6 describes delay analysis. The graph shows how delay changes as the number of nodes increases across 

various models. As node count goes up, overall network delay rises for all methods due to increased contention 
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and queuing delays. PEH-QoS consistently experiences high delays because of its fixed resource allocation, which 

causes congestion during peak traffic. Classic Q learning struggles to adapt in real time to quick changes in 

network topology. Modified Q learning faces issues with balancing exploration and exploitation. Moreover, use 

of Hy-LevRBO fine-tunes resource allocation in real time, cutting down on queuing and transmission delays even 

in high-density node situations. This results in consistently lower delays compared to other methods, which makes 

the proposed model very effective at reducing transmission latency in scalable environments. 

 

Fig 7. Execution time 

Execution time evaluation is denoted in Fig. 7. As the node count goes up, execution time for PEH-QoS 

consistently rises because it depends on costly static algorithms that do not scale well. Classic Q learning takes a 

long time to execute, mainly due to its single agent learning setup, which needs several iterations to converge in 

large action spaces, making it less efficient in dense environments. Modified Q learning has scalability challenges 

since it adds extra computational load to adjust learning rates and balance exploration. The proposed approach 

uses Hy-DeoQ-AC with parallel reinforcement agents and Hy-LevRBO, which makes the optimisation process 

smoother. This hybrid approach reduces unnecessary computations by concentrating on both global searching and 

local fine-tuning at the same time, significantly reducing execution time across all node variations. By smartly 

directing learning and tuning processes, the proposed model effectively improves execution efficiency in high-

density networks. 

 

Fig 8. Remaining resources 

The remaining resources analysis is illustrated in Fig. 8. The graph shows how the percentage of leftover resources 

in the network changes with increasing number of nodes. One ongoing issue with existing methods is poor use of 

network resources as node density rises. PEH-QoS results in fewer remaining resources because its static resource 
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management strategies do not adapt dynamically, which leads to quick depletion of bandwidth, power, and 

channel availability. While classic Q learning is better at adapting, it does not have the fine control needed for 

resource distribution that causes unnecessary resource use in some areas of the network. Modified Q struggles 

with premature convergence, often overlooking globally optimal allocations and thus limiting resource 

conservation. The proposed model, featuring the Hy-DeoQ-AC framework enhanced by Hy-LevRBO, stands out 

by smartly distributing transmission power, spreading factor and channel assignments. This hybrid approach 

maximises resource retention by balancing the use of known configurations with the exploration of new options, 

ensuring efficient use of available resources. As a result, the proposed model consistently achieves higher 

percentages of remaining resources, which leads to more flexibility for future transmissions. 

 

Fig 9. SINR evaluation 

Fig. 9 shows the SINR evaluation. PEH-QoS consistently results in lower SINR values because its static 

optimisation method cannot adapt to growing interference in crowded node settings. This leads to poor signal 

quality and a higher chance of packet loss. Classic Q-learning has difficulty dealing with complex interference 

patterns, which results in less efficient channel use and ongoing interference problems. Modified Q learning faces 

some limitations in convergence and focusing on local optima still stops it from achieving consistently high SINR. 

The proposed model tackles these issues by dynamically adjusting transmission parameters like spreading factor, 

transmission power, and channel assignment based on changing interference levels. This hybrid approach boosts 

communication reliability and enhances overall network robustness and data integrity. 

 

 

Fig 10. Throughput 
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Fig. 10 describes throughput changes as node density increases. PEH-QoS experiences a sharp drop in throughput 

with rising node variation, primarily because it cannot adjust dynamically to congestion and interference that lead 

to frequent retransmissions and data collisions. Classic Q learning has slower convergence in denser environments 

that holds it back. Modified Q learning faces issues in optimally managing transmission parameters in real time. 

The proposed Hy-DeoQ-AC with Hy-LevRBO mechanism makes better use of resources by optimising 

transmission power, spreading factor, and channel allocation all at once. Its hybrid design permits quicker 

adjustments to changing network loads, reducing packet collisions, and improving data delivery rates. As a result, 

the proposed model consistently maintains higher throughput, which ensures more stable and efficient data 

transmission even when node densities are high. 

 

Fig 11. Transmission Rate 

Fig. 11 illustrates how increasing node variation affects transmission rate. PEH-QoS results in poor spectrum 

utilisation and packet losses as node congestion increases. Classic Q learning has a limited learning range, making 

it slower to respond to changing transmission conditions, particularly in crowded environments. Modified Q 

learning improves the learning process by still facing problems with partial optimisation of resource allocation, 

which restricts its ability to achieve optimal packet dispatching under load. The proposed Hy-DeoQ-AC with Hy-

LevRBO model outperforms all existing schemes by dynamically optimising essential transmission factors. This 

allows the network to adapt quickly, which maximises transmission rate even in high node density situations. As 

a result, the proposed method reaches near-optimal packet transmission rates and demonstrates adaptability and 

resource management capabilities. Table 3 defines values of existing and proposed models.  

