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Abstract  

Electricity theft in smart grids poses a significant threat to energy security, leading to billions in financial 

losses and grid instability worldwide. Traditional detection methods, including hardware-based solutions 

and machine learning (ML) models, are often costly, reliant on labeled data, and lack scalability. Deep 

learning (DL) approaches, while more advanced, face challenges such as overfitting to static datasets 

and inefficiency in adapting to evolving consumption patterns and new cyberattacks, requiring frequent 

and computationally expensive retraining.In this context, we propose a novel deep learning framework, 

Deep Adaptive Feature Learning for Theft Detection (DAFL-TD), tailored for smart grid environments. 

The architecture of DAFL-TD integrates a Temporal Feature Extraction Network (TFEN), which captures 

temporal dependencies in electricity usage, with an Adaptive Feature Learning Network (AFLN) that 

leverages both labeled and unlabeled data for adaptive feature extraction and classification. The novelty 

of DAFL-TD lies in its ability to handle fluctuating, imbalanced data and dynamically update its feature 

representation without the need for extensive retraining, making it highly scalable for real-world smart 

grid applications. Extensive evaluations on the State Grid Corporation of China (SGCC) dataset 

demonstrate that DAFL-TD achieves a 13.84% improvement in AUC compared to state-of-the-art 

models, alongside superior precision as measured by MAP metrics. These results underline the efficacy 

of DAFL-TD as a robust, scalable, and efficient solution for real-time electricity theft detection, 

significantly enhancing the resilience and security of smart grids. 

Keywords: Smart Grids, Electricity Theft Detection, Deep Learning, Temporal Feature Extraction, 

Adaptive Feature Learning 

1 Introduction 
The smart grid (SG) is a cutting-edge improvement over conventional electricity grid systems that aims 

to improve and regulate grid operations, guarantee dependable energy distribution, and evaluate the 

system's overall performance. The transmission and distribution networks, the advanced metering 

infrastructure (AMI) network, the electricity producing stations, and the system operator (SO) are the 
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parts that make up the SG architecture. The purpose of the AMI is to enable effective two-way 

communication between the smart meters (SMs) placed in residential properties and the System 

Manager (SM) [1], [2]. Unlike traditional monthly billing, SG collects comprehensive electricity use data 

from SMs, which is collected at intervals of a few minutes. It then sends this information to the SM using 

AMI. These signals may be used by the SM for effective control of electricity generation, load forecasting 

and monitoring, dynamic price computation for billing usage, and demand response management. 

Figure 1 presents the smart grid. 

 

Figure 1 smart grid 

Daily survival cannot be accomplished only by the usage of energy. Energy losses usually occur in energy 

distribution, transmission, and generating systems. Technical Losses (TLs) and Non-Technical Losses 

(NTLs) are the two types of electrical losses [1]. Net total losses (NTLs) are defined as the difference 

between total losses and electrical thefts, which account for the majority of total losses. The TL is 

essential to the flow of electricity since it is triggered by internal mechanisms found in the gearbox 

lining, transformers, and other electricity plant components. The calculation or assessment of non-

technical losses arising from deliberate manipulation of reported electricity use figures is a major 

difficulty. This leads to incorrect billing, which may have serious negative financial and economic effects 

on many nations across the world. According to available statistics, non-technical problems cost the US, 

UK, and Canada, respectively, $6 billion, $173 million, and $100 million annually in financial losses [3]. 

Furthermore, a recent research conducted across 138 countries shows that non-technical losses and 

electricity theft cause utilities to lose $101.2 billion in revenue each year [4]. In addition to causing 

monetary losses, electricity theft raises the possibility of blackouts by causing instability and 

disturbances in the grid [5]. Improving the electrical grid's intelligence and resistance to these kinds of 

assaults is crucial. This has led to the research on electricity theft detection (ETD) as one of the major 

research area for enhancing the smart grid performance [3][4]. 
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Traditionally, methods based on hardware have been used to detect electricity theft. These systems 
achieve high levels of precision through the use of specialist equipment for the investigation of 
customer behavior or the state of electrical networks [4]. It did not fulfill electricity firms' criteria 
because of its high implementation and maintenance costs, low universality, and limited scalability. 
Data-driven approaches are becoming the industry standard for electricity theft detection because they 
make use of a wide range of real-time metrics. In order to determine consumption patterns, historical 
data is often analyzed using machine learning techniques [6] [7]. Electricity theft may be detected by 
integrating algorithms into an intelligent management platform.In order to address practical issues, 
artificial intelligence (AI) has been incorporated into the electrical sector in a number of ways [8], [9]. 
Artificial Intelligence (AI) improves the cost-effectiveness of electricity by adjusting to variations in 
weather-related electricity generation. The integration of supplementary renewable energy sources into 
the smart grid offers notable benefits. This method improves the resilience of the grid and makes it 
easier to identify equipment malfunctions and forecast electricity output and demand. In recent years, 
machine learning (ML) techniques have been increasingly applied to mitigate the adverse effects of 
electricity theft and related cyberattacks in smart grids (SGs). Both supervised and unsupervised ML 
approaches, including deep learning (DL) models, have shown promise in detecting theft patterns. 
However, these approaches come with several limitations. First, DL models are typically trained on static 
datasets, which can lead to overfitting, making them adept at recognizing specific patterns but less 
effective at generalizing to broader and evolving theft behaviors. Second, adapting these models to 
changing consumption patterns and emerging cyberattacks is inefficient, as it requires frequent 
retraining on both old and new data. This retraining process is not only time-consuming but also 
computationally intensive, particularly when dealing with large datasets typical in smart grid 
environments [10].Electricity theft in smart grids remains a major challenge, causing significant financial 
losses and threatening grid stability. Traditional detection methods, often reliant on labeled data, are 
limited by the difficulty and cost of obtaining confirmed theft cases, which usually require physical 
inspections or audits. Moreover, these approaches struggle to capture the complex temporal patterns 
inherent in electricity consumption data, leading to inaccurate detection of subtle or evolving theft 
behaviors. As smart grids generate vast amounts of data, there is an urgent need for a deep learning-
based solution that can adaptively leverage unlabeled data to automatically learn and identify 
abnormal consumption patterns. The problem lies in the need for a deep, adaptive learning framework 
capable of detecting electricity theft in real-time, improving detection accuracy, minimizing false 
positives, and scaling efficiently within smart grid environments. This requires moving beyond traditional 
methods to develop a more sophisticated, data-driven approach based on deep learning architectures 
[11] [12]. 

