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Abstract 

 Indian Sign Language (ISL) identification methods play a central role in enhancing 

communication between hearing-impaired and non-impaired individuals within their 

community. However, modern ISL identification algorithms face challenges due to hand 

gesture variability, complex visual settings, and limited official annotations. This study 

proposes a Hybrid Vision Transformer with Convolutions (HVTC) combined with Ensemble 

Transfer Learning (ETL), incorporating advanced transfer learning methods such as Adaptive 

Lightweight DenseNet, VGG19, and XceptionNet for Multi-Task Learning, along with ResNet 

with Dynamic Depth and MobileNetV3 with Attention Mechanisms to improve ISL 

recognition accuracy. Four primary challenges affect ISL recognition: obstructions in the 

camera view, inconsistent lighting conditions, visually similar motions that are difficult to 

distinguish, and the need for extensive labeled datasets for deep learning systems. The ETL-

HVTC processing method effectively extracts spatial-temporal motion data by leveraging 

sophisticated neural network algorithms. Transfer learning reduces dependency on large 

datasets, while the ensemble approach integrates multiple predictive models to enhance model 

stability. A robust ISL recognition algorithm should prioritize real-time capabilities, high 

recognition accuracy, and an expanded application scope. Secure gesture dataset pre-

processing enables the optimization of hybrid ViT Large Model-CNN models, where 

collaborative learning ensures reliable classification outcomes. Experimental results 

demonstrate that the proposed ETL-HVTC system outperforms independent ViT Large Model 

and existing CNN models on ISL benchmark databases in terms of precision, recall, F1-score, 

and accuracy. The implementation approach yields fast and effective results, facilitating the 

Auth
ors

 Pre-
Proo

f

mailto:suresh.anandm@gmail.com
mailto:mfhorng@nkust.edu.tw


development of assistive devices that promote more inclusive communication for individuals 

with hearing impairments. 

Keywords 

Indian Sign Language Recognition, Vision Transformers, Convolutional Neural Networks, 

Transfer Learning, Ensemble Learning, Deep Learning, Hybrid Models, Gesture Recognition, 

Assistive Communication, Multimodal Feature Extraction. 

1. Introduction  

Translation to sign phrases and translating from sign phrases are two distinct categories in the 

field of sign language translation. This classification highlights the various methods and tools 

that facilitate interactions between the general public and individuals with hearing 

impairments. The deaf community communicates through sign language using visual cues and 

motions, including manual signals, body movements, and facial expressions [1]. For 

communication, speech-impaired and visually impaired individuals use Indian Sign Language 

(ISL), a motion-based form of speech. This highly complex communication system relies on 

distinct hand gestures, communication styles, and situational responses. ISL differs from all 

other spoken languages in India in terms of vocabulary and grammatical structure [2]. In 

today’s rapidly evolving technological landscape, ensuring accessibility for everyone, 

including individuals with hearing loss, remains a top priority. Sign Language Recognition 

(SLR) enhances communication between the hearing-impaired population and the general 

public [3]. 

Existing identification systems have long struggled due to the dynamic and complex nature of 

signing motions. Previous studies have primarily focused on developing sensor-based 

algorithms and static, rule-based techniques lack flexibility in accommodating different signing 

techniques and variations among individuals. The identification of sign language has 

significantly advanced with recent developments in Machine Learning (ML) And Deep 

Learning (DL) through Artificial Intelligence (AI) and Convolutional Neural Networks 

(CNNs) [4]. Tools that detect and analyse hand positions, facial expressions, and body signals 

now operate more effectively due to vision-based recognition methods that integrate image 

processing with pattern recognition techniques. Many existing technologies still face 

challenges related to precision, user-friendliness, and real-time adaptability. While SLR 

systems show promise for improvement often fail to accommodate various signing approaches, 

linguistic variations, and individual preferences [5]. Most contemporary SLR systems support 
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only a limited set of sign dialects and languages, making universal interpretation across 

different users difficult. Another unresolved challenge is achieving real-time gesture 

recognition without compromising accuracy. User-friendly interface is essential to ensure 

accessibility for individuals with varying levels of technical expertise, even though many 

existing systems tend to favour technical complexity [6]. 

The process of converting spoken words or text into sign language falls into two main 

categories. The first, text-to-sign language conversion, aims to translate written content into 

corresponding signs, enabling individuals who are deaf or hard of hearing to access textual 

information. This process typically involves Natural Language Processing (NLP) techniques 

to interpret text data and generate appropriate sign language visualizations [7]. On the other 

hand, speech-to-sign language interpretation focuses on translating spoken language into sign 

language, ensuring effective communication between individuals who rely on signing and 

those who communicate verbally [8]. 

Sophisticated voice recognition techniques are employed in this continuously evolving process 

to capture spoken words and convert them into corresponding signals. The goal is to provide 

real-time translation, enabling seamless interaction between individuals who communicate 

through speech and those who use sign language. The second category discussed in this paper 

focuses on identification systems based on vision and sensors, which facilitate sign language 

translation into other languages [9]. Vision-based identification employs computer vision 

techniques to analyse and interpret sign movements captured by cameras or other visual input 

devices. This approach enhances real-time sign recognition, allowing individuals with hearing 

impairments to communicate more efficiently and effectively [10]. Sensor-based identification, 

on the other hand, extends the interpretation of sign language by capturing various aspects of 

sign communication shown in Figures 1 and 2. This method utilizes sensors to track body 

positions, hand movements, and facial expressions, providing a comprehensive understanding 

of sign gestures. By integrating sensor data, translation accuracy and complexity are 

significantly improved, effectively addressing the nuances of sign language [11]. 
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Figure 1. ISL alphabets 

 

 

 

 

 

Figure 2. ISL Digits 

Informal communication often involves complex phrases enriched with cultural and linguistic 

nuances. Existing sign language comprehension and translation methods rely heavily on 

prebuilt algorithms and predefined datasets. These approaches struggle to adapt to the dynamic 

nature of sign languages. In this study, Random Forest Classification algorithms were 

employed to effectively recognize gestures, while large language models were utilized to 

enhance context-aware translations [12]. This study introduces a text-based intermediary 

representation that bridges the gap between movement generation and detection. This 

translational intermediary not only ensures more accurate rendering but also allows for 

adaptable interpretation while preserving the original expression's meaning and cultural 

intricacies [13]. 

