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Electricity theft in smart grids poses a significant threat to curi, leading to billions in financial
losses and grid instability worldwide. Traditional Jalacti etho uding hardware-based solutions
labeled data, and lack scalability. Deep
s such as overfitting to static datasets
patterns and new cyberattacks, requiring frequent
ext, we propose a novel deep learning framework,

Abstract

The architecture of DAFL-TD integr
temporal dependencies in eleciggi
leverages both labeled and u
of DAFL-TD lies in its abilj
representation withou
grid applications. Extd uations on the State Grid Corporation of China (SGCC) dataset
demonstr ) eves a 13.84% improvement in AUC compared to state-of-the-art
models, alo bor precision as measured by MAP metrics. These results underline the efficacy
of DA scalable, and efficient solution for real-time electricity theft detection,
the resilience and security of smart grids.

Grids, Electricity Theft Detection, Deep Learning, Temporal Feature Extraction,
re Learning

troduction
The smart grid (SG) is a cutting-edge improvement over conventional electricity grid systems that aims
to improve and regulate grid operations, guarantee dependable energy distribution, and evaluate the
system's overall performance. The transmission and distribution networks, the advanced metering
infrastructure (AMI) network, the electricity producing stations, and the system operator (SO) are the
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parts that make up the SG architecture. The purpose of the AMI is to enable effective two-way
communication between the smart meters (SMs) placed in residential properties and the System
Manager (SM) [1], [2]. Unlike traditional monthly billing, SG collects comprehensive electricity use data
from SMs, which is collected at intervals of a few minutes. It then sends this information to the SM using
AMI. These signals may be used by the SM for effective control of electricity generation, load forecasting
and monitoring, dynamic price computation for billing usage, and demand response managem
Figure 1 presents the smart grid.
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gure 1 smart grid

only by the usage of energy. Energy losses usually occur in energy
enerating systems. Technical Losses (TLs) and Non-Technical Losses
rical losses [1]. Net total losses (NTLs) are defined as the difference

distribution, transmis
(NTLs) are the t

lining, t and other electricity plant components. The calculation or assessment of non-
techn ising from deliberate manipulation of reported electricity use figures is a major
s to incorrect billing, which may have serious negative financial and economic effects
ns across the world. According to available statistics, non-technical problems cost the US,
ada, respectively, $6 billion, $173 million, and $100 million annually in financial losses [3].
more, a recent research conducted across 138 countries shows that non-technical losses and
electricity theft cause utilities to lose $101.2 billion in revenue each year [4]. In addition to causing
monetary losses, electricity theft raises the possibility of blackouts by causing instability and
disturbances in the grid [5]. Improving the electrical grid's intelligence and resistance to these kinds of
assaults is crucial. This has led to the research on electricity theft detection (ETD) as one of the major
research area for enhancing the smart grid performance [3][4].




Traditionally, methods based on hardware have been used to detect electricity theft. These systems
achieve high levels of precision through the use of specialist equipment for the investigation of
customer behavior or the state of electrical networks [4]. It did not fulfill electricity firms' criteria
because of its high implementation and maintenance costs, low universality, and limited scalability.
Data-driven approaches are becoming the industry standard for electricity theft detection because they
make use of a wide range of real-time metrics. In order to determine consumption patterns, historij
data is often analyzed using machine learning techniques [6] [7]. Electricity theft may be detect
integrating algorithms into an intelligent management platform.In order to address practlcal is
artificial intelligence (Al) has been incorporated into the electrical sector in a number of
Artificial Intelligence (Al) improves the cost-effectiveness of electricity by adjusting to

weather-related electricity generation. The integration of supplementary renewable e to
the smart grid offers notable benefits. This method improves the resilience g s it
easier to identify equipment malfunctions and forecast electricity output recent years
machine learning (ML) techniques have been increasingly applied to effects of
electricity theft and related cyberattacks in smart grids (SGs). Both sup and unsupervised ML

approaches, including deep learning (DL) models, have shown promise getecting theft patterns.
However, these approaches come with several limitations. First, DL models gce ¥@kcally trained on static
datasets, which can lead to overfitting, making them adept at g specific patterns but less
effective at generalizing to broader and evolving theft beha ond, adapting these models to
changing consumption patterns and emerging cyberattggkd

