Journal Pre-proof

Energy-Efficient Reinforcement Learning-Based Adaptive Resource

Allocation for LoRa Networks  Jour ——
. Machine and Computing
s

17 lirﬁelﬁ,_lssue 01, Jan
Suchitra N Shenoy, Ganesh V Bhat and Manoj T Gadiyar H / Hri

DOI: 10.53759/7669/jmc202505186
Reference: IMC202505186

Journal: Journal of Machine and Computing.

Received 18 June 2025
Revised from 28 July 2025
Accepted 03 August 2025

Please cite this article as: Suchitra N Shenoy, Ganesh V Bhat and Manoj T Gadiyar H, “Energy-

Efficient Reinforcement Learning-Based Adaptive Resource Allocation for LoRa Networks”, Journal of
Machine and Computing. (2025). Doi: https:// doi.org/10.53759/7669/jmc202505186.

This PDF file contains an article that has undergone certain improvements after acceptance. These
enhancements include the addition of a cover page, metadata, and formatting changes aimed at
enhancing readability. However, it is important to note that this version is not considered the final

authoritative version of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting,
typesetting, and comprehensive review. These processes are implemented to ensure the article's final
form is of the highest quality. The purpose of sharing this version is to offer early visibility of the article's

content to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may
be identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal
remain in effect.

© 2025 Published by AnaPub Publications.

@ AnaPub



Energy-Efficient Reinforcement Learning-
Based Adaptive Resource Allocation for LoRa
Networks

ISuchitra N Shenoy, 2Ganesh V Bhat and *H. Manoj T. Gadiyar

IResearch Scholar, Department of Electronics and Communication Engineering,
Canara Engineering College, Mangalore — 574219, Visvesvaraya Technological University, Belagavi.
2Research Supervisor, Department of Electronics and Communication Engineering,
Canara Engineering College, Mangalore — 574219, Visvesvaraya Technological University,
3Research Supervisor, Department of Information Science and Engineering,
Canara Engineering College, Mangalore — 574219, Visvesvaraya Technological Univi

Correspondence should be addressed to Suchitra N Shenoy: suchiprab_16@y3

Abstract - In the last few years, a surge in loT applications has ramped up the neW ective and dependable
data transmission in LoRa-based systems. Yet, traditional resource allocation method gL oRa systems face major
drawbacks such as higher packet loss, interference, excessive energy use, limitegasoVSg@ee, slow transmission
speeds, and increased operational expenses. To tackle these issues, this siud 'nt&as a new hybrid optimisation
framework that combines Hybrid Reinforcement Learning, named as § bep Q-Learning based Actor-Critic
mechanism (Hy-DeoQ-AC), with a hybrid Levy Flight Assiste ation algorithm (Hy-LevRBO).

satisfy strict Quality of Service (Qo0S) requiremg i dditionally, the hybrid optimisation gains
from Hy-LevRBO, which fine-tunes chosen pa ]
combined strategy greatly enhances energy efficie aximises throughput, extends transmission range, and
reduces latency in LoRa networks. The ComprelN@give experimental analysis attains a throughput of
56.8471(bits/s), energy efficiency of 16.1364 (bits/J), Wehich confirms the proposed model's superiority and
achieves better performance across Vv, metrics. This research offers an energy-efficient solution for loT

communications.

Keywords - Q learning, long-r netwo y Flight, Rabbit optimisation, Actor critic approach.

I. INTRODUCTION

isation and resource allocations are critical parts. Some example limitations, like fewer shared
curate radio influences, and limited intrinsic networks, disturb resource allocation [5].

ses enhance heterogeneity and quality of service (QoS) about hardware diversity. Concurrence problems
ncreased in the development of LoRa [6]. By considering signal-to-noise ratio (SNR), the server improves
communication power and modifies SF for enhancing energy efficiency, airtime, and data transmission speed [7].
To increase the efficiency of the resource, the transmit power is changed at each stage [8]. A wide range of loT
technologies requires several connected devices for data transmission based on resource allocation [9]. To increase
resource efficiency, a convincing resource allocation scheme is needed for channel conflict avoidance, and an
intelligent resource allocation framework is essential [10].



The existing frameworks for resource allocation in LoRa suffer from high channel usage, computational cost, and
decreased network capacity while allocating the resources to large networks [11]. The previous resource allocation
algorithms offer less QoS. It reduces the network’s robustness. Some lightweight techniques for SFs produce
inaccurate reliability [12]. The goal of the traditional system is to statistically minimise the probabilities of two or
more communications overlapping in frequency and time [13]. Existing LoRa networks must increase reliability
and control overhead since they are still implemented based on network size. Additionally, the main goal of a
scheduling strategy is to enhance reliability by allocating transmission slots with minimal cost [14]. Yet,
traditional networks enhance overhead and computational cost [15]. The interactions with educational setting
such as user volume, colour, and service quality requirements, are issues of existing approaches [15].

