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Abstract 

Thermal systems are fundamental to a wide range of industrial applications, where performance and efficiency critically 

depend on precise and reliable modeling techniques. Traditional Artificial Neural Network (ANN)-based models, although 

widely used, often struggle with overfitting, limited generalization, and inadequate representation of the complex, nonlinear 

behavior inherent to thermal processes. These limitations restrict their deployment in real-time and dynamic operational 

settings. This study aims to enhance the predictive accuracy and robustness of thermal system modeling by integrating 

advanced machine learning (ML) techniques with hybrid optimization strategies. The research focuses on complex systems 

such as heat exchangers, gas-solid fluidized beds, and thermal energy storage units. A comprehensive methodology 

involving industrial data collection, preprocessing via normalization and feature selection, and model training using 

individual and hybrid ML algorithms is proposed. Performance is benchmarked using Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), and R² metrics. Advanced methods like Deep Learning (DL), Support Vector Machines 

(SVM), Genetic Algorithms (GA), Ensemble Learning, Transfer Learning, and Evolutionary Optimization are employed 
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to address shortcomings of conventional approaches. Results demonstrate that hybrid models outperform standalone ANN-

based techniques in prediction accuracy and generalization. 

Keywords: Hybrid Machine Learning, Thermal Systems, Evolutionary Optimization, Heat Transfer Modeling, Ensemble 

Learning, Deep Learning. 

1. INTRODUCTION: 

Thermal systems play an essential role in a variety of industrial processes, such as energy production, chemical 

manufacturing, HVAC operations, and food processing. To maximize efficiency and safety while minimizing costs, precise 

modeling is crucial. Traditional modeling approaches, such as Artificial Neural Networks, have difficulty managing 

nonlinearities, adjusting to changing conditions, and preventing overfitting. With the development of computational 

intelligence, machine learning and hybrid optimization methods provide promising solutions. This study delves into the 

integration of advanced ML techniques, such as deep learning, support vector machines, ensemble learning, and 

evolutionary algorithms, aiming to enhance the accuracy, robustness, and real-time applicability of thermal system models. 

The development of hybrid machine learning techniques has been driven by recent progress in optimizing thermal systems, 

especially with respect to energy management and building design. These methods integrate machine learning with 

traditional optimization techniques to improve the performance of different thermal systems. The application of hybrid 

machine learning models in energy-efficient buildings, such as low-energy structures in Morocco, has greatly enhanced the 

prediction and optimization of heating and cooling loads. [1]. The implementation of these hybrid strategies has proven 

effective in reducing energy consumption and improving system performance. Machine learning-based hybrid systems 

have been used to further optimize cooling in multi-unit residential buildings. In order to improve energy performance in 

residential settings these systems show improvements in thermal efficiency by combining machine learning techniques 

with other energy-saving techniques [2]. Using heat recovery in hybrid geothermal systems and investigating ways to 

maximize power and heating output were the subjects of another study. Using machine learning algorithms to optimize the 

outputs of geothermal systems has demonstrated significant promise for enhancing system performance and energy 

recovery [3]. This trend is also visible in hybrid renewable systems that use phase change materials where machine learning 

techniques are being used more and more in exergy-based optimization to improve system efficiency and offer active 

cooling solutions for renewable energy applications [4]. Research on the role of machine learning in chiller operation has 

also been conducted. According to research hybrid machine learning models outperform conventional machine learning 

techniques in controlling and enhancing the performance of cooling systems [5].  

In previous studies the focus was on applying machine learning to improve nanofluid optimization in photovoltaic systems. 

In order to reduce energy consumption and increase system reliability machine learning techniques have been used to 

predict the efficiency of thermal and photovoltaic collectors while evolutionary algorithms have been used to simulate and 

optimize their performance [6]. There is also potential for a hybrid machine learning model to optimize thermal comfort in 

large public buildings while consuming less energy and preserving ideal indoor conditions [7]. The best way to cool 

photovoltaic systems using heat pipes has been the subject of much research. These systems show that it is possible to 

improve the cooling efficiency and thermal utilization of photovoltaic panels by using hybrid models that combine machine 

learning and nanofluid optimization [8].  

