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Abstract   

Heart disease (HD) remains one of the leading causes of mortality in the world and there 

are pressing needs to develop effective predictive models of HD at the early stages of development. 

The given research suggests a new type of computational framework combining optimization-

based machine learning with innovative preprocessing and optimization approaches to the design 

of models predicting the presence of heart disease. It is an analysis of the data collection having 

clinically meaningful patient attributes. First, the dataset is cleaned with the help of the Discrete 

Wavelet Transform (DWT) to minimize noise and normalize signals to provide data of the 

necessary quality and make them more ready to use in a model. In feature extraction, Principal 

Component Analysis (PCA) algorithm is used to diminish dimensions and maintain most 

important variables in the realm of heart disease decision. After feature extraction, the data 

undergoes a Neural Network model which is optimized by Real-Parameter Numerical 

Optimization Algorithm (ROA). Since ROA has a high convergence rate and stability in locating 

global solutions, it is selected. As a way of enhancing the model, hyperparameter tuning- Bayesian 

optimization, is used to increase the overall predictive accuracy. Key performance indicators of 

the model include: accuracy 97%, precision 95%, Sensitivity 94% and specificity92% .The 

provided system shows good performance in all of them, which proves its potential in achieving 

robust and early prediction of heart diseases. The proposed neural network model optimized by 

ROA has greater gains as compared to other algorithms like a Hippopotamus Optimization (HO) 

and Puma Optimization (PO) algorithms. 

Keywords:  HD prediction; Optimization algorithms; ROA; HO Algorithm; PO Algorithm; DWT; 

external parameter tuning; Statistical analysis   
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Detecting HD has undergone transformative evolution, influenced by advancements in 

health technology and scientific computing. Basically, in history, diagnostic approaches relied on 

fundamental tools such as ECG and echo, providing core insights into cardiac function and 

structure. In the mid-20th century saw the introduction of heart ultrasound, transforming 

diagnostics by enabling non-invasive imaging of the heart's chambers, valves, and blood flow 

dynamics through ultrasound waves. This innovation marked a significant leap in cardiac care, 

facilitating more precise assessments and earlier detection of structural abnormalities and 

functional impairments. As cardiovascular science progressed, nuclear imaging techniques like 

single-photon emission computed tomography (SPECT) and positron emission tomography (PET) 

emerged as pivotal tools for evaluating myocardial perfusion, metabolism, and tissue viability. 

These modalities offer critical functional insights, aiding in the diagnosis and management of 

coronary artery disease (CAD), myocardial infarction, and other complex cardiac conditions by 

visualizing blood flow patterns and identifying areas of ischemia or infarction. In contemporary 

practice, the diagnostic landscape for HD encompasses a multifaceted approach integrating 

clinical evaluation, advanced imaging modalities, laboratory tests, and computational analyses. 

Electrocardiography remains fundamental for assessing electrical activity in the heart, diagnosing 

arrhythmias, and detecting signs of myocardial ischemia indicative of coronary artery disease. 

Moreover, stress testing, whether through exercise treadmill tests or pharmacological stress tests, 

evaluates cardiac response to exertion or induced stress, providing valuable insights into exercise 

tolerance and coronary artery function. Cardiac catheterization and heart angiography, albeit 

invasive, offer unparalleled precision in diagnosing and treating coronary artery disease. By 

directly saw a coronary artery and measuring pressures within the heart chambers, these 

procedures are enabled by interventional cardiologists to perform therapeutic interventions like 

angioplasty, stent placement, or even coronary artery bypass grafting (CABG) when necessary. 

Such interventions are critical way to restore the blood flow to the heart muscle and mitigating the 

risks associated with obstructive coronary artery disease. Beyond structural assessments, 

biochemical markers like troponin, citrate, kinase-MB (CK-MB), and lipid profiles provide crucial 

insights into myocardial injury, heart function, and overall cardiovascular risk. These biomarkers 

play a pivotal role in diagnosing acute coronary syndromes and monitoring disease progression, 

guiding curative decisions and optimizing patient care strategies.   