 

1.1 Motivation and contribution  
Electricity theft is a growing concern in smart grids, leading to substantial financial losses and grid 

instability. Traditional methods, often hardware-based or reliant on labeled data, struggle with 

scalability, high costs, and the complexity of evolving theft patterns. With utilities losing billions annually 

and smart grids generating vast amounts of real-time data, there is a pressing need for advanced, 

adaptive detection models. This motivates the development of a deep learning framework capable of 

leveraging both labeled and unlabeled data to accurately detect and mitigate electricity theft in real-

time, improving efficiency and reducing false positives. This research introduces a novel deep learning 

framework, Deep Adaptive Feature Learning for Theft Detection (DAFL-TD), aimed at improving 

electricity theft detection in smart grids. The key contributions are: 
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1. Novel Framework: We propose DAFL-TD, which integrates labeled and unlabeled data, enabling 
effective detection of electricity theft while adapting to changing consumption patterns. 

2. Hybrid Model: The framework combines a Temporal Feature Extraction Network (TFEN) with 
an Adaptive Feature Learning Network (AFLN) to enhance feature representation and 
classification accuracy. 

3. Data Augmentation and Robustness: Our model employs advanced data augmentation 
techniques to handle noise, imbalanced datasets, and fluctuating time-series data, ensuring 
robustness in real-world environments. 

4. Performance Improvement: Experimental results on the SGCC dataset show that our model 
outperforms state-of-the-art methods, achieving higher accuracy and reduced false positives in 
detecting electricity theft 

2 Related Work 
In [11], the authors presented a methodology for predicting electricity theft utilizing data obtained from 

smart meters that monitor energy consumption. This technology enables energy supply companies to 

effectively address challenges related to inadequate electricity management, unexpected electricity 

consumption, and energy shortages. Convolutional Neural Networks (CNNs) were developed by 

scientists. The DL method maintains the critical characteristics of electricity consumption data by initially 

distinguishing between periodic energy, utilizing established methodologies. The findings indicate that 

the deep convolutional neural network (CNN) model surpasses earlier models, achieving the highest 

detection accuracy for energy theft. The results indicate that anomalous immobility behavior can be 

detected, and that an adaptive premises system is capable of consistently identifying it over an 

extended duration. This study presents a cost-effective, data-driven ETD approach that maintains ETD 

accuracy while substantially decreasing data labeling expenses. A deep active learning (DAL)[12] system 

designed for intellectuals is utilized to implement the process with precision. The DAL approach 

efficiently selects the optimal samples for the ETD model. The effectiveness of the proposed method is 

demonstrated through the experimental test results derived from a real ETD dataset provided by the 

State Grid Corporation of China. Reference [13] details an investigation conducted by the authors into 

instances of electricity theft within the distributed generation (DG) sector. By conducting a thorough 

examination of distributed generating units that utilize renewable energy sources, certain consumers 

exploit smart meters in this violation to generate a misleading perception of heightened electricity 

consumption, resulting in overpayments to the utility provider. Techniques for identifying risky conduct 

are examined through the application of deep machine learning methodologies. The paper [14] presents 

a deep reinforcement learning (DRL) technique aimed at addressing the issue of electricity theft, utilizing 

samples derived from real-world datasets. A number of additional cases utilize the proposed 

methodology. A global detection model is constructed using a double deep Q network (DDQN) and a 

deep Q network (DQN), employing various deep neural network topologies. The global detector alters 

the consumption patterns of current customers and increases the complexity of security protocols in 

response to newly introduced threats. The results indicate that the proposed DRL method is capable of 

effectively identifying new consumption patterns. In the referenced work [15], the author employs 

convolutional neural networks (CNN) and long short-term memory (LSTM) architectures to extract 

abstract features from electricity usage data. The prototype for each class is generated by calculating 

the parameters of the abstract feature, which is subsequently utilized to predict the labels of unknown 

data. 
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[16] presents an examination of the effects of backdoor assaults in ETD for the first time, along with a 

proposed feature attention distillation defensive method. To enable adversaries to bypass ETD, it is 

essential to conduct a thorough analysis of the attack surface during the current model training process. 

Malicious backdoors can be integrated for specific triggers. The evaluation of six widely used ANN-based 

models is subsequently conducted. Research indicates that attackers can successfully bypass the back 

doored ETD models in over 90.53% of instances, resulting in substantial losses for energy 

suppliers.transfer learning-driven approach was introduced in [17], which aims to boost detection 

accuracy in cases with limited samples. This method transfers a model trained in a data-rich location 

(source domain) to another with fewer samples (target domain), addressing the issue of data scarcity in 

ETD. In [18], the authors proposed a novel method combining Omni-Scale CNN (OS-CNN) with AutoXGB 

to tackle challenges in time-series data and class imbalance. They employed the Piecewise Cubic 

Hermite Interpolating Polynomial (PCHIP) for data interpolation and SMOTEENN for data resampling, 

ensuring effective coverage of diverse time series scales. A cost-effective data-driven approach is 

presented in [19], utilizing a deep active learning (DAL) scheme that reduces data labeling costs while 

maintaining detection accuracy. By integrating CNN learning with Monte Carlo dropout-based Bayesian 

active query, this approach efficiently selects valuable instances for model training.In [20], the 

correlation between water and electricity (W&E) usage is analyzed as a basis for a new ETD method. By 

using the mutual information coefficient (MIC) to model W&E usage correlations and applying a wavelet 

clustering algorithm, the authors propose a multisource ETD method that clusters power distribution 

users based on their MIC values. 

Despite advancements in machine learning for electricity theft detection, existing models struggle with 

overfitting to static datasets and lack adaptability to evolving consumption patterns. Current approaches 

often require costly and time-consuming retraining to address new theft behaviors and cyberattacks. 

There is a clear need for a more flexible, scalable solution that can generalize across dynamic patterns 

and efficiently handle large-scale smart grid data without frequent retraining. 

