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Abstract

ndamental to a wide range of industrial applications, where performance and efficiency critically
nd reliable modeling techniques. Traditional Artificial Neural Network (ANN)-based models, although
n struggle with overfitting, limited generalization, and inadequate representation of the complex, nonlinear
rent to thermal processes. These limitations restrict their deployment in real-time and dynamic operational
is study aims to enhance the predictive accuracy and robustness of thermal system modeling by integrating
advanced machine learning (ML) techniques with hybrid optimization strategies. The research focuses on complex systems
uch as heat exchangers, gas-solid fluidized beds, and thermal energy storage units. A comprehensive methodology
nvolving industrial data collection, preprocessing via normalization and feature selection, and model training using
individual and hybrid ML algorithms is proposed. Performance is benchmarked using Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and R? metrics. Advanced methods like Deep Learning (DL), Support Vector Machines
(SVM), Genetic Algorithms (GA), Ensemble Learning, Transfer Learning, and Evolutionary Optimization are employed
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to address shortcomings of conventional approaches. Results demonstrate that hybrid models outperform standalone ANN-
based techniques in prediction accuracy and generalization.

Keywords: Hybrid Machine Learning, Thermal Systems, Evolutionary Optimization, Heat Transfer Modeling, Ensemble
Learning, Deep Learning.

1. INTRODUCTION:

Thermal systems play an essential role in a variety of industrial processes, such as energy production, chemy

integration of advanced ML techniques, such as deep learning, support vector machines, en:
evolutionary algorithms, aiming to enhance the accuracy, robustness, and real-time applicability o

traditional optimization techniques to improve the performance of different thermal

machine learning models in energy-efficient buildings, such as low-energy structures in co, has greatly enhanced the
prediction and optimization of heating and cooling loads. [1]. The implementation o prid strategies has proven
effective in reducing energy consumption and improving system performgzas ine learning-based hybrid systems

¢ system reliability machine learning techniques have been used to
oltaic collectors while evolutionary algorithms have been used to simulate and
otential for a hybrid machine learning model to optimize thermal comfort in
large public buildings whil f less energy and preserving ideal indoor conditions [7]. The best way to cool
photovoltaic as been the subject of much research. These systems show that it is possible to
improve the co i and thermal utilization of photovoltaic panels by using hybrid models that combine machine
learning ai

In order to reduce energy consump
predict the efficiency of thermgiemms
optimize their performance

udies have looked into the use of hybrid machine learning models to forecast energy savings in
is now feasible to predict energy savings and optimize heat load energy consumption in building
deep reinforcement learning ensemble optimization model [9]. Incorporating hybrid models into electric

chniques hold promise for improving the efficiency of plug-in hybrid electric vehicle systems. Furthermore
of thermal system optimization techniques has been on multi-criteria decision-making procedures that take
cconomic environmental and energy factors into account. Through the combination of different optimization techniques
ystems that minimize energy consumption minimize their negative environmental effects and maximize system efficiency
ave been designed. In industrial applications the optimization of thermal systems has led to improved performance in
processes such as solar thermal heating demonstrating the efficacy of machine learning techniques in this domain [11].

With encouraging outcomes in terms of increased efficiency a number of studies have concentrated on the use of machine
learning models for system optimization in nanofluid-based photovoltaic thermal systems [12]. It has been demonstrated



that the design of thermal systems can be successfully improved by hybrid optimization techniques. The optimization of
multi-temperature solar thermal systems for industrial processes has therefore attracted a lot of attention [13]. There have
been more developments in hybrid models for energy management in different thermal systems.

The goal of a hybrid machine learning and optimization model for building energy management is to minimize energ
consumption while maintaining optimal heating and cooling conditions [14-15]. In order to improve the power syste
capacity to control energy consumption and thermal efficiency particle swarm optimization has been investigated for th
tuning of interconnected reheat thermal systems [16]. By employing machine learning techniques for system performance
prediction and optimization nanofluid-based systems have been incorporated into photovoltaic applications which
assisted in system optimization and provided a means of enhancing energy efficiency in both residential and co
systems [17]. Numerous studies have examined machine learnings potential for optimizing renewable epgro

different nanofluids [18]. Other research has focused on optimizing photovoltaic/thermal systems j
combination of machine learning and optimization algorithms to improve system perfg g i

According to these studies hybrid optimization techniques are effective in enhancing sySNgl performance and the overall
energy efficiency of photovoltaic systems [22]. Optimizing system components lik W change materials through

ﬁe of hybrid systems [23]. Hybrid
models for thermal system optimization continue to show notable increg : y efficiency especially when paired
with ground source heat pumps [24]. In conclusion the use of maching le

machine learning has also produced promising results in improving the thermglaerfo
iques particularly hybrid models has

significantly advanced thermal system optimization. These m
efficiency and enhanced the overall performance of ener m y of applications [25].

