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Abstract
The rise of driver assistance and automotive telecommunicatigg sh reat
@ AN Generally,
S #Tan greatly affect are

privacy and safety. Preventing the spread of harmful messages y

potential for adaptive transport solutions using vehicular ad hoc ne

the two main issues in vehicle ad hoc networks that malicious atta
hicles is crucial to
protecting the private properties of automobiles from potentj ? This research tackles these
issues and proposes a new machine-learning-based mesga er@cation method. This method

can be integrated with interplanetary file s sQid b n to ensure secure message

distribution. The Inter Planetary File Systeg js u d by blockchain technology to create

tamper-proof records in a distributed enV t. This protocol stores events using content
addressing. The source metadata from the IP first stored in a smart contract and then in the
distributed ledger technology. Thi ework makes use of the Iterative Import VVector Machine
(IIVM) classifier and Non-ov: -Weans clustering in the event authentication process. It
will be classified as maliciogQr not cious in order to carry out the vehicle clustering. After

s to identify harmful event messages. As a result, dropped

Ke . Blockchain, Over-lapping, I1VM, Spoofing, Machine Learning and VANETS.



I.INTRODUCTION

India’s transportation system is undergoing a significant transformation due to the country's
fast-growing economy, increasing car ownership, and a poor and inefficient public transit
infrastructure. The intelligent transportation system (ITS) addresses all these issues [1]. It has a

significant impact and provides direction as well as management to reduce traffic congestion. Due

to their self-organizing character and ad hoc nature, automobile ad hoc networks are receivi

lot of interest these days. Multi-hop routing is possible for cars that are outside of the

internal vehicle component that analyzes data from multiple sensors is called an onbo
sensor installed with the vehicle's circumstances performs the interface with the rna
The Vehicle to Infrastructure Network (VANET) facilitates data tra

and between vehicles with ease. It isconsidered a potent tool for

Figure 1 illustrates the VANET communication model.

Trustéd
Authority

Figure 1. VANET communication model

ET-enabled vehicles can gather data about conditions such as traffic jams and slick

roa Il as their own driving status [2-4]. The data collected aids in improving driver comfort

ety in VANET vehicles. It is distinguished by high node mobility, communication link
maintenance across a constrained range, and the absence of power issues.

Information is transferred between a car and a roadside unit (RSU) and between other

vehicles inside a VANET via an open wireless channel [5]. This simplifies the task for attackers



to carry out their nefarious objectives, such as traffic monitoring. Insider attackers can also send
fake messages to report fraudulent activities. While increased connectivity and the number of
communication channels have led to various breakthroughs, data security and reliability remain
the most critical challenges in designing automotive solutions [6-8]. As a result, the main issues

are the vehicles' secrecy and the safeguarding of data exchanges, that is accomplished b

confirming the reliability, legitimacy, and integrity of event data.

d le mobility

€ use Oof numerous

blocks with different kinds of information t&g@unction as an open ledger for every user on the
network. Blockchain is featured in recommer®ed work partly due to its tamper-proof nature,
consensus mechanism, and imni@itakd f data storage, which makes alterations extremely
difficult.

This research vel machine-learning-based data authorization approach that

n to address these problems. Blockchain is integrated in the
ork parts, which utilise information from automotive sensors to
ret situations creatively to improve the safety of on-road driving[20-21].
ered by RSU are first preserved in IPFS, after the completion of an intelligent
a neural network transaction authenticity mechanism and categorise events as
not. Initially, two clusters are created from the events gathered at RSU using the
soverlapped K-means clustering technique. By extracting the vehicle's true identity and
verifying its validity in line with the database, RSU reduces the computing load on the vehicle.
The data is anticipated using a domain expert. The vehicle retrieves the most recent decision rules

from IPFES via a smart contract to validate the event. If the decision rules determine that the event




is harmful, the vehicle removes the message. This ensures only authentic communications are
transmitted over the network. Before forwarding messages to the next hop, the vehicle frequency
verifies them using the decision rules derived from the execution of the smart contract.
The highlights of the work are as follows:
e This method enhances the security of message distribution by integrating
interplanetary file systems (IPFS) and blockchain technology, ensuring ta Q
proof records in a distributed environment.

e The proposed system employs the Iterative Import Vector Mac
classifier and Non-overlapped K-means clustering to effecti

identify malicious event messages. Simulation resuls

improves event spoofing detection accuracy by 96.21%%
reliability and safety of communication within VANETS.
e This approach not only prevents the spread of mfﬁessages but also protects
the privacy and safety of vehicles from pot rggts, addressing critical issues
in VANET security.