One of the key contributions of this model is its ability to mitigate linguistic discrepancies 

between American Sign Language (ASL) and ISL differ significantly in word order, 

grammatical structures, and situational expressions. By addressing these variations, the 

framework enhances the fidelity of cross-language sign translation. Employing RIFE-Net to 

generate ISL movements from written translations results in fluid and naturalistic motion 

displays [14]. RIFE-Net not only accurately reproduces ISL gestures demonstrates exceptional 

capability in handling variations in movement sequencing. The program's architecture 

integrates advanced recognition, translation, and synthesis components, positions it at the 

forefront of sign language translation technology. By combining real-time gesture recognition 

with culturally aware processing and adaptive movement synthesis, this framework establishes 

a new standard in sign language translation systems [15]. 
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Vision-based SLR is more prevalent than sensor-based SLR due to its real-time applicability. 

Deep neural networks and LSTM-CNN have been widely utilized in SLR development. SLR 

remains constrained by the complexity of sign language, environmental conditions, and dataset 

integrity. The researchers emphasized the need to develop robust universal frameworks capable 

of handling diverse signers and varying contexts [16]. After reviewing SLR methodologies, 

proposed more reliable techniques that could operate in different environments, accommodate 

larger vocabularies, and address key challenges that hinder SLR’s practical implementation. 

Concluded that future studies should integrate multiple modalities to improve reliability. Lack 

of extensive datasets collected through continuous sign language recordings or smartphone 

cameras limits existing advancements in the field. The available data for SLR can be 

categorized into two main types: time-series analysis data and static information [17]. 

Classification techniques are generally classified into modern deep learning approaches, such 

as LSTM, CNN and existing machine learning methods such as Support Vector Machines 

(SVM) and Hidden Markov Models (HMM). Input hardware can be broadly classified into 

recording devices and sensor-based detectors. These systems can accurately recognize and 

interpret sign movements using machine learning techniques [18]. Automated vision 

technology has further enhanced accessibility for individuals with hearing difficulties by 

enabling the development of sign language translation devices capable of converting spoken 

speech into sign language and vice versa. The widespread adoption of vision technology plays 

a crucial role in making communication more inclusive and user-friendly [19]. 

The successful implementation of AI-powered sign language recognition relies on effective 

feature extraction methods, which form the foundation of machine learning techniques. 

Training AI models involves extracting meaningful information from sign movement data, 

typically obtained from images and recorded videos. The detection process utilizes key 

methods such as Histogram of Oriented Gradients (HOG), CNN, and Scale-Invariant Feature 

Transform (SIFT), along with other commonly used techniques for feature extraction. These 

methods aim to improve the accuracy of sign language identification, thereby enhancing 

accessibility options for individuals with hearing impairments [20]. 

1.1 Problem Statement  

The detection of ISL encounters multiple hurdles caused by complicated hand expressions and 

speed variations together with physical barriers and individual signature variations. Standard 

artificial intelligence together with deep learning present recognition issues because they fail 

to identify temporal and spatial relationships properly. The development of reliable ISL 

identification systems faces two main obstacles from insufficient big designated data sets and 
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the need for instant processing. The solution proposed to these issues incorporates highly 

developed Learning strategies merge ViT Large Model-CNN and ensemble transferred 

learning techniques. A combination approach enables the system to process ISL movements 

with intricate differences effectively thus assuring effective visual language detection. 

1.2 Motivation  

The research examines ISL recognition because the deaf community needs accurate sign 

language translation to bridge their communication gap with the general population. Existing 

recognition systems struggle with practical usefulness because they perform poorly under 

conditions of hand closures and complicated hand motions while allowing diverse methods of 

communication. The fast advancements in neural networks particularly ViT Large Model-CNN 

create opportunities to achieve better accuracy and quicker processing in ISL identification 

systems. The research aims to build an adaptable ISL movement identifier by using collection 

transferred learning within a hybrid structure of ViT Large Model-CNN. Such integration will 

support effective communication between people with hearing disabilities by fostering 

inclusive social interaction. 

Key contribution of the paper are as follows:  

• To Combines Vision Transformer and Convolutions to enhance spatial-temporal 

feature extraction for improved Indian Sign Language recognition accuracy. 

• Utilizes Adaptive DenseNet, VGG19, XceptionNet, ResNet with Dynamic Depth, and 

MobileNetV3 for better generalization and performance. 

• To overcome camera obstructions, lighting inconsistencies, gesture similarities, and 

dataset limitations through advanced deep learning techniques and transfer learning 

strategies. 

• To implements optimized ViT Large Model-CNN hybridization with secure dataset 

pre-processing to support real-time ISL recognition and classification. 

• To outperforms existing CNN and ViT models in precision, recall, F1-score, and 

accuracy for reliable, inclusive communication solutions. 

2. Related Works 

Sign languages play a crucial role in communication among deaf and mute individuals, and 

researchers have recently focused more on their identification and translation needs. This 

review examines how sign language identification techniques operate while addressing 
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translation-related challenges. Developed a system using the Natural Language Toolkit 

framework to demonstrate how different linguistic groups produce sign language utterances, 

confirming the importance of linguistic analysis in sign language translation [21]. 

Comprehensive review on the challenges and advancements in deep learning-based sign 

language recognition. Developed an algorithm for sign language detection, providing a 

foundation for research advancements in this field. Highlighted the effectiveness of converters 

in interpreting signs by proposing a Transformer Network for video-to-text translation [22]. 

Proposed the design of real-time vernacular spoken language identification systems by 

integrating MediaPipe and AI showcasing immediate application prospects in this field. 

Research on sign language technologies for deaf communication continues with developing an 

advanced machine learning-based full-duplex sign language messaging system capable of 

handling multiple sign languages. Introduced the enhanced 3D-ResNet sign language 

identification method incorporating novel features to improve gesture recognition. Provided an 

extensive discussion on SLR challenges and potential solution approaches in their research 

[23]. 