computationally intensive, particularly when datasets typical in smart grid
bor challenge, causing significant financial
limited by the difficulty and cost of obtainin® irmed theft cases, which usually require physical
inspections or audits. Moreover, these approachcS@aruggle to capture the complex temporal patterns
inherent in electricity consumption d leading tO¥Maccurate detection of subtle or evolving theft
behaviors. As smart grids generate unts of data, there is an urgent need for a deep learning-
based solution that can adapy unlabeled data to automatically learn and identify
lies in the need for a deep, adaptive learning framework
real-time, improving detection accuracy, minimizing false
smart grid environments. This requires moving beyond traditional
istiCated, data-driven approach based on deep learning architectures

capable of detecting electrici
positives, and scaling effg
methods to develop a

[11] [12].

tio d contribution

j growing concern in smart grids, leading to substantial financial losses and grid
igh costs, and the complexity of evolving theft patterns. With utilities losing billions annually
grids generating vast amounts of real-time data, there is a pressing need for advanced,
e detection models. This motivates the development of a deep learning framework capable of
leveraging both labeled and unlabeled data to accurately detect and mitigate electricity theft in real-
time, improving efficiency and reducing false positives. This research introduces a novel deep learning
framework, Deep Adaptive Feature Learning for Theft Detection (DAFL-TD), aimed at improving
electricity theft detection in smart grids. The key contributions are:




1. Novel Framework: We propose DAFL-TD, which integrates labeled and unlabeled data, enabling
effective detection of electricity theft while adapting to changing consumption patterns.

2. Hybrid Model: The framework combines a Temporal Feature Extraction Network (TFEN) with
an Adaptive Feature Learning Network (AFLN) to enhance feature representation and
classification accuracy.

3. Data Augmentation and Robustness: Our model employs advanced data augmentatjg
techniques to handle noise, imbalanced datasets, and fluctuating time-series data, ens
robustness in real-world environments.

4. Performance Improvement: Experimental results on the SGCC dataset show tha
outperforms state-of-the-art methods, achieving higher accuracy and reduced fals
detecting electricity theft

2 Related Work

In [11], the authors presented a methodology for predicting electricity tF

y supply companies to
nexpected electricity

demonstrated through the experi results derived from a real ETD dataset provided by the
State Grid Corporation of Chi ] details an investigation conducted by the authors into
instances of electricity theft in th ributed generation (DG) sector. By conducting a thorough
examination of distribu ) units that utilize renewable energy sources, certain consumers

ation to generate a misleading perception of heightened electricity

| detection model is constructed using a double deep Q network (DDQN) and a
QN), employing various deep neural network topologies. The global detector alters
ion patterns of current customers and increases the complexity of security protocols in

ively identifying new consumption patterns. In the referenced work [15], the author employs
convolutional neural networks (CNN) and long short-term memory (LSTM) architectures to extract
abstract features from electricity usage data. The prototype for each class is generated by calculating
the parameters of the abstract feature, which is subsequently utilized to predict the labels of unknown
data.




[16] presents an examination of the effects of backdoor assaults in ETD for the first time, along with a
proposed feature attention distillation defensive method. To enable adversaries to bypass ETD, it is
essential to conduct a thorough analysis of the attack surface during the current model training process.
Malicious backdoors can be integrated for specific triggers. The evaluation of six widely used ANN-based
models is subsequently conducted. Research indicates that attackers can successfully bypass the back

(source domain) to another with fewer samples (target domain), addressing the issue of d
ETD. In [18], the authors proposed a novel method combining Omni-Scale CNN (OS-CN

presented in [19], utilizing a deep active learning (DAL) scheme that red¥
maintaining detection accuracy. By integrating CNN learning with Monte Cal
active query, this approach efficiently selects valuable instances for :
correlation between water and electricity (W&E) usage is analyzgg @?‘or a new ETD method. By
using the mutual information coefficient (MIC) to model W&E glations and applying a wavelet
clustering algorithm, the authors propose a multisource at clusters power distribution
users based on their MIC values.

y th etection, existing models struggle with
olving consumption patterns. Current approaches
often require costly and time-consuming retra@& to address new theft behaviors and cyberattacks.
There is a clear need for a more flexible, scalable tion that can generalize across dynamic patterns
and efficiently handle large-scale sm id data without frequent retraining.