Furthermore a number of studies have looked into the use of hybrid machine learning models to forecast energy savings in 

response to heat loads. It is now feasible to predict energy savings and optimize heat load energy consumption in building 

systems by using a deep reinforcement learning ensemble optimization model [9]. Incorporating hybrid models into electric 

vehicle energy management systems has been thoroughly examined [10] and the results show that machine learning and 

optimization techniques hold promise for improving the efficiency of plug-in hybrid electric vehicle systems. Furthermore 

the focus of thermal system optimization techniques has been on multi-criteria decision-making procedures that take 

economic environmental and energy factors into account. Through the combination of different optimization techniques 

systems that minimize energy consumption minimize their negative environmental effects and maximize system efficiency 

have been designed. In industrial applications the optimization of thermal systems has led to improved performance in 

processes such as solar thermal heating demonstrating the efficacy of machine learning techniques in this domain [11].  

With encouraging outcomes in terms of increased efficiency a number of studies have concentrated on the use of machine 

learning models for system optimization in nanofluid-based photovoltaic thermal systems [12]. It has been demonstrated 
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that the design of thermal systems can be successfully improved by hybrid optimization techniques. The optimization of 

multi-temperature solar thermal systems for industrial processes has therefore attracted a lot of attention [13]. There have 

been more developments in hybrid models for energy management in different thermal systems. 

 The goal of a hybrid machine learning and optimization model for building energy management is to minimize energy 

consumption while maintaining optimal heating and cooling conditions [14-15]. In order to improve the power systems 

capacity to control energy consumption and thermal efficiency particle swarm optimization has been investigated for the 

tuning of interconnected reheat thermal systems [16]. By employing machine learning techniques for system performance 

prediction and optimization nanofluid-based systems have been incorporated into photovoltaic applications which has also 

assisted in system optimization and provided a means of enhancing energy efficiency in both residential and commercial 

systems [17].  Numerous studies have examined machine learnings potential for optimizing renewable energy systems 

particularly photovoltaic and thermal applications. To enhance system performance and thermal efficiency a hybrid 

machine learning model has been proposed to optimize a multi-objective photovoltaic thermal system that integrates 

different nanofluids [18]. Other research has focused on optimizing photovoltaic/thermal systems in cold climates using a 

combination of machine learning and optimization algorithms to improve system performance in difficult settings [19]. 

Furthermore a number of studies have looked at how hybrid machine learning models can improve system efficiency and 

performance by optimizing heat transfer in thermal systems particularly in solar energy applications [20- 21].  

According to these studies hybrid optimization techniques are effective in enhancing system performance and the overall 

energy efficiency of photovoltaic systems [22]. Optimizing system components like phase change materials through 

machine learning has also produced promising results in improving the thermal performance of hybrid systems [23]. Hybrid 

models for thermal system optimization continue to show notable increases in energy efficiency especially when paired 

with ground source heat pumps [24]. In conclusion the use of machine learning techniques particularly hybrid models has 

significantly advanced thermal system optimization. These models have reduced operating costs increased energy 

efficiency and enhanced the overall performance of energy systems across a variety of applications [25]. 

 

 

2. MATERIALS AND METHODS 

The research problem of enhancing thermal system modeling using cutting-edge machine learning and hybrid optimization 

techniques is carefully described in this section along with the structured methodology used to solve it. In the upcoming 

discussion the problem formulation data acquisition strategy validation procedures feature engineering process and 

experimental setup design are all covered. Additionally this section offers a thorough explanation of the suggested 

computational models emphasizing the mathematical ideas that support each method. Finally, the computational efficiency 

assessment is discussed to reflect the suitability of the models for real-time applications in industrial thermal systems. 