A multi-headed CNN was implemented to develop a fusion method for SLR integrating hand 

and image landmarks to enhance gesture identification algorithms. A user-independent 

approach to ASL word recognition was presented using PCANet, operating in conjunction with 

the Microsoft Kinect. Researchers applied recursive neural networks to process GMU-ASL51 

benchmarks, as outlined [24]. 26 ISL indicators were analysed using a Dynamic Time Warping 

(DTW) method achieving a 77.2% accuracy rate. Introduced a technique that integrates global 

and local ISL indicator data using the Axis of Least Inertia methodology. A 3D local 

characteristic integration method was also employed, relying on 3D key point analysis [24]. 

Using a multi-class machine learning approach achieved an 86.16% real-time recognition rate 

for 37 ISL indicators. Combination of DWT and HMM was utilized to identify 500 samples 

from 10 ISL phrases, resulting in a 91% reliability rate. Obtained 90% precision in recognizing 

24 ISL hand motions using the DTW approach [25]. 

Emphasized that motion identification and feature extraction remain crucial in designing SLR 

systems. Developed an ISL translation model based on gesture recognition algorithms. Inspired 

by the exceptional translation capabilities of Large Language Models (LLMs), proposed 

leveraging commercially available LLMs to address complex Sign Language Translation tasks. 

Emphasized the importance of investigating gloss-free approaches, arguing that such methods 

could significantly reduce annotation time while promoting the development of more precise 

and comprehensive sign language translation frameworks [26]. Introduced the first large-scale 
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multilingual Sign Language Processing (SLP) model, SIGNLLM. Developed using the 

Prompt2Sign database, SIGNLLM is capable of generating skeletal postures of sign language 

characters from text or prompts in eight distinct languages. Computerized translation 

technologies enable deaf or mute individuals to communicate effectively even without prior 

knowledge of sign language by converting gestures into spoken or written language [27]. 

Developing a computerized system that can translate between ISL and conventional languages 

is essential in today's world. Such a system is crucial for enhancing communication between 

the general public and individuals with hearing or speech impairments particularly when 

accessing essential services such as transportation, financial institutions, and ticketing systems 

[28]. 

To enhance human-computer interaction, propose a novel feature extraction and selection 

method for identifying ISL gestures. This method leverages advanced algorithms and 

seamlessly integrates structural characteristics. The proposed system employs only standard 

digital cameras, eliminating the need for specialized wearable devices. For optimal 

performance, each submitted image should exclusively depict a numerical sign, ensuring the 

system's ability to accurately translate these representations into text. To facilitate real-time 

ISL sign recognition, developed a comprehensive sign library consisting of 5,000 images, with 

500 images dedicated to each of the nine numerical signs. In classifier evaluation, k-Nearest 

Neighbors (k-NN) demonstrated superior classification accuracy compared to Naïve Bayes 

[29]. 

The challenges posed by these additional features, combined with the regional variations in 

spoken languages, have resulted in limited research in the field of ISL. Effective 

communication with ISL users typically requires learning the language. While peer groups are 

the most common environment for learning sign language, there is a scarcity of instructional 

resources in this area. As a result, acquiring sign language proficiency is a significant challenge. 

The need for finger-spelling arises in the early stages of learning sign language, particularly 

when there is no equivalent sign for a word [30]. Existing SLR methods often rely on expensive 

third-party sensors. The data will then be integrated into supervised learning approaches with 

the validation set including images of different individuals from the training set. This 

methodology distinguishes our work from existing research shown in Figure 3 [30]. The 

primary objective of these systems is to enable seamless communication between these two 

modes. The foundational concept behind the system's introduction is an intelligent architecture 

capable of converting spoken languages such as English, into text and vice versa. Researchers 

emphasize how sign language translation technologies can aid the deaf community by 
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improving communication, facilitating knowledge exchange, and creating better job 

opportunities [31]. The study addresses challenges in voice recognition, specifically focusing 

on the use of Mel-Frequency Cepstral Coefficients (MFCCs) to extract speech features. Key 

issues tackled by the proposed approach include the transition from speaker-dependent to 

speaker-independent speech recognition and the lack of comprehensive sound datasets for 

identification. The process phases include pre-processing, signal conditioning, feature 

extraction using Cepstral coefficients, and segmentation [32].  

 

 

 

 

 

 

Figure 3: Recognition using Machine Learning 

Systematic research successfully identified key elements within sign language-to-text 

translation structures, emphasizing the application of deep learning techniques. This approach 

proved highly effective in recognizing human gesture input and delivering precise translations. 

As part of the study, refined an initial set of 40 relevant studies to 20 papers, specifically 

focusing on deep learning-based sign language translation. This selection was achieved through 

a two-step screening process. Among the methodologies analysed, CNN emerged as the 

dominant technique, accounting for 70% of the total study time. Connectionist Temporal 

Classification (CTC) followed with 20%, while Deep Belief Networks (DBN) contributed 

10%. The findings of this paper provide valuable insights for researchers interested in 

leveraging deep learning techniques for sign language translation and identification. 

Research Gap 

Existing ISL recognition techniques have a number of drawbacks, although notable progress 

in the field. Many convolutional neural network systems rely on CNNs to extract spatial 

features because these networks prove valuable for spatial feature extraction. These networks 

struggle to understand relationships between data points within their contexts as well as to track 

dependent long-term hand motions. Both the design focus and limited adaptability characterize 

most ISL recognition models that target specific databases as they struggle to work effectively 

on diverse hand introductions and different signature styles in various contextual factors. 
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Generalized performance using transfer learning techniques is underutilized in ISL 

identification systems because it reduces the ability to learn from limited training datasets in 

novel databases. 