3 Proposed Methodology 
The proposed study aims at developing a model that focuses on using information including labelled as 

well as unlabeled data for distinguishing between pattern that are normal as well as electricity theft 

while considering electricity load information samples. The study proposes a model termed as Deep 

Adaptive Feature Learning for Theft Detection (DAFL-TD). The characteristics of this DAFL-TD model 

include effective using of data for learning the supervised representing in prior tasks and further transfer 

to tasks downstream through tuning of model metrics. For further enhancement considering 

classification that adds to the usage of information, the proposed model uses anTFEN, aAFLN model for 

training as well as a classification unit, which is described in the figure 2 given below. 
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Figure 2 Adaptive Feature Learning for Theft Detection (DAFL-TD) 

3.1 Pre-processing Module 
The input information used by the model is matched using the inputs (𝑧𝑘 , 𝑎𝑘)𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐹𝑁 that are 

marked and the inputs (𝑧𝑘) 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐹𝑊 that are unmarked. Here, 𝐹𝑊 = 𝑧𝑘=1
𝑉  is an energy usage 

sequence having 𝑉, 𝑧𝑘 , 𝑎𝑘 as length expressing the attribute labels of the samples. 𝑍𝑎𝑢𝑔𝑚𝑒𝑛1 denotes 

the time sequence one and 𝑍𝑎𝑢𝑔𝑚𝑒𝑛2is used to represent the other time sequence both have distinct 

improvised intensities that are developed using data augmentation. The possible expressions that are 

retrieved using the TFENℎ∅, the attributes of ℎ∅ are updated by predicting the using the AFLN loss 

function. Considering the supervised classification method, the TFEN along with the weights that are 

prior trained is refined via the labelled information and is lastly classified using a conversion node. The 

classification loss function is formulated as given below 

 

𝑁𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑐𝑎𝑡𝑖𝑜𝑛 = −|𝐹𝑁|−1 ∑ 𝑎𝑘 ∙ log (𝑟𝑘)

|𝐹𝑁|

𝐾=1

 

 

(1) 

 

In this case, loss function for cross entropy is denoted as 𝑁𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑐𝑎𝑡𝑖𝑜𝑛, the main aim of this is the 

optimization and reduction of divergence 𝑀𝑁.  

 The augmentation of information acts as an essential unit in the task of AFLNlearning, that 

acknowledges the lack of information as well as enhances the diversity of information. The proposed 

model utilizes various augmentation methods that developed different perturbations to the source 

information as well as generation of datasets from various outlooks. This method helps in AFLN learning 

to increase consistency of different perspectives as well as learning of invariant attribute expressions. It 

also uses methods of augmentation including scaling, negating, time period shift and permutations.  Auth
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 The information is improvised using noise by addition of random noises to the sequential 

information leading to a Gaussian distribution. This aids the proposed model in generalization of noisy 

information better in real-time. The conversions on the scale are utilized for enhancement of 

information by scale adjustment of the information. The rearrangement of information is termed as 

permutation used to rearrange the structure of data that aids the model is learning various techniques 

of arranging information. Positive information sets are converted to negative samples that aids the 

proposed model to better identify the various classes. Time period shifting is used to improve the 

information by transfer of information within the time sequence that helps the model to gather the data 

fluctuating patterns at different instances of time.  

3.2 Temporal Feature Extraction Network (TFEN) 
Considering a group a electricity sequential information that is labelled denoted as 

(𝑧𝑘
𝑁 , 𝑎𝑘

𝑁)𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐹𝑁 , the proposed model TFENℎ∅ is utilized for training for retrieval of local 

attributes. The TFEN a network of stacked attributes that has four layers. Every layer has a 1D layer of 

convolution, layer for batch normalization as well as an activation layer (ReLU) and lastly a pooling layer. 

The concluding layer is linked to a softmax for basic tasks of classification. This method is comparison to 

a completely linked layer has increased efficiency while considering parameters and the capabilities of 

retrieving attributes of higher levels. Assume we have electricity datasets 

(𝑍𝑣
1, 𝐴1), (𝑍𝑣

2, 𝐴2), … . , (𝑍𝑣
𝑝

, 𝐴𝑝)𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑣𝑝, having 𝑍𝑣
1 =

(𝑧1, 𝑧2, … , 𝑧𝑣)𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋1×𝑣denotes a set of electricity load having 𝑣 length and 𝐴𝑝 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 [1, 𝑂] 

represents the relating sequential time label having 𝑂 as count of labels for various classifications. The 

data attributes are attained using the equation𝑏𝑘
𝑒 = ℎ∅(𝑍𝑣

𝑘).  During the process of AFLN learning, the 

initial input 𝑍𝑣
𝑘 undergoes the process of augmentation to produce two information samples having 

various perturbations, then input into ℎ∅ formulated as: 

 

ℎ∅𝑘
= 𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑅𝑒𝐿𝑈(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟(𝑌 ⊕ 𝑧 + 𝑑))) 

 

(2) 

 

Here, 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟 is used to denote the layer of Batch Normalization, the parameters 𝑌 and 𝑑 represent 

the attributes of the convolutional model, the 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 represents 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔 layer that utilizes 

highest strategy. The activation function 𝑅𝑒𝐿𝑈 is situated between the 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 and𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟 layer.  

3.3 Adaptive Feature Learning Network (AFLN) 
The coding unit of the AFLN training uses Deep Learning Adaptive Sequential Feature Network (ASFN) 

and designs the attention scheme that is termed as Adaptive Sequential Feature Network (ASFN) in the 

proposed study. It is observed to have increased benefits for feature retrieval as compared to traditional 

prior networks, that also have anTFEN, attention scheme as well as classification model. The ASFN is 

made up of five built up unidirectional Gated Recurrent Units. This is a unique neural network that is 

recurrent having parameters of smaller sizes having a usage that is easier in comparison to Long Short-

Term Memory. Consider v as a time period step, the input information for the TFEN of ASFN Units 

z belongs to 𝕋P×N, where the vector size is denoted as P and the sequential time step has a length of N. 

The sequential inputs are of various lengths having particular batches for the training procedure, the Auth
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ASFN will not omit them but will describe a sequential input using batch zk belongs to 𝕋D×P×Ñ,  here 

the measure of the sequence that is longest is expressed as Ñ. Here, Ñis patched with 0 while ending.  