2.1 Problem Description 

Accurately modeling thermal systems in industrial settings has always been difficult because heat transfer processes are 

dynamic nonlinear and complex. Because they can recognize patterns traditional methods—especially those that use 

Artificial Neural Networks (ANN)—have been widely used as predictive models. However because ANN models are 

black-boxes they frequently result in problems like failure to accurately capture the high-order nonlinear dependencies that 

define thermal systems overfitting when training data isnt diverse and poor generalization when unexpected operational 

states are present. When training data is not diverse traditional artificial neural network (ANN) models frequently overfit 

and have trouble generalizing under unknown operational states. Complex nonlinear relationships are challenging to 

accurately model due to thermal systems black-box nature. When operations are conducted in real time these limitations 

cause instability and inadequate control. These flaws frequently result in unstable systems when they are operating in real 

time inefficient control schemes and excessive energy consumption all of which have serious practical repercussions. 

Therefore this studys main objective is to get around these restrictions by combining cutting-edge machine learning 

algorithms with hybrid computational approaches designed to improve the thermal system models resilience accuracy and 

adaptability.  

2.2 Data Acquisition 
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The study used a test bed for an industrial-grade thermal system that included thermal energy storage units gas-solid 

fluidized beds and heat exchangers. A wide range of system operating conditions such as changes in inlet and outlet 

temperatures flow rate heat flux and pressure drop were the main focus of the data acquisition phase. High-order nonlinear 

dependencies exist in thermal systems such as varying pressure drops heat transfer rates and transient responses to 

operational changes. It is difficult to accurately represent these complex relationships using traditional models particularly 

when they are dynamic. To guarantee the accuracy of the parameters that were recorded high-precision sensors that were 

calibrated in accordance with ISO 5167 and ASTM E2877 standards were used. To capture fleeting phenomena the data 

were sampled every second. To capture variations under both steady-state and dynamic conditions recordings were made 

over a 30-cycle period. After rigorously detecting outliers using the interquartile range method the obtained dataset was 

cleaned up by applying linear interpolation to remove any missing values. This preprocessed dataset serves as the 

foundation for the creation of the model and its later validation (Figure 1).  

 

Figure 1 Process analysis 

2.3 Model Validation 

To ensure the predictive reliability of the developed models, a robust validation strategy was adopted, involving hold-out 

testing, cross-validation, and external validation phases. The dataset was initially partitioned into training (70%), validation 

(15%), and test (15%) sets. A five-step approach was used for cross-validation in order to assess the models robustness 

across various subsets and reduce the possibility of overfitting. The mean absolute error (MAE) root mean square error 

(RMSE) and coefficient of determination (R2) were calculated for every fold in order to quantitatively evaluate the variance 

and accuracy of the predictions. Feature scales were standardized through normalization which improved learning 

efficiency and prevented model bias toward higher-magnitude features. As part of the model training and data preprocessing 

feature selection was carried out. The trained models were deployed on a completely unknown dataset gathered from a 

different operational schedule as part of an external validation process to make sure the models performance went beyond 

the particular patterns present in the original dataset. 

2.4 Experimental Setup 

The experimental process began with the real-time collection of operational data from the thermal systems, followed by a 

comprehensive preprocessing routine that involved normalization, feature selection, and data augmentation through 
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bootstrap resampling to balance the dataset. Once the data were prepared, the next phase involved model selection and 

hyperparameter tuning, wherein a variety of machine learning models, including Support Vector Machines (SVM), Random 

Forest (RF), Gradient Boosting (GB), and Deep Learning architectures, were initialized with standard configurations. 

Hyperparameters were optimized using Genetic Algorithms (GA), where the fitness function was designed to minimize the 

RMSE while maintaining a high R² score. Once optimal parameters were identified, the models were trained on the 

prepared dataset. Following training, a rigorous validation phase was conducted, including 5-fold cross-validation, external 

dataset testing, and benchmarking against baseline models. Finally, the models were deployed on a live testing platform to 

evaluate their prediction capability under real-time system dynamics, providing a full-loop validation from data acquisition 

to deployment. These tests demonstrated robust real-time performance under varying operational conditions. The key 

challenge addressed was ensuring low-latency predictions without sacrificing accuracy. Figure 2 demonstrates the 

experimental setup. 

 

Figure 2 Experimental setup 

 

2.4 Proposed Technique 

The central innovation of this research lies in the deployment of a hybrid predictive framework that combines Deep 

Learning (DL), Support Vector Machines (SVM), Genetic Algorithms (GA), Ensemble Learning, Transfer Learning, and 

Evolutionary Optimization to address the intricate nature of thermal system modeling. Each technique contributes uniquely 

to the overall architecture (Figure 3). 

