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Abstract 

The early stages of the condition are notoriously difficult to diagnose due to the fact that 

abnormal cells with dimensions less than very small are notoriously difficult to spot by 

imaging. If identification occurs at an earlier stage, then there is a chance that the probability 

of extending the lifespan of the individual may increase. Nevertheless, because of the enormous 

dimensionality of the database space, timely diagnosis is a challenging task. In this paper, 

nodule segmentation is proposed using Enhanced Local Information Weighted Intuitionistic 

Fuzzy C-Means (ELWI-FCM) clustering. After pre-processing, segmentation is performed by 

ELWI-FCM. To optimize the performance of FCM, the improved Golden Eagle Optimization 

(IGEO) algorithm is used. For classifying the nodules as normal or affected, the pre-trained 

DenseNet201 model is utilized. Experiments are conducted over the LIDC-IDRI dataset. 

Experimental results show that the proposed ELWI-FCM-IGEO attains better accuracy, 

precision, F1-score, sensitivity, and specificity compared to existing models. 

Keywords: Enhanced Local Information Weighted Intuitionistic, Fuzzy C-Means clustering, 

Golden Eagle Optimization, Densenet201 

1. Introduction

   The emergence of abnormal tissues within the human body leads to the condition known 

as cancer. Throughout history up to the present day, cancer remains a prevalent and formidable 

disease that poses a threat to human life. Lung cancer is considered as one of the deadliest 

disorders [1]. The timely prediction of early stages in cancer can significantly impact and 

potentially save numerous lives, especially when dealing with tumors in their initial phases [2] 

[3]. Moreover, it is expected that by the year 2040, this lung cancer may affect the 18 million 

lives of people. The development of an early cancer detection technique that can be used to 

lessen the effects of lung cancer is desperately needed [4]. 

     Various diagnostic techniques, including X-rays, CT scans and Magnetic Resonance 

Imaging (MRI) can be utilized to detect lung cancer. Medical professionals, including doctors 

and radiologists, utilize CT scans for diagnosing lung cancer [5]. This enables them to 

characterize disease patterns, assess severity, and directly observe the morphological extent of 

tumors. Detecting tumor cells becomes challenging because of the misinterpretation of 

anatomical structures and the intensity variations in CT scan images. In recent times, CAD has 

emerged as a promising device to aid physicians and radiologists in cancer detection [6]. 
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Despite the development of different models for lung cancer detection, achieving excellent and 

accurate results remains a substantial challenge. Therefore, effective detection of lung cancer 

can be achieved through the application of image processing approaches [7]. 

      Recent studies in lung CT image segmentation have primarily concentrated on developing 

segmentation methods that are precise and efficient [8]. Some of the conventional segmentation 

approaches are thresholding, active contours, region growing, morphological, deformable, 

clustering, Markov random field, graph cut, watershed, histogram, fuzzy logic based 

segmentation, and neural networks. Furthermore, the thresholding is one of the conventional 

approaches employed in segmentation processes [9]. 

       The utilization of DL as a representation learning model for acquiring hierarchical 

representation of features has proven to be a significant advancement. The major benefit of 

employing DL lies in its capacity to generate high level feature representations from image 

features [10]. This accuracy in data processing has created DL to substantial success, 

particularly in the field of segmentation of medical images. Some of the limitations in the 

existing works are: The conventional thresholding encounters challenges when applied to the 

bronchus and trachea due to their same grey values, resulting in suboptimal performance [11]. 

The segmentation of lung nodules will be affected by visual features, indistinct shapes, and the 

surrounding context of the nodules, posing challenges in accurate delineation. The 

segmentation is impacted by the similarity in visual behavior among lung nodules it influences 

the overall performance [12]. The variations in the appearance of nodules posed challenges to 

achieving accurate results. While some of DL models are employed to detect nodules in 

Images, however, achieving accurate segmentation is still challenging. The difficulties 

encountered in current lung nodule segmentation methods serve as motivation. A new 

approach, referred to as ELWI-FCM, is introduced for the segmentation of lung nodules. 