Motivation

The Internet of Things (1oT) will connect 30+ billion devices by 2030 with long-range (LoRa) techiillogy as
primary management system. LoRa is widely utilised in cellular networks, industry, and acagwiNgR imprg
communication. Wireless sensor networks (WSN) adopting low-power wide area nghd
long-range (LoRa) WAN, help to improve communication standards. LoRa has I
for many applications, such as environmental monitoring. Owing to the preseg
with the development of 10T devices, the existing LoRa system is also impacted CYg@Resg@Sues. The conventional
resource allocation-based data transmission in LoRa has many challenges, including rity, server dependence,
network connectivity, coverage, and limited resource capabilities. EXxisting syste ' suffered from high
computational load and communication latency issues. To overcom es, a novel optimal hybrid
reinforcement learning-assisted resource allocation in LoRa is propo ain contributions of the work are:

To review existing studies and analyse existing model

To develop an efficient reinforcement learnigga i timal resource allocation in LoRa
systems for energy efficiency and perforig i

e To introduce a Double Deep Q-Learng 3 iti chanism with Levy-assisted bio-inspired
optimisation for creating optimal resourSqga on policies

e To evaluate the proposed model's effe
performance metrics such as energy consumpti
ratio (SINR), and transmission

eness through extensive simulation, we analyse key
atency, throughput, signal-to-interference-plus-noise

The structure of the manuscript is orgalised ows: Section 2 reviews the existing approaches and techniques,
Section 3 provides a thorough ex thg@roposed model, Section 4 examines and deliberates outcomes
obtained from the proposed ap«@alch, an n 5 concludes with a summary of findings and future scope of

this research.

Il. RELATED WORKS

ement learning based resource allocation model to adjust their transmission

dy are high computational cost, scalability, and adaptability challenges. Rao and Sunder
er transmission and increased data transfer rate in LoRa networks by using a reinforcement
ach-based system. The approach was used for finding variables during the transmission of data. An

al hubs. Parameter optimisation was used to enhance the throughput and reduce the energy usage.
er, the challenge of the suggested system includes supporting only low data rates and complex optimisation
challenges. Minhaj et al. [18] implemented a new way of allocating the SF and transmission power to the devices
by joining a decentralised and centralised technique with two independent learning procedures. Transmission
power was allocated centrally by decreasing the contextual bandit problem using machine learning (ML)
techniques. The reinforcement learning (RL) technique assigned the SF parameter to the network devices. The
designed system provided higher accuracy and lower energy usage for large, congested networks than current
state-of-the-art algorithms. High packet loss ratio is the main issue of this system. Gava et al. [19] provided a
novel resource optimisation scheme in LoRa for maintaining costs and implementation complexity. Performance




investigations were carried out in LoRa using LoRa repeaters to improve the coverage. Total execution time and
energy usage were minimised by adjusting parameters like transmission power, spreading factor, and bandwidth.
However, maintaining a balance between energy efficiency and data collecting takes time and effort. Mahesh et
al. [20-23] suggested a co-optimal Q-reinforcement learning (CO-QL) model as a resource allocation mechanism.
Here, Q-reinforcement learning was utilised to learn the information about nodes, and COA helps to choose the
optimal action for enhancing the reward. This approach helps to improve packet delivery rate performance. The
performances, such as packet success ratio (PSR), packet collision rate (PCR), time, delay, and energy, were
evaluated and compared with recent research models. High latency was one of the major limitations in this mode
Table 1 defines the performance evaluation of the proposed and existing models [24-25].

Table 1. Performance analysis of proposed and existing approaches

Author Techniques Merits Deme

Azizi et al. [16] Reinforcement learning Improves lal issu

convergence spe

Rao and Sunder [17] Coati algorithm Less power lex
transmission Imisation
allenge

Minhaj et al. [18] Machine learning + s more time for
Reinforcement learning execution
Gava et al. [19] Resource optimisation i Balancing energy
approach efficiency is
challenging
Mahesh et al. [20] Q-reinforcement le High delay

Research Gap

Existing research faces various limitatio ich are discUSsed as follows: Azizi et al. concentrated on allocating
resources with an optimisation algori phases for exploration and exploitation, but they encountered
difficulties with scalability and hj sts. Some other existing models have enhanced data transfer
rates and minimised power co i
complex optimisation issue i@l et al. combined centralised and decentralised learning for SF and power

repeaters, yet balancing energy efficiency and data collection remained
a CO-QL model that improved packet delivery but suffered from high latency.
arch gaps include addressing computational complexity, scalability, adaptability,
ensuring reliable transmission in large-scale and dynamic LoRa networks.

