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Abstract 

The rise of driver assistance and automotive telecommunication systems shows great 

potential for adaptive transport solutions using vehicular ad hoc networks (VANET). Generally, 

the two main issues in vehicle ad hoc networks that malicious attackers can greatly affect are 

privacy and safety. Preventing the spread of harmful messages among vehicles is crucial to 

protecting the private properties of automobiles from potential threats. This research tackles these 

issues and proposes a new machine-learning-based message authentication method. This method 

can be integrated with interplanetary file systems and blockchain to ensure secure message 

distribution. The Inter Planetary File System (IPFS) is utilized by blockchain technology to create 

tamper-proof records in a distributed environment. This protocol stores events using content 

addressing. The source metadata from the IPFS is first stored in a smart contract and then in the 

distributed ledger technology. This framework makes use of the Iterative Import Vector Machine 

(IIVM) classifier and Non-overlapped K-means clustering in the event authentication process. It 

will be classified as malicious or not malicious in order to carry out the vehicle clustering. After 

clustering, the IIVM classifier works to identify harmful event messages. As a result, dropped 

messages are recognized as such and the secure messages are sent into the network. According to 

simulation results, the suggested approach increases event spoofing identification precision by 

96.21%. This system's trust model of the occurrence does an excellent task of separating genuine 

instances from fake ones. 
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I.INTRODUCTION 

India's transportation system is undergoing a significant transformation due to the country's 

fast-growing economy, increasing car ownership, and a poor and inefficient public transit 

infrastructure. The intelligent transportation system (ITS) addresses all these issues [1]. It has a 

significant impact and provides direction as well as management to reduce traffic congestion. Due 

to their self-organizing character and ad hoc nature, automobile ad hoc networks are receiving a 

lot of interest these days. Multi-hop routing is possible for cars that are outside of the scope. An 

internal vehicle component that analyzes data from multiple sensors is called an onboard unit. The 

sensor installed with the vehicle's circumstances performs the interface with the external networks. 

The Vehicle to Infrastructure Network (VANET) facilitates data transmission between vehicles 

and between vehicles with ease. It isconsidered a potent tool for improving traffic efficiency. 

Figure 1 illustrates the VANET communication model. 

 

Figure 1. VANET communication model 

VANET-enabled vehicles can gather data about conditions such as traffic jams and slick 

roads, as well as their own driving status [2-4]. The data collected aids in improving driver comfort 

and safety in VANET vehicles. It is distinguished by high node mobility, communication link 

maintenance across a constrained range, and the absence of power issues.  

Information is transferred between a car and a roadside unit (RSU) and between other 

vehicles inside a VANET via an open wireless channel [5]. This simplifies the task for attackers 
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to carry out their nefarious objectives, such as traffic monitoring. Insider attackers can also send 

fake messages to report fraudulent activities. While increased connectivity and the number of 

communication channels have led to various breakthroughs, data security and reliability remain 

the most critical challenges in designing automotive solutions [6-8]. As a result, the main issues 

are the vehicles' secrecy and the safeguarding of data exchanges, that is accomplished by 

confirming the reliability, legitimacy, and integrity of event data. 

 

Previous research has used numerous centralized solutions involving cloud computing 

[9,10]. While cloud computing improves computational efficiency and resource use in automotive 

contexts, it is not suitable for VANET applications due to latency sensitivity and vehicle mobility 

requirements. Vehicle networks are susceptible to various threats, leading to the use of numerous 

cryptographic techniques in the past [11-13]. Authentication is carried out by traditional security 

mechanisms, including password protection and biometric security with key-based authentication. 

However, these methods do not verify the accuracy of the data being supplied. The current solution 

uses edge service providers and multimedia data sharing to detect events before recording them on 

the blockchain, but the authentication process is lengthy [14-16]. The proposed solution resolves 

the problems with existing techniques. Blockchain is a decentralized network made up of several 

blocks with different kinds of information that function as an open ledger for every user on the 

network. Blockchain is featured in our recommended work partly due to its tamper-proof nature, 

consensus mechanism, and immutability of data storage, which makes alterations extremely 

difficult.  

This research suggests a novel machine-learning-based data authorization approach that 

combines IPFS and blockchain to address these problems. Blockchain is integrated in the 

implementation of neural network parts, which utilise information from automotive sensors to 

make decisions and interpret situations creatively to improve the safety of on-road driving[20–21]. 

The information gathered by RSU are first preserved in IPFS, after the completion of an intelligent 

contract to create a neural network transaction authenticity mechanism and categorise events as 

dangerous or not. Initially, two clusters are created from the events gathered at RSU using the 

Non-overlapped K-means clustering technique. By extracting the vehicle's true identity and 

verifying its validity in line with the database, RSU reduces the computing load on the vehicle. 

The data is anticipated using a domain expert. The vehicle retrieves the most recent decision rules 

from IPFS via a smart contract to validate the event. If the decision rules determine that the event 
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is harmful, the vehicle removes the message. This ensures only authentic communications are 

transmitted over the network. Before forwarding messages to the next hop, the vehicle frequency 

verifies them using the decision rules derived from the execution of the smart contract. 

The highlights of the work are as follows: 

• This method enhances the security of message distribution by integrating 

interplanetary file systems (IPFS) and blockchain technology, ensuring tamper-

proof records in a distributed environment. 

• The proposed system employs the Iterative Import Vector Machine (IIVM) 

classifier and Non-overlapped K-means clustering to effectively classify and 

identify malicious event messages. Simulation results show that this approach 

improves event spoofing detection accuracy by 96.21%, significantly enhancing the 

reliability and safety of communication within VANETs. 

• This approach not only prevents the spread of harmful messages but also protects 

the privacy and safety of vehicles from potential threats, addressing critical issues 

in VANET security. 

The remaining sections are arranged as follows: Section II provides a brief overview of the 

suggested task and relevant current methods. The recommended procedure for event confirmation, 

approval, and safe event transmission is covered in Section III. The outcomes of the planned effort 

are covered in Section IV, and a conclusion is given in Section V. 