Despite advancements in machine learning
overfitting to static datasets and lack adaptal

3 Proposed Metho

The proposed study aims at de ing odel that focuses on using information including labelled as
well as unlabeled data P " ing between pattern that are normal as well as electricity theft
while considering eled information samples. The study proposes a model termed as Deep
Adaptive Featur : eft Detection (DAFL-TD). The characteristics of this DAFL-TD model

to tas ough tuning of model metrics. For further enhancement considering
classific tha s to the usage of information, the proposed model uses anTFEN, aAFLN model for

traini S W assification unit, which is described in the figure 2 given below.
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Figure 2 Adaptive Feature Learning for Theft Detection (DAFL-TD)

3.1 Pre-processing Module

The input information used by the model is matched usi
marked and the inputs (z;) belongs to F, th rked. , Fyy = z/_, is an energy usage
sequence having V, zy, a; as length expressig bels of the samples. Z*"9™M€M1 denotes
the time sequence one and Z%“9MeMz2js | soQ Pent theWOther time sequence both have distinct
improvised intensities that are developed usi a augmentation. The possible expressions that are
retrieved using the TFENhg, the attributes of h;\@ae updated by predicting the using the AFLN loss
function. Considering the supervised sification m®thod, the TFEN along with the weights that are
prior trained is refined via the labe ation and is lastly classified using a conversion node. The

classification loss function is f({ N below
IFnl (1)

Ne ~IFy ) - log (i)
K=1

t uts@z,., a, )belongs to Fy that are

tion for cross entropy is denoted as Nijqgsifcation, the main aim of this is the
duction of divergence MN.

utilizes various augmentation methods that developed different perturbations to the source
information as well as generation of datasets from various outlooks. This method helps in AFLN learning
to increase consistency of different perspectives as well as learning of invariant attribute expressions. It
also uses methods of augmentation including scaling, negating, time period shift and permutations.




The information is improvised using noise by addition of random noises to the sequential
information leading to a Gaussian distribution. This aids the proposed model in generalization of noisy
information better in real-time. The conversions on the scale are utilized for enhancement of
information by scale adjustment of the information. The rearrangement of information is termed as
permutation used to rearrange the structure of data that aids the model is learning various techniques

of arranging information. Positive information sets are converted to negative samples that aids
proposed model to better identify the various classes. Time period shifting is used to improvq

information by transfer of information within the time sequence that helps the model to gath ey
fluctuating patterns at different instances of time.
3.2 Temporal Feature Extraction Network (TFEN)

Considering a group a electricity sequential information tha 3 denoted as
(z, af )belongs to Fy, the proposed model TFENhy is utilized for g r retNQual of local
attributes. The TFEN a network of stacked attributes that has four layer: yer has a 1D layer of

convolution, layer for batch normalization as well as an activation layer (ReL'Sgnd lastly a pooling layer.
The concluding layer is linked to a softmax for basic tasks of classificatior?s od is comparison to

a completely linked layer has increased efficiency while considerj ar@Meters and the capabilities of
retrieving attributes of  higher levels. Assume ave electricity  datasets
(z1,AY),(Z2,4?), ..., (Zf,j,Ap)belongs to Sequencev?, having Zl =
(21,23, ..., Z,)belongs to TY*Vdenotes a set of elegtrici d ha ength and AP belongs to [1,0]

t of labels for various classifications. The

hg, = Pooling( r(Y © z + d))) (2)

Here, BatchNor is usq layer of Batch Normalization, the parameters Y and d represent
the attributes of the al model, the Pooling represents MaxPooling layer that utilizes
unction ReLU is situated between the Pooling andBatchNor layer.

Learning Network (AFLN)

The cod i AFLN training uses Deep Learning Adaptive Sequential Feature Network (ASFN)
ntion scheme that is termed as Adaptive Sequential Feature Network (ASFN) in the
y. It is observed to have increased benefits for feature retrieval as compared to traditional

f five built up unidirectional Gated Recurrent Units. This is a unique neural network that is
nt having parameters of smaller sizes having a usage that is easier in comparison to Long Short-
Term Memory. Consider v as a time period step, the input information for the TFEN of ASFN Units
z belongs to TP*N, where the vector size is denoted as P and the sequential time step has a length of N.
The sequential inputs are of various lengths having particular batches for the training procedure, the




ASFN will not omit them but will describe a sequential input using batch z, belongs to ']I‘DXPXN, here
the measure of the sequence that is longest is expressed as N. Here, Nis patched with 0 while ending.