In this case, we assume zv as the input data, the concealed vector of the prior time step denoted jv−1 is 

also utilized as the input. The ASFN is evaluated using the concealed vector jv for time period v. This is 

formulated as given below: 

 

𝑡𝑣 = 𝛿 ((𝑑𝑧
𝑡 + 𝑧𝑣𝑌𝑧

𝑡) + (𝑑𝑗
𝑡 + 𝑗𝑣−1𝑌𝑗

𝑡)) 

 

(3) 

 

𝑤𝑣 = 𝛿 ((𝑑𝑧
𝑤 + 𝑧𝑣𝑌𝑧

𝑤) + (𝑑𝑗
𝑤 + 𝑗𝑣−1𝑌𝑗

𝑤)) 

 

(4) 

 

𝑒𝑣 = tanh ((𝑑𝑧
𝑒 + 𝑧𝑣𝑌𝑧

𝑒) + 𝑡𝑣(𝑑𝑗
𝑒 + 𝑗𝑣−1𝑌𝑗

𝑒)) 

 

(5) 

 

𝑗𝑣 = 𝑤𝑣 ∘ 𝑗𝑣−1 + (1 − 𝑤𝑣) ∘ 𝑒𝑣 

 

(6) 

 

 Considering the above equations 3,4,5,6, the activation function 𝛿 is sigmoid given as 𝛿(𝑧) =

(1 + 𝑒−𝑧)−1, the gates denoting update, reset as well as candidate is given as 𝑤𝑣 , 𝑡𝑣 and 𝑒𝑣, 

respectively. The weight vectors that can be trained as given as 𝑌𝑟
𝑠 and the bias vectors are given as 𝑑𝑟

𝑠. 

Consider a sequence 𝑧 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋𝑃×𝑁,  the equations 3 to 6 are utilized by the TFEN to result in the 

conceal layer matrix 𝑗̃ 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋128×𝑁. The attention scheme of ASFN uses compressed expression 

of sequential electric loads that are a result of the previous Adaptive Sequential Feature Network (ASFN) 

layer denoted as 𝑗̃, furthermore it aims on global parameters. The attention scheme utilizes parameters 

that are trainable represented as 𝑌𝑒 for evaluation of the attention vector 𝑒 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝕋128 which is 

formulated in the equation (7) given  

 

𝑒 = 𝑗̅ (𝐸 (∑ 𝐸𝑗𝑁−1
𝑉 𝑌𝑒𝑗𝑣

𝑁−1

𝑣=0
)

−1

) 

 

(7) 

 

The above given equation (7) uses a concealed layer for the TFEN network for computation of the 

attention vector as well as the final time period step of the TFEN concealed layer 𝑗𝑁−1 that encapsulates 

data from the layers 𝑁 − 1 that follows. After obtaining the attention vector 𝑒, a new contextual 

attribute vector is developed by combining 𝑒 and 𝑗𝑁−1 that is used for tasks of classification. This 

method focuses on joining the last concealed layer of the encoded layer, hence improvising the diversity 

of information. The benefits of the Adaptive Sequential Feature Network included its acceptance of 

different length of inputs. The quantity of data that is grasped by 𝑗𝑁−1 could differ depending on the 
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length of the sequences, exposing the model susceptible to different sequential lengths. To resolve this, 

the proposed model uses a set of parameters that are shared at the process of training, this gives 

context to the concealed state of the TFEN. The usage of the concealed state is performed directly or in 

a combined manner with the contextual state is determined by these parameters. On computation of 

contextual vector 𝑒, the evaluation of 𝑒′ denoting auxiliary contextual vector is performed along with 

the evaluation of the attention scheme output: 

 

𝑒′ = ℍ𝒯(𝑒, 𝑗𝑁−1) 

𝑂𝑢𝑡𝑝𝑢𝑡𝒯 = [𝑒; 𝑒′] 

 

(8) 

 

 Here, the Adaptive Sequential Feature Network (ASFN) is expressed as ℍ𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 that utilizes 

contextual vector 𝑒 and concealed state of prior 𝑗𝑁−1 as input. Two completely linked layers are used for 

classification as well as activation layer of ReLU is used for the output layer. Lastly a softmax layer is 

utilized for probability distribution given as: �̂� = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐻2(𝑅𝑒𝐿𝑈(𝐻1(𝑂𝑢𝑡𝑝𝑢𝑡𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛)))).  

 The benefits of using the Adaptive Sequential Feature Network (ASFN), it depends only on the 

last time period step that decreases the complexity of computation. The effects that are caused by the 

difference in length of the sequence be reduced by evaluation of contextual vectors. The attention 

scheme aids in keeping the zero-sequence unaltered, hence small trainings quantitatively can be 

performed on smaller sequences having various lengths.  

 The AFLN training unit is an essential part of the proposed model Deep Adaptive Feature 

Learning for Theft Detection (DAFL-TD) The electricity load that is unlabelled denoted as 

𝑧𝑘
𝑊 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐹𝑊 as a prior task used in supervised learning for AFLN learning. While considering the 

process of augmentation, the data improvisation has two various types of improvisations for inputs 𝑍𝑣
𝑘 

to result in 𝑍𝑣
𝑘1and 𝑍𝑣

𝑘2. Consider various types of augmentation, the proposed model can concatenate 

them to result is adequate negative as well as positive pairs of information samples. The TFEN considers 

these segments in relation to time sequence as inputs and therefore retrieves attribute expressions 

given as 𝑏𝑣
𝑘+ = ℎ∅(𝑍𝑣

𝑘)and 𝑏𝑣
𝑘− = ℎ∅(𝑍𝑣

𝑘). Further using the inputs 𝑏𝑣
𝑘+ and 𝑏𝑣

𝑘− in the AFLN training 

unit.  

 We consider the initial length of the sample as 𝑁𝑢 and the index of segmentation as 𝐾𝑢.  

𝑏𝑣
𝑘+and𝑏𝑣

𝑘− with the index 𝐾𝑢 is divided as the historical_seq𝑏𝑣
𝑘+, the predicted_sequence𝑏𝑣

𝑘− for index 

time interval [𝐾𝑢, 𝐾𝑢 + 𝑇𝑢] that is implemented for the future of AFLN prediction. Once the   sequential 

sets are generated from the samples that are both negative as well as positive, the historical_seq is first 

stored into the Adaptive Sequential Feature Network stack along with the attention scheme. The 

Adaptive Sequential Feature Network (ASFN) retrieves the possible attributes 𝑒𝑟
𝑘+ denoting the 

𝑝𝑎𝑠𝑡_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 which is then used to generate the 𝑓𝑢𝑡𝑢𝑟𝑒_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑆𝑘+having length 𝑁𝑢 viaa 

sequential string of non-linear conversion elements.  

