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Abstract

uses Or'mortality in the world and there
dels D at the early stages of development.

Heart disease (HD) remains one of thg

®

Wavelet Transform (DWT) tg ] oise and normalize signals to provide data of the
necessary quality and make@i€m dy to use in a model. In feature extraction, Principal
Component Analysis (PCA ori is used to diminish dimensions and maintain most

) f heart disease decision. After feature extraction, the data
undergoes a Neura model which is optimized by Real-Parameter Numerical
Optimizatjon 1 . Since ROA has a high convergence rate and stability in locating
global sol it IS@lected. As a way of enhancing the model, hyperparameter tuning- Bayesian
optimi ncrease the overall predictive accuracy. Key performance indicators of
the accuracy 97%, precision 95%, Sensitivity 94% and specificity92% .The
i hows good performance in all of them, which proves its potential in achieving
rly prediction of heart diseases. The proposed neural network model optimized by

Optimization (PO) algorithms.

Keywords: HD prediction; Optimization algorithms; ROA; HO Algorithm; PO Algorithm; DWT;
external parameter tuning; Statistical analysis

1. Introduction
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Detecting HD has undergone transformative evolution, influenced by advancements in
health technology and scientific computing. Basically, in history, diagnostic approaches relied on
fundamental tools such as ECG and echo, providing core insights into cardiac function and
structure. In the mid-20th century saw the introduction of heart ultrasound, transforming
diagnostics by enabling non-invasive imaging of the heart's chambers, valves, and blood flow
dynamics through ultrasound waves. This innovation marked a significant leap in cardiac care
facilitating more precise assessments and earlier detection of structural abnormalities
functional impairments. As cardiovascular science progressed, nuclear imaging techniques
single-photon emission computed tomography (SPECT) and positron emission tomogrg
emerged as pivotal tools for evaluating myocardial perfusion, metabolism, and tisg % '

clinical evaluation, advanced imaging modalities, laboratory tests, arm
Electrocardiography remains fundamental for assessing electrical activj khe heart, diagnosing
arrhythmias, and detecting signs of myocardial ischemia indicativ,

evaluates cardiac response to exertion or induced stres
tolerance and coronary artery function. Cardj
invasive, offer unparalleled precision in g
directly saw a coronary artery and
procedures are enabled by interventional

lluable insights into exercise
d heart angiography, albeit

; gists to perform therapeutic interventions like
angioplasty, stent placement, or even coronarWgatery bypass grafting (CABG) when necessary.
Such interventions are critical way tgrestore the ™Wod flow to the heart muscle and mitigating the
risks associated with obstructi ary artery disease. Beyond structural assessments,
biochemical markers like tropgg
insights into myocardial inj ion, and overall cardiovascular risk. These biomarkers
play a pivotal role in dj cute coronary syndromes and monitoring disease progression,

dela¥ diagnosis until disease progression has occurred. Moreover, the accuracy
iagnostic tests can vary, leading to false positives or negatives that impact
aking and patient outcomes. Accessibility to advanced diagnostic technologies
challenge, particularly in underserved regions or healthcare settings with limited

ologies and research strive. Artificial intelligence (Al) and data driven model are poised to
revolUtionize cardiac diagnostics by consider vast datasets from ECGs, imaging studies, and
patient records, enhancing diagnostic accuracy and predicting cardiovascular risk with
unprecedented precision. Telemedicine platforms and remote monitoring devices enable real-time
assessment of cardiac parameters, facilitating early detection of irregular heartbeats, heart failure
exacerbations, and other cardiac events. Genomics and personalized medicine are undoing the




genetic underpinnings of cardiovascular diseases, paving the way for tailored treatment
approaches based on individual genetic predispositions and molecular profiles. Wearable devices
equipped with ECG monitors and activity trackers offer continuous monitoring of heart rhythm
and physical activity, providing valuable insights into cardiac health and enabling timely
intervention. Non-invasive imaging innovations, including magnetic resonance imaging (MRI)
and advanced echocardiography techniques, continue to evolve, offering higher resolution
imaging and greater detail in assessing cardiac structure and function. These advancement Q

instrumental in early detection, disease monitoring, and guiding therapeutic strategies to opti
outcomes for patients with HD.

collaborative efforts, the pursuit of more effective diagnostic stra ¥ promises to reduce
cardiovascular morbidity and mortality, ultimately advancing glob ardiovascular health
initiatives.