Despite significant advancements, challenges persist in the realm of HD detection. Early 

identification remains a cornerstone of effective management, yet subtle symptoms and variable 

presentations often delay diagnosis until disease progression has occurred. Moreover, the accuracy 

and specificity of diagnostic tests can vary, leading to false positives or negatives that impact 

clinical decision-making and patient outcomes. Accessibility to advanced diagnostic technologies 

also poses a challenge, particularly in underserved regions or healthcare settings with limited 

resources. Looking ahead, the future of HD detection holds promise through innovative 

technologies and research strive. Artificial intelligence (AI) and data driven model are poised to 

revolutionize cardiac diagnostics by consider vast datasets from ECGs, imaging studies, and 

patient records, enhancing diagnostic accuracy and predicting cardiovascular risk with 

unprecedented precision. Telemedicine platforms and remote monitoring devices enable real-time 

assessment of cardiac parameters, facilitating early detection of irregular heartbeats, heart failure 

exacerbations, and other cardiac events. Genomics and personalized medicine are undoing the 
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genetic underpinnings of cardiovascular diseases, paving the way for tailored treatment 

approaches based on individual genetic predispositions and molecular profiles. Wearable devices 

equipped with ECG monitors and activity trackers offer continuous monitoring of heart rhythm 

and physical activity, providing valuable insights into cardiac health and enabling timely 

intervention. Non-invasive imaging innovations, including magnetic resonance imaging (MRI) 

and advanced echocardiography techniques, continue to evolve, offering higher resolution 

imaging and greater detail in assessing cardiac structure and function. These advancements are 

instrumental in early detection, disease monitoring, and guiding therapeutic strategies to optimize 

outcomes for patients with HD.  

The ongoing evolution of HD detection reflects a dynamic interplay between technological 

innovation, scientific discovery, and clinical practice. By leveraging these advancements, 

healthcare providers can enhance early detection, personalize treatment approaches, and improve 

outcomes for individuals at risk of or living with HD. Through continued research and 

collaborative efforts, the pursuit of more effective diagnostic strategies promises to reduce 

cardiovascular morbidity and mortality, ultimately advancing global cardiovascular health 

initiatives. 

Problem statement   

HD stands as one of the foremost contributors to global mortality rates, underscoring the 

urgent need for precise and timely prediction methods to enhance interventions and elevate patient 

outcomes. Existing diagnostic methods frequently exhibit limitations in accuracy, often missing 

subtle signs of cardiovascular risk. This deficiency emphasizes the critical role of advanced 

computational models in improving diagnostic precision and prognosis. Central to the challenge 

is the optimization of algorithms capable of effectively managing the diverse and nuanced data 

inherent to HD diagnosis. Achieving optimal algorithm performance involves meticulous tuning 

of model parameters to maximize predictive accuracy across varying patient profiles and medical 

histories. Furthermore, robust data preparation methods are essential to refine data quality, 

ensuring that predictive models are built on reliable and informative datasets. Addressing these 

complexities necessitates collaborative efforts across disciplines, blending expertise in healthcare, 

data science, and computational technology. Innovations in predictive ideal offer promising 

avenues to develop dependable tools that empower healthcare. In early profession of individuals 

are heightened risk of HD. By facilitating proactive and targeted preventive measures, these 

advancements aim to mitigate the impact of cardiovascular ailments and enhance overall public 

health outcomes on a global scale. 

Contributions    

To enhance the HD prediction accuracy: To address the challenge of accurate HD prediction, this 

study evaluates and optimizes three distinct optimization algorithms—ROA, HO, and performance 

and refining them through free framework tuning, the study aims to significantly improve the 

accuracy of predictive models beyond conventional diagnostic methods.   Auth
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(i) To integrate advanced preproduction techniques: The study utilizes the DWT 

algorithm during the pre-processing phase to enhance the accuracy and relevance of 

the input data. This approach aids in minimizing noise and extracting essential features, 

thereby strengthening the reliability of predictive models in identifying subtle markers 

associated with HD risk.  