The remaining sections are arrange

tion Il provides a brief overview of the
suggested task and relevant current metho8 ommended procedure for event confirmation,

approval, and safe event transmission is cover®q@an Section I11. The outcomes of the planned effort

are covered in Section IV, and a co ion is given in Section V.
Il. Related works

The effects of the ETb ain system owing to mobility were presented in [22].
They examined threg icSQthe volume of traded blocks during the rendezvous, the
dependability of a re and the contingency of a feasible block addition. A method for

sharing s een cars using static and dynamic attributes with an attribute-based

crypto as demonstrated in [23]. This method uses a new group signature called
tion with ciphertext to provide verifiability and integrity, which requires

es. However, it is disadvantageous as an attacker may simply predict attribute

king (VANET) among many cloud storage platforms with automobile mobile services was
suggested in [24]. Despite slower identification, this solution protects confidentiality and safety

against harmful assaults and scales efficiently.




A Dbroadcast encryption system based on identity was proposed in [25]. This method
reduces redundancies, increases the trustworthy authority's work effectiveness, and compares the
length of the encrypted text and the sender's ciphertext overhead. A blockchain depending on
biometrics to protect vehicle transmission data, safeguarding the identity of the authorized user
while preserving anonymity, was proposed in [26]. This approach combines blockchain
technology with biometrics to ensure reliable data with computing cost. However, issues
when combining several biometric features. The BCPPA method for transmission e Q

of awareness using vehicle heading-based filt\ggon. Although this might make other drivers more

cautious, it could be viewed as a safar strategy iT®here has previously been a history of moving

offenses. The ability of automate@a iles to identify hostile vehicles and their misbehaving

chauffeurs, who are subseq¢glitly re from the safe car schedule, was enhanced in [30] by

introducing a centraliscgsgg

S

o that entity-centric confidence evaluations may be carried out. If a

e-middle operation with a significant amount of certainty. This
bt, 1t finds counterfeit networks early on, and then it adds plausible

teristics, it might be deemed malevolent. After identifying a legitimate

redibility analysis can be conducted. The trust model's disadvantage is that it

he use of chameleon hashing to transmit data securely in cars was suggested in [31]. This
methodology requires far less computational power to accomplish the authentication procedure for
both vehicle-to-vehicle and vehicle-to-roadside traffic, working exceptionally well in actual

vehicular contexts. The use of statistical classifiers for hybrid and complex attacks, enabling the



detection of complicated attacks, was introduced in [32]. This proposed architecture is situation-
aware, utilizing an environment references in lieu of pre-established dynamic privacy standards.
Communications vehicles' movement information is context-referenced using Kalman and
Hampel filters for both temporal and spatial synchronization. The results of these cluster models
were lower for benign and misbehaving vehicle identification models, DCA-MDS and HCA-MDS

respectively, and less accurate in differentiating between the two types of cars. A multi-view f

types of hostile states.

Research gaps identified
Despite significant advancements in secure commu

and machine learning, several research gaps remain. ab

scaling, highlighted by the slower

many existing methods struggle with eff
identification processes noted in [24]. Th¥ On of bidmetrics with blockchain, as discussed
in [26], presents challenges in managing mul%ge biometric features efficiently, requiring further
research to develop seamless integraidan methods. WReal-time authentication and communication in

high-mobility environments lik@ \/ s are often overlooked, necessitating low-latency

solutions. Techniques like t in[2 g CP-ABE are vulnerable to attribute value prediction,

indicating a need for mMgRgR

e

#d. Complex attack detection, as introduced in [32], still faces

ptographic techniques. Additionally, the centralised approach
es In [30] introduces overhead, suggesting a gap in decentralised

limitat i differentiating between benign and misbehaving vehicles, calling for

improye d algorithms. Energy efficiency is another concern, with many solutions not

S. Trust models, such as the one in [30], introduce significant overhead, highlighting the
need for more efficient models. Lastly, hybrid approaches integrating multiple security measures

remain an open area of research, aiming to create more robust and resilient security frameworks




for VANETSs. Addressing these gaps is crucial for developing secure, efficient, and scalable

solutions, enhancing the reliability and safety of vehicular communication systems.