In this case, we assume z, as the input data, the concealed vector of the prior time step denoted j,_; is
also utilized as the input. The ASFN is evaluated using the concealed vector j, for time period v. This is
formulated as given below:

tv = 5 ((d; + Zvyzt) + (d]t +jv—1th)) (3)
wy = 8 (@2 + 272 + (& +joa )

e, = tanh ((dg +2,Y7) + tv(df +j"‘1yfe)) ,

Jo=Wyojy1+t(1—wy)oe, (6)

ation function & is sigmoid given as 6(z) =
(1+e7%)71, the gates denoting update, re as well as candidate is given as w,,t, and e,
respectively. The weight vectors that can be traine given as Y and the bias vectors are given as d;.
Consider a sequence z belongs to Tl the equations 3 to 6 are utilized by the TFEN to result in the
attention scheme of ASFN uses compressed expression
he previous Adaptive Sequential Feature Network (ASFN)
obal parameters. The attention scheme utilizes parameters
or evaluation of the attention vector e belongs to T*?8 which is

Considering the above equations 3,4,5,6,

e= I(E (Z:Em_ﬂejv)_l) 7

Th ov en equation (7) uses a concealed layer for the TFEN network for computation of the
ent ector as well as the final time period step of the TFEN concealed layer jy_4 that encapsulates
om the layers N — 1 that follows. After obtaining the attention vector e, a new contextual
attribute vector is developed by combining e and jy_; that is used for tasks of classification. This
method focuses on joining the last concealed layer of the encoded layer, hence improvising the diversity
of information. The benefits of the Adaptive Sequential Feature Network included its acceptance of
different length of inputs. The quantity of data that is grasped by jy_; could differ depending on the




length of the sequences, exposing the model susceptible to different sequential lengths. To resolve this,
the proposed model uses a set of parameters that are shared at the process of training, this gives
context to the concealed state of the TFEN. The usage of the concealed state is performed directly or in
a combined manner with the contextual state is determined by these parameters. On computation of
contextual vector e, the evaluation of e’ denoting auxiliary contextual vector is performed along with
the evaluation of the attention scheme output:

e’ = Hy(e, jy-1) (8)

Outputy = [e; €]

Here, the Adaptive Sequential Feature Network (ASFN) is express Ftention that utilizes
contextual vector e and concealed state of prior jy_; as input. Two complet nked layers are used for
classification as well as activation layer of RelLU is used for the output layer. ly a softmax layer is
utilized for probability distribution given as: @ = Softmax(H,(Re Hlﬁputattention)))).

The benefits of using the Adaptive Sequential Featureg ASFN), it depends only on the
last time period step that decreases the complexity of co . effects that are caused by the

The AFLN training unit is an essential t of the proposed model Deep Adaptive Feature
Learning for Theft Detection (DAFL-TD) The tricity load that is unlabelled denoted as

z} belongs to Fy, as a prior task u supervised learning for AFLN learning. While considering the
process of augmentation, the da n has two various types of improvisations for inputs Z¥
to result in Z¥and ZX2. Consj s of augmentation, the proposed model can concatenate
them to result is adequate neg as well as positive pairs of information samples. The TFEN considers

these segments in rel ;
given as bk = h(Z)(Z,’,‘ ! h@(ZX). Further using the inputs bX* and b%~ in the AFLN training
unit.

from the samples that are both negative as well as positive, the historical_seq is first
e Adaptive Sequential Feature Network stack along with the attention scheme. The
quential Feature Network (ASFN) retrieves the possible attributes eX* denoting the
quence which is then used to generate the future_sequence S¥*having length N, viaa

sequential string of non-linear conversion elements.

On using Noise Contrastive loss function, we estimate the mutual data of sequences that have been
predicted such as S** and S*~. The complete procedure uses the network via this function and the
parameters of the network are also updated for further learning.




The figure 3 given below shows e** used for predicting the sequential attribute for time ranging

from K,to (K, + N,) post eh indexing K,. We assume that the prediction is expressed as
(SK*, 8K, . SEMN), insider the similar range of index [Ky, Ky, + N,,],S5* belongs to by, The network

parameters estimated using the mutual data of S¥* and S¥~as

hon (eff-'-: Sf-lfm) = exponent((Y, (91@+))VS7I"C-ITm (9)

a completely linked layer is encoded to result in S¥~ and S¥* belon

prediction.