The Deep Learning model utilized a multi-layer perceptron (MLP) architecture equipped with ReLU activation functions 

and batch normalization to ensure stable gradient propagation. The feedforward propagation mechanism is mathematically 

expressed as (Eq 1): 

                                                                      (1) 
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where a(l) represents the output of the ll-th layer, W(l) and b(l) denote the weight matrix and bias vector, and σ\sigma is the 

nonlinear activation function. 

Support Vector Machines (SVM) were employed for regression tasks using the Radial Basis Function (RBF) kernel, which 

provides an effective means of capturing complex nonlinear dependencies. The SVM regression function is defined as (Eq 

2): 

                                                        (2) 

where αi and αi
∗ are the Lagrange multipliers, K(xi,x) is the kernel function, and bb is the bias term. 

Genetic Algorithms (GA) were used to optimize hyperparameters and model weights. The fitness of each candidate solution 

was determined by minimizing the objective function in (Eq 3): 

 

Figure 3 GA architecture 

                                                                   (3) 

where yi is the actual value and y^i is the predicted value for the i-th observation. 

Ensemble Learning integrated Random Forest and Gradient Boosting models to leverage the strengths of both bagging and 

boosting. The combined prediction was obtained via weighted averaging (Eq 4): 

                                                                       (4) 

where wi represents the weight assigned to the i-th model’s prediction, constrained such that ∑wi=1. 
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Transfer Learning was employed to accelerate the learning process by initializing the models with pre-trained weights from 

related thermal systems, thereby reducing the requirement for large volumes of training data. The fine-tuning process was 

mathematically formulated as (Eq 5): 

                                                       (5) 

where θtarget and θsource are the parameters of the target and source models, respectively, η\eta is the learning rate, and 

J(θ)J(\theta) is the cost function. 

Using meta-heuristic techniques evolutionary optimization improves model parameters and structures. Large solution 

spaces are efficiently searched and model behavior is adjusted across generations leading to better accuracy faster 

convergence and less training time. Lastly, Evolutionary Optimization was applied as a meta-heuristic layer that iteratively 

refined the model’s structural configurations and parameter spaces. The update rule in each generation follows the 

evolutionary strategy: 

  

where Xnext represents the candidate solution for the next generation, σ\sigma is the adaptive step size, and N(0,1) is a 

normal distribution. 

Through the synergistic integration of these techniques, the proposed framework offers superior prediction accuracy, 

enhanced generalization, and reduced computational cost, outperforming conventional single-model approaches. It is 

challenging for static models to retain predictive accuracy when dynamic conditions such as variations in temperature heat 

flux or flow rate introduce transient behaviors. These variations necessitate adaptive real-time modeling strategies since 

they can impair model reliability.  

2.5 Computational Efficiency Assessment 

A critical aspect of the proposed methodology is not only the model’s predictive accuracy but also its computational 

efficiency, especially given the real-time demands of industrial thermal systems. To evaluate this, metrics such as training 

time, inference latency, and convergence behavior were systematically recorded. The training phase was benchmarked on 

both CPU and GPU platforms, revealing that the hybrid models achieved faster convergence — in part due to the optimized 

hyperparameters derived from the Genetic Algorithm — and lower computational complexity when compared to 

standalone deep learning approaches. The inference time was tested under varying data loads, confirming that the ensemble 

and transfer learning-enhanced models offered scalable prediction capabilities without introducing latency overheads 

detrimental to real-time system operations. This comprehensive evaluation confirmed the practicality and deployment 

readiness of the proposed models in industrial scenarios. 

3. RESULTS AND DISCUSSION 

This section presents a comprehensive evaluation of the proposed framework, highlighting data integrity, predictive 

accuracy, and model robustness. Descriptive statistics were first analyzed to establish operational trends, followed by 

assessment of task placement, energy efficiency, and predictive performance, with emphasis on the Hybrid DL + GA + 

Ensemble method. The study also examined transfer learning, cross-validation stability, computational efficiency, and 

resilience under noisy conditions, demonstrating the model’s reliability, adaptability, and effectiveness for industrial 

applications. 