 

 

 

 

 

Figure 4: Proposed Architecture 
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3. Materials and Methods 

The proposed ETL-HVTC framework with ViT Large model is designed to address the 

limitations of existing ISL recognition systems by combining the strengths of Vision 

Transformers (ViTs) and Convolutional Neural Networks (CNNs) in a structured ensemble is 

shown in Figure 4. ViTs Large in capturing long-range dependencies and contextual 

relationships, making them ideal for understanding hand gestures in dynamic environments. In 

contrast, CNNs specialize in learning localized spatial features, ensuring robust feature 

extraction from complex sign language representations. The ensemble leverages Adaptive 

Lightweight DenseNet for efficient feature propagation, VGG19 for deep hierarchical feature 

extraction, and XceptionNet for depthwise separable convolutions that enhance computational 

efficiency. ResNet with Dynamic Depth enables adaptive learning by dynamically adjusting 

network depth based on input complexity, while MobileNetV3 with Attention Mechanisms 

enhances real-time recognition through lightweight yet powerful representations. 

The Multi-Task Learning (MTL) strategy integrates gesture recognition, facial expression 

analysis, and environmental context awareness, significantly improving robustness against 

occlusions, lighting variations, and visually ambiguous gestures. Transfer learning ensures 

reduced dependency on large-scale labeled datasets while maintaining high recognition 

accuracy. Compared to existing CNN-based and ViT-based models, the proposed hybrid 

approach exploits the global contextual reasoning of ViTs and the precise local feature 

extraction of CNNs, leading to superior generalization.  

3.1 Dataset Description 

The ISL Movement Dataset supports ISL identification by incorporating hand motions, 

alphabet letters, numerals, phrases, actiViT Large Modelies, and emotional expressions, as 

summarized in Table 1. It consists of high-quality RGB images with varying resolutions 

128×128, 256×256, and 512×512 pixels containing 50,000 to 200,000 samples. Each image 

includes posture key points, hand markers, and bounding boxes, enhancing identification 

accuracy. The dataset accommodates diverse signers with distinct hand profiles, skin tones, 

and physical attributes, ensuring robustness. This dataset enables the development of transfer 

learning ensemble models by integrating hybrid neural networks and convolutional 

architectures, facilitating precise and efficient ISL translation across various users and real-

world scenarios. 
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Table 1: Dataset Description 

Attribute Description 

Dataset Name Indian Sign Language (ISL) Gesture Dataset 

Source Collected from real-time signers, public ISL datasets, and annotated 

video recordings 

Number of Classes 50–200 (varies based on dataset used) 

Categories Alphabets, Numbers, Common Words, Emotions, Actions, Gestures 

Total Samples 50,000 – 200,000 images/videos 

Data Type RGB Images and Video Frames 

Resolution 128×128, 256×256, 512×512 pixels (varies) 

Formats JPG, PNG (for images), MP4, AVI (for videos) 

Annotations Bounding boxes, Hand landmarks, Pose key points 

Pre-processing 

Steps 

Image resizing, Normalization, Data Augmentation (rotation, flipping, 

brightness adjustment) 

Splitting Ratio Training (70%), Validation (15%), Testing (15%) 

Challenges in Data Variations in lighting, background noise, occlusions, signer-

dependent variations 

Augmentation 

Techniques 

Random cropping, Gaussian noise, Adaptive histogram equalization, 

Motion blur simulation 

Table 2 aids in modelling development, verification, and evaluation by representing a variety 

of spoken motions, groupings, and environmental situations. The dataset is helpful for deep 

learning-based language recognition algorithms since it includes annotation such posture 

important details and boxes with boundaries. 

Table 2: Sample Data 

Sample 

ID 

Gesture Category Image 

Resoluti

on 

Signer 

ID 

Pose 

Keypoin

ts 

Bounding Box (x, y, 

w, h) 

Background 

Condition 

ISL_001 Hello Common Words 256×256 S001 Yes (50, 30, 180, 200) Indoor, Neutral Light 

ISL_002 Thank You Common Words 256×256 S002 Yes (45, 40, 190, 210) Outdoor, Bright Light 

ISL_003 A Alphabets 128×128 S003 Yes (60, 50, 150, 180) Indoor, Dim Light 

ISL_004 5 Numbers 512×512 S004 Yes (40, 35, 220, 250) Outdoor, Shadows 

ISL_005 Happy Emotions 256×256 S005 Yes (55, 45, 200, 230) Indoor, Fluorescent 

ISL_006 Sad Emotions 256×256 S006 Yes (52, 48, 180, 210) Indoor, Low Light 

ISL_007 Eat Actions 512×512 S007 Yes (50, 40, 190, 220) Outdoor, Cloudy 
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Figure 5: Examples of signs corresponding to digit 1 

Finger-spelling is a common technique used by signers while doing signs. Participants utilize 

letters from the existing alphabet or numbers, particularly when displaying appropriate nouns. 

Additionally, when employed in ISL phrases, descriptors like numerals are finger-spelled. 

Because finger-spelled objects may be used to create a wide variety of noun arrangements, 

finger-spelling is regarded as a distinct item. To utilize this collection of data for study, get in 

touch with the thesis authors. The distance that exists between the signed and the recording 

device is changed during the dataset compilation process in order to properly capture the 

signer's hand section. Various lighting circumstances were taken into consideration when 

taking pictures. The information set was created taking into account various lighting situations 

and participants, as was covered in the preceding part. To demonstrate the data set, a few 

example images for letters and numbers are displayed below. Some of the signals don't involve 

hand gestures. A few instances of the sign frames that correlate to digit one is displayed in 

Figure 5. 

 

 

 

 

 

Figure 6: Sample ISL frames-I Need Water 
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Figure 7: Sample ISL frames-I Love Tea 

Figures 6 and 7 provide a few examples of ISL structure of sentences. August 15th is the 

anniversary of our independence and my friend purchased a laptop for the occasion. It is evident 

that an ISL phrase is represented by the ISL sign using either one hand, a pair of hands, or an 

amalgamation of both. The alphabet and numeric, with the exception of a few numbers and the 

alphabets, has a stationary symbol. Dynamic signals, which are variations of either of the hands 

over time, are used for representing other ISL words in the sign language lexicon. In addition, 

when displaying ISL indicators, both manually operated & non-manual elements are crucial. 