On using Noise Contrastive loss function, we estimate the mutual data of sequences that have been 

predicted such as 𝑆𝑘+ and 𝑆𝑘−. The complete procedure uses the network via this function and the 

parameters of the network are also updated for further learning.  
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 The figure 3 given below shows 𝑒𝑟
𝑘+ used for predicting the sequential attribute for time ranging 

from 𝐾𝑢to (𝐾𝑢 + 𝑁𝑢) post eh indexing 𝐾𝑢. We assume that the prediction is expressed as 

(𝑆𝑟
𝑘+, 𝑆𝑟+1

𝑘+ , … , 𝑆𝑟+𝑁𝑢

𝑘+ ), insider the similar range of index [𝐾𝑢, 𝐾𝑢 + 𝑁𝑢],𝑆𝑟
𝑘+ 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑏𝑣

−.The network 

parameters estimated using the mutual data of 𝑆𝑟
𝑘+ and 𝑆𝑟

𝑘−as 

 

ℎ𝑚(𝑒𝑟
𝑘+, 𝑆𝑟+𝑚

𝑘+ ) = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡((𝑌𝑚(𝑒𝑟
𝑘+))𝑉𝑆𝑟+𝑚

𝑘+ ) 

 

(9) 

 

Here, the contextual vector is represented as 𝑒𝑟
𝑘+ that is gathered from the attribute vector via the 

Adaptive Sequential Feature Network (ASFN). The linear attribute 𝑌𝑚 is used in mapping 𝑒𝑟
𝑘+ to the 

similar size as 𝑆𝑟+𝑚
𝑘+ , 𝑚 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 [1, 𝑁𝑢]. Also, the negative data sequential feature 𝑏𝑣

− retrieved from 

a completely linked layer is encoded to result in 𝑆𝑟
𝑘− and 𝑆𝑟

𝑘+ 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑏𝑣
+ for mutual data AFLN 

prediction.  

 

Figure 3Adaptive Feature Learning Network (AFLN) 

Therefore, there are two loss functions that have to be essentially evaluated 

 

𝑁𝑉𝐸
+ = −(𝑀)−1 

∑ 𝑙𝑜𝑔 ((𝔼((𝑌𝑚(𝑒𝑟
𝑘+))𝑉𝑆𝑟+𝑚

𝑘+ )) (∑ 𝔼((𝑌𝑚(𝑒𝑟
𝑘+))𝑉𝑆𝑟+𝑚

𝑘+ )
𝑝 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑃𝑟,𝑟+𝑁𝑢

)

−1

)

𝑀

𝑚=1

 

 

(10) 
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𝑁𝑉𝐸
− = −(𝑀)−1 

∑ 𝑙𝑜𝑔 ((𝔼((𝑌𝑚(𝑒𝑟
𝑘−))𝑉𝑆𝑟+𝑚

𝑘− )) (∑ 𝔼((𝑌𝑚(𝑒𝑟
𝑘−))𝑉𝑆𝑟+𝑚

𝑘− )
𝑝 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑃𝑟,𝑟+𝑁𝑢

)

−1

)

𝑀

𝑚=1

 

 

(11) 

 

3.4 Adaptive Loss Training Module 
Here, the AFLN loss for prediction is given as 𝑁𝑉𝐸

+ and 𝑁𝑉𝐸
−  that is utilized to increase the dot product of 

predicted as well as real expressions of the same sets of samples while reducing the dot product for 

predicted expressions as well as for other data sets within the batch. A context AFLN loss is introduced 

for increasing the similarity for samples that are positive and reduced the similarity for samples that are 

negative. 𝑒𝑟
𝑘+and𝑒𝑟

𝑘− are both introduced by the Adaptive Sequential Feature Network, the enter a 

conversion block network sequentially having weights that are shared, this results in a similarity function 

given as: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑤, 𝑥) = ((𝑤𝑣𝑥)(‖𝑤‖‖𝑥‖)−1), where 𝑤, 𝑥 denotes the two vectors (‖𝑤‖‖𝑥‖). 

The concluding formulation for the loss function is as given below 

 

𝑁𝑒𝑒 = − ∑ 𝑙𝑜𝑔 ((𝔼(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(ℎ𝑟
𝑘+, ℎ𝑟

𝑘−)

𝑃

𝑘=1

/𝜑)) (∑ ℶ[0≠𝑘]

2𝑃

𝑜=1
𝔼(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(ℎ𝑟

𝑘, ℎ𝑟
𝑜)/𝜑)

−1

) 

 

 

 

(12) 

 

For the equation 12 given above, 𝑁𝑒𝑒  is used to denote the loss function for single pairs, the function 

used for indication is expressed as ℶ, while 𝑜 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑡𝑙 𝑡𝑜 𝑘. There is a coefficient used for 

temperature that is defined by 𝜑, this is mainly used to increase the output of softmax. Hence, the 

negative log of softmax is used for loss function. The total loss is made up of the AFLN loss function in 

relation to time as well as contextual which is given as : 

 

𝑁𝑙𝑜𝑠𝑠 = 𝛾1 ∙ (𝑁𝑉𝐸
+ + 𝑁𝑉𝐸

− ) + 𝛾2 ∙ 𝑁𝑒𝑒  

 

(13) 

Where, 𝛾1 and 𝛾2 are scalar constant hyper parameters used to show the relating weights for various 

losses at every time period. The combination of the AFLN loss relating to time as well as the AFLN loss 

contextually, has increased significant attributes that are distinct for positive as well as negative samples 

for learning, hence the attribute TFEN Completely linked layer and the parameters of the neural network 

for AFLN learning of the ASFN is updated. This is described in detail in the algorithm 1 given below 
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Algorithm 1 Detection of Electricity theft Electricity patterns using AFLN Learning 

Step 1 Input: Batch dimension 𝑃,structure 𝑉, TFEN attribute function ℎ, constant 

𝜑,TFENfunction𝑖 (autoregressive)  

Step 2 Output: Optimal ideal or approximately ideal state of neural network 

Step 3 For dataset sampled mini batch {𝑧𝑚}𝑚=1
𝑃 , {𝑎𝑚}𝑚=1

𝑃  do 

Step 4 For all 𝑚 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 [1, … , 𝑃]do 

Step 5 If 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑃ℎ𝑎𝑠𝑒 is self-supervised learning do 

Step 6 Set the information augmentation function 𝑣~𝑉, 𝑣′~𝑉 

Step 7 Generation of Positive data samples 𝑧𝑚
+ ← 𝑣(𝑧𝑚) 

Step 8 Generation of Negative data samples 𝑧𝑚
− ← 𝑣(𝑧𝑚) 

Step 9 Attribute feature learning for positive data samples 𝑒𝑚
+ ← ℎ(𝑧𝑚

+ ) 