2. MATERIALS METHODS

The research problem of enhancing therm
techniques is carefully described in thy

deling using cutting-edge machine learning and hybrid optimization
ith the structured methodology used to solve it. In the upcoming
discussion the problem formulati strategy validation procedures feature engineering process and
experimental setup design are d. Additionally this section offers a thorough explanation of the suggested

ntly result in problems like failure to accurately capture the high-order nonlinear dependencies that
tems overfitting when training data isnt diverse and poor generalization when unexpected operational

uble generalizing under unknown operational states. Complex nonlinear relationships are challenging to
model due to thermal systems black-box nature. When operations are conducted in real time these limitations
cause instability and inadequate control. These flaws frequently result in unstable systems when they are operating in real
ime inefficient control schemes and excessive energy consumption all of which have serious practical repercussions.
herefore this studys main objective is to get around these restrictions by combining cutting-edge machine learning
algorithms with hybrid computational approaches designed to improve the thermal system models resilience accuracy and
adaptability.

2.2 Data Acquisition



The study used a test bed for an industrial-grade thermal system that included thermal energy storage units gas-solid
fluidized beds and heat exchangers. A wide range of system operating conditions such as changes in inlet and outlet
temperatures flow rate heat flux and pressure drop were the main focus of the data acquisition phase. High-order nonlinear
dependencies exist in thermal systems such as varying pressure drops heat transfer rates and transient responses to
operational changes. It is difficult to accurately represent these complex relationships using traditional models particular,
when they are dynamic. To guarantee the accuracy of the parameters that were recorded high-precision sensors that we
calibrated in accordance with ISO 5167 and ASTM E2877 standards were used. To capture fleeting phenomena the dat
were sampled every second. To capture variations under both steady-state and dynamic conditions recordings were s

over a 30-cycle period. After rigorously detecting outliers using the interquartile range method the obtained data
cleaned up by applying linear interpolation to remove any missing values. This preprocessed dataset served
foundation for the creation of the model and its later validation (Figure 1).
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Figure 1 Process analysis
2.3 Model V!
To ensure y of the developed models, a robust validation strategy was adopted, involving hold-out
testing, cro nd external validation phases. The dataset was initially partitioned into training (70%), validation
(15%), . A five-step approach was used for cross-validation in order to assess the models robustness

and reduce the possibility of overfitting. The mean absolute error (MAE) root mean square error
cient of determination (R2) were calculated for every fold in order to quantitatively evaluate the variance

prevented model bias toward higher-magnitude features. As part of the model training and data preprocessing
ection was carried out. The trained models were deployed on a completely unknown dataset gathered from a
different operational schedule as part of an external validation process to make sure the models performance went beyond
he particular patterns present in the original dataset.

2.4 Experimental Setup

The experimental process began with the real-time collection of operational data from the thermal systems, followed by a
comprehensive preprocessing routine that involved normalization, feature selection, and data augmentation through



bootstrap resampling to balance the dataset. Once the data were prepared, the next phase involved model selection and
hyperparameter tuning, wherein a variety of machine learning models, including Support Vector Machines (SVM), Random
Forest (RF), Gradient Boosting (GB), and Deep Learning architectures, were initialized with standard configurations.
Hyperparameters were optimized using Genetic Algorithms (GA), where the fitness function was designed to minimize the
RMSE while maintaining a high R? score. Once optimal parameters were identified, the models were trained on t
prepared dataset. Following training, a rigorous validation phase was conducted, including 5-fold cross-validation, exte
dataset testing, and benchmarking against baseline models. Finally, the models were deployed on a live testing platform t
evaluate their prediction capability under real-time system dynamics, providing a full-loop validation from data acquigg
to deployment. These tests demonstrated robust real-time performance under varying operational conditions.
challenge addressed was ensuring low-latency predictions without sacrificing accuracy. Figure 2 demonstrig
experimental setup.
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Figure 2 Experimental setup

ptimization to address the intricate nature of thermal system modeling. Each technique contributes uniquely
all architecture (Figure 3).