I11. Proposed trusted model

Vehicular ad hoc networks, which use wireless sensors to sense, analyze, and interact with the

outside world, are a burgeoning field in intelligent transportation systems in the modern era.
proposed method ensures reliable and secure data sharing by integrating IPFS, hlagkc N

This strategy groups the vehicles together, and the cluster head is selecteSg@aased on the node with

the highest performance capabilities. The cluster head is essential begflse it Keeps an eye on how

nearby cars are acting. Upon entering the network, every 1gaassigned a mistrust value of
1.0, which helps to classify them as malicious, aberragtor al 4fne car is blocked and deemed
dangerous if the distrust value rises above mINQ level.
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Figure 2. ed model taxonomy

Vehicles are characterized as malicg or non-malicious based on the mistrust value. After this

classification, a support vect lassifier—which has been trained on samples—is

employed to identify harmfgvent s and translate them into decision rules. These decision
rules are saved in IPF i ch update and are subsequently accessed to verify events. The

vehicle instantly drop that the decision rules determine to be harmful. By doing this, the

the trustworthy authority, RSU, IPFS, smart contracts, and blockchain. Below is a
description of the system's workflow.

3.1 Registration and validation




Intelligent vehicles (IVs) are among the modern technologies that have seen significant
growth and adoption in all aspects of life connected to the internet. Through their interaction and
integration with RSUs, these 1Vs create a virtual network. An IV sends a request message to a
reliable authority if it wants to join the network. The trustworthy authority serves as a registrar in
this system, compiling all 1\V-related data and providing a public key. Vehicles can communicate
with one another using this certificate. The trusted authority is also utilized for data authentics
to preserve data integrity. Q
3.2 Analysis of algorithm O

Inthis approach, a car cannot enter the network without fir rin 0 obtain a

)

cryptographically connected and digitally secure. The car communicateNguith the reliable source
thwc address and real ID as
iCles connect for the first time

registration certificate, the car uploads its data to a reliable autho ssued certificate is

and obtains the ID pseudonym, which occurs only once. By using

inputs for registration, less processing power and time are

across the network with the provided pseudonym ID, itive 1Vs, and the certification

process is safe.

Algo %on and validation

?\\‘»




1:Initialization .
2:Inputs:MAC address, No. of vehicles.
3:Outputs:IVregistration,MAC address validation, stores in IPFS.

4: While IV is in connection with network do
5:Registration
6:CheCkIVowner,RealID,MACaddress

7:Returnregistered 1V

8: “Validation of ID”
9:if hashi=hashzthen

10:“Requested IV is authentic”
11: Else
12:“Requested IV is non-authentic*

13: end if
14:“MAC validation”

15: MAC:1= Address on IV

16: MAC2=Address on IPFS

17:if MAC1 = MACzthen
18:“MACisvalid.IVsuccessfullyregisteredonthenetwork™

19: Else

20:“MACisinvalid.IVfailedtoregisteronthenetwork™ 21: end ,
if
22:“Storedon IPFS”

23: “forward data to IPFS”
24: IPFS response
25:“returnhashofdata”

26: end while
27: END

3.3 Road side unit (RSU)
Packet routing between difan ions is done by RSUs. These customized wireless
(Vehic#Fto-Infrastructure) and V2V (Vehicle-to-Vehicle)

d beside highways. They link roaming vehicles to the internet

devices are used for
communications and ajg
as a permanent infrastructure. RSUs and cars can collaborate on
and coordination, facilitating distributed and cooperative

ry file system

planetary file system, a decentralized technique for data interchange and storage, is
eans by which the suggested system prioritizes effective storage management. Data is posted
to the blockchain as hashes, kept there, and mapped using a distributed hash table. Upon entering
the system, data is partitioned into chunks of 256 KB each. The blockchain records the hash value

of each segment after it has been computed and posted to the distributed hash table. This technique



offers distributed and independent hash storage, ensuring effective system maintenance. It also
determines the vehicle's reputation scores.
3.5 Cluster formation using Non-overlapped K-means clustering

Using a K-means clustering approach, each automobile is allocated to a cluster with the
relationship dependability model taken into consideration as an objective function. Considerations
include traffic volume, relative velocity, and node proximity. Automobiles are arranged Q

capacity. The K-means algorithm groups cars using the link reliability model. By

factors such as relative speed (AV) and traffic density (1), the connection depe, il1

calculated as follows:

P.(t) = 4.D,
‘ oAvV2r

tydt, if8A< A,

. (2)
Tijp(t)dt otherwise

nds for the likelihood, as calculated using, that the vehicle's
| rémain functional and is determined using

where T;;in the coumgio

connection to the cen @

Py i) +(i—x)

J_Avij_ ]

Ui—Uj

(3)

d ON@Pe matching cluster head and the connection reliability model, each vehicle is
asgned cluster. This model takes positional changes and acceleration into account while
estiQuuadPthe vehicle's maximum time inside the cluster. As such, the likelihood of an automobile
R a cluster is affected by changes in velocity and traffic volume, in addition to the separation
between the vehicle and the cluster center. As a result, the K-means algorithm's objective function
F, which is defined as, depends on network dependability.



k

F = avgmaxcz Z pl-j(Ti]-,A) 4)

i=1 Xj€C;

Figure 3. Clustering of vehicles

Figure 3 shows that the cluster members are represented in red

P

has the authority to renew the term of a cluster leader who has served g considerable amount

of time. When a vehicle joins the VANET, its distrust value is seill. he nearest vehicle

receives the transmission with the vehicle's first distrust v, gnises it, and adds it to the
whitelist. The automobile gets blacklisted if mistrust eyge spific level. The mean amount
of automobiles in the communication area ha asgtaine rder to establish the minimum
threshold.
Na
v = Ravg ®)

Mean vehicles (N avg) a s (R avg) within the communication range are used to

compute the threshold val he liable car in the network serves as the cluster head.
tracking data about a vehicle's behavior. The car that patrols
5 is called the verifier. The verifier's mistrust value is equal to or
icle. The verifier classifies cars as malicious, normal, or abnormal
ue. This classification helps the SVM classifier identify malicious event

pecting every vehicle on the network, it focuses solely on the malicious ones,

IVM classifiers guard each automobile against fake data injection attacks by executing
authentication, confirming that the communication is authentic. Once authenticity is determined,
it is transformed into decision rules. These decision rules are stored in IPFS with a timestamp until

they are ultimately modified. The most recent IPFS decision rules are retrieved and verified




through the smart contract's execution If the event is determined to be malevolent, the automobile
discards the decision rule immediately. This ensures that only real messages spread throughout the
network.

In this study, given a set of practice examples, a SVM classifier classifier seeks to derive a

division hyperplanes from the sampling space.

D= {(Xl, Yl)l (XZI YZ)I (Xn: Yn)} and Yl € (_1: +1) (6)

-

WTx+b=0 7)
Equation (7) can be utilized to model the hyperplane, in whic cYnts @ distance of
the hyperplane from the coordinate source and,W = wy,w,, ..., V% gFnormal “vector that

determines the direction of the hyperplane.

IwTx + b| ,
r=—

lwll

The aircraft categorizes the training sample accQiing C restrictions.

WTXL' +

wlix; + b S

For (x;,y;) in training sample

Figure 4. Training samples

&
O
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The training point samples nearest to the plane are called support vectors (Figure 4). The entire
length between two different kinds of heterogeneity help vectors and the plane of motion is
calculated using a simple formula:

2

T:m (11)

Although SVM is a cutting-edge data mining model, its non-linearity is regarded

opaque black box model. However, simple rules that can be used for classificay
requiring bulk store upkeep can be extracted from the SVM model. The conversi

malicious event identification to decision rules is depicted in Figure 5.

INTERVAL RULE : IF
X, € [a,bJANDX, € [c,d]
THEN CLASS

Fig@lre M to decision rule conversion

The RSU uploads the‘'Qgent to . The smart contract upgrades IPFS and generates the
selection guidelines i ocessing these stored events. The vehicle periodically retrieves
the decision criteria uted electronic contract, implements them to the data messages,

and verifi e pmeeding to a subsequent hop.

3.7Sm nt

Sm ontracts use if/then logic over a blockchain network to assess potentially hazardous
found by ML Approach. These contracts can be executed without the use of a
man because their code is examined by each participant in the blockchain network. By
cutting out the intermediary, significant cost savings are achieved while improving sustainability,

accuracy, security, and dependability.