1.1. Motivation 

    Detecting nodules robustly presents a formidable challenge, because of the intricate nature 

of the surrounding environment and the heterogeneous characteristics of lung nodules. The 

significance of early detection is important to enhance the survival rates of patients affected by 

lung cancer. The distortion of segmentation processes caused by poor image quality has 

provided standard strategies ineffective in enhancing accuracy. Numerous scholars have 

developed CAD systems in the literature works. Despite these efforts, these systems continue 

to face challenges such as limited visibility and high False Positive Rate (FPR) results when 

detecting lung lesions. Hence, this work aims to introduce a method for identifying benign and 

malignant nodules in Images. Influenced by optimizing hyperparameters and visualization 

techniques, we have innovatively implemented a hybrid approach. This approach incorporates 

an optimized clustering to fine-tune the model's hyperparameters, aiming to yield optimal 

results and visually represent both normal and abnormal clusters. 

1.2. Objectives 

• An automated CAD based segmentation and classification method has been designed

to categorize lung cancer diseases.
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• To present an efficient pre-processing, segmentation and classification approaches. 

• To efficiently segment the lesions using the ELWI-FCM with the IGEO algorithm. 

• To overcome convergence issues of standard optimizer, the IGEO is presented.  

• To classify the segmented regions as normal and abnormal classes, the DL model 

DenseNet201 is presented. 

• To perform comparative analysis for different DL approaches with respect to the 

LIDC-IDRI dataset. 

The rest sections are: Section 2 is the literature works with respect to the different models are 

discussed; Section 3 is the proposed lung tumor segmentation; Section 4 discusses results and 

Section 5 ends the work. 

2. Related works 

Literature works with respect to the lung tumor prediction using different models and the 

performance achieved are discussed: 

            Atiya et al. [16] presented non small cell lung cancers classification model using the 

TL (transfer learning) based CNN model. Initially, the images were resized and normalized 

and the augmentation process was carried out. Then, the two stages TL based pre-trained were 

used for classifying different stages of cancer.  Finally, the accuracy value achieved by the 

ResNet50 was 94%.  

     Nanglia et al. [17] developed Feed Forward Back Propagation (FFBP) with Support Vector 

Machine (SVM) for lung cancer disease classification. Speeded Up Robust Features (SURF) 

was utilized for feature extraction. At last, the FFBP with the Genetic algorithm was utilized 

for the classification process. Accuracy and sensitivity values achieved were 98% and 96.5% 

on the ELCAP lung image dataset.  

     Gopinath et al. [18] presented Deep Fused Features with Cat Optimizer (DFF with CO) for 

classifying the lung cancer. Then, the saliency maps were utilized for the segmentation and the 

CNN was utilized for the classification. The DFF with CO was developed for training the 

features which combined the saliency maps and the DL model.  

      Siddiqui et al. [19] introduced Enhanced Deep Belief Network (E-DBN) with Gabor filters 

for lung nodule classification. The Restricted Boltzmann Machine (RBM) based Bernoulli 

Bernoulli and Gaussian Bernoulli were utilized. Experimental analysis was carried out on the 

three datasets and better performance was achieved for E-DBN with SVM classifier. .  

      Ajai et al. [20] introduced Renyi entropy fuzzy based shuffled social sky algorithm for lung 

nodules segmentation. Then, the texture and statistical features were extracted and RAM 

(rectified attention model) was utilized for the classification process. 

Problem statement  

Current lung cancer segmentation techniques encounter several limitations, such as 

high sensitivity to noise, challenges in differentiating tumors from healthy tissue, and 

variability in imaging protocols that compromise segmentation accuracy. Traditional methods 
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often require significant manual intervention and lack consistency, while automated 

approaches may fail to generalize well across diverse patient data and tumor morphologies. 