II. Related works 

The effects of the VANET blockchain system owing to mobility were presented in [22]. 

They examined three metrics: the volume of traded blocks during the rendezvous, the 

dependability of a rendezvous, and the contingency of a feasible block addition. A method for 

sharing secure information between cars using static and dynamic attributes with an attribute-based 

cryptography technique was demonstrated in [23]. This method uses a new group signature called 

CP-ABE in conjunction with ciphertext to provide verifiability and integrity, which requires 

pairing procedures. However, it is disadvantageous as an attacker may simply predict attribute 

values. An information restriction technique for transferring information over a virtual area 

networking (VANET) among many cloud storage platforms with automobile mobile services was 

suggested in [24]. Despite slower identification, this solution protects confidentiality and safety 

against harmful assaults and scales efficiently. 
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A broadcast encryption system based on identity was proposed in [25]. This method 

reduces redundancies, increases the trustworthy authority's work effectiveness, and compares the 

length of the encrypted text and the sender's ciphertext overhead. A blockchain depending on 

biometrics to protect vehicle transmission data, safeguarding the identity of the authorized user 

while preserving anonymity, was proposed in [26]. This approach combines blockchain 

technology with biometrics to ensure reliable data with computing cost. However, issues arise 

when combining several biometric features. The BCPPA method for transmission encryption, 

combining the key derivation process with blockchain technology, was suggested in [27]. 

Additionally, PKI-based signatures are utilized with batch verification to maximize throughput. 

 

Privacy-preserving authenticating methods for VANETs to improve the abandoned unit's 

and the tamper-resistant device-aided CPPA's efficacy and security were offered in [28]. Using the 

chance oracle idea demonstrates reliability. Necessary security measures include identifying and 

ejecting rule breakers, detecting spoof communications, and safeguarding other vehicles' identities 

from un-linkability and untraceability. However, this significantly slows down traffic when 

approaching an RSU. The interaction between security, QoS, and safety awareness was examined 

in [29]. Extra care was taken to ascertain that crucial neighbors were included in the computation 

of awareness using vehicle heading-based filtration. Although this might make other drivers more 

cautious, it could be viewed as a safer strategy if there has previously been a history of moving 

offenses. The ability of automated automobiles to identify hostile vehicles and their misbehaving 

chauffeurs, who are subsequently removed from the safe car schedule, was enhanced in [30] by 

introducing a centralised man-in-the-middle operation with a significant amount of certainty. This 

method works in two stages: first, it finds counterfeit networks early on, and then it adds plausible 

constraints to the networking so that entity-centric confidence evaluations may be carried out. If a 

node meets certain characteristics, it might be deemed malevolent. After identifying a legitimate 

node, a data-centric credibility analysis can be conducted. The trust model's disadvantage is that it 

adds overhead by obtaining the sender's reputation from many sources. 

 

The use of chameleon hashing to transmit data securely in cars was suggested in [31]. This 

methodology requires far less computational power to accomplish the authentication procedure for 

both vehicle-to-vehicle and vehicle-to-roadside traffic, working exceptionally well in actual 

vehicular contexts. The use of statistical classifiers for hybrid and complex attacks, enabling the 
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detection of complicated attacks, was introduced in [32]. This proposed architecture is situation-

aware, utilizing an environment references in lieu of pre-established dynamic privacy standards. 

Communications vehicles' movement information is context-referenced using Kalman and 

Hampel filters for both temporal and spatial synchronization. The results of these cluster models 

were lower for benign and misbehaving vehicle identification models, DCA-MDS and HCA-MDS, 

respectively, and less accurate in differentiating between the two types of cars. A multi-view fuzzy 

consensual cluster method for malware risk identification was suggested in [33-35]. This method 

applies 12 alternative extracted views for attribution and five categories of advanced persistent 

threats. Although it takes longer and has a 95% accuracy rate, the fuzzy criteria help effectively 

handle the threat attribution problem by differentiating between existing overlaps between various 

types of hostile states. 

 

Research gaps identified 

Despite significant advancements in secure communication for VANETs using blockchain 

and machine learning, several research gaps remain. Scalability and performance issues persist, as 

many existing methods struggle with efficiency when scaling, highlighted by the slower 

identification processes noted in [24]. The integration of biometrics with blockchain, as discussed 

in [26], presents challenges in managing multiple biometric features efficiently, requiring further 

research to develop seamless integration methods. Real-time authentication and communication in 

high-mobility environments like VANETs are often overlooked, necessitating low-latency 

solutions. Techniques like those in [23] using CP-ABE are vulnerable to attribute value prediction, 

indicating a need for more robust cryptographic techniques. Additionally, the centralised approach 

for identifying malicious vehicles in [30] introduces overhead, suggesting a gap in decentralised 

methods with lower overhead. Complex attack detection, as introduced in [32], still faces 

limitations in accurately differentiating between benign and misbehaving vehicles, calling for 

improved models and algorithms. Energy efficiency is another concern, with many solutions not 

considering the energy consumption of involved devices, as noted in [31]. Dynamic privacy 

standards, discussed in [32], require further development to adapt to changing conditions in 

VANETs. Trust models, such as the one in [30], introduce significant overhead, highlighting the 

need for more efficient models. Lastly, hybrid approaches integrating multiple security measures 

remain an open area of research, aiming to create more robust and resilient security frameworks Auth
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for VANETs. Addressing these gaps is crucial for developing secure, efficient, and scalable 

solutions, enhancing the reliability and safety of vehicular communication systems. 

 

III. Proposed trusted model  

Vehicular ad hoc networks, which use wireless sensors to sense, analyze, and interact with the 

outside world, are a burgeoning field in intelligent transportation systems in the modern era. This 

proposed method ensures reliable and secure data sharing by integrating IPFS, blockchain 

technology, and a cutting-edge machine learning-driven verification method. It functions as 

follows: events that the RSU retrieves are first stored in IPFS. A contract with intelligence then 

determines if the event is hazardous based on the machine learning event verification model. Using 

the K-means clustering technique, each vehicle in the proposed system is first assigned to a cluster. 