3.8 Blockchain integration

Every vehicle that is linked downloads and updates blockchain technology. Blockchain stores
reports of incidents and vehicle reliability history. Figure 6 illustrates the blockchain's operation
process. When a vehicle encounters an event in the blockchain network, such as a collision, it

broadcasts event alerts, along with different parameters, to other cars. The automobiles first

analyze the event message to see if it is location-specific. The cars in the vicinity then checl
other criteria in the event message. Every vehicle individually confirms that denial-Q

¥ machines gather a
variety of event signals and confirm the accuracy of the sent variabl®@lf the received event
notification is authentic and reliable. the degree of confidence in it iwuste. The degree of trust
varies over time based on how trustworthy ptive messages remain.

By using blockchain, the main issues with message i@ mNgRiongpfe resolved. This ensures that

the automobile can access the required dat

IV. Trusted Networking Reconfigured witi'"g@lockchain
Assuring trust, identifying untrustwggthy networf®and eliminating them from the task network,

and choosing the best location the upper network in order to facilitate inter-zone

forwarding and reach compre
UAYV network. Adding

position throughout Mne centre is necessary to reduce the duplication. In order to be

Ise ar incipal objectives of the blockchain integrated into the

ishes drone network reconfiguring. Distribution of the present

chosen, t ode has to meet two criteria: it needs to be dependable, and aided
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4.1 Node Global Trustworthiness
In data consensus, all nodes produce an asynchronous generic subset (ACS) that includes

StateData ; = {ID;, [ID];, [ID: CurScore ff;height], cdots }, The node's local state assessment (LSA)

is discovered by counting the asynchronous generic subset ACS, representing the node's

Q

trustworthiness evaluation by all neighboring nodes: LSAi:{IDi,[ID]i,[IDj" CurS

j—i

indicated above to properly evaluate collusive or selfish conduct. O

Using the global statistical computational technique helps to fing IlLi a self-serving

discount of all surrounding nodes GDiscount *, with a variance of o*, '\ :

bc—height], } As a distributed Byzantine system, does not allow the computational me Q

or collaborating and to modify discount. D, is represented by th# value ®F the local

(Z?=0 CurScore 2¢¢9 ht) ,

GDiscount * = XL (12)

n

n

bcheight
o* = Z ( CurScore ;9" —

l

) (13)

where i is one of node x 's n neighbors.
worldwide trust degree discount.

e guidelig¥s for global dimension decrement

r Trust Discount Global Discount

bcheight x
Z( CurScore i |< 50%) 0
. bcheight
scount (| CurScore ; |> 50%) -05
Selfish node Discount %, -1

quation (14) in node x in accordance with the rule. The present global trustworthiness is
determined by Equation (15).

GDiscount * = GDiscount * + Discount ; + Discount 5,  (14)



GReputation zCheig "t = GReputaion zCheig M=1 4 GDiscount® (15)

Algorithm I1: Global Trust Assessment

Function: Global_Trust_Assess(LSD, IDx)

1: Initialize LSA[N] as empty

2: # Running in a Delegated Agent UAV IDx

3: # LSD already contains local state transactions for 2/3 of the total nodes in the ggt
4: if Nodes_Received(State Data x) > 2/3 then

5. # Extract corresponding decentralized transaction message bl

DRBCx «— Build My RBC Packet()

# Multicast its own DRBCXx to the delegate agent nodes ,

@ A2
eFent nodes

13: # If 2/3 DRBCs are ackngle consensus is reached

Multicast(DRBCx, {ID_A})

o o N 2

while true do

10: DRBCother «— Receive DBC Frg

11: # Translate DRBCother to the dele
12: Multicast(DRBCother, {ID_A})

14: ACS < Build ACSg¥rom_S ata(LSD)
15: # Exit loop

16: break

17: en 1

al assessment of all nodes

ntains trustworthiness scores of each node for all neighbors
LSA contains trustworthiness scores of all neighbors for each node
22: LSA « Statistical LSA(ACS)

23: # Compute assessment of IDx by all neighboring nodes from LSA




- if |CurScore_ix_bcheight| > (5 * sigma_i) then

- 1f No_Record_From_Neighbor(IDx) then

cend if

: GDiscount_x «— GDiscount x + Discount sigma_ x + Discount _?r_

: GDiscount_x «— (sum of CurScore xi_bcheight fori=0ton)/n
: # Compute confidence variance of IDx
: sigma_x «— sqrt((sum of (CurScore_xi_bcheight - GDiscount_x)"2) / n)

