
Journal Pre-proof 

FPGA-Based Image Compression for Wireless Communication 
Networks using - CRAN Architecture 

Lakshmisha S K, Madhusudhan M V, Goutami Chenumalla, Impa B H, 

Bhavana A and Laxmi Singh 

DOI: 10.53759/7669/jmc202505176 

Reference: JMC202505176 

Journal: Journal of Machine and Computing. 

Received 30 March 2025 

Revised from 02 May 2025 

Accepted 29 July 2025 

Please cite this article as: Lakshmisha S K, Madhusudhan M V, Goutami Chenumalla, Impa B H, 

Bhavana A and Laxmi Singh, “FPGA-Based Image Compression for Wireless Communication 

Networks using - CRAN Architecture”, Journal of Machine and Computing. (2025). Doi: https:// 

doi.org/10.53759/7669/jmc202505176.  

This PDF file contains an article that has undergone certain improvements after acceptance. These 

enhancements include the addition of a cover page, metadata, and formatting changes aimed at 

enhancing readability. However, it is important to note that this version is not considered the final 

authoritative version of the article. 

Prior to its official publication, this version will undergo further stages of refinement, such as 

copyediting, typesetting, and comprehensive review. These processes are implemented to ensure 

the article's final form is of the highest quality. The purpose of sharing this version is to offer early 

visibility of the article's content to readers. 

Please be aware that throughout the production process, it is possible that errors or discrepancies 

may be identified, which could impact the content. Additionally, all legal disclaimers applicable to the 

journal remain in effect. 

© 2025 Published by AnaPub Publications. 



FPGA-Based Image Compression for Wireless Communication 

Networks using - CRAN Architecture 
LAKSHMISHA S K1, MADHUSUDHAN M V2, GOUTAMI CHENUMALLA3, IMPA B H4 

BHAVANA A5,  LAXMI SINGH6 
1, 2, 4, 5 Department of CSE, Presidency University, Bengaluru, India 

3 Department of CSE, BMSIT&M Bengaluru, India 
6Department of ECE, Rabindranath Tagore University, Bhopal India 

E-mail: 1 lakshmisha.sk@presidencyuniversity.in, 2 mv.madhu@gmail.com
3 goutamich@bmsit.in  4 impabh.18@gmail.com, 5 bhavana.a.research@gmail.com, 

6 laxmi15singh@gmail.com 

ABSTRACT 

This work introduces an Field Programmable Gate Array (FPGA) based image compression method utilizing Huffman 

coding (FICH) to enhance the efficiency of wireless networks, particularly within the Cloud-based Radio-Access-Network 

(C-RAN) architecture. The FICH method addresses image compression challenges in C-RAN, offering faster compression 

and decompression times compared to existing FPGA approaches. The findings include significant improvements in Bit-

Error-Rate (BER), Symbol-Error-Rate (SER), and Error-Vector Magnitude (EVM), with average BER, SER, and EVM 

improvements of 37.85%, 24.64%, and 24.56% for fewer RRHs, and 96.10%, 91.13%, and 48.72% for more RRHs, 

respectively. Additionally, the FICH method demonstrated reduced encoding and decoding times, averaging 0.0545 

seconds versus 0.0853 seconds when compared with existing approach. The approach also ensures robust and scalable 

compression, optimizing resource utilization with FPGA-based hardware acceleration. These advancements support the 

growing data demands of modern wireless networks. 

Keywords: Encoding, Decoding, Image Compression, FPGA, Huffman coding, Radio Access Network 

1. INTRODUCTION

The growing popularity of technological advancement in wireless technology and online streaming of 

videos has prompted the development of more compact wireless networks capable of handling the ever-

increasing data rates. Hence, because of this, there has been increased Inter-Cell-Interference (ICI) due to the 

decreasing range among Remote-Radio-Units (RRUs) [1]. One promising structure for dealing with the 

dominating ICI includes the Cloud-based Radio-Access-Network (C-RAN), which allows the Central-

Processing-Unit (CPU) to execute joint pre-coding during downlink transmission along with joint de-coding 

during uplink reception [2]. Through the use of virtualization, C-RAN design is able to manage an unlimited 

number of RRUs within the network's infrastructure. Figure 1 shows the components of a C-RAN framework, 

which includes RRU networks, a pool of Base-Band-Units (BBUs) including a transportation network known 

as fronthaul. Every RRU has a fixed allocation from the shared BBU pool. The BBU is responsible for 

managing the computational resources of RRU networks, which links different wireless devices, and it has 

powerful storage and computing abilities. 