Problem statement

HD stands as one of the foremost contrjbuto gl tality rates, underscoring the
urgent need for precise and timely predictig s (3Qghance interventions and elevate patient
outcomes. Existing diagnostic methods % xhibi itations in accuracy, often missing
subtle signs of cardiovascular risk. This Ency emphasizes the critical role of advanced

is the optimization of algorithms cagable of effeS®vely managing the diverse and nuanced data
inherent to HD diagnosis. Achie imal algorithm performance involves meticulous tuning
of model parameters to maxirgg accuracy across varying patient profiles and medical
histories. Furthermore, ro ration methods are essential to refine data quality,

ensuring that predictivegi

complexities necessitgie Ive efforts across disciplines, blending expertise in healthcare,

data science, and CORAD gal technology. Innovations in predictive ideal offer promising
ST c tools that empower healthcare. In early profession of individuals

are hejght D. By facilitating proactive and targeted preventive measures, these

advanc to mitigate the impact of cardiovascular ailments and enhance overall public

e the HD prediction accuracy: To address the challenge of accurate HD prediction, this
valuates and optimizes three distinct optimization algorithms—ROA, HO, and performance
and refining them through free framework tuning, the study aims to significantly improve the
accuracy of predictive models beyond conventional diagnostic methods.



(i) To integrate advanced preproduction techniques: The study utilizes the DWT
algorithm during the pre-processing phase to enhance the accuracy and relevance of
the input data. This approach aids in minimizing noise and extracting essential features,
thereby strengthening the reliability of predictive models in identifying subtle markers
associated with HD risk.

(ii) To enable informed healthcare decisions: Through detailed statistical evaluation agd
analysis of important performance indicators like sensitivity and specificity, the
equips healthcare practitioners with meaningful insights. This enables more acc
decision-making regarding patient management and intervention approac
dependable predictive outcomes.

(iii) To advance interdisciplinary collaboration: Through the integratigll of in
healthcare, data science, and computational methods, the st TOS@rs disciplinary
collaboration. This collaboration is essential for deve @ valid2Wng reliable
predictive models that can effectively assist healthcare pro™gicIn early identification
and proactive management of HD, thereby improving overal

2. Literature Survey

Nicnt outcomes.

In order to identify and screen for congenital H common and complicated
congenital malformation, echocardiography is crucial {#*a inggardiac anatomy and function.
However, due to instinctive fetal moveme [faS@ in ullfasound images, and unique fetal

cardiac structures, fetal CHD recognition Jnan Ilenges. Diabetes has several serious
side effects, one of which is HD.In ord8 hyperparameters for early diabetes disease
prevention and detection, this work propose( g Optimal Scrutiny Boosted Graph Convolutional
LSTM (O-SBGC-LSTM), which is SBGC-LSW enhanced by the Eurygaster Optimization
Algorithm (EOA). Pitch-shifting j of the data augmentation techniques used in the study to
increase the robustness of the

The blood, nutritiony
system. The heart, bloog
attention convolutio

d oxy: e all carried throughout the body by the cardiovascular
d vessels make up this system. We suggest using the multiscale
network (MACCN), which is based on the clinical PCG
dataset, to achieve eff D detection. For even better classification performance, we present
a hybrid onvDeiT) architecture. Before the DeiT model processes the input
featurep the ramework combines a convolutional block with a squeeze-and-excitation
(SE) at anism to improve the channel and spatial information [4-7].

ar issues have become a major public health concern that negatively affects
| ages. Machine learning (ML) techniques have been applied in a number of recent

e these efforts yielded encouraging outcomes, the majority of the research was limited
Il datasets. Ten cross-validations are performed on the classifiers to guarantee their
robustness and generalizability. Two methods of hyper parameter tuning are used to optimize the
model's performance: Randomized SearchCV and GridSearch CV. The best estimator values are
sought after by these techniques. Before the deep learning stage of inferring the medical condition,
dimensionality was reduced through a transformation to wavelet features. This work presents a




novel approach to signal processing and feature extraction for person identification [8-11]. Our
goal in this work is to create a novel end-toend technique for classifying and detecting
abnormalities in heart sounds that can be applied to various heart sound diagnosis tasks. In
particular, we created a Multidimensional Decision Fusion (MDF) module and a Multi-
dimensional Feature Extraction (MFE) module to form a Multi-feature Decision Fusion Network
(MDFNet). To understand heart sound characteristics from various angles, the MFE module
extracted spatial features, multi-level temporal features, and spatial-temporal fusion featureg
particular the ADE module segments the aorta and four heart chambers; as a result, five dis