3.2 Pre-processing 

The dataset was divided into training, validation, and testing subsets in a regular split with the 

following proportions: 80% for training, 15% for validation, and 5% for testing. This 

corresponds to 1,649 images for training, 310 images for validation, and 103 images for testing. 

To ensure reproducibility in data splitting, a random state variable (set to 1 in this case) was 

assigned. This guarantees that running the function multiple times with the same random_state 

will always result in the same split, ensuring consistency in testing and findings. The dataset 

subsets serve the following purposes: 

1. Training Data (70%): This subset is used to train the model, enabling it to learn patterns 

and make predictions. The training data should be large enough to help the model 

generalize effectively to the problem being addressed. 

2. Validation Data (15%): This subset is used during training to optimize the model and 

assess its ability to recognize general patterns. If the model’s accuracy is unsatisfactory, 

hyper parameters can be adjusted to enhance performance. 

3. Testing Data (15%): After training, this subset is used to evaluate the model’s 

performance on unseen data. The testing data must be independent of the training and 

validation sets to provide an unbiased assessment of the model's generalization ability. 

After rescaling the images, data augmentation techniques were applied to the training set. These 

include: 

• Rotation: Up to 20-degree angle rotation. 

• Horizontal shift: Up to 20% of the image width. 

• Vertical shift: Up to 20% of the image height. 

• Zoom: Up to 20% magnification. 

• Shear transformation: Applied with an aggregate angle of 20 degrees. 

Auth
ors

 Pre-
Proo

f



Image Resizing: Each image is resized to 224 × 224 pixels to maintain a standard input 

dimension for transfer learning models.  

𝑋′ = 𝑅𝑒𝑠𝑖𝑧𝑒(𝑋, 224, 224)     (1) 

Where: X is the original image, X' is the resized image, Resize(.) is the resizing function.  

Data Splitting: The dataset is divided into training (70%), validation (15%), and testing (15%) 

using the total dataset size N.  

𝑁𝑡𝑟𝑎𝑖𝑛 = 0.70 × 𝑁, 𝑁𝑣𝑎𝑙 = 0.15 × 𝑁, 𝑁𝑡𝑒𝑠𝑡 =  0.15 ×  𝑁   (2) 

Where: 𝑁𝑡𝑟𝑎𝑖𝑛, 𝑁𝑣𝑎𝑙, and 𝑁𝑡𝑒𝑠𝑡 represent the number of images in each subset.  

For example, given N = 2062, get:  𝑁𝑡𝑟𝑎𝑖𝑛 = 1649, 𝑁𝑣𝑎𝑙 = 310, 𝑁𝑡𝑒𝑠𝑡 = 103 

3.3 Data augmentation 

When the algorithm's architecture is extensive and the number of learned variables is large, 

ViT Large Model-CNN with ensemble method achieves better than existing systems results in 

object detection and classification. The proposed model employs a generalized image 

enhancement method to increase the number of initialization samples. This method applies 

various processing techniques, including rotation, zooming, shifting (both vertically and 

horizontally), rescaling, and fill mode with the default argument set to "closest", to enhance the 

variability of utilized images. This approach reduces overfitting and demonstrates CNN's built-

in existing consistency capability. By generating a comprehensive set of possible data points, 

the model improves generalization by introducing additional training and test examples, 

thereby narrowing the gap between the validation and training sets. This method enhances 

precision while requiring a minimal training dataset, as the augmented batch images generated 

during training are not stored in CPU memory. Figure 8 illustrates the various image 

enhancement techniques applied to the training dataset. 
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Figure 8: Types of image augmentation techniques applied in train dataset 

Augmentations are applied to enhance the dataset diversity:  

Rotation: Images are rotated by an angle 𝜃 within a range of ±20°  

𝑋′ = 𝑅𝜃𝑋, 𝜃 ∈ [−20°, 20°]   (3) 

Where: 𝑅𝜃 is the rotation matrix, 𝜃 is the random rotation angle.  

Translation (Shifts): Images are shifted horizontally (i) and vertically (j) by up to 20% of the 

width (w) and height (h).  

𝑇𝑖 = 0.2 × 𝑤, 𝑇𝑗 = 0.2 × ℎ (4) 

𝑋′ = 𝑇𝑖,𝑗𝑋 (5) 

Where: 𝑇𝑖,𝑗 represents the translation transformation, w and h are the image width and height.  

Shear Transformation: It is applied with an angle ∅ up to ±20° 

𝑆 = [
1 tan (∅) 0
0 1 0

]   (6) 

𝑋′ = 𝑆𝑋, ∅ ∈ [−20°, 20°]   (7) 

Where: S is the shear transformation matrix, ∅ is the shear angle.  
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Zooming: Images are zoomed within a range of ±20%.  

𝑍 = [
𝑠 0 0
0 𝑠 0

]   (8) 

𝑋′ = 𝑍𝑋, 𝑠 ∈ [0.8, 1.2]   (9) 

Where:  Z is the scaling matrix,  s is the zoom factor.  

Horizontal Flipping: A horizontal flip is applied with a probability of 1.  

𝑋′ = 𝐹𝑙𝑖𝑝(𝑋)   (10) 

Where: 𝐹𝑙𝑖𝑝(𝑋)  reverses the image along the horizontal axis.  

To increase the accuracy of ISL identification, ETL integrates learning through transfer with 

the advantages of many models that have been trained. ETL may record different 

characteristics of ISL actions throughout various assignments by utilizing a variety of 

sophisticated structures such as ResNet with Dynamic Depth,VGG19 MobileNetV3 with 

Attention Mechanisms, XceptionNet for Multi-Task Learning and  Adaptive Lightweight 

DenseNet. This enhances recognition efficiency generally. 

3.4 Ensemble Transfer Learning (ETL) for ISL Recognition 

It is combining predictions from multiple pre-trained algorithms (or sub-models) that have been 

trained on large datasets (such as ImageNet) and subsequently fine-tuned for ISL identification 

shown in Figure 9. Each of these mathematical models offers unique advantages in terms of 

interpretability, learning capacity, and feature extraction. In classification tasks, an ensemble 

approach facilitates the integration of outputs from multiple models, resulting in a more robust 

and reliable decision-making framework. The ETL approach consists of multiple feature 

extraction models that transform an input image I into high-dimensional feature vectors are 

then fused and processed to improve classification accuracy.  