The C-RAN is a novel and innovative design for 5G wireless networks and mobile networks. It can 

meet a lot of needs, including lowering system costs, improving the utilization of energy, increasing 

throughput, and decreasing latency [3]. In comparison to the costly and time-consuming Micro Base-Station 

(MBS), the cost, area, and effort required for setting up RRUs using C-RAN is far lower. In addition, it enables 

MBSs along with users to save energy by transferring operations that use a lot of power to a neighboring cloud 

[4]. In addition, RRUs associated with the very same cloud can accomplish better spectral effectiveness and 

have easier implementation of synchronized multi-point transmissions [5]. On top of that, C-RAN platforms 

can minimize the latency that comes from doing different kinds of processes. For instance, handovers can be 

executed more quickly within the cloud than among Base-Stations (BS) using Open-RAN (O-RAN) [6]. Auth
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Figure 1. Architecture of Cloud-based Radio-Access-Network (C-RAN). 

 

Communication between the RRUs and BBUs can take place through cellular, millimeter-wave, or 

optical fiber connections, and using other approaches also. Moreover, the optical fiber connection allows for 

the low-cost deployment of cellular and millimeter communications. Nevertheless, they result in increased 

latency along with reduced bandwidth [7]. Furthermore, the links between BBU and RRU is called the 

fronthaul. In order to set up C-RAN, the most important consideration is the ability needs of the fronthaul link. 

Among the most extensively researched methods in uplink C-RAN, for instance, is Quantization-and-Forward 

(QF) [8]. Before sending the signal with quantization to a CPU over the limited capability fronthaul, every 

RRU processes and quantifies it. Finding the best compression strategy using limited resources while 

minimizing distortion-error is difficult. Also, if there are a lot of observations, then the task will become even 

more challenging [9]. This issue was formalized in [10] using only one RRU and Wyner-Ziv compressing 

approach with specific assumptions, for instance utilizing Gaussian channels or signals. But this compression 

strategy is difficult to apply in real-world networking systems because of the high computational costs and 

latency caused by an indefinite block size coding. 

Recent years have seen widespread usage of Deep-Learning (DL) and Artificial-Intelligence (AI) to 

address a wide range of practical issues. Some of the increasingly cutting-edge DL algorithms utilized 

for handling recognizing problems in various settings is Convolutional-Neural-Networks (CNNs) [11]. 

Compared to traditional algorithms, CNNs provide better accuracy. On the other hand, a lot of processing and 

memory capacity is needed for the convolution process [12]. Given the high-power consumption utilization by 

CNN, this presents a computational issue to the CPU. On the other hand, hardware acceleration technologies 

like Application-Specific Integrated-Circuit (ASIC), Graphical-Processing-Unit (GPUs), and Field-

Programmable Gate-Array (FPGAs) are being employed to boost CNN throughput [13]. Latency is lowered 

and energy usage can be reduced when CNNs are implemented using hardware acceleration technologies. 

GPUs remain among the most popular processors because they enhance CNN inference and training. The 

problem is that GPUs use too much power, resulting in an important indicator of system efficiency in today's 

digital devices [14]. Although they are more expensive and take longer to manufacture, ASIC architectures 

have minimal power consumption along with substantial throughput. But FPGAs boost hardware resource 

utilization, allowing for hundreds of thousands of floating-point computation processing units with reduced 

energy consumption. Hence, FPGA-based acceleration devices, similar to ASICs, are a cost-effective and 

efficient substitute that provides great adaptability and throughput with minimal power usage. 