I1l. PROPOSED METHODOLOGY

oach utilises the LoRa system to minimise transmission power, which is effectively identified
yjrforcement learning, namely, Double deep Q-Learning based actor critic mechanism (Hy-DeoQ-

rk resources like transmission power, spreading factor, and channel. This approach helps to allocate the
ission power, spreading factor, and channel for 10T devices to enhance quality of service requirements. The
appropriate parameters are selected from the Hy-DeoQ-AC model, which is properly tuned by the Hybrid Levy
flight assisted rabbit optimisation algorithm (Hy-LevRBO). This approach helps to tune the network resources of
the model. The tuning process helps to increase the energy efficiency, throughput, and transmission range and
reduce latency [27-28]. The server in the LoRa is matched by the agents generated by the Hy-DeoQ-AC model.
Then, transmission parameters are given to the network terminal hub after the agents in the Hy-DeoQ-AC are
generated. Throughput, energy efficiency, latency, and transmission rate are analysed using this optimisation



strategy. The proposed model optimises resource allocation in LoRa-based Non-Orthogonal Multiple Access
(NOMA) networks by dynamically adjusting transmission power, spreading factor, and channel selection to
enhance QoS. RL operates by training agents to interact with the environment, where the Hy-DeoQ-AC
mechanism leverages a double deep Q learning based actor critic framework to balance the exploration and
exploitation for optimal decision making. Hy-LevRBO mechanism fine-tunes the network parameters, improving
energy efficiency, throughput, and transmission range while reducing latency. The trained RL agents match the
server in LoRa, optimising transmission parameters for terminal hubs.

System Model

A single LoRa [21] model consists of a duplex gateway and fixed LoRa end devices. The LoRa system is divi

into three classes D E F . The network model of LoRa is defined in Fig. 1.
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Fig 1. LoRa network model

s arcegrenly distributed around the gateway and are classified as class D devices. Most of the time,
remain in sleep mode to conserve battery life. They only wake up to perform uplink
when a new packet is received. Fig. 2 defines the architecture of resource allocation in LoRa.
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downlink acknowledgement from the gateway. @

from the uplink channel to avoid interference bet™g@a@ownlink acknowledgements and uplink transmissions.
The LoRa system specifies two receive windows S1 S?2 . These windows help determine confirmed traffic
indow, S2¥nd devices wait for an acknowledgement that saves
of LoRa is based on bandwidth BW and the spreading factor

within the network. In the second recej

channel resources and energy. The sy

SF . The LoRa symbol duratiop@; i using Equation (1).

25F
Vt = (1)
BW
The gate Y 48 ac dgements at a set spreading factor. The variable F % indicates the path loss
exponiRt i com pcation range, which is influenced by path loss. The path loss Ppath is calculated using
Equati
2
4.7.h 0
0 (457 @

VLORa frequency is noted by h and the link budget Pbud is measured using Equation (3).
o]
P, ,=—" (3)
U, (tg, cx)



Here, P, refers to transmission power and Us(tg,CX) represents receiver sensitivity, which is influenced by

bandwidth and spreading factor. The lowest power needed to detect the signal is the receiver sensitivity. Calculate
SNR, using Equation (4).

G.
SNRO — _—hit (4)
OO
Here, O, the noise power density. The parameter is taken to G, =U_V,;, . The received power is represe
by Us , and the bit duration is indicated by V.. The formula above is rephrased using Equation (5
u..2"
SNR, = ——— )
0g.m.v.cx
where the term U is evaluated using Equation (6).
SNR,.omV .C
U S = 2tg (6)
Here, receiver sensitivity U (g, CX) is analysed using Equation (7
, S 0, -
R(tg).0g.mV .cx
Here, the Kelvin constant, noise, and temperature resented by m, ogand V . The path loss factor f is

calculated using Equation (8).

1
0
f — Ppath (8)
4ah)
d
s are utilised to achieve extended LoRa ranges. Therefore, the range of LoRa

e spreading factor. The specifics of LoRa modulation and the precise radio environment
ansmission. Every conceivable LoRa parameter is employed to minimise packet loss

he throughput is referred to as the total number of tasks which are processed for a given period. It is the
ial factor for system performance assessments and reliability, which is expressed as,

N
T,=>.C/T )
x=1

Where, Ct is mentioned by the completed tasks are mentioned and T is represented as the starting time of the
execution of the task



Energy efficiency
Energy efficiency is all about how much data gets transmitted successfully for each unit of energy used during
the transmission. It is defined as,

E
EE = =< (10)
Ftot
Here, E,, defines total successfully delivered bits and F,, denotes total energy consumed in transmission.
Latency
It is computed by the amount of time required to send a packet from the source to the destination. It e €

processing, waiting, and transmission delays, which are calculated as
Delay = (Br), — (Hr),

Here, (Br), denotes packet arrival time and (Hr), is the generation time.