These shortcomings highlight a critical need for more robust solutions. The suggested model 

addresses these issues by leveraging adaptive clustering to refine segmentation boundaries and 

enhance tumor detection accuracy. The DenseNet201 architecture, known for its efficient 

feature reuse and deep representation capabilities, further strengthens the model’s ability to 

distinguish complex tumor structures with greater precision, robustness, and generalizability, 

even in noisy or varied imaging conditions. 

3. Proposed methodology 

    The advancement of the CAD has played a crucial role in medical analysis, aiding in 

decision-making regarding diseases of humans. Conventional models for predicting lung 

cancer faced challenges in accuracy due to poor quality images affecting the segmentation 

procedure. This paper introduces a novel, optimized approach segmentation model for lung 

cancer prediction. The collected images undergo pre-processing stage for noise elimination and 

to enhance the overall lung image quality. Subsequently, the cancerous part is segmented from 

the noise cleared image using an ELWI-FCM- IGEO. Finally, the features are extracted and 

classified in the DL model DenseNet201 as shown in Figure 1. 

Median Filtering

Pre-processing

ELWI-FCM

Input lung 

image

Segmentation

IGEO

Classification

DenseNet201

 

Figure 1: Workflow of the proposed lung tumor model 

3.1 Pre-processing 

     Initially, the MF (median filtering) is utilized for removing noise in the LIDC-IDRI dataset. 

MF serves as a widely adopted technique to filter noise, operating as the low pass filter that 

retains information about images while effectively eliminating noise. This method involves 

filtering a neighborhood L with dimensions nm  by organizing all neighboring elements in 

ascending order and selecting the center component from the ordered sequence. Subsequently, 
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this chosen middle element replaces the pixel in the center. The mathematical representation 

of the MF is expressed as follows: 

}),(,{ ).(),( LlkyMedz lknm =

   

(1) 

3.2 Optimal segmentation 

      In the segmentation process, the lung images are divided into different categories and this 

process is performed by the algorithm ELWI-FCM-IGEO. This algorithm improved and 

simplifies the classification stage. The incorporation of ELWI-FCM allows for precise 

segmentation by considering local spatial context and intensity variations, which is particularly 

effective for handling noise and preserving the boundaries of complex tumor structures. This 

reduces the risk of over-segmentation and ensures more accurate detection of tumor regions. 

Secondly, the integration with IGEO optimizes the clustering parameters and improves 

convergence speed, leading to enhanced segmentation performance with reduced 

computational costs. IGEO, inspired by the hunting behavior of golden eagles, helps in 

efficiently exploring the solution space and finding optimal solutions, further improving the 

robustness and accuracy of the segmentation process. Together, these techniques provide a 

reliable and adaptable framework for lung cancer segmentation, capable of addressing 

challenges like variability in tumor shape, size, and imaging conditions while maintaining high 

precision and efficiency.  

 In the ELWI-FCM, local detail weight lmk is introduced and it influences set of local detail on 

clustered outcomes. This overcomes local detail relies in less noise regions and avoids the 

impacts of membership function lmu . In this ELWI-FCM, the objective term ),( VUI

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where mx is the object, lv is the center of cluster, c is the cluster, ),( lm vxd is the distance of mx

and lv . Then, the values of lmk is computed by: 
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where 2

m  is the data’s variance in the thm  window and   is the small parameter. The values 

of lmu is computed by: 
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Here, the optimized term lmG is given as: 
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where n  is the fuzzified term and k is the is the neighbour pixels in the thm  window. 

Finally, the membership function of ELWI-FCM is given as: 

n
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lmlm uuu 


+=
     

(6) 

In this algorithm ELWI-FCM, generally the parameters like n  and 
lv  are chosen by the trail 

and error process. The choice of initial 
lv significantly impacts clustering outcomes, directly 

affecting the lung images segmentation quality. Hence, this work presents a metaheuristic 

algorithm IGEO is presented for optimizing the clustering performance. the fitness function of 

the IGEO is given as: 

)( valueDiceMaxFitness=
   

(7) 