. # Amend global trustworthiness assessment

Discount sigma x «— -0.5

cend if

Discount_error x «— -1

: GReputation x_bcheight «<— GReputation x bcheight- count_x

- return GReputation_x_bcheight

4.2 Zone Center Node Elections

The The dynamic nature of the UAV ork necessitates a time-varying top layer

management network, with depe constituent nodes that accurately reflect their respective

m neighbors, zeros are add

regions. The representation of e node N; = [ID;y, IDs3, ..., ID;m],. If there are less than
the nuissif) part.
The number of @AV neqgpork, represented by the feature vectorU = [ﬁl,Nj, E’] is

used to represent the
used for c@geg

@ ork [33]. The feature vectors used for clustering are lists that are
merical vectors.

\ d(N,N;) = 2 2 §(ID, IDyy) (16)
x=1 y=1

WhelN (I1D;, ID;,) = 0, if ID; # IDyy; §(IDyy, IDyy) = 0, if ID;, = 1Dy,

et U* = [Nyy, Nia, -, Nyn Jrepresent a UAV network sub-zone.

Definition 1: The mode of the UAV network U* is represented by the feature vector Q =

[ID,,ID,, ..., ID,,] if it satisfies function (17).



D(Q.N) =) d(F, Q) (17)
i=1

Before select Q € U¥, pick the least value.

By computing n;,_, or the number of times the neighbor node /D, appears in all lists of
neighbors, one can determine the frequency of 1D, in the zone U*.

f(ID = ID, | U¥) = T% (18)

Theorem 1 states that the function D (Q, N;) reaches a minimu
update mechanism for k-modes of UAV networks is such that the fa

f(ID =1ID, | U¥) = f(ID = ID; | U¥) (13
where ID, # ID;,Vj = (1,2, ...,m). Thetheorem's rel &are found in Algorithm

Algorithm 111 Poof of updated techniques for for k
1:while (m — —) do
2:if f(ID = ID, | U*) = f(ID = ID; | U4

31fn1Dx > nIDj,j * X, V_] = (1,2, ey
4:QUID,

5:end if

6:end if

7:end while

8: D(Q, N;) reaches a minimu

comm status events (ACS), at delegation agent endpoints using decentralised
consist of DRBCs and externally verifiable smart contract agreements. Any agent

been authorised may now generate blocks, harmonise decision-making, and
iguration information. While broadcasting fresh blocks in accordance with the
des on the present-day blockchain, the delegated agents nodes update the local currency.
Every time a node receives a new block and it calculates its height. If it is taller than the authorised
agent network that contributed the block, the node updates the local blockchain. If not, it requests

that they synchronise the blockchain with it.



After the information’s consensus is done, the upper layer networks tells the agent at the node to
find the neighbourhood central node, and update the nodes' trust levels, and re-set up the trusted
drone network in its current state. This is done utilising statistics and clustering to process the

neighbour list and global trust discount tables. Any participant node may explicitly request, at an

confirmation operation. In Figure 7, the consensus flow is shown.

<_StartInID}, >

A 4

Al Receiving
= StateDataj, JFI ,
n StateData;
CurScore;_,f =0 OR
(curNeis;<< or p> preNeis;) StateData; €5 Broadcast
Include Co u Consensus Flag
e

no Number o teDat es Sort {StateData }
>2/3N: Based on Node ID

l

Split {StateData;}, 1D},
gets StateData!*?

Receiving RBC packet] 1

Decision consensus
generate new network
config information

N:Total Nodes Number
:Authroied Nodes Numpd

A

b other 1D}

Number of RBC packe
>2/3N7?

A

Build & Broadcast
New Block

Generate common !
subset of StateData End

Figure 7. Two-phase consensus procedure in a node with authorization
1D,

The rate at which new blockchain blocks are added depends on how long it takes for data

consensus to reach a decision. Even though the drone network frequently experiences network



partitioning, a deterministic consensus can eventually be reached by an asynchronous consensus
technique. Nevertheless, this strategy's original objective was to dynamically reorganize the
network to preserve its general credibility. When the asynchronous consensus fails, the multi-
point proof of authority (DPOA) compromise technique is instantly initiated for real-world
applications. Both DPOA and proof-of-authority consensus employ chosen best state nodes to
reach agreement each cycle. As a result, if more than two stations gain agreement, the informg
unanimity might be finished after the asynchronously decision delay. Reconfigurin m

connection within a secure time is ensured.