This strategy groups the vehicles together, and the cluster head is selected based on the node with 

the highest performance capabilities. The cluster head is essential because it keeps an eye on how 

nearby cars are acting. Upon entering the network, every vehicle is assigned a mistrust value of 

1.0, which helps to classify them as malicious, aberrant, or normal. The car is blocked and deemed 

dangerous if the distrust value rises above a predetermined level.  
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Figure 2. Proposed model taxonomy  

 

Vehicles are characterized as malicious or non-malicious based on the mistrust value. After this 

classification, a support vector machine classifier—which has been trained on samples—is 

employed to identify harmful event signals and translate them into decision rules. These decision 

rules are saved in IPFS following each update and are subsequently accessed to verify events. The 

vehicle instantly drops an event that the decision rules determine to be harmful. By doing this, the 

network is guaranteed to forward only legitimate messages. Figure 2 displays the suggested 

system's functioning diagram. Because it saves time and money on communication expenses while 

certifying vehicles and events, the proposed solution is more efficient than traditional approaches. 

When it comes to accurately and efficiently identifying harmful events, the proposed strategy 

performs better than other traditional approaches. The entities involved in the proposed system 

include the trustworthy authority, RSU, IPFS, smart contracts, and blockchain. Below is a 

description of the system's workflow. 
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Intelligent vehicles (IVs) are among the modern technologies that have seen significant 

growth and adoption in all aspects of life connected to the internet. Through their interaction and 

integration with RSUs, these IVs create a virtual network. An IV sends a request message to a 

reliable authority if it wants to join the network. The trustworthy authority serves as a registrar in 

this system, compiling all IV-related data and providing a public key. Vehicles can communicate 

with one another using this certificate. The trusted authority is also utilized for data authentication 

to preserve data integrity. 

 

3.2 Analysis of algorithm 

Inthis approach, a car cannot enter the network without first registering. To obtain a 

registration certificate, the car uploads its data to a reliable authority. The issued certificate is 

cryptographically connected and digitally secure. The car communicates with the reliable source 

and obtains the ID pseudonym, which occurs only once. By using the MAC address and real ID as 

inputs for registration, less processing power and time are used. Vehicles connect for the first time 

across the network with the provided pseudonym ID, verifying innovative IVs, and the certification 

process is safe. 

 

 

 

 

 

 

 

 

 

Algorithm I Registration and validation 
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1:Initialization 
2:Inputs:MAC address, No. of vehicles. 
3:Outputs:IVregistration,MAC address validation, stores in IPFS.  

4: While IV is in connection with network do 
5:Registration 
6:Check𝐼𝑉𝑜w𝑛𝑒𝑟,𝑅𝑒𝑎𝑙𝐼𝐷,𝑀𝐴𝐶𝑎𝑑𝑑𝑟𝑒𝑠𝑠 
7:Returnregistered IV 

8: “Validation of ID” 
9:if ℎ𝑎𝑠ℎ1=ℎ𝑎𝑠ℎ2 then 
10:“Requested IV is authentic”  

11: Else 

12:“Requested IV is non-authentic“  

13: end if 
14:“MAC validation” 
15: 𝑀𝐴𝐶1= Address on IV  

16: 𝑀𝐴𝐶2=Address on IPFS  

17:if 𝑀𝐴𝐶1 = 𝑀𝐴𝐶2then 

18:“MACisvalid.IVsuccessfullyregisteredonthenetwork”  

19: Else 

20:“MACisinvalid.IVfailedtoregisteronthenetwork” 21: end 

if 
22:“Storedon IPFS” 
23: “forward data to IPFS”  

24: IPFS response 

25:“returnhashofdata” 

26: end while 
27: END 

 

3.3 Road side unit (RSU)  

Packet routing between distant locations is done by RSUs. These customized wireless 

devices are used for V2I (Vehicle-to-Infrastructure) and V2V (Vehicle-to-Vehicle) 

communications and are positioned beside highways. They link roaming vehicles to the internet 

and transfer data to other RSUs as a permanent infrastructure. RSUs and cars can collaborate on 

processing, communication, and coordination, facilitating distributed and cooperative 

applications. This architecture stores events collected by roadside devices in IPFS, where they are 

subsequently processed by a smart contract . 

3.4 Inter planetary file system  

An interplanetary file system, a decentralized technique for data interchange and storage, is 

the means by which the suggested system prioritizes effective storage management. Data is posted 

to the blockchain as hashes, kept there, and mapped using a distributed hash table. Upon entering 

the system, data is partitioned into chunks of 256 KB each. The blockchain records the hash value 

of each segment after it has been computed and posted to the distributed hash table. This technique 
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offers distributed and independent hash storage, ensuring effective system maintenance. It also 

determines the vehicle's reputation scores. 

3.5 Cluster formation using Non-overlapped K-means clustering  

Using a K-means clustering approach, each automobile is allocated to a cluster with the 

relationship dependability model taken into consideration as an objective function. Considerations 

include traffic volume, relative velocity, and node proximity. Automobiles are arranged into 

clusters to facilitate successful interaction; the head of the group is the nodes with the most 

capacity. The K-means algorithm groups cars using the link reliability model. By considering 

factors such as relative speed (ΔV) and traffic density (λ), the connection dependability model is 

calculated as follows: 

𝑃𝑡(𝑡) =
4.𝐷𝑟

𝜎Δ𝑣√2𝜋
×
1

𝑡2
× 𝑒

−
(
2𝐷𝑟
𝑡
−𝜇Δ𝑣)

2
)

2𝜎Δ𝑣2                      (1) 

Where 𝐷𝑟[𝑚]indicates the vehicle transmission area and Δ𝑣 stands for relative speed. Their 

mobility is shown by their relative speed[km/h ]. On the other hand, traffic density [vehicle/km] 

is used to describe how many cars are on a given road section. Let 𝑉𝑗 represent a vehicle with 

position (𝑥𝑗 , 𝑦𝑗)and velocity𝑉𝑗  for 1 < 𝑗 < 𝑁.Centroid𝐶𝑖  is defined as 1 < 𝑖 < 𝑘, with position 