The mathematical modelling of the IGEO is presented in this section. The proposed IGEO is a 

novel approach to addressing global optimization problems, and draws inspiration and 

mathematical formulation from the intelligent behavior of GE (golden eagles), particularly 

their adept control over the speed of their spiral flight patterns. In emulating the distinctive 

characteristics of GE, known for their unique swarm behavior during the initial stages of 

hunting, IGEO efficiently navigates and explores the solution space. The algorithm's 

effectiveness lies in its adept manipulation of two key components: cruise propensity and attack 

propensity. GE employs a strategic hunting approach by systematically exploring various areas 

in search of superior prey. Central to their hunting methodology is a notable characteristic: 

their possession of a better memory. This unique attribute enables GE to remember and recall 

information related to both cruise and attack propensities while in flight. Mathematical 

modeling of IGEO is explained in this section. 

GE’s spiral movement: IGEO takes inspiration from the spiral motion exhibited by GEs. Every 

GE stores in memory the most optimal location it has encountered. The GE is concurrently 

drawn both towards the pursuit of attacking prey and engaging in a cruising motion to explore 

and locate superior food sources. In all iterations, every GE j  chooses the prey of another GE 

g in random manner and encircles the better position. 

},.....,2,1{ sizePopulationg =

   

(8) 

OBL: Once the population is initialized, opposite solutions are generated and these solutions 

exploited to enhance diversity within the solution set, thereby expanding the search space. They 

are derived by considering the opposite position of the solution of candidate
→

aS , as determined 

by the following expression: 

→→→→

−+= aa SublbS
     

(9) 
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where 
→

lb  and 
→

ub  are lower and upper bounds. 

Selecting prey: During every iteration, all GEs face the task of selecting a prey for executing 

cruising and attacking strategies in IGEO. The prey, in this context, is conceptualized as the 

optimum solution identified thus far by the entire flock of GEs. Each individual GE possesses 

the ability to retain in memory the most optimal solution it has encountered. For all iterations 

every GE picks a targeting prey from the collective memory of the entire flock. Subsequently, 

cruising and attacking vectors are computed for every GE eagle in relation to the chosen prey. 

If the resulting position proves superior to the prior position stored in memory, an update is 

made to the memory. 

Exploitation: The attacking model can be represented by a vector that initiates from the current 

position of the GE and terminates at the location stored in the GE's memory for the prey. The 

computation of the GE's attack vector 
→

jA is given as: 

→→


→

−= jgj YYA          (10) 

where 
→


gY  and 
→

jY  are the GE’s best position at g and GE’s present position at j . 

Exploration: The selection of the cruise vector depends on the 
→

jA . Cruise and attack vectors 

are designated for the circle and perpendicular. To assess the cruise vector, it's necessary to 

ascertain the hyper plane’s position. The model of the hyper plane is provided by: 
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 and parameter term is
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and the arbitrary term on the hyper-plane is ].....,,[ 21 wmmmM =
→
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The value of cruise vector
→

jC  is given as: 
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where ].....,,[ 21 vj aaaA =
→

, ].....,,[ 21 vyyyY =  is the design parameter and ].....,,[ **

2

*

1

*

vyyyY =  

is the prey’s location.  

Movement of new position: The GE’s movement undergoes jA  and jC  . The step parameter 

of GE is represented as: 
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where 
→

1rand and 2

→

rand are the random vectors; 
am and 

cm  are the coefficients of attack and 

cruise; jA
→

 and jC
→

 are the Euclidean factors of jA  and jC . These two values are computed 

by: 
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Changing from exploration to exploitation: IGEO utilizes am and cm  for switching from the 

stage of exploration to exploitation. The values of am (initial bias) and cm  (final bias) are 

computed by: 

 00

a

T

aaa mm
T

t
mm −+=             (15) 

 00

c

T

ccc mm
T

t
mm −+=                     (16) 

where t and T  are current and maximum iterations. 