Dimensional
Conversion

Sample Set
(Positive)

Sample Set
(Negative)

Ny = —(M)~* (10)

-1
log | (B((Ym(e")VSEE)) (Z E((m(eE"))" SEim )

p belongs to Py ryn,,

m=1



Nyg = —(M)~! (11)

M -1
D log| (B(CHn(ek s +m>)<zpbewngm E((meﬁ-))@;m))

m=1

3.4 Adaptive Loss Training Module

Here, the AFLN loss for prediction is given as Nyfzand Ny that is utilized to increase t
predicted as well as real expressions of the same sets of samples while redds
predicted expressions as well as for other data sets within the batch. A cg
for increasing the similarity for samples that are positive and reduced t
negative. ek+ande7’f‘ are both introduced by the Adaptive Sequential
conversion block network sequentially having weights that are shared, this res8
given as: similarity(w,x) = ((w ) wlllxID~ 1) where w, x denot e tWo vectors ([lw]l||x]D.

The concluding formulation for the loss function is as given beIn@

P
Ny = log (IE(Slmllarlty(hk
(12)
1) (D 0w BsimilONg(hE. 1/ 0)

For the equation 12 given abo ce 15 05ed to denote the loss function for single pairs, the function
1, while ois not equatl to k. There is a coefficient used for
v, this is mainly used to increase the output of softmax. Hence, the

Network, the enter a
in a similarity function

used for indication is
temperature that is d
negative log of s a
relation to S W extual which is given as :

Nipss = V1 (NI}FE + NV_E) + V2 " Nee (13)
re, ¥1 y, are scalar constant hyper parameters used to show the relating weights for various
loss ry time period. The combination of the AFLN loss relating to time as well as the AFLN loss

xtually, has increased significant attributes that are distinct for positive as well as negative samples
for [€arning, hence the attribute TFEN Completely linked layer and the parameters of the neural network
for AFLN learning of the ASFN is updated. This is described in detail in the algorithm 1 given below




Algorithm 1

Step 1

Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8
Step 9
Step 10
Step 11
Step 12
Step 13
Step 14
Step 15
Step 16
Step 17
Step 18
Step 19
Step 20

Step 21

Step 2

Detection of Electricity theft Electricity patterns using AFLN Learning

Input: Batch dimension P,structure V, TFEN attribute function h, constant
@, TFENfunctioni (autoregressive)

Output: Optimal ideal or approximately ideal state of neural network

For dataset sampled mini batch {z,,,}0,_1, {a,,}F=1 do
For allm belongs to [1, ..., P]do
If TrainingPhase is self-supervised learning do

Set the information augmentation function v~V, v'~V

Generation of Positive data samples z;, « v(z,,)
Generation of Negative data samples z,, < v(z,,)
Attribute feature learning for positive data samples ? h

Attribute feature learning for negative dat em < h(zy)

Positive data sample feature learning (gt essiht < i(e})

Negative data sample feat _
Initializing index score 4 @

t sampl
Set equation (10)

to regressive)h,, < i(e;,)

equence (1, N,)

Set equation (11)

Set equationg1!

Compute S usi ation (13)
Op, P eters of neural network as well as TFEN
Els

ce the weighting information of TFEN
Predictions,,, a,, < h(z;,)
Computation of N ,s; = CrossentropyLoss(Predictions,,, a,,)
Reduce N;,ssand TFEN optimization
End If
End For

End For



4 Performance Evaluation

In the performance analysis of electricity theft detection, multiple models are compared using the State
Grid Corporation of China (SGCC) dataset. Evaluation metrics such as Area Under the Curve (AUC) and
Mean Average Precision (MAP) were used to assess the performance of models like CNN, SVM, ||

advanced hybrid models like GCN-CNN, DAFL-TD, and LSTM-RUSBoost the existing system is comq
with the proposed model and the results are evaluated in the form of graphs and table.

4.1 Dataset Details Q

The dataset in this research [21] the State Grid Corporation of China (SGCC) and Aiifud Qs ity
consumption data from 42,372 customers over a period of 1,035 days, spag nuary I, 2014,
to October 31, 2016. Among these customers, 38,757 are classified as g bume hile 3,615
are identified as electricity thieves. The dataset captures daily electricity §
identification of abnormalities associated with electricity theft, where Cg@®mers manipulate their
consumption to reduce recorded usage. To improve the dataset's usability foN@alysis, preprocessing
steps are performed to handle missing values and outliers, ensyd ti}uali y. This preprocessing
includes interpolation for missing values and outlier mitigatio e Three-sigma rule. The dataset
is also normalized using Min-Max scaling to ensure consisteggcy chille learning model training. This
comprehensive dataset is critical in training models ai at d P clectricity theft by identifying
irregular consumption patterns.