Transmission Rate
The transmission rate is measured by how much data is successfully received over a\g&ain period.

TR = Rc.(l—?z)

Here, R, denotes raw data rate, and PLR is the packet loss ratio.

(12)

Resource allocation by Hybrid reinforcement le
mechanism

m ouble deep Q-Learning based actor critic

A reinforcement learning [29][300] agent is div to two main parts as actor (policy) and critic (value
function). The main goal of using Hybrid Reinforce Learning with double deep Q-Learning-based actor-
critic (Hy-DeoQ-AC) for resource allocatign is to enhan®how network resources are used in LoRa-based loT
networks. LoRa is crucial to efficient key parameters like transmission power, spreading factor, and
channel to satisfy increasing needs ency, higher throughput, lower latency, and wider transmission
sues by learning the best resource allocation strategies through
ent. This smart and adaptive method results in more intelligent and
sustainable loT communy ce-limited settings like LoRa networks. The double deep Q learning part
helps reduce the overgimati yas Dy using two Q networks as one for action selection and another for
evaluation. This re icearning and more dependable decision-making. Through repeated interactions
i Sll¥’Ccment learning agents figure out how to allocate network resources in a way
0osts throughput, cuts down latency, and guarantees stable transmission rates. During

oximation of the value function is created. The actor component provides advantages in convergence
e and the ability to compute continuous actions, while the critic uses an approximation framework to
te a value function, which offers low variance insights into performance and is then used to update actor
policy parameters. Actor-critic methods are recognised as policy gradient methods, boasting better convergence
properties than critic-only methods. Moreover, due to variance reduction, actor-critic methods converge faster. In
Q-learning, the Q-value is a key component of the learning algorithm. For smaller problems, a Q value pair
Q(U,b) can be stored in computer memory. But for larger problems, the number of Q-value pairs can become

huge or even infinite. So, it is not practical to keep all possible pairs in memory; estimating Q value is crucial
when using Q-learning. The aim is to learn behaviour and to allocate resources, which is why we suggest using
actor-critic network to achieve both value and behaviour estimation. The Critic network handles value estimation.



When agents choose an action and find themselves in a new state, the critic network estimates potential action
values based on the current state to assist the agent in deciding the next action. The Actor network is akin to the
critic network, but it estimates behaviour distribution when the agent reaches a new state and takes an appropriate
action based on the feedback from the critic network from the previous step. To solve issues faced in Q learning,
actor critic network is used.

Actor-critic methods

The actor-critic framework employs two networks or function approximators to develop and finalise the traini
of the agent, which proves effective in continuous action control tasks. Fig. 3 defines the Actor-Critic approa

-< Buffer >—<—< Environment
:ACtOI’ \ 4 \ 4 | ‘I® .w

Current

ig 3 tor-critic mechanism

ach and the policy gradient approach can utilise actor-critic framework.
ne®vork 7z(U), while the critic serves as an estimate of current action value

n value for the current action and state. This is optimised using Bellman [Q(Ut,bt)— 2]2 ,
> +ymaX, s Q" (U,.,,b") . Therefore, the current action value function Q_(U,b)is always

oser to the optimal action value function Q" (u,_,,,b") . The critic objective is outlined in Equation (13).

t+1?

3(Qp) =E puy-el(r(u,b) +7Q, (u', 7, (U) —Qy (u,0))*] (13)

Here, € denotes the parameter of the value function network Q, ¢ denotes the parameter of the action policy

network 77, E and describes the state-action domain of the environment. The action policy network aims to



choose an action that maximises the Q value function in the current state. The actor's objective is defined in
Equation (14)

J(7,) =B, e[Qy (U, 7, (u))] (14)

Deep deterministic policy gradient (DDPG) is a classic value function algorithm that uses a target network to
enhance training stability and manages target network update rate through soft updates. The goal of its value
function is presented in Equation (15)

J(Qy) =E s [(r(u,b) + 7Q, (u', 7, (U)) - Q, (u,b))’]

Here Qgr,fz(ﬁ, corresponds to target networks, Cdenotes the experience relay buffer gotten |

interacting with the environment. Temporal difference error (TD) is suggested by minimising ti@#va
implementing policy delays, and adding target noise to reduce overestimation bias. value'e
objective is represented by Equation (16).

’J(QH) = E(u,B,u’)~c[(r(u1b)+7/rolli'r2] QHJ ’(u"ﬁ-ﬁ (U')+ ’b))z]] (16)

Here QAHV , 7T, agree to target networks, the relay buffer is defined as ° (Ilp( N(0,5%),~d,d) which

denotes random action noise following a clipped Gaussian distributi

Policy gradient method

The policy gradient approach involves utilisig
environment and gathers trajectory data 77. Tf

pnt n policy network that engages with the
putes poNCy gradient and tweaks parameters, which

>

can boost the chances of picking a higher value actid
the state value function W (U) , where W indicates th
goal of the state value is illustrated in n (17).