3.1 Raw Data Statistics (After Preprocessing) 

The study initially focused on understanding the fundamental behavior of the raw data after preprocessing, as this step was 

critical to ensure model reliability and stability. This analysis was conducted to verify whether the data exhibited 

appropriate variation and consistency before feeding it into machine learning models. As shown in Table 1, the summary 

statistics highlighted the central tendency and range of each feature. The Inlet Temperature ranged from a minimum of 

130.4°C to a maximum of 153.2°C, which indicated a moderate fluctuation around its mean of 145.8°C. Similarly, the 
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Outlet Temperature varied between 90.2°C and 110.7°C, reflecting expected thermal gradients during operation. The Flow 

Rate spanned from 1.9 kg/s to 2.4 kg/s, confirming a tightly controlled fluid dynamic setup. The Heat Flux recorded a 

minimum of 480.3 W/m² and reached a maximum of 548.9 W/m², which was attributed to operational setpoints pushing 

the system to meet heat transfer demands under varying load conditions. Lastly, the Pressure Drop fluctuated between 

390.6 Pa and 460.1 Pa, with the maximum value observed during high-flow conditions, which naturally resulted in 

increased frictional losses across the system. 

Table 1: Raw Data Statistics (After Preprocessing) 

Feature Mean Standard Deviation Min Max 

Inlet Temp (°C) 145.8 5.2 130.4 153.2 

Outlet Temp (°C) 102.5 4.8 90.2 110.7 

Flow Rate (kg/s) 2.15 0.12 1.9 2.4 

Heat Flux (W/m²) 520.6 15.4 480.3 548.9 

Pressure Drop (Pa) 430.7 21.9 390.6 460.1 

 

3.2 Decoupling analysis  

The research shows that some task allocations are more energy-efficient and allow for execution with the same performance 

while needing less cooling. The DL approach has been adjusted to align task assignment with power consumption and 

cooling effort (Figure 4). The model was trained and run in real time on a 16-node system to guide task migration, resulting 

in an average cooling power reduction of 17%. With a success rate of 86.67% for pairs with better scheduling opportunities, 

the model shows that some task assignments are more energy-efficient than others. The findings indicate that specific task 

allocations may result in improved performance and a decrease in cooling needs. 

 

Figure. 4: Actual vs. Predicted Thermal Variation — Decoupled Method (Hybrid DL-GA-Ensemble) 
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3.3 Model Performance Comparison 

The primary goal of this phase was to benchmark the predictive capability of various machine learning models against the 

dataset. This comparison was essential to identify the most reliable and accurate model for heat transfer analysis. According 

to Table 2, each model’s performance was evaluated using Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and R² score. The minimum R² score of 0.892 was recorded by the Artificial Neural Network (ANN), whereas 

the highest R² score of 0.992 was achieved by the Proposed Hybrid DL + GA + Ensemble model. This superior performance 

was largely due to the model’s ability to capture complex nonlinear patterns in the data, combined with the optimization 

capabilities of the Genetic Algorithm (GA) and the collective learning strength of the ensemble strategy. The trend across 

the models showed that hybrid and ensemble techniques consistently outperformed standalone algorithms. 

Table 2: Model Performance Comparison 

Model MAE RMSE R² Score 

ANN 4.12 5.34 0.892 

SVM 3.22 4.62 0.914 

Random Forest 2.87 3.91 0.937 

Gradient Boosting 2.54 3.47 0.950 

Hybrid (SVM + GA) 1.98 2.85 0.971 

Ensemble (RF + GB) 1.75 2.51 0.982 

Proposed Hybrid DL + GA + Ensemble 1.23 1.76 0.992 

 

The research shows that in excluded cases, flow rate and permeability are distributed unevenly which is shown in figure 5. 

Performance metrics such as thermal energy recovery performance, charging capacity time, maintenance time, and storage 

capability are generated from realized RTES simulations. Except for recovery efficiency, all metrics exhibit a power-law 

distribution, with min-max ranges spanning multiple magnitudes. To distinguish data of low magnitude, the performance 

measures are represented on a logarithmic scale. 