(𝑥𝑖, 𝑦𝑖) and velocity 𝑣𝑖. Equation (2) calculates the connection reliability model in light of this 

𝑝𝑖𝑗(𝑇𝑖𝑗, 𝜆) =

{
 
 

 
 
𝛿. 𝜆

𝜆𝑐
∫  
𝑡𝑜+𝑇𝑖𝑗

𝑡𝑜

 𝑇𝑖𝑗𝑝(𝑡)𝑑𝑡,  if 𝛿, 𝜆 < 𝜆𝑐

∫  
𝑡𝑜+𝑇𝑖𝑗

𝑡𝑜

 𝑇𝑖𝑗𝑝(𝑡)𝑑𝑡  otherwise 

     (2) 

where 𝑇𝑖𝑗 in the equation stands for the likelihood, as calculated using, that the vehicle's 

connection to the centroid𝑐𝑖 will remain functional and is determined using 

𝑇𝑖𝑗 =
𝐿𝑖𝑗

Δ𝑣𝑖𝑗
=
(𝑦𝑖 − 𝑦𝑗)

2
+ (𝑥𝑖 − 𝑥𝑗)

2

𝑗
𝑣𝑖−𝑣𝑗

                       (3) 

Based on the matching cluster head and the connection reliability model, each vehicle is 

assigned to a cluster. This model takes positional changes and acceleration into account while 

estimating the vehicle's maximum time inside the cluster. As such, the likelihood of an automobile 

forming a cluster is affected by changes in velocity and traffic volume, in addition to the separation 

between the vehicle and the cluster center. As a result, the K-means algorithm's objective function 

F, which is defined as, depends on network dependability. Auth
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𝐹 = avgmax𝑐∑ 

𝑘

𝑖=1

∑  

𝑥𝑗∈𝐶𝑖

𝑝𝑖𝑗(𝑇𝑖𝑗 , 𝜆)                     (4) 

Figure 3. Clustering of vehicles 

Figure 3 shows that the cluster members are represented in red then yellow in CHs.  The CA 

has the authority to renew the term of a cluster leader who has served for a considerable amount 

of time. When a vehicle joins the VANET, its distrust value is set to 1.0. The nearest vehicle 

receives the transmission with the vehicle's first distrust value, recognises it, and adds it to the 

whitelist. The automobile gets blacklisted if mistrust exceeds a specific level. The mean amount 

of automobiles in the communication area has to be ascertained in order to establish the minimum 

threshold. 

𝑁𝑣 =
𝑁𝑎𝑣𝑔

𝑅𝑎𝑣𝑔
                    (5) 

Mean vehicles (N avg) and automobiles (R avg) within the communication range are used to 

compute the threshold value. The most reliable car in the network serves as the cluster head. 

Monitoring refers to the process of tracking data about a vehicle's behavior. The car that patrols 

the area and observes other cars is called the verifier. The verifier's mistrust value is equal to or 

less than that of the other vehicle. The verifier classifies cars as malicious, normal, or abnormal 

based on their distrust value. This classification helps the SVM classifier identify malicious event 

signals. Instead of inspecting every vehicle on the network, it focuses solely on the malicious ones, 

detecting any non-genuine event messages and discarding them immediately 

3.6 IIVM classifier 

IIVM classifiers guard each automobile against fake data injection attacks by executing 

authentication, confirming that the communication is authentic. Once authenticity is determined, 

it is transformed into decision rules. These decision rules are stored in IPFS with a timestamp until 

they are ultimately modified. The most recent IPFS decision rules are retrieved and verified 
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through the smart contract's execution If the event is determined to be malevolent, the automobile 

discards the decision rule immediately. This ensures that only real messages spread throughout the 

network. 

In this study, given a set of practice examples, a SVM classifier classifier seeks to derive a 

division hyperplanes from the sampling space. 

                                         𝐷 = {(𝑋1, 𝑌1), (𝑋2, 𝑌2), … (𝑋𝑛, 𝑌𝑛)} and 𝑌𝑖 ∈ (−1,+1)           (6) 

→
𝑊𝑇𝑥 + 𝑏 = 0

                      (7) 

Equation (7) can be utilized to model the hyperplane, in which b represents the distance of 

the hyperplane from the coordinate source and,𝑊 = 𝑤1, 𝑤2, … , 𝑤d  iis the normal vector that 

determines the direction of the hyperplane.  

𝑟 =
|𝑤𝑇𝑥 + 𝑏|

∥ 𝑤 ∥
                  (8) 

The aircraft categorizes the training sample according to specific restrictions. 

                                                                   𝑤𝑇𝑥𝑖 + 𝑏 ≥ +1, 𝑦𝑖 = +1            (9) 

𝑤𝑇𝑥𝑖 + 𝑏 ≤ +1, 𝑦𝑖 = −1       (10) 

For (𝑥𝑖, 𝑦𝑖) in training sample 𝐷. 

Figure 4. Training samples Auth
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The training point samples nearest to the plane are called support vectors (Figure 4). The entire 

length between two different kinds of heterogeneity help vectors and the plane of motion is 

calculated using a simple formula: 

                    𝑟 =
2

∥ 𝑤 ∥
                           (11) 

Although SVM is a cutting-edge data mining model, its non-linearity is regarded as an 

opaque black box model. However, simple rules that can be used for classification without 

requiring bulk store upkeep can be extracted from the SVM model.The  conversion process from 

malicious event identification to decision rules is depicted in Figure 5. 

 

Figure 5. IIVM to decision rule conversion 

The RSU uploads the event to IPFS. The smart contract upgrades IPFS and generates the 

selection guidelines in addition to processing these stored events. The vehicle periodically retrieves 

the decision criteria via an executed electronic contract, implements them to the data messages, 

and verifies them before proceeding to a subsequent hop. 