(ii) To enable informed healthcare decisions: Through detailed statistical evaluation and 

analysis of important performance indicators like sensitivity and specificity, the study 

equips healthcare practitioners with meaningful insights. This enables more accurate 

decision-making regarding patient management and intervention approaches based on 

dependable predictive outcomes.  

(iii) To advance interdisciplinary collaboration: Through the integration of expertise in 

healthcare, data science, and computational methods, the study fosters interdisciplinary 

collaboration. This collaboration is essential for developing and validating reliable 

predictive models that can effectively assist healthcare providers in early identification 

and proactive management of HD, thereby improving overall patient outcomes.   

2. Literature Survey  

In order to identify and screen for congenital HD (CHD), a common and complicated 

congenital malformation, echocardiography is crucial for assessing cardiac anatomy and function. 

However, due to instinctive fetal movements, artifacts in ultrasound images, and unique fetal 

cardiac structures, fetal CHD recognition still faces many challenges. Diabetes has several serious 

side effects, one of which is HD.In order to tune hyperparameters for early diabetes disease 

prevention and detection, this work proposed an Optimal Scrutiny Boosted Graph Convolutional 

LSTM (O-SBGC-LSTM), which is SBGC-LSTM enhanced by the Eurygaster Optimization 

Algorithm (EOA). Pitch-shifting is one of the data augmentation techniques used in the study to 

increase the robustness of the model [1-3].  

The blood, nutrition, and oxygen are all carried throughout the body by the cardiovascular 

system. The heart, blood, and blood vessels make up this system. We suggest using the multiscale 

attention convolutional compression network (MACCN), which is based on the clinical PCG 

dataset, to achieve effective CAD detection. For even better classification performance, we present 

a hybrid Convolution-DeiT (ConvDeiT) architecture. Before the DeiT model processes the input 

features, the Conv-DeiT framework combines a convolutional block with a squeeze-and-excitation 

(SE) attention mechanism to improve the channel and spatial information [4-7].  

Cardiovascular issues have become a major public health concern that negatively affects 

people of all ages. Machine learning (ML) techniques have been applied in a number of recent 

research studies to design decision-making systems for the massive amounts of data in the medical 

field. While these efforts yielded encouraging outcomes, the majority of the research was limited 

to small datasets. Ten cross-validations are performed on the classifiers to guarantee their 

robustness and generalizability. Two methods of hyper parameter tuning are used to optimize the 

model's performance: Randomized SearchCV and GridSearch CV. The best estimator values are 

sought after by these techniques.  Before the deep learning stage of inferring the medical condition, 

dimensionality was reduced through a transformation to wavelet features. This work presents a 
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novel approach to signal processing and feature extraction for person identification [8-11]. Our 

goal in this work is to create a novel end-toend technique for classifying and detecting 

abnormalities in heart sounds that can be applied to various heart sound diagnosis tasks. In 

particular, we created a Multidimensional Decision Fusion (MDF) module and a Multi-

dimensional Feature Extraction (MFE) module to form a Multi-feature Decision Fusion Network 

(MDFNet). To understand heart sound characteristics from various angles, the MFE module 

extracted spatial features, multi-level temporal features, and spatial-temporal fusion features. In 

particular, the ADE module segments the aorta and four heart chambers; as a result, five distance 

field maps are produced, which encode the distance between the coarsely segmented coronary 

artery and chamber surfaces. In the meantime, ADE carries out coronary artery detection in order 

to remove foreground-background imbalance and crop the region of interest [12-13]. 

  Heart rate variability (HRV) is a crucial metric that can be used in many different clinical 

contexts, including mental health, diabetes mellitus, and cardiovascular diseases. 