V. Simulation Experiments and Effect of Evaluation &

UAV trustworthy networks dynamically reconfigure using th ain-assisted trusted

Zone Routing Programme (proposed), which is formed when new blocl@ghain together during
blockchain creation. Efficiency is measured using the deliver a@@ts rate, route overhead, and
information transfer delay. The OSI seven-layer model ar r@is used by Qualnet network

simulation software, which is designed specifically fg@vire le communication networks.

’ QeEp
o rage
,

This study aims to generate mission scena

Every network node's activity is estimate de during the simulation to mimic real-

world network functioning and provide a of complex statistical data analysis functions.

The 1000 x 1000 m2 scene, 100 UAV nodes,

30 data lines, 210 seconds for t tion to run, 0-30 m/s for node movement speed, 30
seconds for dwell time, 500 acj@t sending interval, and 0,5, 10, 15, 20, 25, and 30
malevolent nodes are all inc in TNE simulation experiment. We employ 802.11b MAC layer

technique and 400-mg mmunication range. Every test procedure was executed three
times using dist Gy ll numbers, and the assessment was based on the mean of each of

the trigls. inct randomised numbers in the system correspond to distinct node

trajecto e Delivery Rate: The message delivery rate is the number of properly accepted
frame et node and sent to the originating node. Figure 8 shows how the promised

\/ery PRRBentages of the four route methods change as the number of broken nodes rises.

ODV has the greatest delivery rate without error nodes, whereas the other protocols have
comparable rates. However, the blockchain-assisted trustworthy area routing methods don't really
alter when new error nodes emerge. Deliveries rates, on the other hand, abruptly decline and finally

collapse for OLSR, AODV, and ZRP. This is because, by continuously redesigning the upper



logical networks utilised for agreement, BC-TZRP has high tolerance for failure and can separate
the largest number of unstable locations from the entire network. The pace of delivery decline is
also greatly accelerated by the network's inaccurate routed data; roadway routes under the
remaining three technologies need to be updated and rearranged on a regular basis as the proportion

of defective locations rises.
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Overhead in Route: In the identical casell nodes send out route command messages,

which is the route overhead. Figy 9 nstrates the routing overhead related to every method

at different error locations. iggest rggting overhead is attributed to OLSR, which is adhered
ce of irregular nodes. But as errant networks start to show up,
5s INcreases quickly, leading OLSR to fail first because the routing

the other hand, BC_TZRP shows a consistent dropping trend and




nodes. However, the routing overhead is mostly constant since the nodes in BC_TZRP that are

engaged in route creation and maintenance.

Overhead computation
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Figure 9. Routing overhead in the case of a steadily inc ng number

of failure nodes ,

routers. When there are more than 25 malfunCW@ing nodes, the communication system collapses

and the delay goes to zero. The pig@gsed work Preserves the task’s real trustworthiness while

reducing mean end-to-end late
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Figure 10. Average End-to-End latency in the scenario where the fault node is
rising over time
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By installing the proposed scheme, the new network will be reconfigured in accordance with
the nodes' blockchain-recorded statuses. Reconfiguring the network primarily entails removing
harmful nodes from it. The modifications in Figures 9 and 10 are minimal since these malicious
nodes are not part of routing and data forwarding and are thus excluded from the new network.

Furthermore, when a node discovers that an adjacent node is unreliable, it triggers the consensus

process, asking the system to start consensus right once in order to isolate these problematic n %

as soon as possible. Malicious nodes in the experiment manipulate forwarding informatiQgaaret

While blockchain network technologies can authenticate UAV ks to keep malicious

external nodes from accessing them without authorization, the comp:le]ﬂ gn environment also
involves the possibility of node formation in addition to se lawed nodes. This scenario
involved setting up trials with varying percentages ofgfa de3@which made it possible for

compromised internal nodes of drones impersgiasi

asynchronous, lightweight, dyna
upcoming wave of cog .

experiments is to address the low energy consumption and

jn technology.




Blockchain vs Proposed execution time computation
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Figure 11. Time computation

Due to its two-stage support process and the reality that the aI |eWer only retains the

choice's agreement, it is evident that the BC_TZRP methog verage rate of expansion and
remains devoid of transactions volume. Conversely,

standard DPOS blockchain, which needs m i transaction traffic increases.