The Deep Learning model utilized a multi-layer perceptron (MLP) architecture equipped with ReLU activation functions
nd batch normalization to ensure stable gradient propagation. The feedforward propagation mechanism is mathematically
expressed as (Eq 1):

a'’ = a(WWal=1 4 b1y
[ ; )



where al represents the output of the 11-th layer, W® and b denote the weight matrix and bias vector, and c\sigma is the
nonlinear activation function.

Support Vector Machines (SVM) were employed for regression tasks using the Radial Basis Function (RBF) kernel, which
provides an effective means of capturing complex nonlinear dependencies. The SVM regression function is defined as (E
2):
N
flz) = L[a, —af )JK(z,z)+b

2
where ai and o;* are the Lagrange multipliers, K(x;,x) is the kernel function, and bb is the bias term.

Genetic Algorithms (GA) were used to optimize hyperparameters and model weights. The fitness of cX tion
was determined by minimizing the objective function in (Eq 3):
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where w; represents the weight assigned to the i-th model’s prediction, constrained such that ) wi=1.



Transfer Learning was employed to accelerate the learning process by initializing the models with pre-trained weights from
related thermal systems, thereby reducing the requirement for large volumes of training data. The fine-tuning process was
mathematically formulated as (Eq 5):

HI.‘H,.:#". = S.'\-I"II"':'I. - ?}Tﬁflllg}l
®)

where Orget and Osource are the parameters of the target and source models, respectively, n\eta is the learning rate
J(0)J(\theta) is the cost function.

Using meta-heuristic techniques evolutionary optimization improves model parameters and structures. Large
spaces are efficiently searched and model behavior is adjusted across generations leading to better
convergence and less training time. Lastly, Evolutionary Optimization was applied as a meta-heuristic la
refined the model’s structural configurations and parameter spaces. The update rule in each
evolutionary strategy:

X.‘u'.\l = X‘:'.I.I.‘L‘I at T O * "I.I":lzn‘ 1]

where Xiex represents the candidate solution for the next generation, c\sigma is the ggdap step size, and N(0,1) is a
normal distribution.

Through the synergistic integration of these techniques, the proposed goffers superior prediction accuracy,
enhanced generalization, and reduced computational cost, outper i
challenging for static models to retain predictive accuracy i g
flux or flow rate introduce transient behaviors. These Mtate adaptive real-time modeling strategies since
they can impair model reliability.

2.5 Computational Efficiency Assessment

models achieved faster convergence — in part due to the optimized
hyperparameters derived from the m — and lower computational complexity when compared to
standalone deep learning approgalas
and transfer learning-enha
detrimental to real-time sy bns. This comprehensive evaluation confirmed the practicality and deployment

readiness of t i _dustrial scenarios.

ustness. Descriptive statistics were first analyzed to establish operational trends, followed by
cement, energy efficiency, and predictive performance, with emphasis on the Hybrid DL + GA +
. The study also examined transfer learning, cross-validation stability, computational efficiency, and
noisy conditions, demonstrating the model’s reliability, adaptability, and effectiveness for industrial

.1 Raw Data Statistics (After Preprocessing)

he study initially focused on understanding the fundamental behavior of the raw data after preprocessing, as this step was
critical to ensure model reliability and stability. This analysis was conducted to verify whether the data exhibited
appropriate variation and consistency before feeding it into machine learning models. As shown in Table 1, the summary
statistics highlighted the central tendency and range of each feature. The Inlet Temperature ranged from a minimum of
130.4°C to a maximum of 153.2°C, which indicated a moderate fluctuation around its mean of 145.8°C. Similarly, the




Outlet Temperature varied between 90.2°C and 110.7°C, reflecting expected thermal gradients during operation. The Flow
Rate spanned from 1.9 kg/s to 2.4 kg/s, confirming a tightly controlled fluid dynamic setup. The Heat Flux recorded a
minimum of 480.3 W/m? and reached a maximum of 548.9 W/m?, which was attributed to operational setpoints pushing
the system to meet heat transfer demands under varying load conditions. Lastly, the Pressure Drop fluctuated between
390.6 Pa and 460.1 Pa, with the maximum value observed during high-flow conditions, which naturally resulted 4

increased frictional losses across the system.