Heart rate variability (HRV) is a crumal metric that can be useg erent cllnlcal
g diseases.

acquired data is processed using advanced computational methods su
segmentation to extract heart rate variability (HRV) features. HOV’ i

signal filtering and
bnsistencies in data

collection, computational modelling, and physiological v an lead to signal distortion,
affecting the accuracy of HRV analysis. The study highl although progress has been
made over the past decade, several research gaps remaF— regarding attrition bias and

strategies for managing missing data.
implementing predictive models, enj
interpretable algorithms, and refining the I8

ulN@future Investigations should focus on
eir eralization capabilities, adopting
1on of hospital readmission types [14-15]. This
research introduces an innovative approach processes raw phonocardiogram (PCG) signals
using deep learning techniques for cardiac diagn®@s. The proposed framework features a custom
scalogram-based convolutional 1 egt neural network (CS-CRNN). Furthermore, to assess
various stages of heart murm ty, a novel multi-kernel residual convolutional neural
network (MK-RCNN) is deqalloped. over, residual learning (RL) helps to extract pertinent
features from deep CN jthout compromising accuracy of performance. After extracting
features from the E e best features are chosen using a combination of PSO
optimization and featl on techniques such as FCBF, MrMr, and relief. Lastly, a state-of-
the-art a omparison is given for both small and large datasets [16-18].

e thinness and flexibility, miniature, ultrathin, and flexible Aluminium

used to identify skin deformations brought on by cardiac events and provide
iomarkers that are helpful for tracking cardiovascular health and determining the risk
ular disease. Traditional wearable continuous pulse wave monitoring systems tend
y and dependent on technologies that restrict their applicability. Our network has two
| branches that are devoted to the simultaneous global localization and fine segmentation of
the wvessels, utilizing a coarse-fine collaborative strategy. The coarse branch suppresses
unnecessary structures and allows for global object localization by utilizing high-level semantic
features through the use of a partial decoder. Attention parameterized skip connections are used
by the fine branch to enhance boundary information and feature representations. Using widely




available laboratory parameters, the transferability of disease progression optimizes examination
and treatment strategies and improves patient prognosis. Nevertheless, the thrombus that naturally
forms in artificial heart pumps severely restricts the technology's ability to advance. Research on
accurately detecting thrombus in artificial heart pumps has become urgent. The high rate of
thrombus formation in ventricular assist devices, or VADs, and the possible risks associated with
thrombus, such as harm to the human body, are the main subjects of this study [19-22]. Imag
from invasive coronary angiography (ICA) are regarded as the gold standard for evalug
coronary artery health. Deep learning classification techniques are extensively employed

clinical practices [23-25].
Inferences from literature survey

Echocardiography is critical for evaluating cardiac ana
diagnosis, despite challenges from fetal movements, ultrasound artifac
structures. Diabetes, a serious health condition, can lead to HD.
detection, O-SBGC-LSTM, optimized by the EOA and utilizjgd 'ttgiﬂing data augmentation,
is proposed. The cardiovascular system, comprising the hea and vessels, is vital for bodily
functions. For effective CAD detection, MACCN and -DeiT model with enhanced
channel and spatial information are recommengagy C vasCePIseases pose significant public
r hion-making systems in medical data
oOwn promising results, with robust model

precedes deep learning stages in pcal condition inference. A novel MDFNet with MFE and

MDF modules is introduced for h classification and abnormality detection. ADE module
aids in aorta and heart cham @n and coronary artery detection. HRV analysis, crucial
for various clinical context ces lenges from data collection uncertainties and model

focus on model generalization, interpretability, and handling
parning methods like CS-CRNN and MK-RCNN improve cardiac

missing data. Innova
] classification. Advanced feature selection techniques combined

problem ddagn
with PSO
cardia skin deformations, offering biomarkers for cardiovascular health
i nal wearable systems' limitations necessitate new designs with parallel
| localization and fine vessel segmentation. The detection of thrombus in VADs

to associated risks, while ICA remains the gold standard for coronary artery health

ical professionals in clinical practices.