Advancements in FPGA-based hardware acceleration have prompted new developments in methods 

aimed at enhancing CNN accuracy. More complicated and time-consuming convolution process settings are 

needed for state-of-the-art CNN algorithms. In order to achieve a balance between efficiency and precision, 

several object recognition sequence techniques are being designed. These include the You-Only-Look-Once 

(YOLO) approach [15], Reconfigurable-CNN approaches [16], [17]. Nevertheless, there are limitations when 

using CNN edge-computing given its complexity and demands of additional operations. There has been a lot 

of interest in CNN compressing models approaches as a potential solution for these issues. CNN compressing 

approach streamlines the design of DL approach by decreasing overall parameters, computation, bits 

and storage requirements needed for inference, and reducing overall complexity. The utilization of edge 

devices helps in rapid response time, limited memory utilization, and minimal power consumption. Model 

compression in DL has the potential to streamline network inference, decrease system storage requirements, 

and mitigate system energy usage. By lowering the cost of edge devices, enhancing effectiveness, and 

enhancing environmentally friendly sustainability, model compression can boost system competitiveness in 
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the forthcoming wireless network applications scenarios with significant DL approaches [18]. From all the 

above issues presented, the main aim of this work is as follows 

• Understand the current FPGA-based image compression approaches for wireless networks and its 

application in order to design an approach for fronthaul compression for next-generation wireless 

networks.  

• Present a FPGA-based image compression using Huffman approach (FICH) which consumes less 

time for image compression for next-generation wireless networks (C-RAN). 

• Evaluate and compare the proposed work with existing approaches in terms of Bit-Error-Rate (BER), 

Symbol Error-Rate (SER) and Error-Vector Magnitude (EVM).  

The manuscript is organized in the following way. In Section II, the FPGA-based image compression 

approaches are discussed in detail. Further, in Section III, a fast FPGA-based image compression approach 

using Huffman for C-RAN is presented. In Section IV, the fast FPGA-based image compression approach has 

been evaluated and compared with existing approaches. Finally, in Section V, the conclusion of the work and 

future work is discussed. 

 

2. LITERATURE SURVEY 

In this section, the existing FPGA-based image compression approaches for wireless networks are 

presented. M. Zhang et al., in [19], presented a compression optimizing approach for CNNs using FPGA. They 

considered the ImageNet dataset for this study. In this compression approach, initially, they reduced the overall 

parameters of CNN using AlexNet. Further, they utilized two approaches, i.e., quantization and peak-pruning 

for reducing loss and achieving better compression rate. The evaluation was done on a FPGA board. From 

results it was seen that the compression approach compressed an image and reduced the size of original image 

by 3.58%. Y. Barrios et al., in [20], presented a compression approach for hyperspectral image for sending 

images from space. This work utilized High-Level-Synthesis (HLS) approach for increasing the compression 

rate. Moreover, this work has presented a reconfigurable-multi-accelerator framework called as ARTICo3 for 

deployment of their compression approach. For evaluation of their work, they utilized AVRIS where they 

found that their approach can reach PSNR of an average of 75.03%. M. Ledwon et al., in [21], this work focused 

on lossless-data compression where they utilized FPGA-based accelerators for deflate decompression and 

compression. For encoding and decoding, this work utilized Huffman, LZ77 and byte packer. Findings show 

that this work achieved 11% higher throughput during compression in comparison with existing approaches 

.  