Step 10 Attribute feature learning for negative data samples 𝑒𝑚
− ← ℎ(𝑧𝑚

− ) 

Step 11 Positive data sample feature learning (auto regressive)ℎ𝑚
+ ← 𝑖(𝑒𝑚

+ ) 

Step 12 Negative data sample feature learning (auto regressive)ℎ𝑚
− ← 𝑖(𝑒𝑚

− ) 

Step 13 Initializing index score and length of sample sequence (𝑟, 𝑁𝑢) 

Step 14 Set equation (10) 

Step 15 Set equation (11) 

Step 16  Set equation (12) 

Step 17 Compute 𝐿𝑜𝑠𝑠 using equation (13) 

Step 18 Optimization parameters of neural network as well as TFEN 

Step 19 Else 

Step 20 Reduce the weighting information of TFEN 

Step 21 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑚, 𝑎𝑚 ← ℎ(𝑧𝑚) 

Step 22 Computation of 𝑁𝐿𝑜𝑠𝑠 = 𝐶𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑚, 𝑎𝑚) 

Step 23 Reduce 𝑁𝐿𝑜𝑠𝑠and TFEN optimization 

Step 24 End If 

Step 25 End For 

Step 26 End For 
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4 Performance Evaluation 
 

In the performance analysis of electricity theft detection, multiple models are compared using the State 

Grid Corporation of China (SGCC) dataset. Evaluation metrics such as Area Under the Curve (AUC) and 

Mean Average Precision (MAP) were used to assess the performance of models like CNN, SVM, and 

advanced hybrid models like GCN-CNN, DAFL-TD, and LSTM-RUSBoost the existing system is compared 

with the proposed model and the results are evaluated in the form of graphs and table. 

4.1 Dataset Details 
The dataset in this research [21] the State Grid Corporation of China (SGCC) and includes electricity 

consumption data from 42,372 customers over a period of 1,035 days, spanning from January 1, 2014, 

to October 31, 2016. Among these customers, 38,757 are classified as normal consumers, while 3,615 

are identified as electricity thieves. The dataset captures daily electricity usage patterns, allowing for the 

identification of abnormalities associated with electricity theft, where customers manipulate their 

consumption to reduce recorded usage. To improve the dataset's usability for analysis, preprocessing 

steps are performed to handle missing values and outliers, ensuring data quality. This preprocessing 

includes interpolation for missing values and outlier mitigation using the Three-sigma rule. The dataset 

is also normalized using Min-Max scaling to ensure consistency for machine learning model training. This 

comprehensive dataset is critical in training models aimed at detecting electricity theft by identifying 

irregular consumption patterns. 

4.2 Evaluation metrics 
The SGCC dataset served as the sole data source utilized in the trials conducted for this investigation. 

The model achieves an accuracy rate of 91.4% by classifying all users as normal, despite the presence of 

data imbalance. The primary reason for this is that the actual dataset comprises a significantly higher 

number of average user samples compared to instances of electricity thieves. Consequently, it would be 

overly simplistic to evaluate the model's quality solely based on its accuracy. In unbalanced classification 

tasks, model performance is frequently assessed using metrics such as mean average precision (MAP) 

and area under the curve (AUC). This enables the evaluation of the model's effectiveness in a manner 

that aligns more closely with established scientific principles. AUC serves as a critical evaluation metric 

for classification tasks. The AUC value represents the likelihood that a randomly chosen stolen sample 

will have a higher ranking than a randomly chosen normal sample. The formula for calculating AUC is 

given as follows, as shown below: 

AUC =
∑ Rankk −

M(1+M)

2k∈theftclass

M ∗ N
               (14) 

M denotes the total number of larceny samples, N denotes the total number of normal samples, and the 

rank value for each sample is indicated by rank. MAP is commonly utilized to evaluate the effectiveness 

of information retrieval. The system is designed to conduct a comprehensive evaluation of the model's 

ability to detect rare events in imbalanced datasets. Before the assessment procedure utilizing MAP, the 

labels of the test set are organized according to the prediction score. The selection of the top N labels is 

based on performance evaluation. The definition of accuracy is initially presented at n, denoted by  

P@n. 
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                                                                    P@n = 
Yn

n
                                      (15) 

Ynrepresents the number of correctly detected cases of electricity theft that occurred before location n. 

Next, we define MAP@N as the average of all labels, taking into account just the first N labels. 

P@nscenarios. Its value is determined using the following formula: 

 MAP@P =  
∑ R@pk

t
k=1

t
                                   (16) 

where r represents the quantity of individuals engaged in electricity theft within the leading N 

categories, andpk(k = 1 … … . t)indicates the corresponding ranking of each instance of electricity theft. 

The @ symbol in MAP@P The evaluation metric focuses on precision in identifying the top N most likely 

electricity theft cases, meaning that the metric assesses how accurately the model pinpoints the most 

probable instances of electricity theft from a ranked list. By concentrating on precision for the top N 

cases, the metric ensures that the model is particularly effective at identifying the highest-priority theft 

cases, minimizing false positives, and improving the efficiency of theft detection efforts. This targeted 

precision can help utility companies allocate resources more effectively to investigate and prevent 

theft., with  R@pkPresenting the accuracy at each position in the ranking. 

 

4.3 State-of-art methods 
This paper evaluates the performance of the proposed method with various state-of-art techniques, 

including CNN-LSTM, CNN-RF, LSTM-RUSBoost, Self-attention, and GCN-CNN, in addition to several 

classical techniques including SVM, OPF, MLP, and CNN.  

 

• SVM [22]: The noteworthy capability of SVM is attributed to the application of nonlinear separating 

hypersurfaces. The detection of electricity theft by this method has been thoroughly verified. 

 • OPF [23]: The entire graph is divided into optimal path trees in order to address the classification 

problem. Every user in the OPF (Optimum Path Forest) framework is considered a distinct node. The 

model uses the ideal route tree to classify these nodes.  

MLP [24]: A multilayer perceptron (MLP) is a kind of feedforward neural network that consists of an 

output layer, several hidden layers, and a superficial input layer. The MLP integrates several linear layers 

and activation functions to provide classification results. The MLP is specifically designed to evaluate 

input data that is arranged into 1035 columns in a single row.  

• CNN [25]: Convolutional neural networks (CNNs) are a subclass of artificial neural networks (ANNs) 

that perform convolutions in at least one of their hidden layers as opposed to utilizing standard matrix 

multiplication. WDCNN eliminates the CNN element while leaving all other settings same.  