Energy Usage: One major problem drone system is its energy usage. The general

opinion computation in the framework of blo ain consumes most of the power needed for

transmission latency and executio opposed to using a conventional blockchain, ZRP routing
coherence is used in a protot ith 100 swarm networks. POW consensus technique
changes the amount of activ and in in the required hash headers to match the evaluation

compute. Consensus times for PBFT and POS are guaranteed
ity of operations. If the specified asynchronously compromise

method fa ontract in 20 seconds, the proof-of-authority consensus procedure is
started. faulty node locations, the evaluations measure the majority method's
putational latency and convert it into the consumption of energy. Applying

to ZRP's real-time relaying behaviour tracking local state transaction and analysing

k's energy usage. Figure 12 displays the simulation experiment's outcomes.

Although the POS consensus technique doesn't require any computational power, the

growing number of rogue nodes also results in an increase in the amount of bandwidth used by the



network due to incorrect routing. Because of the rise in malicious nodes and the frequency of view
change during the consensus process, the PBFT also uses more energy. The BC_TZRP method
substitutes agent nodes for consensus delegation and reconfigures the network on a regular basis
to eliminate untrustworthy nodes and minimize the quantity of overlapping routes. The consensus

overhead is essentially constant regardless of the quantity of malicious locations since each phase

offers an extra fair distribution of resources for the infrastructure as a whole.

300

Traditional Blockchain (POW)
B Traditional Blockchain (POS)

Traditional Blockchain (PBFT)
250 1— Ml Recommended Solutions

200

150 4

Energy Consumption

100 4

50 ~

Icious Nodes number

Figure 12. Energy requj or consensus vs amounts of malicious routers

Attack prediction comput

Table 2: Attack Detection Rate vs. Network Density

Proposed Detection Rate Proposed Detection Rate with
without Blockchain (%0) Blockchain (%0)
70 85
20 65 83




30 60 80
40 55 78
50 50 75

The table 2 shows how the attack detection rate changes with different network densities. The
proposed system consistently outperforms the traditional approach, showing a higher dete
rate across all levels of network density. As the network density increases, the detection

decreases for both methods, but the proposed system maintains a significant advanta

Table 3: Attack Detection Rate vs. Number of Malicious Vehi

Number of Malicious Proposed Detection Rate Propg
Vehicles without Blockchain (%0)
5 68
10 60

15 52
20 45 75
25 70

The table 3 illustrates how the number of m s vehicles impacts the attack detection rate. The

proposed system using the SVM classifier showsWggignificantly higher detection rate compared to
traditional techniques. As the nung#er ofgaalicious vehicles increases, the detection rate decreases

for both methods, but the proi@SedSystengfemains superior.

L Event Spoofing Detection Accuracy

Detection Accuracy (%)

Propgged g ockchain 70

ON@Asyster@yith Blockchain 96

This ares the event spoofing detection accuracy of traditional techniques with the
osed Wptem. The proposed system achieves a much higher detection accuracy of 96%,
om to 70% for traditional methods. The high accuracy is due to the proposed system's

conence model, which effectively distinguishes genuine events from false occurrences through
persistent monitoring and nodes scoring. Hence, the tables clearly illustrate that the proposed

system has significantly improved attack detection rates and event spoofing detection accuracy




compared to traditional approaches, even as network density and the number of malicious vehicles

increase.

V1. Conclusion

The work that is being suggested incorporates blockchain technology with IPFS in

to build a novel machine-learning-based technique for message authentication. The goal o

technology. In order to determine whether or not this access authenticagL system is effective, it

IS necessary to investigate the legitimacy and safety of the system ﬁ is W&ing presented. The

system is evaluated based on the amount of time it takes tg @ ehicles, validation of events,

and the amount of money spent on communication. | g to ca¥ry out its procedures with a

limited amount of time in comparison to othgg® S are currently in use, and the event trust

model that is utilised in this system is ca/ /g eater detection of harmful events. In

ieving
comparison to the approaches that are nowm use, it achieves a high level of security and

safeguards automobiles against harmful intruders\@e is possible that future studies in this area may

concentrate on the creation of a f#veLgaabtweight, and better neural networking-based message
authorization system that is g@able of s ssfully detecting network invaders.
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