3.7 Smart contract  

Smart contracts use if/then logic over a blockchain network to assess potentially hazardous 

occurrences found by ML Approach. These contracts can be executed without the use of a 

middleman because their code is examined by each participant in the blockchain network. By 

cutting out the intermediary, significant cost savings are achieved while improving sustainability, 

accuracy, security, and dependability. Auth
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3.8 Blockchain integration  

Every vehicle that is linked downloads and updates blockchain technology. Blockchain stores 

reports of incidents and vehicle reliability history. Figure 6 illustrates the blockchain's operation 

process. When a vehicle encounters an event in the blockchain network, such as a collision, it 

broadcasts event alerts, along with different parameters, to other cars. The automobiles first 

analyze the event message to see if it is location-specific. The cars in the vicinity then check the 

other criteria in the event message. Every vehicle individually confirms that denial-of-service 

assaults, spam, and other invasive systemic threats have stopped while disseminating an incident 

notification further. Automobiles that acquire the event communication first assess the sender car's 

blockchain credibility before confirming it. When a message is accepted as trustworthy, it is saved 

in the local memory pool. From an untrusted incident message pool, mining machines gather a 

variety of event signals and confirm the accuracy of the sent variables. If the received event 

notification is authentic and reliable. the degree of confidence in it is adjusted. The degree of trust 

varies over time based on how trustworthy or deceptive messages remain.  

By using blockchain, the main issues with message dissemination are resolved. This ensures that 

the automobile can access the required data efficiently. 

 

IV. Trusted Networking Reconfigured with Blockchain 

Assuring trust, identifying untrustworthy networks and eliminating them from the task network, 

and choosing the best location to create the upper network in order to facilitate inter-zone 

forwarding and reach compromise are the principal objectives of the blockchain integrated into the 

UAV network. Adding blocks finishes drone network reconfiguring. Distribution of the present 

position throughout the sub-zone centre is necessary to reduce the duplication. In order to be 

chosen, the most appropriate node has to meet two criteria: it needs to be dependable, and aided 

intra-zone transit needs to prevent picking ineffective nodes. 
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Figure 6. Workflow of blockchain integrated IIVM 
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4.1 Node Global Trustworthiness  

         In data consensus, all nodes produce an asynchronous generic subset (ACS) that includes    

StateData  𝑖 = {𝐼𝐷𝑖, [𝐼𝐷]𝑖 , [𝐼𝐷𝑖
𝑗
: CurScore  𝑖−𝑗

𝑏𝑐−ℎ𝑒𝑖𝑔ℎ𝑡
], cdots }, The node's local state assessment (LSA) 

is discovered by counting the asynchronous generic subset ACS, representing the node's 

trustworthiness evaluation by all neighboring nodes: 𝐿𝑆𝐴𝑖 = {𝐼𝐷𝑖, [𝐼𝐷]𝑖, [𝐼𝐷𝑗
𝑖  CurScore 

 𝑗−𝑖
𝑏𝑐−ℎ𝑒𝑖𝑔ℎ𝑡

],… } . As a distributed Byzantine system, does not allow the computational method 

indicated above to properly evaluate collusive or selfish conduct.  

 

Using the global statistical computational technique helps to find nodes that are self-serving 

or collaborating and to modify discount. 𝐷𝑥  is represented by the expected value of the local 

discount of all surrounding nodes GDiscount  𝑥, with a variance of 𝜎𝑥, in eq : 

 

 GDiscount  𝑥 =
(∑  𝑛

𝑖=0    CurScore 𝑥−𝑖
𝑏𝑐ℎ𝑒𝑖𝑔ℎ𝑡

)

𝑛
                                                              (12)

𝜎𝑥 = √∑ 

𝑛

𝑖

  ( CurScore 𝑥−𝑖
𝑏𝑐ℎ𝑒𝑖𝑔ℎ𝑡

− 𝐺𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑥)
2
/𝑛                                                 (13)

 

where 𝑖 is one of node 𝑥 's n neighbors. Table 1 displays the guidelines for determining the 

worldwide trust degree discount. 

 

Table 1. The guidelines for global dimension decrement 

Reasons for Trust Discount Global Discount 

Discount 𝜎
𝑥(∣ CurScore  𝑥∣𝑖

𝑏𝑐ℎ𝑒𝑖𝑔ℎ𝑡
∣< 5𝜎𝑥) 0 

Discount 𝜎
𝑥(∣ CurScore 𝑥∣𝑖

𝑏𝑐ℎ𝑒𝑖𝑔ℎ𝑡
∣≥ 5𝜎𝑥) -0.5 

Selfish node Discount 𝑒𝑟𝑟𝑜𝑟
𝑥              -1 

Equation (14) in node x in accordance with the rule. The present global trustworthiness is 

determined by Equation (15). 

 

 GDiscount 
𝑥 =  GDiscount 

𝑥 +  Discount 𝜎
𝑥 +  Discount error 

𝑥       (14) Auth
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 GReputation 
𝑥
𝑏𝑐ℎ𝑒𝑖𝑔ℎ𝑡 =  GReputaion 

𝑥
𝑏𝑐ℎ𝑒𝑖𝑔ℎ𝑡−1 +  GDiscount 

𝑥   (15) 

Algorithm II: Global Trust Assessment 

 

Function: Global_Trust_Assess(LSD, IDx) 

1: Initialize LSA[N] as empty 

2: # Running in a Delegated Agent UAV IDx 

3: # LSD already contains local state transactions for 2/3 of the total nodes in the network 

4: if Nodes_Received(State_Data_x) ≥ 2/3 then 

5:     # Extract corresponding decentralized transaction message blocks 

6:     DRBCx ← Build_My_RBC_Packet() 

7:     # Multicast its own DRBCx to the delegate agent nodes 

8:     Multicast(DRBCx, {ID_A}) 

9:     while true do 

10:        DRBCother ← Receive_DBC_From_Other_Agents() 

11:        # Translate DRBCother to the delegate agent nodes 

12:        Multicast(DRBCother, {ID_A}) 

13:        # If 2/3 DRBCs are acknowledged, consensus is reached 

14:        ACS ← Build_ACS_From_State_Data(LSD) 

15:        # Exit loop 

16:        break 

17:     end while 

18: end if 

19: # Statistical local assessment of all nodes 

20: # ACS contains trustworthiness scores of each node for all neighbors 

21: # LSA contains trustworthiness scores of all neighbors for each node 

22: LSA ← Statistical_LSA(ACS) 

23: # Compute assessment of IDx by all neighboring nodes from LSA Auth
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4.2 Zone Center Node Elections 

The The dynamic nature of the UAV network necessitates a time-varying top layer 

management network, with dependable constituent nodes that accurately reflect their respective 

regions. The representation of the feature in node �⃗⃗⃗�𝑖 = [𝐼𝐷𝑖1, 𝐼𝐷𝑖2, … , 𝐼𝐷𝑖𝑚],. If there are less than 

m neighbors, zeros are added to the missing part. 