• WDCNN [25]: This method accurately detects theft from both a depth and a breadth perspective by 

combining convolutional neural networks (CNN) with fully connected layers.  

• CNN-LSTM [26]: This method combines an architecture for long short-term memory (LSTM) with a 

convolutional neural network (CNN). The construction has seven hidden layers. Each of the first four 

layers has twenty feature maps that are employed in convolution operations. The remaining layers use 

10, 5, and 100 neurons, respectively, to perform the LSTM operations.  
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• LSTM-RUSBoost [28]: This method blends LSTM and RUSBoost. For feature refinement, the LSTM is 

utilized, and for data balancing, the RUSBoost method. The RUSBoost method performs better when 

parameter optimization is done using the bat algorithm.  

• CNN-RF [27]: This model was developed by fusing the CNN and RF classifiers. Before submitting the 40 

data points to the RF model for classification, the CNN examines them to produce new feature vectors.  

• Self-attention [29]: This model includes a multi-head self-attention mechanism connected to dilated 

convolution. Significant performance benefits are obtained by creating a binary channel and employing 

a 1 x 1 convolutional kernel to locate missing data.  

• GCN-CNN [30]: This method uses the K-Nearest Neighbors (KNN) methodology to statically generate 

the adjacency matrix by combining spectrum-based GCN with CNN.  

4.4 Results 
Table 1 performance evaluations of various model  

Metho

ds 

Train

ing 

ratio 

50% 

AUC 

Trainin

g ratio 

50% 

MAP@

100 

Trainin

g ratio 

50% 

MAP@

200 

Train

ing 

ratio 

60% 

AUC 

Trainin

g ratio 

60% 

MAP@

100 

Trainin

g ratio 

60% 

MAP@

200 

Train

ing 

ratio 

70% 

AUC 

Trainin

g ratio 

70% 

MAP@

100 

Trainin

g ratio 

70% 

MAP@

200 

SVM 0.718 0.686 0.597 0.731 0.719 0.607 0.727 0.724 0.607 

OPF 0.737 0.701 0.681 0.753 0.723 0.711 0.747 0.713 0.711 

MLP 0.743 0.919 0.888 0.747 0.909 0.873 0.754 0.923 0.877 

CNN 0.773 0.82 0.842 0.771 0.839 0.843 0.781 0.875 0.924 

WDCN

N 
0.776 0.94 0.896 0.792 0.955 0.929 0.786 0.968 0.932 

CNN-

LSTM 
0.801 0.798 0.823 0.81 0.812 0.812 0.807 0.81 0.810 

LSTM-

RUSB

oost 

0.861 0.804 0.882 0.803 0.803 0.818 0.793 0.793 0.793 

CNN-

RF 
0.808 0.869 0.872 0.878 0.878 0.870 0.822 0.879 0.876 

Self-

attentio

n 

0.868 0.881 0.824 0.888 0.888 0.871 0.826 0.892 0.872 

GCN-

CNN 
0.781 0.909 0.776 0.962 0.931 0.787 0.787 0.981 0.954 

DGRG

NN 

[ES] 

[31] 

0.844 0.902 0.859 0.964 0.939 0.849 0.849 0.963 0.926 

DAFL-

TD 
0.867 0.923 0.879 0.987 0.967 

0.867 
0.867 0.987 0.968 
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4.4.1 Training ratio @ 50% 
The comparison of AUC improvements across the methods highlights key performance enhancements as 

shown in figure 4. The largest increase is seen between CNN-RF and DGRGNN [ES], showing a significant 

boost in classification accuracy due to the use of graph-based techniques. Other notable improvements 

occur between MLP and CNN, as well as Self-attention and DAFL-TD, both indicating substantial gains in 

performance with these advanced models. Moderate improvements are seen when transitioning from 

GCN-CNN to CNN-LSTM and from DGRGNN [ES] to LSTM-RUSBoost, reflecting the benefits of 

incorporating temporal processing and better handling of imbalanced data. Smaller increases, such as 

those between CNN and WDCNN or WDCNN and GCN-CNN, suggest only minimal enhancements. 

Overall, the comparison shows a consistent rise in performance, with the most advanced hybrid models 

offering the greatest gains in AUC. 

 

 

Figure 4 AUC for training ratio @50% 

The comparison of MAP@100 and MAP@200 values across methods shows varying levels of 

improvement   training ratio @ 50 % as shown in figure 5. Notably, WDCNN achieves the highest 

MAP@100 (0.94), indicating strong performance, while MLP and CNN also exhibit high MAP scores at 

both cutoffs, reflecting their solid classification abilities. CNN-LSTM and LSTM-RUSBoost show stronger 

performance at MAP@200, with LSTM-RUSBoost improving significantly from MAP@100 to MAP@200. 

Conversely, methods like GCN-CNN perform well at MAP@100 but experience a decline at MAP@200, 

suggesting potential overfitting. DGRGNN [ES] and DAFL-TD show consistent and robust performance 

across both MAP scores, with DAFL-TD slightly outperforming DGRGNN at MAP@100. Self-attention 

shows solid performance at MAP@100 but decreases at MAP@200, while CNN-RF provides competitive 

performance, though data for MAP@200 is unavailable. Overall, WDCNN, MLP, and CNN perform 

consistently well, while methods like LSTM-RUSBoost and GCN-CNN show more variability depending on 

the evaluation metric. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
cc

u
ra

cy
_v

al
u

e

Method

AUC

Auth
ors

 Pre-
Proo

f



 

Figure 5 MAP @100 and 200 comparison of existing with proposed for training ratio @50% 

 

4.4.2 Training ratio 60% AUC 
The AUC comparison at a 60% training ratio highlights significant performance improvements across the 

methods as shown in figure 6. DAFL-TD achieves the highest AUC at 0.987, showcasing its superior 

classification capabilities. GCN-CNN and DGRGNN [ES] follow closely with AUCs of 0.962 and 0.964, 

respectively, indicating the strong performance of graph-based models. CNN-RF and Self-attention also 

perform well, with AUCs of 0.878 and 0.888, demonstrating the effectiveness of hybrid models. CNN-

LSTM shows a notable increase over traditional CNN architectures, achieving an AUC of 0.81. WDCNN 

improves over CNN, reaching 0.792, while LSTM-RUSBoost shows competitive results with an AUC of 

0.803. SVM, OPF, and MLP show lower performance, with OPF slightly outperforming MLP and SVM. 

Overall, the analysis reveals a clear trend of higher AUC values for more complex and hybrid models, 

with DAFL-TD and graph-based methods leading the performance. 
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Figure 6 AUC for training ratio @50% 

 

The MAP@100 and MAP@200 analysis at a 60% training ratio demonstrates notable improvements 

across models as shown in figure 7. DAFL-TD achieves the highest scores, with MAP@100 at 0.967 and 

MAP@200 at 0.978, indicating exceptional performance and consistency at both evaluation metrics. 