W,) = Ey, opn [R@,) =W, (U))°] a7)

U keep optimising for a better policy. The critic represents
erage state value that is linked to the current state. The

e cumulative reward of statesU,, 77and defines current policy 7Ty

'J(ﬂ-¢) =E [(R(Ut)_we(ut))log S(7Z'¢(U))] (18)

uT en =y

r adj action selection probability in terms of state value and objective as defined in Equation

the Hybrid Levy flight assisted rabbit optimisation algorithm

imisation algorithm [23][25] is mainly based on two laws of rabbit survival found in nature as detour
¥ng and random hiding. This hybrid approach improves energy efficiency, throughput, and minimises delay
and transmission rate. The Hybrid Levy Flight Assisted Rabbit optimisation algorithm (Hy-LevRBO) is designed
to refine network parameters chosen by a reinforcement learning model. However, the Hy-DeoQ-AC mechanism
sets initial best resource allocation, such as transmission power, spreading factor, and channel. Also, fine-tuning
is essential to enhance performance and adjust to changing network conditions. Hy-LevRBO merges two effective
strategies. One strategy is the rabbit optimisation Algorithm (RBO), which draws inspiration from the clever
foraging habits of rabbits. The second strategy is Levy flight, which is a random walk method based on the Levy



distribution that enables occasional long jumps during the search process. This capability assists the algorithm in
avoiding local optima and seeking out a wider range of solutions. The fitness function is defined as,

Fitness = max imization(energy efficiency, throughpud (19)

Foraging is an exploration tactic that helps rabbits avoid being spotted by predators by munching on grass close
to their nests. On the other hand, random hiding involves rabbits relocating to different burrows to conceal
themselves better. Every search algorithm kicks off with an initialisation process. If design variable size is
considered as a dimension D, the artificial search agent colony size is considered N, and the upper and lo

limits as UB and LB, initialisation proceeds as follows,

Yjx =r(UB, —-LB)+LB,, k=12..,D
Here, ijk represents the position of the dimension of i™ search agent and I is a rando mb

alongside it. The metaheuristic algorithm primarily focuses on two processes 3 n exploitation,
whereas detour foraging mainly emphasises the exploration phase. Detour for J each ch agent's
inclination to wander around the parameter and randomly explore another search @
to gather sufficient information. Below is the updated formula for detour foraging,

Wi (t+1) = ¥, (t) +r.(,; (1) - V; (t)) + rgund(

(0.05%1,)).N, (21)

(22)

).sin(2xr,) (23)

B(k)={1 k= ‘dand m=1....[r,.d] (24)
0 else

H =randg(d) (25)

n, ~ N(0) (26)

pS@klon of the search agent, yj signifies the location of jth search agent and

@ her random locations. t_ is the highest number of iterations and randq

0 from 1 to d a random permutation of integers. I, , I, and I;are random

1. M stands for running length, which is the speed of movement during detour

pically digs several search spaces and randomly selects one to hide in to lower the chances of
pon. Initially, the outline method by which rabbits search agents creates search space. The jth

nt generates i" search space by,

C,.(t+) =y, +1.hy, 1) @7)
| _M‘n (28)
= ,

max



n, ~N(021) (29)

1 if k=i
h(k) = mk =1,......,d (30)
0 else

Here j=1....,N and i=1,....,d, and n,adheres to the standard normal distribution. | represents a

hidden parameter gradually decreasing from 1 to 1/T,. with random perturbations. The formula for updati
the random hiding method is displayed as,

W, (t+1) =y, () +R(r,C;, () - ¥, (1) (
mw)=¥ tok=led] oy )
0 else

éj,r (t) = yj (t) + I 'hr

Here ij (t+2) is the updated position of the search agent, 6j,r (t) which indicate

space from d the search space created by the search agent for conceglment and Iy

provided within range of 0 to 1. Once two update strategies are appjif

) p (V1) < gW,(t+1)
Y, (@ § -~ (34)
< rit+1) else g(y;(t)>g(y;(t+1)

using Equation (34).