Auth
ors

 Pre-
Proo

f



 
 

 

 

Figure 5: Histograms of Input and Output Parameters — All Simulations 

3.4 Transfer Learning Performance 

The next phase of the study aimed to evaluate the potential of transfer learning to improve model generalization across 

similar systems. This was particularly important to reduce retraining efforts and enhance performance when only limited 

target-domain data were available. As detailed in Table 3, the baseline R² scores ranged from 0.82 to 0.87, while transfer 

learning boosted these values to the range of 0.91 to 0.95. The maximum improvement was observed when the source 

domain was the Fluidized Bed and the target domain was a Novel Fluidized Bed, yielding an improvement of 10.9%. This 

result confirmed that the structural and operational similarities between the fluidized bed systems made the transfer of 

knowledge particularly effective. 

Table 3: Transfer Learning Performance 

Source Domain Target Domain Baseline R² Transfer Learning R² Improvement (%) 

Heat Exchanger New Heat Exchanger 0.85 0.94 10.6 

Fluidized Bed Novel Fluidized Bed 0.82 0.91 10.9 

Energy Storage Unit Advanced Storage 0.87 0.95 9.2 

 

3.5 Cross-Validation Results (5-Fold) 

To ensure that the model did not overfit and could maintain its predictive capability across unseen data, a 5-fold cross-

validation was conducted. This evaluation allowed the team to assess the stability and reliability of the trained model under 

different subsets of the data. Referring to Table 4 and Figure 6, the R² scores ranged from a minimum of 0.990 in Fold 2 to 

a maximum of 0.993 in Fold 4. 
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Table 4: Cross-Validation Results (5-Fold) 

Fold MAE RMSE R² Score 

1 1.29 1.85 0.991 

2 1.31 1.88 0.990 

3 1.25 1.78 0.992 

4 1.24 1.77 0.993 

5 1.28 1.83 0.991 

 

The slightly higher R² value in Fold 4 could be attributed to the fact that the training set in this particular fold likely 

contained more diverse samples, allowing the model to learn generalizable patterns more effectively. Similarly, the MAE 

and RMSE values consistently remained low across all folds, demonstrating robustness. 

 

Figure 6 Continuous operation scenario - cross validation 

 

3.6 Computational Efficiency Comparison 

An essential part of the analysis was to evaluate the computational efficiency of each model, especially for real-time or 

resource-constrained environments. This evaluation focused on training time, prediction time, and convergence behavior. 

As reported in Table 5, the Proposed Hybrid model showed the best computational performance, requiring the least training 

time (87.4 seconds) and the shortest prediction time (6.2 seconds). It also converged in the fewest iterations (240), 

compared to 450 iterations for the ANN model. The significant reduction in convergence iterations and time was largely 

due to the Genetic Algorithm’s capability to efficiently search the parameter space, coupled with ensemble learning’s 

inherent robustness, which minimized redundant training cycles. 

Table 5: Computational Efficiency Comparison 

Model Training Time (s) Prediction Time (s) Convergence Iterations 

ANN 142.5 12.8 450 

SVM 118.7 9.3 360 

Random Forest 96.3 7.1 310 

Proposed Hybrid 87.4 6.2 240 
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3.7 Optimal analysis  

The models put forward forecast RTES performance responses within the 3-dimensional operational space for both 

continuous operation and seasonal cycle scenarios , as illustrated in figure 7. The best-performing solutions for each 

performance metric differ even within the same operation. For instance, while the maximum recovery efficiency during 

continuous operation occurs at a low injection temperature and rate with a long well distance, achieving maximum storage 

capacity necessitates a high injection temperature. Furthermore, the optimal recovery efficiency varies across different 

operational scenarios: it is low during continuous operation but high during the seasonal cycle. These variations indicate 

that there are competing optimal solutions for performance metrics. 