4.2 Evaluation metrics
The SGCC dataset served as the sole data sou ilized in the trials conducted for this investigation.
The model achieves an accuracy rate of 91.4% by cCN@ifying all users as normal, despite the presence of
data imbalance. The primary reason his is that the actual dataset comprises a significantly higher
number of average user samples cofpa instances of electricity thieves. Consequently, it would be
overly simplistic to evaluate the solely based on its accuracy. In unbalanced classification
ssed using metrics such as mean average precision (MAP)
enables the evaluation of the model's effectiveness in a manner
ed scientific principles. AUC serves as a critical evaluation metric
alue represents the likelihood that a randomly chosen stolen sample

tasks, model performance is
and area under the curyg
that aligns more close
for classification tasks.
will have i

M(1+M
Zketheftclass Rankk - ( 2 )
AUC = N (14)

otes total number of larceny samples, N denotes the total number of normal samples, and the
ank or each sample is indicated by rank. MAP is commonly utilized to evaluate the effectiveness
mation retrieval. The system is designed to conduct a comprehensive evaluation of the model's
ability to detect rare events in imbalanced datasets. Before the assessment procedure utilizing MAP, the
labels of the test set are organized according to the prediction score. The selection of the top N labels is

based on performance evaluation. The definition of accuracy is initially presented at n, denoted by
P@n.



P@n=-" (15)
Ynrepresents the number of correctly detected cases of electricity theft that occurred before location n.
Next, we define MAP@N as the average of all labels, taking into account just the first N labe
P@nscenarios. Its value is determined using the following formula:
Yk-1R@py

MAP@P = ==—— (16)

electricity theft cases, meaning that the metric assesses how accuratel€
probable instances of electricity theft from a ranked list. By concentratin® precision for the top N
cases, the metric ensures that the model is particularly effective at identifyi e highest-priority theft
cases, minimizing false positives, and improving the efficiency of theft %:tion efforts. This targeted
precision can help utility companies allocate resources mor ely to investigate and prevent
theft., with R@pyPresenting the accuracy at each position ig t in

4.3 State-of-art methods

This paper evaluates the performance of
including CNN-LSTM, CNN-RF, LSTM-RUSBoos
classical techniques including SVM, OPF, MLP, and 8

2d methd&d with various state-of-art techniques,
-attention, and GCN-CNN, in addition to several

e SVM [22]: The noteworthy ca
hypersurfaces. The detection

is attributed to the application of nonlinear separating
ectrici t by this method has been thoroughly verified.

e OPF [23]: The entire g is W@ided into optimal path trees in order to address the classification
problem. Every user i PR OP¥mum Path Forest) framework is considered a distinct node. The

3 eal route tree to classify these nodes.
on (MLP) is a kind of feedforward neural network that consists of an

model uses
n layers, and a superficial input layer. The MLP integrates several linear layers

MLP [24]:

is arranged into 1035 columns in a single row.
utional neural networks (CNNs) are a subclass of artificial neural networks (ANNSs)
onvolutions in at least one of their hidden layers as opposed to utilizing standard matrix

WDCNN eliminates the CNN element while leaving all other settings same.
[25]: This method accurately detects theft from both a depth and a breadth perspective by
comblning  convolutional neural networks (CNN) with fully  connected layers.
e CNN-LSTM [26]: This method combines an architecture for long short-term memory (LSTM) with a
convolutional neural network (CNN). The construction has seven hidden layers. Each of the first four
layers has twenty feature maps that are employed in convolution operations. The remaining layers use
10, 5, and 100 neurons, respectively, to perform the LSTM operations.




® LSTM-RUSBoost [28]: This method blends LSTM and RUSBoost. For feature refinement, the LSTM is
utilized, and for data balancing, the RUSBoost method. The RUSBoost method performs better when
parameter optimization is done using the bat algorithm.
* CNN-RF [27]: This model was developed by fusing the CNN and RF classifiers. Before submitting the 40
data points to the RF model for classification, the CNN examines them to produce new feature vectors.
¢ Self-attention [29]: This model includes a multi-head self-attention mechanism connected to dilg
convolution. Significant performance benefits are obtained by creating a binary channel and empls
a 1 X 1 convolutional kernel to locate missing
¢ GCN-CNN [30]: This method uses the K-Nearest Neighbors (KNN) methodology to static @ 5

the adjacency matrix by combining spectrum-based GCN with CNN.