Table 3. Performance analysis values of the proposed and existing models 

Energy consumption 

Models    20 40 60 80 100 

PEH-QoS 0.1186 0.1714 0.1929 0.4014 0.4529 

CQL 0.0957 0.1629 0.2257 0.2614 0.4071 

MQL 0.0743 0.1057 0.1571 0.4657 0.4829 

Proposed  0.0329 0.0371 0.0557 0.2529 0.3243 

Energy efficiency (bits/J) 

Models 20 40 60 80 100 

PEH-QoS 19.4697 18.3333 16.5909 11.4394 4.4697 

CQL 27.1212 25.4545 22.197 16.4394 7.3485 

MQL 28.5606 21.6667 18.1061 15.1515 8.2576 
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Proposed 30.0 27.803 26.3636 23.4848 16.1364 

Delay 

Models 20 40 60 80 100 

PEH-QoS 0.6988 0.7224 0.8494 0.8894 0.9271 

CQL 0.6612 0.8094 0.7835 0.8871 0.4071 

MQL 0.6871 0.7412 0.8424 0.88 0.9058 

Proposed 0.6447 0.6471 0.7576 0.7624 0.7096 

Execution time (S) 

Models 20 40 60 80 100 

PEH-QoS 54.4335 61.0837 66.7488 85.9606 92.6108 

CQL 29.5567 61.5764 76.1084 91.6256 97.7833 

MQL 28.3251 39.1626 54.9261 80.7882 90.1478 

Proposed 16.7488 34.4828 44.335 49.5074 54.6798 

Remaining resources (%) 

Models 20 40 60 80 100 

PEH-QoS 1.4427 1.4831 1.9685 3.6135 4.6652 

CQL 0.9573 1.4292 3.0202 4.4764 4.827 

MQL 1.0921 1.7663 3.1281 4.2067 5.0697 

Proposed 2.1034 2.4809 4.018 5.2989 5.5281 

SINR (dB) 

Models 20 40 60 80 100 

PEH-QoS 2.1446 3.4414 5.7855 9.0274 13.9152 

CQL 4.3392 6.6334 9.0773 12.419 14.4638 

MQL 7.182 9.1272 11.1222 14.3641 17.0075 

Proposed 12.4688 12.9676 16.5586 17.8554 20.2993 

Throughput (bits/sec) 

Models 20 40 60 80 100 

PEH-QoS 60.6118 47.6235 44.4235 43.8588 36.8941 

CQL 67.7647 54.9647 48.3765 44.2353 37.4588 

MQL 68.3294 60.0471 54.0235 48.9412 44.4235 

Proposed 76.4235 70.0235 67.0118 62.6824 56.8471 

Transmission rate (packet/sec) 

Models 20 40 60 80 100 

PEH-QoS 0.0529 0.1707 0.2957 0.4279 0.4904 

CQL 0.1442 0.2356 0.3462 0.4856 0.5938 

MQL 0.2043 0.3269 0.4736 0.6034 0.6971 

Proposed 0.3245 0.6394 0.7476 0.9591 0.9832 

 

Auth
ors

 Pre-
Proo

f



Discussion 

The presented approach improves efficiency based on a hybrid reinforcement learning approach. The existing 

PEH-QoS is associated with high latency and energy consumption during changing network conditions, limiting 

its use in real-time IoT applications. The classic Q learning method has trouble with convergence speed and 

scalability in large networks. Modified Q Learning does enhance parameter selection but adds complexity to 

optimisation and can lead to inconsistent performance with different interference levels. The proposed model 

solves this issue by incorporating Hybrid Levy Flight Assisted Rabbit Optimisation, which not only streamlines 

optimisation search but also guarantees stable and adaptable performance, even when interference and load 

conditions vary. By merging advanced reinforcement learning with metaheuristic optimisation, the proposed 

method strikes an excellent balance between energy efficiency, throughput, and reduced execution time, clearly 

surpassing both traditional and modified reinforcement learning techniques in thorough simulation tests. 

V. CONCLUSION 

This research introduces a promising solution to tackle the main issues of resource allocation in LoRa-based 

networks by presenting a hybrid optimisation model that merges Hy-DeoQ-AC with Hy-LevRBO. The suggested 

model effectively deals with typical drawbacks of traditional resource allocation techniques, including higher 

packet loss, interference, excessive energy use, limited coverage, and lower transmission speeds. By smartly 

optimising transmission parameters such as transmission power, spreading factor, and channel selection, the 

proposed model guarantees efficient data transmission while boosting QoS for IoT devices. The combination of 

Hy-DeoQ-AC for intelligent learning, and Hy-LevRBO for fine-tuning allows the system to adapt dynamically to 

changing network conditions. The proposed model attains a throughput of 56.8471 (bits/s), energy efficiency of 

16.1364 (bits/J), which leads to improved use of network resources. Looking forward, there are some meaningful 

ways to expand on this work. Future studies could explore the implementation of distributed reinforcement 

learning to decentralise the optimisation process across various nodes to enhance scalability and fault tolerance in 

large IoT networks. Moreover, integrating this hybrid optimisation model with mobility-aware algorithms could 

enhance adaptability in settings with mobile nodes or changing network topologies. The proposed method might 

also be broadened to include energy harvesting mechanisms that enable IoT devices to operate for extended 

periods without needing manual battery changes.  
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