 

Figure 9: Ensemble Transfer Learning for ISL Recognition 
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Feature Extraction from Pretrained Models: Each transfer learning model 𝑀𝑥 extracts 

features from the input image:   𝐹𝑥 = 𝑀𝑥(𝐼)𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ {1, 2, 3, 4, 5}  (11) 

Where:  I is the input ISL image. 𝑀𝑥 represents the pre-trained models (VGG19, ResNet, 

DenseNet, XceptionNet, MobileNetV3). 𝐹𝑥 is the extracted feature vector from model x.  Each 

model captures different feature representations, such as edges, textures, and spatial 

relationships in the ISL gestures.  

Feature Fusion Using Weighted Aggregation: Once the features are extracted, apply a 

weighted fusion strategy to combine them:  

𝐹𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = ∑ 𝑤𝑥𝐹𝑥
𝑛
𝑥=1  (12) 

Where: 𝐹𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 the fused feature representation. 𝑤𝑥 is the weight assigned to each model, 

optimized through training. n = 5 (number of models used in ETL).  This fusion enhances ISL 

recognition by leveraging the strengths of multiple models while mitigating individual 

weaknesses, leading to improved accuracy, robustness, and generalization in sign language 

identification. 

Classification using Softmax Activation: The final feature representation is passed through a 

classifier, often a fully connected dense layer, followed by the Softmax activation function for 

ISL gesture classification. This ensures that the model assigns a probability distribution over 

possible gestures, enabling accurate identification of the intended sign. 

𝑃(𝑗𝑘|𝐼) =
𝑒𝑊𝑘.𝐹𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒+𝑏𝑘

∑ 𝑒𝑊𝑦.𝐹𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒+𝑏𝑦𝐶
𝑦=1

     (13) 

Where: 𝑃(𝑗𝑘|𝐼) is the probability of the gesture belonging to class k. 𝑊𝑘 and 𝑏𝑘 are the weights 

and biases for class k.  C is the total number of ISL gesture classes.  Softmax ensures that the 

output values sum to 1, interpretable as class probabilities.  

3.4.1 VGG19 (Visual Geometry Group 19)  

The VGG19-CNN consists of twenty layers which hierarchically extract elements from image 

data. The design keeps its structure basic yet implements many layers which enables strong 

feature extraction capabilities. The VGG19 forward process takes an input image I through a 

sequence of convolutional layers combined with activation functions along with pooling layers. 

𝐹𝑉𝐺𝐺19 = 𝑉𝐺𝐺19(𝐼)  (14) 

Where 𝐹𝑉𝐺𝐺19 is the output feature map. The output of VGG19 will be used as one of the inputs 

to the ensemble.  

3.4.2 Adaptive Lightweight DenseNet (ALDNet)  

Reduced computational complexity that preserves its dense connectiViT Large Modely 

structure therefore enabling usage in mobile and embedded systems. The image I undergoes 
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multiple dense blocks during its forward pass which combine features from past layers in their 

output network: 𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 = 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 (𝑋)   (15) 

The performance optimization capability of ALDNet includes adjustable channel numbers and 

adjustable layer numbers which achieve maximum speed alongside accuracy stability.  

3.4.3 ResNet with Dynamic Depth  

ResNet utilizes skip connections (or residual connections) to enable training of very deep 

networks by mitigating the vanishing gradient problem. Dynamic Depth transforms the number 

of residual blocks according to input gesture complexity which creates an adaptive effective 

learning procedure. The ResNet network processes the input I through multiple residual blocks 

whose number of blocks changes dynamically according to input complexity. 

 𝐹𝑅𝑒𝑠𝑁𝑒𝑡 = 𝑅𝑒𝑠𝑁𝑒𝑡 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐷𝑒𝑝𝑡ℎ (𝑋)  (16) 

The dynamic depth mechanism controls the number of employed residual blocks to optimize 

network efficiency and improve generalization ability  

3.4.4 XceptionNet for Multi-Task Learning  

XceptionNet implements depthwise separable convolutions to handle efficient computation 

tasks. A single model handles multiple related tasks through Multi-Task Learning (MTL) when 

it trains to recognize ISL gestures together with predicting hand position. The framework 

makes generalization more effective because it applies common learning principles between 

different tasks. Forward pass for XceptionNet in MTL: The input I is passed through depthwise 

separable convolutions to extract multi-task features:  

𝐹𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛 = 𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑁𝑒𝑡𝑀𝑇𝐿(𝐼)  (17) 

The multi-task learning objective can be represented as: 𝐿 = ∑ 𝜆𝑥𝐿𝑥(𝐹𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛)𝑛
𝑥=1   (18) 

Where 𝐿𝑥 represents the loss function for task x, and 𝜆𝑥 is a weight factor for each task.  

3.4.5 MobileNetV3 with Attention Mechanisms  

The architecture suits mobile and embedded systems because it functions efficiently without 

being heavy. The attention-based integration enables the model to concentrate on important 

image areas (such as hand gestures) which enhances its operational effectiveness. The input I 

proceeds through multiple sequnces of convolutions and attention layers for feature map 

enhancement in MobileNetV3 forward pass.  

𝐴𝑐 = 𝜎(𝑊1. 𝐺𝑙𝑜𝑏𝑎𝑙𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐼). 𝑊2)  (19) 

𝐴𝑠 = 𝜎(𝑊3. 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐼)) (20) 

𝐹𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉3 = 𝐴𝑐 ⊙ 𝐴𝑠 ⊙ 𝐼 (21) 

Where 𝐹𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉3 the refined feature map after applying the attention mechanism.  
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3.4.6 Combining Multiple Models in ETL  

The individual outputs of the models (VGG19, DenseNet, ResNet, XceptionNet, and 

MobileNetV3) are combined to make the final prediction. The ensemble approach typically 

involves a weighted voting scheme or averaging:  

𝐹𝐸𝑇𝐿 = ∑ 𝛼𝑥. 𝐹𝑥
𝑚
𝑥=1  (22) 

Where: 𝐹𝑥 is the feature map or output from the x-th model. 𝛼𝑥 are the weights assigned to each 

model (these can be learned or fixed). m is the number of models in the ensemble (in this case, 

5 models).  