The number of UAVs in network, represented by the feature vector�⃗⃗⃗� = [�⃗⃗⃗�1, 𝑁2⃗⃗ ⃗⃗⃗, … , 𝑁𝑛⃗⃗⃗⃗⃗⃗ ], is 

used to represent the UAV network [33]. The feature vectors used for clustering are lists that are 

used for categorization, not numerical vectors.   

𝑑(�⃗⃗⃗�𝑖 , �⃗⃗⃗�𝑗) = ∑  

𝑚

𝑥=1

 ∑  

𝑚

𝑦=1

 𝛿(𝐼𝐷𝑖𝑥 , 𝐼𝐷𝑖𝑦)                 (16)  

where 𝛿(𝐼𝐷𝑖𝑥, 𝐼𝐷𝑖𝑦) = 0, if 𝐼𝐷𝑖𝑥 ≠ 𝐼𝐷𝑖𝑦; 𝛿(𝐼𝐷𝑖𝑥 , 𝐼𝐷𝑖𝑦) = 0, if 𝐼𝐷𝑖𝑥 = 𝐼𝐷𝑖𝑦 

Let 𝑈𝑘 = [�⃗⃗⃗�𝑘1, �⃗⃗⃗�𝑘2, … , �⃗⃗⃗�𝑘𝑛]represent a UAV network sub-zone.  

Definition 1: The mode of the UAV network 𝑈𝑘 is represented by the feature vector 𝑄 =

[𝐼𝐷1, 𝐼𝐷2, … , 𝐼𝐷𝑚] if it satisfies function (17). 

24: GDiscount_x ← (sum of CurScore_xi_bcheight for i = 0 to n) / n 

25: # Compute confidence variance of IDx 

26: sigma_x ← sqrt((sum of (CurScore_xi_bcheight - GDiscount_x)^2) / n) 

27: # Amend global trustworthiness assessment 

28: if |CurScore_ix_bcheight| > (5 * sigma_i) then 

29:     Discount_sigma_x ← -0.5 

30: end if 

31: if No_Record_From_Neighbor(IDx) then 

32:     Discount_error_x ← -1 

33: end if 

34: GDiscount_x ← GDiscount_x + Discount_sigma_x + Discount_error_x 

35: GReputation_x_bcheight ← GReputation_x_bcheight-1 + GDiscount_x 

36: return GReputation_x_bcheight 
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𝐷(𝑄, �⃗⃗⃗�𝑖) =∑  

𝑚

𝑖=1

 𝑑(�⃗⃗⃗�𝑖 , 𝑄)                           (17)  

Before select 𝑄 ∈ 𝑈𝑘, pick the least value. 

By computing 𝑛𝐼𝐷𝑥, or the number of times the neighbor node 𝐼𝐷𝑥 appears in all lists of 

neighbors, one can determine the frequency of 𝐼𝐷𝑥 in the zone 𝑈𝑘. 

 

𝑓(𝐼𝐷 = 𝐼𝐷𝑥 ∣ 𝑈
𝑘) =

𝑛𝐼𝐷𝑥
𝑚

                                    (18)  

Theorem 1 states that the function 𝐷(𝑄,𝑁𝑖) reaches a minimum when and only if the mode 

update mechanism for 𝑘-modes of 𝑈𝐴𝑉 networks is such that the following condition holds: 

𝑓(𝐼𝐷 = 𝐼𝐷𝑥 ∣ 𝑈
𝑘) ≥ 𝑓(𝐼𝐷 = 𝐼𝐷𝑗 ∣ 𝑈

𝑘)                  (19)  

where 𝐼𝐷𝑥 ≠ 𝐼𝐷𝑗 , ∀𝑗 = (1,2, … ,𝑚). Thetheorem's relevant proofs are found in Algorithm  

Algorithm III Poof of updated techniques for  for k-Modes of UAV  

1:while (𝑚 − −) do 
2:if 𝑓(𝐼𝐷 = 𝐼𝐷𝑥 ∣ 𝑈

𝑘) ≥ 𝑓(𝐼𝐷 = 𝐼𝐷𝑗 ∣ 𝑈
𝑘) then 

3:if 𝑛𝐼𝐷𝑥 > 𝑛𝐼𝐷𝑗 , 𝑗 ≠ 𝑥, ∀𝑗 = (1,2, … ,𝑚) then 

4: 𝑄 ∪ 𝐼𝐷𝑥 
5:end if 
6:end if 
7:end while 

8: 𝐷(𝑄,𝑁𝑖) reaches a minimum 
 

 

4.2 Blockchain Synchronization and Updations 

This system's two-stage consensus data consensual achieves an unchanging consensus outcome, a 

common fraction of local status events (ACS), at delegation agent endpoints using decentralised 

consistent transfer of DRBCs and externally verifiable smart contract agreements. Any agent 

network that has been authorised may now generate blocks, harmonise decision-making, and 

produce configuration information. While broadcasting fresh blocks in accordance with the 

verified nodes on the present-day blockchain, the delegated agents nodes update the local currency. 

Every time a node receives a new block and it calculates its height. If it is taller than the authorised 

agent network that contributed the block, the node updates the local blockchain. If not, it requests 

that they synchronise the blockchain with it.  
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After the information's consensus is done, the upper layer networks tells the agent at the node to 

find the neighbourhood central node, and update the nodes' trust levels, and re-set up the trusted 

drone network in its current state. This is done utilising statistics and clustering to process the 

neighbour list and global trust discount tables. Any participant node may explicitly request, at any 

point throughout a cycle, that the top layer networks initiate consensus if it observes notable 

changes to the physical configuration or poor local credibility of neighbouring nodes. 