S. Jang, in [22], presented a fast-processing CNN which utilizes the acceleration using FPGAs. The 

CNN utilizes the parallel and pipeling process from the FPGA for making the compression faster. The work 

has been compared with different DL approaches like ResNet-50, MobileNetV1 and others. Finding show that 

the CNN achieved faster compression rate in comparison with existing approaches, i.e., achieved accuracy of 

68.65%. Also, they tested different DL approaches on FPGA where they found that MobileNetV1 achieved 

better accuracy for compression, i.e., 67.53% of accuracy. K. Pranitha, in [23], presented a compression 

approach using Discrete-Wavelet-Transform (DWT) using FPGA. The DWT utilized an entropy encoding 

approach for reducing spatial redundancy among the wavelet coefficients and compress using de-correlated 

data having higher compression. This work utilized Binary Arithmetic-Entropy Coder (BAEC) for designing 

lossless-compression. Findings show that the approach achieved better frequency and throughput for 

compression. T. Ali, in [24], compared the different approaches for making the process of image compression 

faster. In this work they considered FPGA, CPU and GPUs for making the process faster. They utilized two 

DL algorithms, i.e., Scale-Invariat Feature-Transform (SIFT), ResNet50 and MobileNetV2. Findings showed 

that the GPU and FPGA reduced the time for compression and energy.  

 

Y. Su et al., in [25], presented a neural network called as ResBinESPCN for enahcning the image. 

Their architecture reduced energy consumption at both software and hardware level. Also, the memeory 

utilization was reduced. Findings showed that when the ResBinESPCN execution was done on CPU it took 

more time and utilized more resources. When utilized FPGA, the ResBinESPCN reduced time, reduced 

resource and energy consumption. Also, they achieved a Peak-Signal to Noise-Ratio (PSNR) of 27.30. M. B. 

Altman et al., in [26], they have done a survey on Machine-Learning (ML) approaches which utilized FPGAs 

for implementation. This work mainly surveys on the work related to the healthcare technologies. In this article 

they came to ac conclusion that by utilizing FPGAs, the image compression, image resolution can be improved.  

 

R. Ghodhbani et al., in [27], presented an approach for compression and decompression of images. 

This work mainly utilized FPGA for faster process. They utilized the concept of pipeline pause process for 

resolving the problem of coding-errors. Also, a parallel-block compression approach was proposed for 
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compression and reducing the time. The findings show that it achieves better compression ratio and reduced 

the frequency of CPU. 

 

 H. Sun et al., in [28], main focus was to utilize the learned image-compression approach and FPGA 

for reducing power and achieving faster image compression. They proposed an algorithm where they used 

concept of parallelism. They have evaluated their work using Kodak datasets which is open accessible on 

Kaggle. The results show that the proposed approach was 1.5 times better in comparison with existing 

approaches. From all the above study it is seen that most of the work utilize the FPGA for hardware 

acceleration, but very less work has been done for image compression for wireless network. Hence, in this 

work we present a model for image compression for wireless networks. The model is discussed in detail in the 

next section. 

 

3. METHODOLOGY 

This study is mainly focused on providing FPGA-based image compression using Huffman approach 

(FICH) for wireless network where the compression of image is faster in comparison with existing approaches. 

This work utilizes an encoding approach which can effectively detect the errors during the process of encoding 

in order to boost the image compression process and provide better reconstructed image to the receiver. 

Architecture diagram of the proposed FICH method is as shown in the Figure 2.  

 
Figure 2. Proposed FICH method architecture diagram 

 

This work utilizes the C-RAN architecture (Figure 1) for efficiently compressing the image using 

fronthaul compression. In C-RAN, consider that each RRHs has 𝑂 antenaas which receive images from various 

users.  

 

Consider an image represented as 𝑎𝑜 which goes to the 𝑜𝑡ℎ antenna, then the image can be represented 

using the matrices. This is represented using Eq. (1) 

 

𝑎𝑜[𝑝] = ∑ 𝑧𝑤[p] × 𝑗𝑜,𝑤[p] + 𝑦𝑜[p]𝑤 , where 𝑜 ∈ 1,2,…,𝑂, 𝑝 ∈ 0,1,2,… (1) 

 

In Eq. (1), 𝑧𝑤 represents frames of Orthogonal-Frequency-Division-Multiplexing (OFDM) as bits 

received by 𝑤𝑡ℎ device, 𝑗𝑜,𝑤 represents the noise which is attained during the transmission from the 𝑤𝑡ℎ device 

to 𝑜𝑡ℎ antenna, 𝑦𝑜 represents the gaussian-noise attained when the image is present in 𝑜𝑡ℎ antenna and (×) 

represents the convolution. The overall matrix for the image can be represented using Eq. (2).  