3. Proposed Methodology

The research on heart disease prediction that was proposed is organized into a number of
major stages in order to achieve adequate accuracy, robustness, and clinical significance of the




process. The dataset used in the first step is the data collection that comprises valuable patient data
on heart-health-related issues. This is followed by data preprocessing where data is de-noised and
normalized by the use of Discrete Wavelet Transform (DWT) to improve its quality in terms of
modelling. Thereafter, Principal Component Analysis (PCA) is run after the feature extraction
dimension-reduction technique in order to preserve maximum variables that affect the outcomes
of heart diseases. The accomplished features are next fed into a Neural Network model that
functions as the principal classifier of the scheme. Neural network weights are optimized vig
Real-Parameter Numerical Optimization Algorithm (ROA) to increase the convergence anig
efficiency of the model. ROA is selected due to the high accuracy, global search i
stability on optimization landscapes with irregularity. Moreover, there is hyperparaj
of the model via Bayesian Optimization which finds the optimal set of hyperpara
predictive performance further. The last system is tested with the usegg es of
performance, such as accuracy, precision, recall, F1-score, specifigd im evidences
demonstrate that the ROA optimized neural network is superior t0o g parativeralgorithms
like the Hippopotamus Optimization (HO) and Puma Optimization (PO)«Qiorithms. This validates

the accuracy and the potential of the proposed computational frameworlethS@ill be able to predict
heart disease early and accurately.

o)

ooao



HD Data Preprocessing using Feature Extraction Neural Network
collection Discrete Wavelet using PCA
Transform

Classifier

Hyperparameter

Tuning using
m <:| Bayesian
@ Optimization

Performance
Evaluation

Optlmlzatlon using

3.1 Data Collection

In the case of predicting heart disease, clinicdata was obtained over patient health records
with necessary medical paramet t usually accompanied heart disease. The data collection
aspect entailed collection of n ategorical variables related to heart health data within
the diagnostic centres as as ho using the right ethical standards. The data obtained
comprises the demographic f thePatient including age, gender and medically important data
such as the type of ¢ tNQesting blood pressure, the cholesterol level, the fasting blood
sugar, electrocardiog ghest heart rate.

rete Wavelet Transform

matfematical tool used for signal analysis, data compression, and feature
e Fourier Transform, which provides frequency information but loses time
offers both time and frequency localization, making it highly effective for
-stationary signals and extracting meaningful features from data. DWT can be

For a feature xin the dataset, the DWT decomposes x into approximation A and detail D
coefficients. This can be mathematically expressed as:

x=A+D 1)



A —Capture the low-frequency components, while D —capture the high-frequency components.

From the wavelet coefficients, extract features that are significant for HD prediction, such as:
Energy: Represents the signal's strength within the wavelet coefficients

E=YL,IAl% + XL, IDi)? (2)

Entropy: Measures the randomness in the wavelet coefficients.

H= 1% Plog(PR) 3)
Here, P, —represents the probability of the i —coefficient occurring.
When the Discrete Wavelet Transform (DWT) is applied to tg t%da aset, it
2l PreOQL

helps extract important features that improve the accuracy of he ons. This
method takes advantage of wavelet transforms' ability to uncover hio¥

3.3 Feature Extraction using Principal Component Analysis

Principal Component Analysis (PCA) is the statisy e& extraction method that
represents dimensionality reduction. In prediction of heart giiSeag¥® there can be a large number of
features in the dataset in which some of them may be ej
the initial correlated variables into a new Zagadi
components. Such elements represent the 4
the most informative and feature-filled #
best principal components, the model is more
overfitting and enhancing computational efficié

nt SS&l®®P the variable called principal
0 f variance in a given dataset and are
Ge and (€pth in the information. Choosing the
ctive and precise. This would also work to reduce
of machine learning algorithms.