Here, this equation shows an adaptive e. The search agent instinctively decides whether to remain where it
is or shift to a new spot based on t lue. In an optimisation algorithm, populations tend to focus on
the exploration phase at the begi 0 an exploitation phase in the middle and later stages. Artificial
Rabbit Optimisation (ARO) use the search agent to create a finding scheme as the search agent

energy diminishes over g
define the energy factoy

mimicking the transition from exploration to exploitation. The way to
h agent algorithm is,

zm=4@—ii}n1 (35)
t r

max

specific random number and r falls within the range of (0, 1). The hybrid of Levy flight
tion leverages strengths to enhance algorithm accuracy. Levy flights are commonly used in

ics and escaping local solutions. The Levy distribution is defined as,
levy(t) ~v=t"70<y<2 (36)

Here, t represents step length, which can be determined using Equation (37). The equations for calculating the
step size of the Levy flight are provided in Equations (37)—(40).



t=—v (37)

|\N|1/7

vV~ N(O,G\f),W ~ N(O,O'VZV) (38)

_ _(ra+ensinzal2) e
YT+ al2)a2

(39

incorporate Levy flight into the strategy to prevent rabbit optimisation from ge
solutions during the exploitation phase. Moreover, it enhances the adaptability ? r
i (1))

W, (t+1) = ¥, (t) + R(Blevy(x) G j=L1.,n (41)

Here, Equation (41) outlines the random hidden phase based g
0.1. The Pseudocode is defined in Algorithm 1.

The structure of artificial rabbit optimisation

Start
Input: Channel, transmission power, spreading fac

The search agent parameters include the number of sea
Randomly initialise a group of searcififgen . and calculate g;
Identify the best search agent.
While t <t . do
For j=1to

Calculate en§g I using Equation (35).

Z
oml ct a search agent from the entire group.
U the se®h agent position using Equation (34).
e d search space and randomly choose one based on Equation (33).
Implement a random hiding strategy according to Equation (31).
alculate the fitness value of the search agent's position.
Update the search agent position using Equation (34).
End if
End for
Look for the best search agent.
t=t+1

The Levy flight is included in Equation (41) to enhance accuracy.

End while
Stop
Output: Improve energy efficiency, minimise latency




IV. RESULTS AND DISCUSSION

The superiority of the proposed approach is demonstrated by evaluating the complete performance of the proposed
approach with different existing models. The proposed model of LoRa is implemented using the NS3 tool.
Performance metrics like delay, energy consumption, energy efficiency, execution time, remaining resources,
SINR, throughput, and transmission rate [24] are evaluated and compared with recent research models. The
proposed model's efficiency is analysed by different existing approaches. Table 2 denotes the simulation
parameters of the proposed model.

Table 2. Simulation parameter

Number of values

Parameter used
Channel 1-20
Power transmission 0-1
0T device 5
Gateway

Spread factor

Performance evaluation of the proposed model along with existing approaches

The proposed model performance is analysed with existing approachg ered by energy harvesting-quality

of service (PEH-Q0S), classic Q learning, and Modified Q learni

—— PEH-Qo0S
—e— Classic Q Lea

1T —— Modified Q Lea
—e— Proposed

°©
FS

o
w

Energy Consumption (s)
(=]
N

20 40 60 80 100
Node Variation

Fig 4. Energy consumption

n evaluation is defined in Fig. 4. The graph shows how energy consumption compares across
densities for four models. As the number of nodes increases from 20 to 100, all models see a
iSe in energy use. PEH-QoS struggles with resource allocation because its static design leads to higher
nsumption, especially at denser node setups. Classic Q learning is more dynamic but has issues with
onvergence and less effective exploration strategies that result in moderate energy savings but not enough
adaptability in crowded networks. Modified Q learning does better than the classic version by improving update
strategies, but it still faces problems with premature convergence and can get stuck in local optima, which causes
a sharp rise in energy use as node numbers increase. The proposed model uses a hybrid double deep Q-learning
based actor critic (Hy-DeoQ-AC) method along with hybrid Levy flight assisted rabbit optimisation (Hy-
LevRBO). It shows improved performance by optimising key transmission parameters like transmission power,
spreading factor, and channel selection in real time. This optimisation approach facilitates efficient exploration of
the solution space and precise exploitation of the best configurations, greatly reducing energy consumption even



as node density goes up. By striking a good balance between exploration and exploitation, the proposed model
keeps energy use low across all node variations, which effectively addresses the main shortcomings of the existing
models.

50

—— PEH-QoS
= —e— Classic Q Learning
E 40 —— Modified Q Learning
) —e— Proposed
301
<
(]
S
& 201
>
2
€ 101
w

0 | | | |
20 40 60 80 1
Node Variation
Fig 5. Energy Efficiency (
Fig. 5 illustrates how energy efficiency (bits/Joule) changes with incrg de density for various approaches.

drops due to more interference,
ergy efficiency, which makes it
Dy using a learning-based approach
but faces issues with limited learning depth, whig i hent resource allocation when network stress
still doesn’t have enough global search
Oensity increases. The proposed model achieves much
higher energy efficiency across all node densities. allows the model to effectively find the best parameter
configurations through reinforced exploration and df d local search. The hybrid Hy-LevRBO tuning
mechanism ensures that even with risin ork loads, the selected transmission parameters maintain higher data
rates compared to energy consumptiogwhi es scalability issues faced by existing approaches.