 

𝐴 = [

𝑎1[0] 𝑎2[0] … 𝑎𝑂[0]

𝑎1[1] 𝑎2[1] … 𝑎𝑂[1]
⋮ ⋮ ⋱ ⋮

𝑎1[𝑃 − 1] 𝑎2[𝑂 − 1] … 𝑎𝑂[𝑃 − 1]

] 

(2) 

 

In Eq. (2), 𝑃 represents the bits of images where the compression needs to be performed. The 

𝑎1, 𝑎2 … , 𝑎𝑘 matrix is defined using Eq. (3). 
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𝑎𝑘 = [𝑎𝑘[0] 𝑎𝑘[1] … 𝑎𝑘[𝑃 − 1]]𝑼 (3) 

 

In Eq, (3), , 𝑘 ∈ {1,2, … , 𝑂} provide better correlation, hence, 𝐴 is evaluated using low-rank estimation 

approach. The estimation approach is done using Eq. (4) 

 

𝐴 = 𝐴0 + 𝐺 (4) 

 

In Eq. (4), it is considered that after the low-rank estimation, 𝐴0 ∈ 𝔼𝑃∗𝑂 belongs to the matrix where 

there exists no noise in the image. Also, the low-rank estimation matrix is considered to have data of image in 

the form of bits represented as 𝑎, behaviour of RRH channel 𝑘. In Eq. (4), similar to 𝐴𝑜, 𝐺 is also considered 

as 𝐺 ∈ 𝔼𝑃∗𝑂 where it defines the gaussian-noise. Using Eq. (4), the bits of image are compressed and sent 

towards BBU using the fronthaul. Fig-3.3 for decompression process, the image is decompreesed in the similar 

way how the compression has been done for achieving 𝐴 at the BBU. 

 

 This study mainly aimed at providing faster image compression process for wireless network (C-

RAN); hence it is important to decrease the matrix-size utilizing the low-rank estimation approach. From Eq. 

(4), it is known that low-rank matrix 𝐴0 ∈ 𝔼𝑃∗𝑂, hence it can be said that 𝑃 ≫ 𝑂 > 𝑁. From this hypothesis, 

the 𝐴 can be reformulated as Eq. (5) and represented as 𝐴′′. 

 

𝐴′′ = argmin
ℛ𝑎𝑛𝑘(𝐴)=𝑁

‖𝐴 − �̂�‖𝐻 (5) 

 

The Eq. (5) utilizes normailization approach, i.e., Frobebius distance approach (‖. ‖𝐻). Also, the 𝐴 ̂ 
is represented using Eq. (6). 

 

𝐴 ̂ = 𝑊𝑁𝛽𝑁𝑋𝑁
𝐽
 (6) 

 

Where 𝑊𝑁, 𝛽𝑁, and 𝑋𝑁
𝐽
 are represented using Eq. (7), Eq. (8) and Eq. (9) respectively. 

 

𝑊𝑁 = [𝑤1 𝑤2 … 𝑤𝑁] (7) 

𝛽𝑁 = 𝒟𝑖𝑎𝑔[𝛼1 𝛼2 … 𝛼𝑁] (8) 

𝑋𝑁
𝐽 = [𝑥1 𝑥2 … 𝑥𝑁] (9) 

 

The 𝐴 ̂ represents decomposition process [29] where 𝐴 ̂ defines 𝐴′′ to conjugate transposed matrix 

(. )𝐽. The Eq. (7), 𝑤1 , 𝑤2, … , 𝑤𝑁 represents eignevectors at leftside and 𝑤𝑁 ∈ 𝔼𝑃. In Eq. (8) 𝛼1, 𝛼2, … , 𝛼𝑁 
represents decomposition values diagonally. In Eq. (9), 𝑥1, 𝑥2, … , 𝑥𝑁 represents eignevectors at rightside and 

𝑥𝑁 ∈ 𝔼𝑃. Using the noise matrix presented in Eq. (4), 𝑁 can be obtained using [30]. By utilizing the 

decomposition, the proposed approach obtains 𝑁 using 𝑋𝑁
𝐽
 and then it is multiplied to 𝑋𝑁

𝐽
 so that the 

transformed matrix 𝐴 can be obtained. From this operation, the image bits 𝑎𝑘 concering 𝑂 towards the 𝑁 has 

no correlation to image. Hence, this operation can be formulated using a matrix as 𝑅𝑁 which is presented in 

Eq. (10). 