Table 1: Raw Data Statistics (After Preprocessing)

Feature Mean | Standard Deviation | Min | Max
Inlet Temp (°C) 1458 | 5.2 1304 | 153.2
Outlet Temp (°C) 102.5 | 4.8 90.2 | 110.7
Flow Rate (kg/s) 2.15 0.12
Heat Flux (W/m?) | 520.6 | 15.4
Pressure Drop (Pa) | 430.7 | 21.9

3.2 Decoupling analysis

The research shows that some task allocations are more energy-efficie
while needing less cooling. The DL approach has been adjusted

cooling effort (Figure 4). The model was trained and rung

a foxecution with the same performance
lign nment with power consumption and
16-node system to guide task migration, resulting

o for pairs with better scheduling opportunities,
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Figure. 4: Actual vs. Predicted Thermal Variation — Decoupled Method (Hybrid DL-GA-Ensemble)



3.3 Model Performance Comparison

The primary goal of this phase was to benchmark the predictive capability of various machine learning models against the
dataset. This comparison was essential to identify the most reliable and accurate model for heat transfer analysis. According
to Table 2, each model’s performance was evaluated using Mean Absolute Error (MAE), Root Mean Squared Errg
(RMSE), and R? score. The minimum R? score of 0.892 was recorded by the Artificial Neural Network (ANN), wher
the highest R? score of 0.992 was achieved by the Proposed Hybrid DL + GA + Ensemble model. This superior performanc
was largely due to the model’s ability to capture complex nonlinear patterns in the data, combined with the optimization
capabilities of the Genetic Algorithm (GA) and the collective learning strength of the ensemble strategy. The tren

the models showed that hybrid and ensemble techniques consistently outperformed standalone algorithms.

Table 2: Model Performance Comparison

Model MAE | RMSE | R? Score

ANN 4.12 | 534

SVM 322 | 4.62

Random Forest 2.87 391

3.47

Gradient Boosting

Hybrid (SVM + GA)

Ensemble (RF + GB)

Proposed Hybrid DL + GA +

eability are distributed unevenly which is shown in figure 5.
ce, charging capacity time, maintenance time, and storage

The research shows that in excluded cases, flow rate an
Performance metrics such as thermal energy recovery perfo
capability are generated from realized RTES gsilations. Exct for recovery efficiency, all metrics exhibit a power-law
distribution, with min-max ranges spanni ultj agnitudes. To distinguish data of low magnitude, the performance
measures are represented on a logarith

N
v
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3.4 Transfer Learning Performance

The next phase of the study aimed to evaluate the potentiaNg@ transfer learning to improve model generalization across
similar systems. This was particularly impor o reduce retraining efforts and enhance performance when only limited
target-domain data were available. As det ¢ 3, the baseline R? scores ranged from 0.82 to 0.87, while transfer
learning boosted these values to the 1 .95. The maximum improvement was observed when the source
domain was the Fluidized Bed and % rget d as a Novel Fluidized Bed, yielding an improvement of 10.9%. This
result confirmed that the structygal a erational similarities between the fluidized bed systems made the transfer of
knowledge particularly effec

Table 3: Transfer Learning Performance

Baseline R? | Transfer Learning R*> | Improvement (%)

Heat Exch

ew Heat Exchanger | 0.85 0.94 10.6

ovel Fluidized Bed | 0.82 0.91 10.9

Advanced Storage 0.87 0.95 9.2

-Validation Results (5-Fold)

[0 ensure that the model did not overfit and could maintain its predictive capability across unseen data, a 5-fold cross-
alidation was conducted. This evaluation allowed the team to assess the stability and reliability of the trained model under
different subsets of the data. Referring to Table 4 and Figure 6, the R? scores ranged from a minimum of 0.990 in Fold 2 to
a maximum of 0.993 in Fold 4.
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Table 4: Cross-Validation Results (5-Fold)

Fold | MAE | RMSE | R? Score
1 1.29 | 1.85 0.991
2 1.31 | 1.88 0.990
3 1.25 | 1.78 0.992
4 1.24 | 1.77 0.993
5 1.28 | 1.83 0.991

Charging time (day)

Crperating time (day)

The slightly higher R? value in Fold 4 could be attributed to the fact that the training s
contained more diverse samples, allowing the model to learn generalizable patterns m
and RMSE values consistently remained low across all folds, demonstrating robust

An essential part of the anal
resource-constrained envirogll
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uate the computational efficiency of each model, especially for real-time or
s evaluation focused on training time, prediction time, and convergence behavior.
prid model showed the best computational performance, requiring the least training

time (87.4 s
compared
due to the

W prediction time (6.2 seconds). It also converged in the fewest iterations (240),
e ANN model. The significant reduction in convergence iterations and time was largely
capability to efficiently search the parameter space, coupled with ensemble learning’s

45

inherent rbls

minimized redundant training cycles.