capability, resulting in lower energy efficiency a

—— PEH-Qo0S

—e— Classic Q Learning
0.57 _+— Modified Q Learning
—e— Proposed

20 a0 60 80 100
Node Variation

Fig. 6. Delay

Fig. 6 describes delay analysis. The graph shows how delay changes as the number of nodes increases across
various models. As node count goes up, overall network delay rises for all methods due to increased contention



and queuing delays. PEH-QoS consistently experiences high delays because of its fixed resource allocation, which
causes congestion during peak traffic. Classic Q learning struggles to adapt in real time to quick changes in
network topology. Modified Q learning faces issues with balancing exploration and exploitation. Moreover, use
of Hy-LevRBO fine-tunes resource allocation in real time, cutting down on queuing and transmission delays even
in high-density node situations. This results in consistently lower delays compared to other methods, which makes
the proposed model very effective at reducing transmission latency in scalable environments.

100
80 -
0
[}
E 601
(=
c
2
5 401
1%}
g PEH-Qo0S
= 20 - —eo— Classic Q K
—— Modified Q
—e— Proposed
0

20 40 60 80 1
Node Variation

Fig 7. Execution time

Execution time evaluation is denoted in Fig. 7. As the n
consistently rises because it depends on costly statig
long time to execute, mainly due to its single ag
large action spaces, making it less efficient in de
since it adds extra computational load to adjust led
uses Hy-DeoQ-AC with parallel reinforcement agent:
smoother. This hybrid approach reduces cessary comMtations by concentrating on both global searching and
local fine-tuning at the same time, si reducing execution time across all node variations. By smartly
directing learning and tuning procgss sed model effectively improves execution efficiency in high-
density networks.

cou , execution time for PEH-QoS
t do not scale well. Classic Q learning takes a
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Fig 8. Remaining resources

The remaining resources analysis is illustrated in Fig. 8. The graph shows how the percentage of leftover resources
in the network changes with increasing number of nodes. One ongoing issue with existing methods is poor use of
network resources as node density rises. PEH-QoS results in fewer remaining resources because its static resource



management strategies do not adapt dynamically, which leads to quick depletion of bandwidth, power, and
channel availability. While classic Q learning is better at adapting, it does not have the fine control needed for
resource distribution that causes unnecessary resource use in some areas of the network. Modified Q struggles
with premature convergence, often overlooking globally optimal allocations and thus limiting resource
conservation. The proposed model, featuring the Hy-DeoQ-AC framework enhanced by Hy-LevRBO, stands out
by smartly distributing transmission power, spreading factor and channel assignments. This hybrid approach
maximises resource retention by balancing the use of known configurations with the exploration of new options,
ensuring efficient use of available resources. As a result, the proposed model consistently achieves highe
percentages of remaining resources, which leads to more flexibility for future transmissions.
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quality and a higher chance of packet loss. Classic Q-
patterns, which results in less efficient ¢ I use and ongoing interference problems. Modified Q learning faces
some limitations in convergence and f ocal optima still stops it from achieving consistently high SINR.
The proposed model tackles theseg
transmission power, and chann signm d on changing interference levels. This hybrid approach boosts
communication reliability en s overall network robustness and data integrity.
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Fig 10. Throughput



Fig. 10 describes throughput changes as node density increases. PEH-QoS experiences a sharp drop in throughput
with rising node variation, primarily because it cannot adjust dynamically to congestion and interference that lead
to frequent retransmissions and data collisions. Classic Q learning has slower convergence in denser environments
that holds it back. Modified Q learning faces issues in optimally managing transmission parameters in real time.
The proposed Hy-DeoQ-AC with Hy-LevRBO mechanism makes better use of resources by optimising
transmission power, spreading factor, and channel allocation all at once. Its hybrid design permits quicker
adjustments to changing network loads, reducing packet collisions, and improving data delivery rates. As a result,
the proposed model consistently maintains higher throughput, which ensures more stable and efficient dat;
transmission even when node densities are high.
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Fig. 11 illustrates how increasing node variatio ransmission rate. PEH-QoS results in poor spectrum
utilisation and packet losses as node congestion increSg@s. Classic Q learning has a limited learning range, making

it slower to respond to changing transmission conditr8
learning improves the learning process ill facing problems with partial optimisation of resource allocation,
which restricts its ability to achieve o t dispatching under load. The proposed Hy-DeoQ-AC with Hy-
i y dynamically optimising essential transmission factors. This
allows the network to adapt qui ises transmission rate even in high node density situations. As
a result, the proposed met| near-optimal packet transmission rates and demonstrates adaptability and

ance analysis values of the proposed and existing models

Energy consumption

40 60 80 100
0.1714 0.1929 0.4014 0.4529
0.1629 0.2257 0.2614 0.4071
0.1057 0.1571 0.4657 0.4829
roposed 0.0329 0.0371 0.0557 0.2529 0.3243