 

𝑅𝑁 = 𝐴𝑋𝑁 = 𝑊𝑁𝛽𝑁 (10) 

 

In Eq. (10), 𝑅𝑁 is considered as 𝑅𝑁 ∈ 𝔼𝑃∗𝑁 and 𝑁 ∈ {1,2, … , 𝑛}. The 𝑅𝑁 represents the matrix which 

has no correlation with image. Further, the matrix 𝑅𝑁 is compressed by utilizing the Huffman approach [31] 

and transmitted further towards BBU utilizing the fronthaul. Th 𝐴′′ is obtained at BBU can be represented 

using Eq. (11). 

 

𝐴′′ = 𝑅𝑁𝑋𝑁
𝐽 = 𝑊𝑁𝛽𝑁𝑋𝑁

𝐽
 (11) 

 

Further, the overall image bits transmitted to fronthaul of C-RAN wireless network is represented 

using Eq. (11). 

 

Τ = 𝑂𝑁 + 𝑃𝑁 (12) 

 

The total compression for the image bits 𝑎𝑜 is evaluated using Eq. (12). 
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𝒞ℛ𝒫 =
𝑂 × 𝑃

𝑁[𝑂 + 𝑃]
 

(13) 

 

4. RESULTS AND DISCUSSION  

                  

In the proposed FICH architecture, the Compression Time is evaluated by combining both the 

Encoding and Decoding phases. The performance is assessed using metrics such as Bit Error Rate (BER), 

Symbol Error Rate (SER), Error Vector Magnitude (EVM), and the number of Remote Radio Heads (RRHs). 

The evaluation is conducted using datasets of varying sizes, including a few vs. many images and video 

sequences, with experiments performed on standard datasets like the Kodak dataset and the Ultra Video Group 

(UVG) dataset [32] [33]. The UVG dataset consists of 16 video sequences having a resolution of 2160p. All 

the sequences have 600 frames except two having 300 frames. 
 The duration of each sequence varied from 2.5s to 12s. Also, the frame rate for the sequences varied 

from 120fps (frame-per-second) to 50fps. The contrast of the images were mixed, i.e., high and low. For all 

the sequences, the bit-depth was set at 8 and 10. Some sequences had complex structure and some had smooth 

structure. For the evaluation of the results, three metrics were considered, i.e., Bit-Error-Rate (BER), Symbol-

Error-Rate (SER) and Error-Vector-Magnitude (EVM). This work was compared with FPGA Codec-System 

(FCS) approach [28] which evaluated their work on Kodak dataset.  

 

                The results achieved by the FICH approach is presented in Figure 2, where the input image is 

presented in Figure 2 (a), compressed image is presented in Figure 2 (b), and decompressed image is presented 

in Figure 2 (c).  

 

   
(a) Input (b) Compressed Image (c) Decompressed Image 

   
(a) Input (b) Compressed Image (c) Decompressed Image 

   
(a) Input (b) Compressed Image (c) Decompressed Image 

Figure 2. Sample Output 

 

Further, from the above results, the BER has been evaluated. The BER results achieved by FICH were 

compared with FCS approach and are presented in Figure 3. In Figure 3, the results are presented by considering 

small number of RRHs for transmission. From the results, it is seen that FICH achieved an average better BER 

improvement rate by 37.85% in comparison with FCS approach. Further, when considering more number of 

RRHs, the FICH approach achieved an average better BER improvement rate by 96.10%. Auth
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Figure 3. BER for less RRHs. Figure 4. BER for more RRHs. 