4.4  Results
Table 1 performance evaluations of various model

Trainin | Trainin
g ratio | g ratio
70% 70%
MAP@ | MAP@
100 200

0.724 0.607
0.747 | 0.713 0.711
0.754 | 0.923 0.877
0.781 | 0.875 0.924

0.786 | 0.968 0.932

Train | Trainin | Trainin | Train | Trainin | Trainin
ing g ratio | g ratio |ing g ratio | g ratio
ratio | 50% 50% ratio | 60% 60%

50% MAP@ | MAP@ | 60% MAP@ ’
AUC | 100 200 AUC | 100

SVM 0.718 | 0.686 0.597 0.719
OPF 0.737 | 0.701 0.681
MLP 0.743 | 0.919 0.888
CNN 0.773 | 0.82 0.842

X}’DCN 0.776 | 094  |0.896

CNN-
LSTM

Metho
ds

0.801 | 0.798 0.812 0.812 0.807 | 0.81 0.810

LSTM-
RUSB | 0.861
oost

CNN-
RF
Self-

0.803 0.818 0.793 | 0.793 0.793

0.878 |0.878 0.870 0.822 | 0.879 0.876

0.824 0.888 | 0.888 0.871 0.826 | 0.892 0.872

0.776 0.962 | 0.931 0.787 0.787 | 0.981 0.954

0.859 0.964 | 0.939 0.849 0.849 | 0.963 0.926

0.879 0.987 | 0.967 0.867 0.867 | 0.987 0.968




4.4.1 Training ratio @ 50%
The comparison of AUC improvements across the methods highlights key performance enhancements as
shown in figure 4. The largest increase is seen between CNN-RF and DGRGNN [ES], showing a significant
boost in classification accuracy due to the use of graph-based techniques. Other notable improvemeg

GCN-CNN to CNN-LSTM and from DGRGNN [ES] to LSTM-RUSBoost, reflecting the
incorporating temporal processing and better handling of imbalanced data. Smaller increfik
those between CNN and WDCNN or WDCNN and GCN-CNN, suggest only mini en
Overall, the comparison shows a consistent rise in performance, with the m n hybrid T
offering the greatest gains in AUC.

AUC /

oo oo
NN LR

Accuracy_value
o000
ORrRLNWPMA~UL

ethod

The comp P@100 and MAP@200 values across methods shows varying levels of
improv ini tio @ 50 % as shown in figure 5. Notably, WDCNN achieves the highest

ing their solid classification abilities. CNN-LSTM and LSTM-RUSBoost show stronger
at MAP@200, with LSTM-RUSBoost improving significantly from MAP@100 to MAP@200.

potential overfitting. DGRGNN [ES] and DAFL-TD show consistent and robust performance
both MAP scores, with DAFL-TD slightly outperforming DGRGNN at MAP@100. Self-attention
shows solid performance at MAP@100 but decreases at MAP@200, while CNN-RF provides competitive
performance, though data for MAP@200 is unavailable. Overall, WDCNN, MLP, and CNN perform
consistently well, while methods like LSTM-RUSBoost and GCN-CNN show more variability depending on
the evaluation metric.
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Figure 5 MAP @100 and 200 comparison of existin

4.4.2 Training ratio 60% AUC
The AUC comparison at a 60% training ratio high significant performance improvements across the
methods as shown in figure 6. DAFL-ID achieves highest AUC at 0.987, showcasing its superior
classification capabilities. GCN-CN DGRGNN [ES] follow closely with AUCs of 0.962 and 0.964,
respectively, indicating the stro of graph-based models. CNN-RF and Self-attention also
perform well, with AUCs of and demonstrating the effectiveness of hybrid models. CNN-
LSTM shows a notable increase r traditional CNN architectures, achieving an AUC of 0.81. WDCNN
improves over CNN, rg hile LSTM-RUSBoost shows competitive results with an AUC of
0.803. SVM, OPF, and lower performance, with OPF slightly outperforming MLP and SVM.
Overall, thg an e 2@fear trend of higher AUC values for more complex and hybrid models,
with DAFL- d gra ased methods leading the performance.
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Figure 6 AUC for training ratio @50% ,
The MAP@100 and MAP@200 analysis at a 60%_trainia¥ rati strates notable improvements
across models as shown in figure 7. DAFL-TD 3 S he @ghest scores, with MAP@100 at 0.967 and