Algorithm 1: Pseudocode of the ELWI-FCM- IGEO 

Input: mx  (object), lv
 
(center of cluster), n  (fuzzified term) Population size, 

Iterations, aq  and cq  

Output: Optimal lv  

Initializing the OBL on the  population of GE 

Estimate the fitness by expression (7) 

Estimate aq  and cq  

for every iteration 

    Update am (initial bias) and cm  (final bias)  by expressions (15) and (16) 

for all GE j  

     Randomly define the prey from population memory  

     Define
→

jA  by expression (9) 

     If length of 
→

jA  is 0  

          Define jC by expression (12) 

          Define jy by expression (13) 
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          Calculate the fitness value for the newly generated positions 

          If the fitness value exceeds the memory  

         Utilize the newly calculated position value instead of the position stored in the 

GE memory. 

         end 

     end 

  end 

end 

 

3.3 Classification 

    Finally, for classifying normal and abnormal classes, the DL model DenseNet201 is utilized. 

DenseNet201 [22] has a similar structure to ResNet, but its notable distinction lies in its 

approach to information flow across layers. In this network, each layer is directly connected to 

every other layer in a feed-forward manner. This design maximizes the information exchange 

among network layers, fostering dense connections throughout the model architecture. That is, 

the DenseNet's layers are interconnected in a way where every layer receives input from all 

preceding layers and fed its output to all subsequent layers. This design strengthens the robust 

information flow throughout the network. DenseNet201 offers numerous benefits, including 

addressing the gradient vanish issue, enhancing the propagation of features, facilitating feature 

reusability, and significantly reducing parameter count. Consequently, this network is more 

lightweight and efficient in terms of computation and memory usage. The architecture of 

DenseNet201 typically comprises 4-layers of convolutional layers, 3-TL (transition layers), 

and 1-FC (fully connected) layer and softmax layer as shown in Figure 2. 
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Figure 2: Architecture of DenseNet201 

4. Results analysis 

    The segmentation results of the proposed ELWI-FCM-IGEO are performed in Python 

software. The experimental parameters like batch size (100), epochs (50), maximum iteration 

(200) and initial population (50) are considered. The experimental outcomes are validated on 

10-cross validation. 

4.1 Dataset details 
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     The LIDC-IDRI [21] is a comprehensive repository of diagnostic and lung tumor 

monitoring thoracic CT modalities, meticulously annotated with tumor. These images are 

obtained from seven academic institutions and 8 clinical imaging institutions, culminating in a 

dataset comprising subjects of 1018. Each case comprises images from a medical thoracic 

Images accompanied by an XML file. The lesions are divided into three distinct classes like 

nodule ≥3 mm, non-nodule ≥3 mm and nodule <3 mm. Ground truth involves a comprehensive 

annotation process carried out by expert radiologists.  

4.2 Input and Processed Dataset 

Figure 3 shows the input, Ground Truth (GT), segmented and contour images of normal and 

abnormal classes.  The segmented images obtained by ELWI-FCM-IGEO model are compared 

with the GT image and it is noted that the segmented image is matched with the GT.  
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Figure 3: Image analysis of the proposed segmentation 
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4.3 Performance Metrics 

 The classification performance is evaluated in terms of the following measures: 

 Accuracy = 
TNTPFNFP

TPTN

+++

+
      (17) 

Specificity = 
FPTN

TN

+
      (18) 

Sensitivity =
FNTP

TP

+
      (19) 

           Precision= 
FPTP

TP

+
        (20) 

            Recall = 
FNTP

TP

+
      (21) 

 F1-score = 2x
recallprecision

recallprecisionX

+
    (22) 

In calculating these measures, the four values summarized below are used: TP: True Positive, 

FP: False Positive, FN: False Negative, TN: True Negative . 

4.4 Comparison Results  

In this section, the performance of the proposed ELWI-FCM-IGEO model has been compared 

with other clustering models such as traditional FCM, K-means and DBSCAN. 