Electrocardiography and photoplethysmography signals may be used to obtain HRV data The 

acquired data is processed using advanced computational methods such as signal filtering and 

segmentation to extract heart rate variability (HRV) features. However, inconsistencies in data 

collection, computational modelling, and physiological variations can lead to signal distortion, 

affecting the accuracy of HRV analysis. The study highlights that, although progress has been 

made over the past decade, several research gaps remain—particularly regarding attrition bias and 

strategies for managing missing data. As a result, future investigations should focus on 

implementing predictive models, enhancing their generalization capabilities, adopting 

interpretable algorithms, and refining the classification of hospital readmission types [14–15]. This 

research introduces an innovative approach that processes raw phonocardiogram (PCG) signals 

using deep learning techniques for cardiac diagnosis. The proposed framework features a custom 

scalogram-based convolutional recurrent neural network (CS-CRNN). Furthermore, to assess 

various stages of heart murmur (HM) severity, a novel multi-kernel residual convolutional neural 

network (MK-RCNN) is developed. Moreover, residual learning (RL) helps to extract pertinent 

features from deep CNN layers without compromising accuracy of performance. After extracting 

features from the ECG signals, the best features are chosen using a combination of PSO 

optimization and feature selection techniques such as FCBF, MrMr, and relief. Lastly, a state-of-

the-art and proposed method comparison is given for both small and large datasets [16-18].  

Due to their extreme thinness and flexibility, miniature, ultrathin, and flexible Aluminium 

Nitride (AlN) piezoelectric MEMS exhibit high sensitivity to minute mechanical deformations. As 

a result, they can be used to identify skin deformations brought on by cardiac events and provide 

a variety of biomarkers that are helpful for tracking cardiovascular health and determining the risk 

of cardiovascular disease. Traditional wearable continuous pulse wave monitoring systems tend 

to be bulky and dependent on technologies that restrict their applicability. Our network has two 

parallel branches that are devoted to the simultaneous global localization and fine segmentation of 

the vessels, utilizing a coarse-fine collaborative strategy. The coarse branch suppresses 

unnecessary structures and allows for global object localization by utilizing high-level semantic 

features through the use of a partial decoder. Attention parameterized skip connections are used 

by the fine branch to enhance boundary information and feature representations. Using widely 

Auth
ors

 Pre-
Proo

f



available laboratory parameters, the transferability of disease progression optimizes examination 

and treatment strategies and improves patient prognosis. Nevertheless, the thrombus that naturally 

forms in artificial heart pumps severely restricts the technology's ability to advance. Research on 

accurately detecting thrombus in artificial heart pumps has become urgent. The high rate of 

thrombus formation in ventricular assist devices, or VADs, and the possible risks associated with 

thrombus, such as harm to the human body, are the main subjects of this study [19-22]. Images 

from invasive coronary angiography (ICA) are regarded as the gold standard for evaluating 

coronary artery health. Deep learning classification techniques are extensively employed and 

sophisticated in various domains where medical imaging assessment plays a crucial role because 

of the advancement of computer-aided diagnosis systems that assist medical professionals in their 

clinical practices [23-25].   

Inferences from literature survey  

Echocardiography is critical for evaluating cardiac anatomy and function in CHD 

diagnosis, despite challenges from fetal movements, ultrasound artifacts, and unique fetal cardiac 

structures. Diabetes, a serious health condition, can lead to HD. To enhance early diabetes 

detection, O-SBGC-LSTM, optimized by the EOA and utilizing pitch-shifting data augmentation, 

is proposed. The cardiovascular system, comprising the heart, blood, and vessels, is vital for bodily 

functions. For effective CAD detection, MACCN and a hybrid Conv-DeiT model with enhanced 

channel and spatial information are recommended. Cardiovascular diseases pose significant public 

health issues, prompting the application of ML for decision-making systems in medical data 

analysis. Studies using small datasets have shown promising results, with robust model 

performance ensured through ten cross-validations and hyper parameter tuning methods like 