3.4.7 Final Decision Making  

The final classification or recognition result is obtained by passing the ensemble output 𝐹𝐸𝑇𝐿 

through a fully connected layer or softmax classifier: 𝑗̂  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐸𝑇𝐿)     (23) 

where 𝑗̂ is the predicted class (e.g., the ISL gesture).  

3.4 Hybrid Vision Transformers with Convolutions for Enhancing Indian Sign Language 

Recognition  

For ISL acknowledgment, the combination of ViT Large Model-CNN provides a hybrid 

method that leverages the advantages of both architecture. The convolutions are used in 

conjunction with the Vision Transformer, a technique which is renowned for its capacity to 

capture distant dependence, to preserve local spatial information that are essential for finger 

gesture detection. Using the advantages of both local extraction of characteristics and self-

awareness this combination of techniques can improve the ISL identification procedure. 

Through the application of a self-attention system, Vision Processors enables the avatar to 

analyse images as patch sequence. The above framework is very good at understanding 

complicated representation because it can capture global connections throughout the whole 

image. CNN are so good at using convolutional neural networks to learn local structures like 

borders, materials, and forms, they are well-known for their outstanding results in tasks such 

as image classification. The hybrid model combines the local feature extraction capability of 

CNNs with the global context learning power of ViT Large Models. It typically involves first 

using CNN layers to extract low-level features from the input image and then passing these 

features to a Vision Transformer to capture high-level, global relationships across the image. 

For enhanced ISL identification, this technique integrates ETL and a CNN. While the hybrid 

model gains from both global context learning (ViT Large Model) and local feature extraction 

(CNN), the collective approach makes use of many pretrained systems. When labelled 
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information as scarce, the method's use of transferred learning enables the model to take use of 

previously trained network to speed up learning and enhance efficiency.  

Algorithm: Hybrid Vision Transformer (ViT Large Model) with Convolutions for ISL 

Recognition 

Algorithm ETL_HVTC_ISL_Recognition 

Input: ISL Gesture Image I (H × W × C) 

Output: Predicted Gesture 𝑗̂ 

1: Data Pre-processing   

2.        Normalize the input image I using:    𝐼𝑛𝑜𝑟𝑚 =
𝐼−𝜇

𝜎
    (24) 

3.             If Data Augmentation is enabled, then:   

4.             Apply random cropping, rotation, flipping, and scaling to I_norm   

5. Feature Extraction using Transfer Learning   

6.         Initialize models: VGG19, ResNet with Dynamic Depth, XceptionNet, MobileNetV3 

with Attention   

7.             For each model M in {VGG19, ResNet, XceptionNet, MobileNetV3} do:   

8.                      a. Extract features 𝐹𝑀 = M(𝐼𝑛𝑜𝑟𝑚)     (25) 

9.                          Perform Ensemble Feature Fusion:   

10.                           𝐹𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  𝐹𝑈𝑠𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐹𝑉𝐺𝐺 , 𝐹𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉3, 𝐹𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛, 𝐹𝑅𝑒𝑠𝑁𝑒𝑡) (26) 

11.         Hybrid Vision Transformer with CNN   

12. Extract local features using CNN:  𝐹𝑙𝑜𝑐𝑎𝑙 = 𝐶𝑁𝑁(𝐼𝑛𝑜𝑟𝑚)  (27) 

13. Convert feature maps into patches for Vision Transformer:   

14.                                                               𝑃𝑉𝐼𝑇 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐹𝑙𝑜𝑐𝑎𝑙)   (28)  

15. Compute Self-Attention:   

16.           a. Compute Query (Q), Key (K), and Value (V) matrices   

17.           b. Compute Attention Scores:  𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)   (29) 

18.           c. Compute Contextualized Patch Representations: 𝑉𝑜𝑢𝑡 = 𝐴𝑉   (30)   

19. Combine CNN and ViT features:  𝐹ℎ𝑦𝑏𝑟𝑖𝑑 = 𝐹𝑙𝑜𝑐𝑎𝑙 + 𝑉𝑜𝑢𝑡   (31) 

20.             Classification   

21.                              Compute gesture prediction: 𝑗̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝐹ℎ𝑦𝑏𝑟𝑖𝑑 + 𝑏)   (31) 

 

22. Training the Model   

23.            Initialize loss function: CrossEntropyLoss   
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24. For each epoch in training do:   

25.              a. Compute loss: 𝐿 = − ∑ 𝑗𝑥𝑙𝑜𝑔(𝑗�̂�)𝐶
𝑥=1    (36)) 

26.              b. Update model weights using Adam/SGD optimizer   

27.              c. If convergence criteria met, break loop   

28. Model Evaluation   

29. Compute Accuracy, Precision, Recall, and F1-score   

30.           Return Predicted Gesture 𝑗̂ 

31.    End Algorithm 

 

4. Results and Discussions 

An Olympus PEN Mini E-PM2 camera with a resolution of 4608×3456 pixels is used to capture 

image data for each day of the workweek. The images are taken using a 14-42 mm lens, which 

ranges from a wide-angle view at 14 mm (left) to a moderate telephoto view at 42 mm (right). 