C=—(X- ) (@)
Where

()
envalue, v; Eigenvector. These represent the direction (eigenvector) and
magni (f'®¥nvalue) of the data variance.
Z=XW (6)

e W Matrix of top k eigenvectors
e 7 Transformed data in reduced dime

3.2. HO Algorithm for HD Prediction



This algorithm is a newer nature-inspired optimization technique that draws inspiration
from the behaviour of hippopotamuses. It is designed to find optimal solutions for complex
problems by mimicking how hippos move and interact. In this context, the HO algorithm is used
to fine-tune the hyper parameters of a machine learning model to maximize its performance on the
heart disease dataset. During the optimization process, each solution represented by a
hippopotamus—is updated by considering the best solution found so far, along with some random
exploration to encourage diversity and avoid local optima.

Xi(t+ 1) = X;(©) + r1. Xpest(©) — X;(©) + rz. (Xrana () — Xi (D)

At each iteration, the algorithm considers the best solution found so f
randomly chosen solution from the population. Two random numbers between S
help guide the search process, introducing variability that helps the ore different
possibilities.

Table 2 Pseudo Code for the Hippopotamus O timizw ( Algorithm

Pseudo code for HO algorithm:

# Initialize parameters

N = number of hippopotamuses

D = number of hyper

parameters

max_iter = maximun rations

#Initialize populatic ons population=

initializ a NS ) best_solution =
Non
best SS f for iter in

e (mMywp iter):

aluate fithess of each solution
fitness=[] foriin range(N):

Model =train_model(population[i])




fitness.append(evaluate_model(model))

# Update best solution
for i in range (N): if
fitness[i] >best_fitness:
best_fitness = fitness][i]
best_solution = population[i]
# Update positions of solutions
for i in range (N):

r1, r2 = random (), random ()

new_position = population[i] + r1 * (best_solution - population[i]) do lution() -
Population[i])

Population[i] = new_position # Return
the best solution and its fitness return ,
best_solution, best_fitness

us Optimization (HO) which is used
se prediction model. The algorithm
aturation estimation and the pose auto position

The table 2 gives the pseudo code g
to while optimizing the hyper-paramete@gf thedpt
iteratively modifies a set of solutions, thro'\gl

road map.

3.3. PO Algorithm for HD Pred0

a natyecdSpired optimization method that imitates the hunting
strategies and agility of gEasNQkis applied to optimize the hyper parameters of machine learning
models, improving } ness in predicting heart disease. The process begins by
initializing a populati mas, where each puma represents a candidate solution encoded as
a vector

Where the ber of hyperparameters.

...... Xip} for i=1,2,....,N (7

Table 3 Pseudocode for the Puma Optimization Algorithm

Pseudocode for PO Algorithm:

# Initialize parameters




N = number of solutions

D = number of
hyperparametersmax_iter =
maximum iterations population =

initialize population (N, D) best
solution = None best_fitness = -in f #
Main optimization loop for iter in range
(max_iter):  foriinrange (N):

Fitness = evaluate fitness (population[i])

if fitness >best_fitness: best_fitness
= fitness best_solution =
population[i]  for i in range(N): rl,

r2 = random (), random ()

Population[i] = population[i] + r1 * (best_solution - population[i])’* dom_solution() -
Population[i])

# Return the best solution and its fitness ret
best_solution, best_fitness

#Functions
definitialize_population(N, D):

# Initialize N solutions with D_hyperpara rs return

[random_solution(D) for _inr

ains a step-by-step pseudocode that has been applied in PO
ization. It starts by initializing the population and parameters
like the size and dim&Qs population. The fitness of each solution is analysed and the best
solution i olutions are directed to the optimum and a randomized solution to
balancgth i d exploitation when doing optimization.

algorithm for hyperpgla

3.4. [ ing ROA

signed to optimize continuous variables in search spaces, making it suitable for
er tuning in machine learning models. Below is an outline of how the ROA can be
ptimize a machine learning model for HD prediction. The velocity vector is updated
difference between the current position and the best-known positions.

i 1) =B.Vi(®) +v. KXpest — Xi (1)) (8)

Where B is an inertia weight, v is a learning factor and Xpest IS the best solution found so far.