Energy efficiency (bits/J)

Models 20 40 60 80 100
PEH-Qo0S 19.4697 18.3333 16.5909 11.4394 4.4697
CQL 27.1212 25.4545 22.197 16.4394 7.3485

MQL 28.5606 21.6667 18.1061 15.1515 8.2576



Proposed 30.0 27.803 26.3636 23.4848 16.1364
Delay
Models 20 40 60 80 100
PEH-Qo0S 0.6988 0.7224 0.8494 0.8894 0.9271
CQL 0.6612 0.8094 0.7835 0.8871 0.4071
MQL 0.6871 0.7412 0.8424 0.88 0.9058
Proposed 0.6447 0.6471 0.7576 0.7624 0.7096
Execution time (S)
Models 20 40 60 80 100
PEH-QoS 54.4335 61.0837 66.7488 85.9606 9
CQL 29.5567 61.5764 76.1084 91.6 97 QB3
MQL 28.3251 39.1626 54.9261 80 90.14
Proposed 16.7488 34.4828 44.335 49.50 54.6798
Remaining resources (%0)
Models 20 40 60 80 100
PEH-QoS 1.4427 1.4831 1.9685 35 4.6652
CQL 0.9573 1.4292 3. 64 4.827
MQL 1.0921 1.7663 28 4.2067 5.0697
Proposed 2.1034 2.480 /018 5.2989 5.5281
(dB)
Models 20 40 0 80 100
PEH-QoS 2.1446 14 .7855 9.0274 13.9152
CQL 4.3392 .633 9.0773 12.419 14.4638
MQL 7.182 9 11.1222 14.3641 17.0075
Proposed 12.9676 16.5586 17.8554 20.2993
Throughput (bits/sec)
dels 2 40 60 80 100
PE 6118 47.6235 44.4235 43.8588 36.8941
& 67.7647 54.9647 48.3765 44.2353 37.4588
Q 68.3294 60.0471 54.0235 48.9412 44.4235
P ed 76.4235 70.0235 67.0118 62.6824 56.8471
Transmission rate (packet/sec)
Models 20 40 60 80 100
PEH-QoS 0.0529 0.1707 0.2957 0.4279 0.4904
CQL 0.1442 0.2356 0.3462 0.4856 0.5938
MQL 0.2043 0.3269 0.4736 0.6034 0.6971
Proposed 0.3245 0.639%4 0.7476 0.9591 0.9832




Discussion

The presented approach improves efficiency based on a hybrid reinforcement learning approach. The existing
PEH-QoS is associated with high latency and energy consumption during changing network conditions, limiting
its use in real-time 10T applications. The classic Q learning method has trouble with convergence speed and
scalability in large networks. Modified Q Learning does enhance parameter selection but adds complexity to
optimisation and can lead to inconsistent performance with different interference levels. The proposed model
solves this issue by incorporating Hybrid Levy Flight Assisted Rabbit Optimisation, which not only streamlines
optimisation search but also guarantees stable and adaptable performance, even when interference and Ig

conditions vary. By merging advanced reinforcement learning with metaheuristic optimisation, the propc

method strikes an excellent balance between energy efficiency, throughput, and reduced execution tim
surpassing both traditional and modified reinforcement learning techniques in thorough simulation t

V. CONCLUSION

This research introduces a promising solution to tackle the main issues of resoy LoRa-based
networks by presenting a hybrid optimisation model that merges Hy-DeoQ-AC g suggested
model effectively deals with typical drawbacks of traditional resource alloca es, incluling higher
packet loss, interference, excessive energy use, limited coverage, and lower traf #5ion speeds. By smartly
optimising transmission parameters such as transmission power, spreading factor, @k channel selection, the
proposed model guarantees efficient data transmission while boosting QoS formevi ¥. The combination of

Hy-DeoQ-AC for intelligent learning, and Hy-LevRBO for fine-tunin system to adapt dynamically to
changing network conditions. The proposed model attains a throug 3871 (bits/s), energy efficiency of
16.1364 (bits/J), which leads to improved use of network resoun ng fgvard, there are some meaningful

ways to expand on this work. Future studies could imp ion of distributed reinforcement
learning to decentralise the optimisation process agf§# to enhance scalability and fault tolerance in
el with mobility-aware algorithms could
ging network topologies. The proposed method might
gnisms that enable 10T devices to operate for extended

enhance adaptability in settings with mobile nod?
also be broadened to include energy harvesting mg
periods without needing manual battery changes.
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