DGRGNN [ES] and GCN-CNN follow closely, with DGRGNN [ES] achieving 0.964 at MAP@100 and 0.939 

at MAP@200, and GCN-CNN showing strong performance with 0.962 and 0.931, respectively. WDCNN 

and CNN continue to perform well, with WDCNN scoring 0.955 at MAP@100 and 0.929 at MAP@200, 

slightly outperforming CNN. Hybrid models like CNN-RF and Self-attention show competitive results, 

especially CNN-RF with 0.878 and 0.87. Meanwhile, CNN-LSTM and LSTM-RUSBoost show more 

balanced but lower performance across both metrics, indicating moderate improvement. OPF and MLP 

display reasonable MAP scores, particularly OPF's steady improvement from MAP@100 to MAP@200. 

SVM shows the lowest values, suggesting limited effectiveness compared to more advanced models. 

Overall, DAFL-TD and graph-based models lead in terms of accuracy and consistency across both 

evaluation metrics. 
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Figure 7 MAP @100 and 200 comparison of existing with proposed for training ratio @70% 

 

 

4.4.3 Training ratio @ 70% 
The AUC analysis  in figure 8 reveals a steady progression in model performance, with DAFL-TD achieving 

the highest AUC at 0.867, indicating its superior classification ability. DGRGNN [ES] follows with an AUC 

of 0.849, demonstrating the effectiveness of graph-based methods. GCN-CNN and Self-attention also 

perform well, with AUCs of 0.826 and 0.822, respectively, reflecting the strong potential of hybrid 

models. CNN-RF shows a significant improvement over simpler models, reaching 0.807. Traditional deep 

learning models like CNN, WDCNN, and CNN-LSTM exhibit moderate improvements, with AUCs ranging 

from 0.781 to 0.787, while LSTM-RUSBoost slightly outperforms them with an AUC of 0.793. MLP, OPF, 

and SVM present lower AUCs, with SVM trailing at 0.727. Overall, the analysis shows consistent 

improvements in AUC as the models evolve in complexity, with DAFL-TD and DGRGNN [ES] leading the 

way. 
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Figure 8 AUC for training ratio @70% 

The MAP@100 and MAP@200 comparison at a 70% training ratio reveals significant performance 

improvements, particularly in advanced models as shown in figure 9. DAFL-TD achieves the highest MAP 

scores, with 0.987 at MAP@100 and 0.956 at MAP@200, demonstrating exceptional accuracy and 

consistency. GCN-CNN follows closely with 0.981 at MAP@100 and 0.954 at MAP@200, reflecting the 

strong capability of graph-based methods. WDCNN and CNN also perform well, with WDCNN slightly 

outperforming CNN, especially at MAP@100 (0.968 vs. 0.955). While CNN-RF, Self-attention, and 

DGRGNN [ES] show solid performance, DGRGNN [ES] experiences a slight drop at MAP@200, indicating 

a small decline in consistency. Models like CNN-LSTM and LSTM-RUSBoost maintain lower MAP scores 

across both metrics, while MLP shows good performance, especially at MAP@100 (0.923). OPF and 

SVM, on the other hand, show the lowest results, with minimal improvements. Overall, DAFL-TD, GCN-

CNN, and WDCNN dominate in performance, while more traditional models lag behind in comparison. 
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Figure 9 MAP @100 and 200 comparison of existing with proposed for training ratio @70% 

4.5 Comparative Analysis 
The performance of the proposed Deep Adaptive Feature Learning for Theft Detection (DAFL-TD) 

model was evaluated and compared with several state-of-the-art methods, including traditional 

machine learning models (SVM, OPF, MLP), deep learning-based models (CNN, CNN-LSTM, WDCNN), 

and hybrid models (Self-attention, GCN-CNN, CNN-RF, LSTM-RUSBoost). The evaluation metrics used 

were Area Under the Curve (AUC) and Mean Average Precision (MAP) at different training ratios (50%, 

60%, and 70%) to ensure a comprehensive performance comparison. The proposed DAFL-TD model 

demonstrates significant improvements across all key metrics compared to the next best-performing 

models: 

AUC: The 13.84% improvement in AUC underscores the DAFL-TD model’s ability to differentiate 

between theft and non-theft instances more effectively than other models. A higher AUC suggests a 

more reliable and accurate theft detection system that can better handle real-world complexities, 

including evolving theft behaviors. 

MAP@100: While the improvement in MAP@100 is marginal at 0.61%, this still highlights DAFL-TD’s 

precision in detecting the top 100 most suspicious cases. In practical terms, this means that the DAFL-TD 

model provides slightly more accurate theft detection rankings, which can be critical for resource 

allocation in theft investigations. 

MAP@200: The 3.46% improvement in MAP@200 demonstrates that DAFL-TD not only excels at 

detecting the top 100 cases but also maintains high precision when identifying the top 200 cases. This 

shows that DAFL-TD’s performance is consistent and scalable across larger datasets, which is crucial for 

electricity theft detection at scale. 
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Conclusion 

In this study, we introduced a novel deep learning framework, Deep Adaptive Feature Learning for Theft 

Detection (DAFL-TD), aimed at improving electricity theft detection in smart grids. The proposed 

framework leverages both labeled and unlabeled data, utilizing a combination of Temporal Feature 

Extraction Network (TFEN) and Adaptive Feature Learning Network (AFLN) to enhance feature 

representation and classification accuracy. By incorporating advanced data augmentation techniques 

and robust feature extraction methods, the model effectively handles imbalanced datasets and 

fluctuating time-series data. Experimental results demonstrated that the DAFL-TD model outperforms 

state-of-the-art methods in terms of accuracy and  reducing false positives, as validated on the SGCC 

dataset. This research provides a scalable, efficient, and adaptive solution for real-time electricity theft 

detection, offering utilities a valuable tool to mitigate financial losses and improve grid stability. Future 

work may explore integrating real-time data streams and further optimizing the model for broader 

deployment in smart grid environments. 
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