Table 5: Computational Efficiency Comparison

Training Time (s) | Prediction Time (s) | Convergence Iterations
142.5 12.8 450
118.7 9.3 360

Random Forest 96.3 7.1 310

Proposed Hybrid | 87.4 6.2 240




3.7 Optimal analysis

The models put forward forecast RTES performance responses within the 3-dimensional operational space for b
continuous operation and seasonal cycle scenarios , as illustrated in figure 7. The best-performing solutions for eac
performance metric differ even within the same operation. For instance, while the maximum recovery efficiency dyg
continuous operation occurs at a low injection temperature and rate with a long well distance, achieving maximum
capacity necessitates a high injection temperature. Furthermore, the optimal recovery efficiency varies across ¢
operational scenarios: it is low during continuous operation but high during the seasonal cycle. These varigismss i
that there are competing optimal solutions for performance metrics.
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Figure 7 Optimal analysis

Under Noisy Data

f the models was tested against varying levels of artificial noise, which was an important step in assessing
y in real-world conditions where sensor inaccuracies and operational disturbances are common. As shown in
e R? score for the Proposed Hybrid model remained consistently high, dropping from 0.992 (at 0% noise) to
0.947 (at 20% noise). Comparatively, ANN and SVM models exhibited steeper performance degradation. The Proposed
ybrid model’s resilience was mainly due to its deep learning framework’s ability to abstract relevant features even when
e input data was noisy, combined with the optimization capabilities of GA, which likely adjusted the model weights to
prevent overfitting on distorted data.

Table 6: Robustness Under Noisy Data



Noise Level (%) | ANN R? | SVM R? | Proposed Hybrid R?
0 0.892 0.914 0.992
5 0.846 0.886 0.985
10 0.801 0.862 0.976
15 0.753 0.828 0.965
20 0.684 0.781 0.947

1.599% further substantiate the exceptional performance of the ANFIS.

Average = -0.074 %, Standard deviation = 1.59

40

35

30

20

Population

15

10

-2 0
Residual error (%)

Figure. 8 Residuals of Electrical Efficiency — Proposed Model

4. CONCLUSION

of overfitting, limited generalization, and prediction inaccuracy in traditional ANN-based thermal system
ave been effectively addressed in this study through the integration of advanced machine learning and hybrid
ptimization techniques. The research presents a framework that improves the adaptability and precision of thermal system
models, enabling reliable predictions under various operational scenarios. The framework uses deep learning, ensemble
ethods, and evolutionary algorithms to create a robust foundation for intelligent and real-time thermal system
optimization.

1. The data analysis confirms stable statistical distributions, ensuring reliable input for machine learning models.
The hybrid model achieved a 72.5% success rate in predicting optimal task placement in thermal conditions, and



a significant increase to 86.67% for larger temperature gradients. This results in a 2.1°C lower average operational
temperature and reduced energy usage.

2. Comparative evaluation of model performances revealed a major leap in predictive quality when using the
Proposed Hybrid DL + GA + Ensemble model, achieving an outstanding R? score of 0.992. Alongside this, th
model recorded the lowest MAE (1.23) and RMSE (1.76), proving its superior ability to handle nonlinear the
system dynamics. This is a substantial improvement over conventional ANN models, which showed an R? of ju
0.892.

3. Transfer learning implementation showed remarkable potential in boosting model generalization, especg
scenarios with limited target-domain data. Across different source-target domains, the R? score improved
to 10.9%, with fluidized bed systems showing the highest improvement.

generalize and a reduced risk of overfitting.

5. Based on computational efficiency analysis the proposed hybrid model

seconds) and the shortest training time (87. 4 seconds) of all tested methods. A
240 iterations which is a considerable improvement over the 450 iterations req

model. For this reason the hybrid approach is highly helpful for real-time 1?

ally the model com'crgcd in
] for the conventional ANN

aptive real-time control for thermal
stems to initialize models enhances

generalization through transfer learning (e. g. A. between different g sjitems). This mcthod producm highcr

Furthermore this strategy can increase its industrial i c door for intelligent energy - efﬁc1ent systems by
being applied to larger-scale distributed thermal sysig
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