Table 4 Pseudocode for Real-Parameter Optimization Algorithm (ROA)



Pseudo code for ROA Algorithm

# Initialize parameters
N = number of solutions

D = number of hyper parameters
smax_iter = maximum iterations
alpha = step size beta = inertia

weight gamma = learning factor

Population = initialize_population (N,
D) velocity = initialize_velocity (N, D)
best_solution = none best_fitness = -
inf # Main optimization loop for iter in
range (max_iter):  foriin range (N):

Fitness = evaluate_fitness (population[i]) ,
if fitness >best_fitness:

best_fitness = fitness best_solution =
Population[i] ~ for i in range (N):

rl, r2 = random (), random ()

Velocity[i] = beta * velocity[i] + a * rl * (Mest_solution - population[i])
Population[i] = population[i] + @bh ocity[i]

pNents the ROA algorithm under which the hyperparameters of
optimized. The process begins with the initialization of the

populatio hich fitness is assessed iteratively. Solution development is done
contin s on performance. The solutions are optimized with the help of inertia,
learnin jze to make it converge to the optimal solutions.

sification realization based on fitting a neural network. Based on the results of Real-
eter Optimization Algorithm (ROA) and Bayesian hyperparameter tuning, the model
produces better values of accuracy, precision, sensitivity, and specificity. The ROA-based model
is always superior to other known techniques like the Hippopotamus Optimization (HO), and
Puma Optimization (PO). This shows that it has high sensitivity in identifying the cases of heart
disease and reduces errors in labelling the disease.




Table 5 Performance of proposed algorithm

Models Accuracy Precision Sensitivity Specificity
(%) (%) (%) (%)
PO 88 86 90 89
HO 81 80 85 80
Proposed (NN + 97 95 94 92
ROA)

Table 5 demonstrates a comparison between the performance of three
of optimization approach, where three models include Puma Optimiz;
Optimization (HO), and the proposed model enriched by Real-Paragg
(ROA), which are compared using the four important metrics (accura
specificity). The overall performance of the proposed model is proven toYg@abetter with 97 percent
accuracy and 95 percent precision and therefore it is very reliable inycur and false positive.
It has high sensitivity (94%) in detecting the cases of heart gf#*8Qas nd high specificity (92%) in
vetting non-disease cases. Conversely, PO and HO have 1 'y ore in all the metrics, which
yields the successfulness of the suggested ROA-baseg @hod?

Accuracy vs Precision
95
90 4
<
85 1
80 1
75 4
—e— Accuracy (%)
Precision (%)
70 T T T
PO HO Proposed (NN + ROA)
Model

Performance (%)




Figure 2 Accuracy and Precision Comparison

The comparison figure 2 gives the accuracy and the precision of the three types of models,
namely, Puma Optimization (PO), Hippopotamus Optimization (HO), and that of the proposed
one the Neural Network optimized with the Real-Parameter Optimization Algorithm (ROA). Out
of the three, the proposed model is the one that results in the highest accuracy of 97 percent whigh
implies that the model exhibits high (correct) classification of heart disease cases. It also achig
level of precision at 95% which is an indication that it is effective in reducing false posit Q
nt

Conversely, the PO model performs reasonably well recording an accuracy and preg
and 86 percent respectively whereas the HO model shows the lowest results of 81
correspondingly. This number shows the strength of the offered ROA-based mgg§bd.

105 Sensitivity vs Specificity Comparison

—e— Sensitivity
—m- Specificity (%

L
-
-
L’

100 4

95 1

£ 904

85 4

80

75 4

70 T
Proposed (NN + ROA)

Figure 3(e and Specificity Comparison

The figure 3 below YgRvide lative measure of sensitivity and specificity of three
i24Qon (PO), Hippopotamus optimization (HO), and the Neural
-Parameter Optimization Algorithm (ROA). At 94 percent, the

Network optimized
; sitive, beating both PO and HO with 90 percent and 85 percent

proposed mode

a e classification of the suggested model.
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urglh Signal denoising and compression process using the Discrete Wavelet Transform

The denoising and compression steps of Discrete Wavelet Transform (DWT) used with
heart disease (HD) signals prediction are illustrated in figure 5 (a), (b). The noise is eliminated in
Figure 5 (a) and only significant features of the original signal are retained in the form of a
smoother and more definite representation of the signal. Figure 5(b), represents the process of
compression of signal, comparing signal compressed and the original signal. The compression