                        

 
Figure 4(a) Comparison of Accuracy,  
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Figure 4(b): Comparison of Precision 

 

Figure 4(c): Comparison of F1-score 

 

Figure 4(d): Comparison of Sensitivity 
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Figure 4(e): Comparison of Specificity 

Figure 4(a) shows the comparison results of Accuracy  It is observed from the graphical 

analysis that the proposed ELWI-FCM-IGEO achieved better accuracy of 98.7%, when 

compared to the other clustering models.  

Figure 4(b) shows the comparison results of Precision. It is observed from the graphical 

analysis that the proposed ELWI-FCM-IGEO achieved better precision of 98.14%, when 

compared to the other clustering models.  

Figure 4(c) shows the comparison results of F1-score. It is observed from the graphical analysis 

that the proposed ELWI-FCM-IGEO achieved better F1-score of 98.34%, when compared to 

the other clustering models.  

Figure 4(d) shows the comparison results of Sensitivity.  It is observed from the graphical 

analysis that the proposed ELWI-FCM-IGEO achieved better F1-score of 98.45%, when 

compared to the other clustering models.  

Figure 4(e) shows the comparison results of Specificity. It is observed from the graphical 

analysis that the proposed ELWI-FCM-IGEO achieved better Specificity of 99.15% when 

compared to the other clustering models.  
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Figure 5: Comparison of optimization approaches 

     Figure 5 illustrates the comparison results of the optimization models IGEO and GEO. It is 

evident from the analysis that the proposed IGEO exhibits a notably higher convergence rate 

when compared with the GEO. Consequently, the proposed method emerges as a favorable 

choice for the segmentation process.  

Figure 6(a) and 6(b) depict the training & testing curves of accuracy and loss for ELWI-

FCM-IGEO. It is observed that the model is not under-fit and over-fit.  

Figure 6(c) presents the ROC (region of characteristics) of the proposed ELWI-FCM-

IGEO and the AUC (area under the curve) value achieved is 0.977. 
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Figure 6: Analysis of (a) training-testing of accuracy, (b) loss curves and (c) ROC 

Table 1: Comparison with recent works 

References Accuracy (%) 

Sang et. al [1] 94 

Pedrosa et. al [2] - 

Ali et. al [4] - 

Jain et al. [13] 93 

Navaneetha 

krishnan et al. 

[14] 

92 

Atiya et al. [16] 94 

Proposed  98.7 

 

     Table 1 presents the comparison with recent works like Sang et. al [1], Pedrosa et. al [2], 

Ali et. al [4], Jain et al. [13], Navaneetha krishnan et al. [14] and Atiya et al. [16] are compared 

with proposed segmentation model. It is noted that the proposed segmentation model 

outperformed other models. 

Table 2: Ablation study 

Methods Accuracy 

(%) 

ViT 93.4 

UNet 94.2 

Attention 

UNet 

96.4 

Proposed  98.7 
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  Table 2 suggests the ablation study with respect to the methods like Vision Transformer (ViT), 

UNet and Attention UNet.  

5. Conclusion 

In this study, a novel hybrid optimizer combining Golden Eagle Optimization (GEO) and 

Opposition-Based Learning (OBL) was developed to effectively segment nodules. Initially, the 

images were pre-processed using a median filter (MF) to eliminate noise. Subsequently, 

segmentation of the affected regions was performed using Enhanced Local Information 

Weighted Intuitionistic Fuzzy C-Means (ELWI-FCM). The segmentation performance was 

further improved with the assistance of the Improved Golden Eagle Optimization (IGEO) 

algorithm. Finally, classification was carried out using the pre-trained DenseNet201 model. 

Experiments were conducted on the LIDC-IDRI dataset. The performance of the proposed 

ELWI-FCM-IGEO model was compared with other clustering techniques, including traditional 

FCM, K-means, and DBSCAN. The experimental results demonstrate that the proposed model 

achieved an accuracy of 98.7%, precision of 98.14%, F1-score of 98.34%, sensitivity of 

98.45%, and specificity of 99.15%, outperforming the existing models. In future work, various 

deep learning architectures and optimization strategies will be explored to further enhance both 

segmentation and classification performance. 
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