MAP@200 at 0.978, indicating exceptiona
DGRGNN [ES] and GCN-CNN follow closely,

e an nsistency at both evaluation metrics.
NN [ES] achieving 0.964 at MAP@100 and 0.939
ance with 0.962 and 0.931, respectively. WDCNN
yng 0.955 at MAP@100 and 0.929 at MAP@200,

especially CNN-RF with 0.878
balanced but lower performa

anwhile, CNN-LSTM and LSTM-RUSBoost show more
etrics, indicating moderate improvement. OPF and MLP
OPF's steady improvement from MAP@100 to MAP@200.
ting limited effectiveness compared to more advanced models.
3d models lead in terms of accuracy and consistency across both

SVM shows the lowes
Overall, DAFL-TD and
evaluation metri
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4.4.3 Training ratio @ 70%

The AUC analysis in figure 8 reveals a dy progression in model performance, with DAFL-TD achieving
the highest AUC at 0.867, indicatin r classification ability. DGRGNN [ES] follows with an AUC
of 0.849, demonstrating the efji#t raph-based methods. GCN-CNN and Self-attention also
perform well, with AUCs of 6 an 2, respectively, reflecting the strong potential of hybrid
models. CNN-RF shows 3illiiki provement over simpler models, reaching 0.807. Traditional deep
learning models like C , Md CNN-LSTM exhibit moderate improvements, with AUCs ranging
from 0.781 to 0.787, RUSBoost slightly outperforms them with an AUC of 0.793. MLP, OPF,
and SVM s with SVM trailing at 0.727. Overall, the analysis shows consistent
improvamen e models evolve in complexity, with DAFL-TD and DGRGNN [ES] leading the
way.
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Figure 8 AUC for training ratio @70% ,
The MAP@100 and MAP@200 comparison at a 70% traini veals significant performance
improvements, particularly in advanced models as shown @h¥ig . DABL-TD achieves the highest MAP
scores, with 0.987 at MAP@100 and 0.956 at gsa de ating exceptional accuracy and

and 0.954 at MAP@200, reflecting the

performance, especially at MAP@100 (0.923). OPF and
Its, with minimal improvements. Overall, DAFL-TD, GCN-
hile more traditional models lag behind in comparison.

across both metrics, while MLP s
SVM, on the other hand, show
CNN, and WDCNN dominate i rform
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4.5 Comparative Analysis
The performance of the proposed Deep A
model was evaluated and compared with

eature Learning for Theft Detection (DAFL-TD)
al state-of-the-art methods, including traditional
machine learning models (SVM, OPF, MLP), deep@arning-based models (CNN, CNN-LSTM, WDCNN),
and hybrid models (Self-attention, NN, CNN-R¥, LSTM-RUSBoost). The evaluation metrics used
were Area Under the Curve (AUC) verage Precision (MAP) at different training ratios (50%,
60%, and 70%) to ensure a ¢ siveferformance comparison. The proposed DAFL-TD model
demonstrates significant imp ment
models:

AUC: The 13.84% im in AUC underscores the DAFL-TD model’s ability to differentiate
between theft Ftances more effectively than other models. A higher AUC suggests a

ng the top 100 most suspicious cases. In practical terms, this means that the DAFL-TD
s slightly more accurate theft detection rankings, which can be critical for resource

00: The 3.46% improvement in MAP@200 demonstrates that DAFL-TD not only excels at
detecting the top 100 cases but also maintains high precision when identifying the top 200 cases. This
shows that DAFL-TD’s performance is consistent and scalable across larger datasets, which is crucial for
electricity theft detection at scale.




Conclusion

In this study, we introduced a novel deep learning framework, Deep Adaptive Feature Learning for Theft
Detection (DAFL-TD), aimed at improving electricity theft detection in smart grids. The proposed

fluctuating time-series data. Experimental results demonstrated that the DAFL-TD m
state-of-the-art methods in terms of accuracy and reducing false positives, 3

work may explore integrating real-time data streams and further opti
deployment in smart grid environments.
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