Every image is in JPG format, with a 4:3 aspect ratio for width and height. Table 3 provides a 

detailed tabulation of the camera setup. Since there are seven different categories 

corresponding to the days of the week (Monday through Sunday), 1000 images were collected 

for each category, as shown in Figure 10. The entire dataset consists of 7000 images. A total 

of 100 individuals participated in the data collection process, representing a diverse range of 

age groups (3–60 years), genders (male and female), ethnicities (white, brown, and black), as 

well as individuals with bone fractures, ViT Large Model iligo, scars, and various accessories 

(nails, watches, rings, bracelets, turmeric-stained hands, henna, and ornaments). Notably, data 

was also collected from individuals with extra fingers. Each individual had five images taken 

from different angles (normal, upward, downward, left, and right). Every category initially 

contained 500 images. To accommodate individuals who practice (left-handedness), these 500 

images were then flipped vertically, resulting in a total of 1000 images per category. Figure 11 

illustrates both the original and flipped images, representing seven distinct classes 

Table 3: Camera configuration 

Name of the 

camera 

Resolution Pixels Lens File 

format 

Image 

ratio 

Olympus 

PEN Mini E-

PM2 

4608x3456 16 mega 

pixels 

Olympus Zuiko 

Digital-14-42 mm 

1:3,5-5,6 
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Friday Saturday Sunday 

   
Figure 10: Data samples from 7 different classes 

 

 

 

 

 

 

 

 

Figure 11: Original and corresponding flipped images from different views 

.  

Figure 12: Samples of the existing dataset with different challenges 
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Figure 13: 3D printing of ISL using proposed system 

The collection of images was gathered under various lighting and rotation conditions; some of 

the photos include noise from the background others were blurry. Figure 12 provides examples 

of these challenges. These image provides a glimpse into the innovative use of 3D printing in 

healthcare, demonstrating the creation of a custom orthosis designed to improve a patient's 

comfort and recovery shown in Figure 13 using proposed system. 

 

 

 

 

 

 

 

 

 

Figure 14: Enhancing Indian Sign Language Recognition using proposed system 

Figure 14 shows an input picture, the output concentrations of the ViT Large Model as heat 

maps, and the input image that is veiled by the ViT Large Model concentrations. Figures 15 

(a) and (b) show the precision and loss of the proposed model during validation and training 

phases.  

   

   

Hi: 87% Welcome: 90% Nice: 86% 

Wrong: 82% Accident: 93% Awesome:88% 
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(a) 

(b) 

Figure 15: Training and validation accuracy and loss of proposed model 

 

 

Figure 16: Performance Measures 

The proposed system combined ensemble transfer learning and ViT Large Model learning 

approach combines employing advanced techniques such attention processes to give a reliable 

and accurate early classification of diabetic retinal degeneration shown in Figure 16.  
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Figure 17: Performance Measures (error) 

The rate of errors (MAE, MSE, and RMSE) required for precise enhancement of ISL 

recognition is significantly reduced by the proposed system's combination of ensemble 

transferable learning method and ViT Large Model. The integration of ViT Large Model 

reduces errors in prediction and enables enhanced feature recognition. Figure 17 shows that the 

proposed method outperforms the existing models in every error-based efficiency metric. 

 

 

Figure 18: Comparison of training and validation accuracy 

The substantial accuracy of training achieved by the combined learning transfer architecture 

with ViT Large Modelling displayed in Figure 18 demonstrates the proposed approach's ability 

to acquire and fit the data. The method's robustness and generalization in detecting diabetic 

degeneration of the retina are demonstrated by the excellent confirmation reliability.  
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Figure 19: Comparison of training and validation loss 

As demonstrated by Figure 19, the entire transferrable learning approach employing the ViT 

Large Model has the smallest validating and instruction loss, indicating that this proposed 

architecture is effectively learning new information and expanding with new information.  

Table 4: Confusion Matrix of proposed system 

Actually Positive Actually Negative 

Predicted Positive 982 16 

Predicted Negative 872 36 

 

 

Table 5: Confusion Matrix of MobileNetV3 

Actually Positive Actually Negative 

Predicted Positive 922 32 

Predicted Negative 812 52 

 

Table 6: Confusion Matrix of VGG19 

Actually Positive Actually Negative 

Predicted Positive 932 42 

Predicted Negative 852 42 

 

Table 7: Confusion Matrix of ResNet-50 
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Actually Positive Actually Negative 

Predicted Positive 962 27 

Predicted Negative 822 47 

 

Table 8: Confusion Matrix of XceptionNet 

Actually Positive Actually Negative 

Predicted Positive 942 37 

Predicted Negative 832 62 

 

 

 

  

 

 

 

 

 

Figure 20: Correct and incorrect ISL recognized by using proposed method 

The most reliable method for early recognition is the proposed ETL framework with the ViT 

Large Model, which outperforms existing methods for each metric in the confusion matrices 

shown in Tables 4-8. Due to their resemblance and ambiguity in ordinary and left views, seven 

of the 250 real images of Friday are misclassified as Saturday. Similarly, eight of the Saturday 

images are likely to be misclassified as Friday for the same reason. In the down-view 

perspective, Sunday, eighth, seven, and four are incorrectly mapped as Monday, Friday, and 

Saturday. Figure 20 presents a plot of randomly selected samples from seven types of correctly 

and incorrectly classified data. 
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5. Conclusions 

This study introduces an advanced ETL structure containing Hybrid ViT Large Model- CNN 

for enhancing ISL understanding. Various existing deep learning algorithms including VGG19, 

ResNet with Dynamic Depth, XceptionNet and MobileNetV3 with Attention Mechanisms 

helped the combination method to extract multiple distinctive features. The traits were merged 

to increase system classifications and make them more resilient. The Hybrid ViT Large Model-

CNN model achieved superior recognition accuracy through its combination of global 

contextual learning from ViT Large Model with local spatial feature extraction from CNN. The 

proposed method obtained superior performance when compared to single implementations 

and existing CNN-based Transformer approaches by reaching an exceptional accuracy level of 

98.72%. The simulation results across all ISL gesture groupings achieved 98.56% accuracy 

and recall alongside 98.68% F1-score. The proposed method shows evidence of reducing 

misclassifications while it improves identification performance. When operating on small ISL 

data collections transfer learning techniques generated improved performance and shortened 

learning duration simultaneously. The proposed Ensemble Transfer Learning with Hybrid ViT 

Large Model-CNN establishes an accurate system for ISL recognition which holds promising 

applications for AI systems designed to communicate between people and computers as well 

as assistive technology for hearing-impaired individual’s interaction between humans and 

computers, and assistive devices for the hard of being heard. 
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