Randomized SearchCV and GridSearchCV. Dimensionality reduction to wavelet features 

precedes deep learning stages in medical condition inference. A novel MDFNet with MFE and 

MDF modules is introduced for heart sound classification and abnormality detection. ADE module 

aids in aorta and heart chamber segmentation and coronary artery detection. HRV analysis, crucial 

for various clinical contexts, faces challenges from data collection uncertainties and model 

limitations. Future research should focus on model generalization, interpretability, and handling 

missing data. Innovative deep learning methods like CS-CRNN and MK-RCNN improve cardiac 

problem diagnosis and severity classification. Advanced feature selection techniques combined 

with PSO enhance ECG signal analysis. Ultrathin, flexible AlN piezoelectric MEMS detect 

cardiac event-induced skin deformations, offering biomarkers for cardiovascular health 

monitoring. Traditional wearable systems' limitations necessitate new designs with parallel 

branches for global localization and fine vessel segmentation. The detection of thrombus in VADs 

is crucial due to associated risks, while ICA remains the gold standard for coronary artery health 

assessment. Computer-aided diagnosis systems using DL classification techniques significantly 

aid medical professionals in clinical practices.   

3. Proposed Methodology  

  The research on heart disease prediction that was proposed is organized into a number of 

major stages in order to achieve adequate accuracy, robustness, and clinical significance of the 
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process. The dataset used in the first step is the data collection that comprises valuable patient data 

on heart-health-related issues. This is followed by data preprocessing where data is de-noised and 

normalized by the use of Discrete Wavelet Transform (DWT) to improve its quality in terms of 

modelling. Thereafter, Principal Component Analysis (PCA) is run after the feature extraction 

dimension-reduction technique in order to preserve maximum variables that affect the outcomes 

of heart diseases. The accomplished features are next fed into a Neural Network model that 

functions as the principal classifier of the scheme. Neural network weights are optimized via the 

Real-Parameter Numerical Optimization Algorithm (ROA) to increase the convergence and the 

efficiency of the model. ROA is selected due to the high accuracy, global search ability and 

stability on optimization landscapes with irregularity. Moreover, there is hyperparameter tuning 

of the model via Bayesian Optimization which finds the optimal set of hyperparameters to improve 

predictive performance further. The last system is tested with the use of standard measures of 

performance, such as accuracy, precision, recall, F1-score, specificity. Experimental evidences 

demonstrate that the ROA optimized neural network is superior to other comparative algorithms 

like the Hippopotamus Optimization (HO) and Puma Optimization (PO) algorithms. This validates 

the accuracy and the potential of the proposed computational framework that will be able to predict 

heart disease early and accurately. 
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Fig 1 Proposed Block Diagram 

 

 

3.1 Data Collection  

In the case of predicting heart disease, clinical data was obtained over patient health records 

with necessary medical parameters that usually accompanied heart disease. The data collection 

aspect entailed collection of numerical and categorical variables related to heart health data within 

the diagnostic centres as well as hospitals using the right ethical standards. The data obtained 

comprises the demographic data of the patient including age, gender and medically important data 

such as the type of chest pain, the resting blood pressure, the cholesterol level, the fasting blood 

sugar, electrocardiogram, the highest heart rate. 

3.2 Preprocessing using Discrete Wavelet Transform 

DWT is a mathematical tool used for signal analysis, data compression, and feature 

extraction. Unlike the Fourier Transform, which provides frequency information but loses time 

localization, DWT offers both time and frequency localization, making it highly effective for 

analysing non-stationary signals and extracting meaningful features from data. DWT can be 

applied to each feature in the dataset to extract wavelet coefficients, which capture important 

patterns and trends.   

For a feature xin the dataset, the DWT decomposes x into approximation 𝐴 and detail 𝐷 

coefficients. This can be mathematically expressed as:   

𝑥 = 𝐴 + 𝐷                                     (1) 
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𝐴 −Capture the low-frequency components, while 𝐷 −capture the high-frequency components.   