Reconfiguring the dependable infrastructure is necessary for the blockchain's ongoing 

confirmation operation. In Figure 7, the consensus flow is shown.  

 
 

Figure 7. Two-phase consensus procedure in a node with authorization 

𝑰𝑫𝑨
𝒊  

The rate at which new blockchain blocks are added depends on how long it takes for data 

consensus to reach a decision. Even though the drone network frequently experiences network 
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partitioning, a deterministic consensus can eventually be reached by an asynchronous consensus 

technique. Nevertheless, this strategy's original objective was to dynamically reorganize the 

network to preserve its general credibility. When the asynchronous consensus fails, the multi-

point proof of authority (DPOA) compromise technique is instantly initiated for real-world 

applications. Both DPOA and proof-of-authority consensus employ chosen best state nodes to 

reach agreement each cycle. As a result, if more than two stations gain agreement, the information 

unanimity might be finished after the asynchronously decision delay. Reconfiguring the UAV 

connection within a secure time is ensured.  

 

V. Simulation Experiments and Effect of Evaluation  

UAV trustworthy networks dynamically reconfigure using the blockchain-assisted trusted 

Zone Routing Programme (proposed), which is formed when new blocks chain together during 

blockchain creation. Efficiency is measured using the delivery of packets rate, route overhead, and 

information transfer delay. The OSI seven-layer model architecture is used by Qualnet network 

simulation software, which is designed specifically for wireless mobile communication networks. 

Every network node's activity is estimated independently during the simulation to mimic real-

world network functioning and provide a wide range of complex statistical data analysis functions. 

This study aims to generate mission scenarios. The 1000 × 1000 m² scene, 100 UAV nodes, 

30 data lines, 210 seconds for the simulation to run, 0–30 m/s for node movement speed, 30 

seconds for dwell time, 500 ms for packet sending interval, and 0,5, 10, 15, 20, 25, and 30 

malevolent nodes are all included in the simulation experiment. We employ 802.11b MAC layer 

technique and 400-meter wireless communication range. Every test procedure was executed three 

times using distinct randomised numbers, and the assessment was based on the mean of each of 

the trials. Finally, distinct randomised numbers in the system correspond to distinct node 

trajectories. Message Delivery Rate: The message delivery rate is the number of properly accepted 

frames by the target node and sent to the originating node. Figure 8 shows how the promised 

delivery percentages of the four route methods change as the number of broken nodes rises.  

AODV has the greatest delivery rate without error nodes, whereas the other protocols have 

comparable rates. However, the blockchain-assisted trustworthy area routing methods don't really 

alter when new error nodes emerge. Deliveries rates, on the other hand, abruptly decline and finally 

collapse for OLSR, AODV, and ZRP. This is because, by continuously redesigning the upper 
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logical networks utilised for agreement, BC-TZRP has high tolerance for failure and can separate 

the largest number of unstable locations from the entire network. The pace of delivery decline is 

also greatly accelerated by the network's inaccurate routed data; roadway routes under the 

remaining three technologies need to be updated and rearranged on a regular basis as the proportion 

of defective locations rises.  

 

 

 

 

 

 

Figure 8. Packet 

arrival rate for a 

number of failed nodes 

 Overhead in Route: In the identical case, all nodes send out route command messages, 

which is the route overhead. Figure 9 demonstrates the routing overhead related to every method 

at different error locations. The biggest routing overhead is attributed to OLSR, which is adhered 

to by ZRP and AODV in the absence of irregular nodes. But as errant networks start to show up, 

OLSR, AODV, and ZRP's excess increases quickly, leading OLSR to fail first because the routing 

load uses cellular resources.On the other hand, BC_TZRP shows a consistent dropping trend and 

stays low due to the isolation of faulty nodes. The routing overhead of conventional routing 

systems is increased by the quantity of inaccurate routing information generated by erroneous 
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nodes. However, the routing overhead is mostly constant since the nodes in BC_TZRP that are 

engaged in route creation and maintenance. 

 

Figure 9. Routing overhead in the case of a steadily increasing number 

of failure nodes 

The average end-to-end latency is the duration of time between a packet's departure from the 

source node and its arrival at the destination node. Figure 10 shows that ZRP has the shortest 

latency, OLSR the shortest, and AODV has the greatest without error connections. The average 

end-to-end delay of all three increases quickly because to the influence from malfunctioning 

routers. When there are more than 25 malfunctioning nodes, the communication system collapses 

and the delay goes to zero. The proposed work preserves the task's real trustworthiness while 

reducing mean end-to-end latency. 

 

Figure 10. Average End-to-End latency in the scenario where the fault node is 

rising over time Auth
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By installing the proposed scheme, the new network will be reconfigured in accordance with 

the nodes' blockchain-recorded statuses. Reconfiguring the network primarily entails removing 

harmful nodes from it. The modifications in Figures 9 and 10 are minimal since these malicious 

nodes are not part of routing and data forwarding and are thus excluded from the new network. 

Furthermore, when a node discovers that an adjacent node is unreliable, it triggers the consensus 

process, asking the system to start consensus right once in order to isolate these problematic nodes 

as soon as possible. Malicious nodes in the experiment manipulate forwarding information, greatly 

undermining the reliability of the data they transmit. As a result, these nodes are promptly 

recognized as unreliable and removed from the task network. As a result, malicious nodes can only 

harm the network for a very brief time before being isolated and causing little to no damage. 

While blockchain network technologies can authenticate UAV networks to keep malicious 

external nodes from accessing them without authorization, the complex mission environment also 

involves the possibility of node formation in addition to selfish and flawed nodes. This scenario 

involved setting up trials with varying percentages of fake nodes, which made it possible for 

compromised internal nodes of drones impersonating real entities).  