Further, the SER results achieved by the FICH approach are presented in Figure 5 and Figure 6 

respectively. In Figure 5, the SER for considering small number of RRHs for transmission is evaluated where 

it was seen that the FICH approach achieved better SER improvement rate by 24.64%. In Figure 6, the SER 

was evaluated for large number of RRHs where it was seen that the FICH approach achieved better SER 

improvement rate by 91.13%. The FICH approach was also evaluated in terms of EVM. The results are 

presented in Figure 7 and Figure 8 for small and large number of RRHs respectivley. In Figure 7, the EVM for 

small number of RRH are evaluated where the FICH achieved an average better EVM improvement rate of 

24.56%. In Figure 8, the EVM for large number of RRH are evaluated where the FICH achieved an average 

better EVM improvement rate of of 48.72%. 

  
Figure 4. SER for less RRHs. Figure 5. SER for more RRHs. 

  
Figure 6. EVM for less RRHs. Figure 7. EVM for more RRHs. 

 

The time taken for the execution of both the FICH and FCS approach is presented in Table 1 and 

presented graphically in Figure 8, Figure 9 and Figure 10. In this evaluation, we have evaluated 3 sequences 

of UVG dataset where encoding time and decoding time were evaluated. The findings from the table show that 

the FICH approach achieves faster image compression in comparison with existing FCS approach.  
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Figure 8. Encoding time for 3 sample video 

sequence. 

Figure 9. Decoding time for 3 sample video 

sequence. 

 
Figure 10. Total timeevaluation for 3 sample video sequence.  

 

Table 1. Encoding and Decoding time comparison with FCA. 
Images Encoding Time Decoding Time Total Time 

Video Sequence FICH FCS FICH FCS FICH FCS 

1 0.025 0.027 0.0024 0.0027 0.028 0.03 
2 0.066 0.073 0.0032 0.0522 0.0694 0.125 

3 0.063 0.097 0.0023 0.0034 0.0662 0.101 

AVG 0.051333333 0.065666667 0.002633333 0.0361 0.054533333 0.085333333 

 

 

CONCLUSION  

This research presented an FPGA-based image compression method utilizing the Huffman coding 

approach (FICH) aimed at enhancing the efficiency of wireless networks, specifically focusing on the Cloud-

based Radio-Access-Network (C-RAN) architecture. The proposed FICH approach effectively utilized the 

low-rank estimation and Huffman coding techniques to compress image data efficiently, maintaining 

robustness against noise and errors. By leveraging FPGA-based hardware acceleration, the FICH approach 

optimized the use of computational resources, ensuring lower power consumption and higher throughput. This 

aligns with the growing demand for energy-efficient and high-performance solutions in next-generation 

wireless networks. The FICH method was developed to address the challenges of image compression within 

C-RAN, offering faster compression and decompression times compared to existing FPGA approaches. The 

FICH approach demonstrated significant improvements in Bit-Error-Rate (BER), Symbol-Error-Rate (SER), 

and Error-Vector Magnitude (EVM) when evaluated with both small and large numbers of Remote Radio 

Heads (RRHs). The method achieved an average BER improvement rate of 37.85% and 96.10% for fewer and 

more RRHs, respectively. Similarly, the SER and EVM improvements were substantial, with SER showing 

enhancements of 24.64% and 91.13%, and EVM improving by 24.56% and 48.72% for smaller and larger 

RRHs, respectively. The total execution time, including encoding and decoding processes, was notably reduced 

with the FICH approach. The average encoding and decoding times were significantly lower compared to the 

FCS approach, making the FICH method a faster alternative for real-time applications in wireless networks. 

Specifically, the average total time for image compression using FICH was 0.0545 seconds, compared to 

0.0853 seconds for FCS, highlighting a clear improvement in efficiency. The findings of this study pave the 
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way for more efficient and reliable wireless network infrastructures, supporting the increasing data demands 

of modern communication systems. In future work, the compressed image can be enhanced using DL approach. 
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