Probability

scores 97.98 % of retained energy and also puts 84.62 % of the coefficients to zero in the process.
The operations, which improve quality and reduce the level of complexity, enrich the entire HD
prediction system accuracy.
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Figure 6 (a), (b) Histogram and Cumulativg of DWW Algorithm for HD Prediction

gfscrete Wavelet Transform (DWT) used with
heart disease (HD) signals prediction are ill§ ed in figure 6(a), (b). The noise is eliminated in
Figure 6 (a) and only significant features of original signal are retained in the form of a
smoother and more definite repre tion of the'signal. Figure 6(b), represents the process of
compression of signal, comparl ompressed and the original signal. The compression
scores 97.98 % of retained e uts 84.62 % of the coefficients to zero in the process.
The operations, which |mpr qual d reduce the level of complexity, enrich the entire HD

prediction system acc0

Outpyg of algo for HD prediction \ Output of PO algorithm for HD prediction

The denoising and compression
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displays the final position of the best solution found by the HO algorithm at
timization process. The "bestpos" array contains the parameter values
the optimal solution, and the graph illustrates these values. This output helps in
the specific parameter settings that led to the best performance of the predictive
algorithm aims to find optimal solutions by simulating the pursuit and capture of prey
as, leveraging strategies such as stealth, speed, and coordinated movement. Similar to the
HO algorithm, Best Score Obtained So Far (Convergence Curve) Graph tracks the best fitness
score achieved by the PO algorithm over iterations. The convergence curve provides a visual
representation of how quickly and effectively an algorithm identifies the optimal solution during




the optimization process. A steeper curve means the algorithm is converging faster, while the final
value on the curve reflects the quality of the best solution found.
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Figure 8 illustrates t @ ation results achieved using the ROA algorithm for heart disease
prediction

ustrates optimization result of the ROA algorithm for heart disease prediction.
ptimize the real-valued parameters, making it ideal for fine —tuning complex
oPsuch as those used in HD prediction. Its performance is evaluated by averaging
ion obtained across 30 different optimization functions, providing a comprehensive
of its effectiveness. These results shown through various graphs, demonstrate how
fficiently navigates the solution space to find the best parameter configurations. Compared
to both PO and HO algorithms, ROA consistently delivers better optimization performance,
providing to be more robust and reliable across diverse scenarios when optimizing heart disease
prediction model.



Discussions:

The suggested heart disease prediction model can be considered an improvement with the
use of optimization-based machine learning and innovative preprocessing methods. Discrete
Wavelet Transform (DWT) is efficient in preparing the dataset by removing the noise as well as
scaling down the signals leading to improved quality of data to be analyzed. The next step to
the system even better, Principal Component Analysis (PCA) helps to decrease the dimensio
and concentrate on the medical-relevant features only. This does not only accelerate cg

but also avoids overfitting in the predictive model. The neural network, which has be d
using the Real-Parameter Optimization Algorithm (ROA), is of better perfor e
ROA has a strong convergence capability and can find the global opti in smg
Bayesian optimization, the hyperparameters are optimized, whic uracy and

applicability of the model. The ROA-based approach presents the bi¥
percent accuracy, 95 percent precision, 94 percent sensitivity, 92 percegpecificity according to
the comparisons with the traditional models HO and PO which indjgtes
ROA-based approach in terms of sensitivity to disease caseg O®ECt diagnosis of non-disease
cases. Such findings emphasize the prospect of practical u @ tige system in not only medical
diagnostics but in the fields where early and accu iONgRLIficglon is essential. The overall
stability in various measures proves the stig 0 moder and assists its adoption to the

application in reality in heart disease prev ma ment devices.

5. Conclusion

The work outlines an efficient comput odel of predicting heart disease at an earlier
stage through the sophisticated mgiagds of macMine learning and optimization. The approach
i i ormalizing process by means of Discrete Wavelet
reJhble data used in input. PCA is used to detect the most
lonality by neglecting insignificant information though
data. The prediction mechanism is submitted to the parameters
is optimized by means of the Real-Parameter Optimization
has a high convergence rate and stability value. Bayesian
M0 implemented to affect model performance even more. The suggested
performance with 97 % accuracy, 95 % precision, 94 % sensitivity, and

important attributes and mi
maintaining the signifig

ggested ROA-based neural network framework is strong and effective and can
a useful tool in the accurate and timely diagnosis of heart diseases in the real-life
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