The most economical option for globally dependable management and economical network 

use of resources for dispersed drone networks functioning in intricate surroundings is the 

decentralised and de-trusted digital currency blockchain. Drones as blockchain servers are less 

resource-intensive than those in traditional a distributed ledger It must be adjusted to the desired 

asynchronous, lightweight, and dynamic error node production environment. The purpose of the 

upcoming wave of content design experiments is to address the low energy consumption and 

lightweight storage of blockchain technology. 

Blockchain Storage: Blockchain nodes need a lot of storage because the blockchain is a 

shared chain database that is always expanding and uses unchangeable historical data to validate 

transactions. Utilising the decentralised Proof of Stakes (DPOS) voting process, 21 servers are 

tasked with keeping track while assessing the data retention utilisation of blockchains. Figure 11 

displays the simulation experiment's outcomes. Auth
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Figure 11. Time computation 

Due to its two-stage support process and the reality that the digital ledger only retains the 

choice's agreement, it is evident that the BC_TZRP method has an average rate of expansion and 

remains devoid of transactions volume. Conversely, all transaction history data is stored on the 

standard DPOS blockchain, which needs more capacity as transaction traffic increases. 

Energy Usage: One major problem with the drone system is its energy usage. The general 

opinion computation in the framework of blockchain consumes most of the power needed for 

transmission latency and execution. As opposed to using a conventional blockchain, ZRP routing 

coherence is used in a prototype situation with 100 swarm networks. POW consensus technique 

changes the amount of activities and zeros in in the required hash headers to match the evaluation 

setting, taking around 20 seconds to compute. Consensus times for PBFT and POS are guaranteed 

to be determined by the quantity of operations. If the specified asynchronously compromise 

method fails to achieve a contract in 20 seconds, the proof-of-authority consensus procedure is 

started. Using numerous faulty node locations, the evaluations measure the majority method's 

connection and computational latency and convert it into the consumption of energy. Applying 

compromise to ZRP's real-time relaying behaviour tracking local state transaction and analysing 

many experiment circumstances for the POW and PBFT consensus protocols calculates the 

network's energy usage. Figure 12 displays the simulation experiment's outcomes. 

Although the POS consensus technique doesn't require any computational power, the 

growing number of rogue nodes also results in an increase in the amount of bandwidth used by the 
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network due to incorrect routing. Because of the rise in malicious nodes and the frequency of view 

change during the consensus process, the PBFT also uses more energy. The BC_TZRP method 

substitutes agent nodes for consensus delegation and reconfigures the network on a regular basis 

to eliminate untrustworthy nodes and minimize the quantity of overlapping routes. The consensus 

overhead is essentially constant regardless of the quantity of malicious locations since each phase 

offers an extra fair distribution of resources for the infrastructure as a whole.  

 

 

 

 

 

 

 

 

Figure 12. Energy required for consensus vs amounts of malicious routers 

Attack prediction computation 

This section summarize the performance of the proposed system in detecting attacks compared to 

traditional approaches. The results demonstrate significant improvements in attack detection rates 

and event spoofing detection accuracy under varying network densities and numbers of malicious 

vehicles. These findings highlight the effectiveness of the proposed system in challenging network 

environments.: 

Table 2: Attack Detection Rate vs. Network Density 

Network Density 

(nodes/km²) 

Proposed Detection Rate 

without Blockchain (%) 

Proposed Detection Rate with 

Blockchain (%) 

10 70 85 

20 65 83 
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30 60 80 

40 55 78 

50 50 75 

The table 2 shows how the attack detection rate changes with different network densities. The 

proposed system consistently outperforms the traditional approach, showing a higher detection 

rate across all levels of network density. As the network density increases, the detection rate 

decreases for both methods, but the proposed system maintains a significant advantage. 

Table 3: Attack Detection Rate vs. Number of Malicious Vehicles 

Number of Malicious 

Vehicles 

Proposed Detection Rate 

without Blockchain (%) 

Proposed Detection Rate with 

Blockchain (%) 

5 68 90 

10 60 85 

15 52 80 

20 45 75 

25 40 70 

The table 3 illustrates how the number of malicious vehicles impacts the attack detection rate. The 

proposed system using the SVM classifier shows a significantly higher detection rate compared to 

traditional techniques. As the number of malicious vehicles increases, the detection rate decreases 

for both methods, but the proposed system remains superior. 

Table 4: Event Spoofing Detection Accuracy 

Approach Detection Accuracy (%) 

Proposed system without Blockchain 70 

Proposed system with Blockchain 96 

This table 4 compares the event spoofing detection accuracy of traditional techniques with the 

proposed system. The proposed system achieves a much higher detection accuracy of 96%, 

compared to 70% for traditional methods. The high accuracy is due to the proposed system's 

confidence model, which effectively distinguishes genuine events from false occurrences through 

persistent monitoring and nodes scoring. Hence, the tables clearly illustrate that the proposed 

system has significantly improved attack detection rates and event spoofing detection accuracy 
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compared to traditional approaches, even as network density and the number of malicious vehicles 

increase. 

 

VI. Conclusion 

The work that is being suggested incorporates blockchain technology with IPFS in order 

to build a novel machine-learning-based technique for message authentication. The goal of this 

approach is to prevent inner vehicles from spreading false information. In order to ensure that 

secured event sharing, authorization, and verification are carried out effectively amongst internal 

vehicles, this method is utilised. An effective defence against hostile attacks and identification of 

rogue cars is provided by the transaction storage mechanism that is based on distributed blockchain 

technology. In order to determine whether or not this access authenticating system is effective, it 

is necessary to investigate the legitimacy and safety of the system that is being presented. The 

system is evaluated based on the amount of time it takes to verify vehicles, validation of events, 

and the amount of money spent on communication. It is able to carry out its procedures with a 

limited amount of time in comparison to other systems that are currently in use, and the event trust 

model that is utilised in this system is capable of achieving greater detection of harmful events. In 

comparison to the approaches that are now in use, it achieves a high level of security and 

safeguards automobiles against harmful intruders. It is possible that future studies in this area may 

concentrate on the creation of a novel, lightweight, and better neural networking-based message 

authorization system that is capable of successfully detecting network invaders. 
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