 

 

Figure 7 Optimal analysis 

 

3.8 Robustness Under Noisy Data 

The robustness of the models was tested against varying levels of artificial noise, which was an important step in assessing 

their reliability in real-world conditions where sensor inaccuracies and operational disturbances are common. As shown in 

Table 6, the R² score for the Proposed Hybrid model remained consistently high, dropping from 0.992 (at 0% noise) to 

0.947 (at 20% noise). Comparatively, ANN and SVM models exhibited steeper performance degradation. The Proposed 

Hybrid model’s resilience was mainly due to its deep learning framework’s ability to abstract relevant features even when 

the input data was noisy, combined with the optimization capabilities of GA, which likely adjusted the model weights to 

prevent overfitting on distorted data. 

Table 6: Robustness Under Noisy Data 
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Noise Level (%) ANN R² SVM R² Proposed Hybrid R² 

0 0.892 0.914 0.992 

5 0.846 0.886 0.985 

10 0.801 0.862 0.976 

15 0.753 0.828 0.965 

20 0.684 0.781 0.947 

 

The histogram of the residual errors produced by the proposed model when estimating 200 experimental data points for 

the thermal system electrical efficiency cooled by nanofluids is shown in Figure. 8. One can readily observe that nearly all 

data points have been computed with residual errors between −4 and +4. However, only eight of the predicted data points 

have residual errors that fall outside this range. In addition, the average value of −0.074% and the standard deviation of 

1.599% further substantiate the exceptional performance of the ANFIS. 

 

 

Figure. 8 Residuals of Electrical Efficiency — Proposed Model 

 

4. CONCLUSION 

The challenges of overfitting, limited generalization, and prediction inaccuracy in traditional ANN-based thermal system 

modeling have been effectively addressed in this study through the integration of advanced machine learning and hybrid 

optimization techniques. The research presents a framework that improves the adaptability and precision of thermal system 

models, enabling reliable predictions under various operational scenarios. The framework uses deep learning, ensemble 

methods, and evolutionary algorithms to create a robust foundation for intelligent and real-time thermal system 

optimization.  

1. The data analysis confirms stable statistical distributions, ensuring reliable input for machine learning models. 

The hybrid model achieved a 72.5% success rate in predicting optimal task placement in thermal conditions, and 
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a significant increase to 86.67% for larger temperature gradients. This results in a 2.1°C lower average operational 

temperature and reduced energy usage. 

2. Comparative evaluation of model performances revealed a major leap in predictive quality when using the 

Proposed Hybrid DL + GA + Ensemble model, achieving an outstanding R² score of 0.992. Alongside this, the 

model recorded the lowest MAE (1.23) and RMSE (1.76), proving its superior ability to handle nonlinear thermal 

system dynamics. This is a substantial improvement over conventional ANN models, which showed an R² of just 

0.892. 

3. Transfer learning implementation showed remarkable potential in boosting model generalization, especially in 

scenarios with limited target-domain data. Across different source-target domains, the R² score improved by 9.2% 

to 10.9%, with fluidized bed systems showing the highest improvement. 

4. Five-fold cross-validation was used to verify the models robustness and stability with R2 scores consistently 

falling between 0. 990 and zero. 993. Further confirming the models dependability for unknown data were the 

MAE and RMSE values which stayed consistently low across all folds. These results show a strong ability to 

generalize and a reduced risk of overfitting.  

5. Based on computational efficiency analysis the proposed hybrid model had the quickest prediction time (6. 2 

seconds) and the shortest training time (87. 4 seconds) of all tested methods. Additionally the model converged in 

240 iterations which is a considerable improvement over the 450 iterations required for the conventional ANN 

model. For this reason the hybrid approach is highly helpful for real-time thermal system optimization.  

Future studies might also look into reinforcement learning strategies to enable self-adaptive real-time control for thermal 

systems in dynamic industrial settings. Using pre-trained weights from related systems to initialize models enhances 

generalization through transfer learning (e. g. A. between different fluidized bed systems). This method produces higher 

accuracy and faster convergence while lowering the requirement for sizable labeled datasets in the target domain. 

Furthermore this strategy can increase its industrial impact and open the door for intelligent energy-efficient systems by 

being applied to larger-scale distributed thermal systems like district heating networks and renewable energy storage units.  
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