From the wavelet coefficients, extract features that are significant for HD prediction, such as: 

Energy: Represents the signal's strength within the wavelet coefficients 

E = ∑ |Ai|
2n

i=1 + ∑ |Di|
2n

i=1                                              (2) 

Entropy: Measures the randomness in the wavelet coefficients.   

H = 1 ∑ Pi
n
i=1 log(Pi)                                              (3) 

Here, Pi −represents the probability of the i −coefficient occurring.  

When the Discrete Wavelet Transform (DWT) is applied to the heart failure dataset, it 

helps extract important features that improve the accuracy of heart disease predictions. This 

method takes advantage of wavelet transforms' ability to uncover hidden patterns within the data.  

3.3 Feature Extraction using Principal Component Analysis  

Principal Component Analysis (PCA) is the statistical feature extraction method that 

represents dimensionality reduction. In prediction of heart diseases there can be a large number of 

features in the dataset in which some of them may be either redundant or irrelevant. PCA converts 

the initial correlated variables into a new and different set of the variable called principal 

components. Such elements represent the highest amount of variance in a given dataset and are 

the most informative and feature-filled without noise and depth in the information. Choosing the 

best principal components, the model is more effective and precise. This would also work to reduce 

overfitting and enhancing computational efficiency of machine learning algorithms. 

C =
1

n−1
(X − X̅)T(X − �̅�)                                                           (4) 

Where 

• X Original data matrix, 

•   �̅� Original data matrix,  

• 𝐶  Covariance matrix 

𝐶v𝑖
= 𝜆𝑖𝑣𝑖                                                                                     (5) 

Where  𝜆𝑖 Eigenvalue, v𝑖  Eigenvector. These represent the direction (eigenvector) and 

magnitude (eigenvalue) of the data variance. 

 Z = X. W                                                                                               (6) 

Where  

• W Matrix of top k eigenvectors 

• 𝑍 Transformed data in reduced dime 

3.2. HO Algorithm for HD Prediction  
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This algorithm is a newer nature-inspired optimization technique that draws inspiration 

from the behaviour of hippopotamuses. It is designed to find optimal solutions for complex 

problems by mimicking how hippos move and interact. In this context, the HO algorithm is used 

to fine-tune the hyper parameters of a machine learning model to maximize its performance on the 

heart disease dataset. During the optimization process, each solution represented by a 

hippopotamus—is updated by considering the best solution found so far, along with some random 

exploration to encourage diversity and avoid local optima.  

Xi(t + 1) = Xi(t) + r1. (Xbest(t) − Xi(t)) + r2. (Xrand(t) − Xi(t))                    (6) 

At each iteration, the algorithm considers the best solution found so far, as well as a 

randomly chosen solution from the population. Two random numbers between 0 and 1 are used to 

help guide the search process, introducing variability that helps the algorithm explore different 

possibilities.  

 

Table 2 Pseudo Code for the Hippopotamus Optimization (HO) Algorithm 

Pseudo code for HO algorithm:  

# Initialize parameters   

N = number of hippopotamuses 

D = number of hyper 

parameters 

max_iter = maximum number of iterations 

#Initialize population of solutions population= 

initialize_population (N, D) best_solution = 

None   

best_fitness = -inf for iter in  

range (max_iter):   

# Evaluate fitness of each solution     

fitness = []     for i in range(N):   

Model =train_model(population[i])          Auth
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fitness.append(evaluate_model(model))   

    # Update best solution     

for i in range (N):         if 

fitness[i] >best_fitness:              

best_fitness = fitness[i]             

best_solution = population[i]     

# Update positions of solutions     

for i in range (N):   

        r1, r2 = random (), random ()   

new_position = population[i] + r1 * (best_solution - population[i]) + r2 * (random_solution() -  

Population[i])   

Population[i] = new_position # Return 

the best solution and its fitness return 

best_solution, best_fitness 

 

The table 2 gives the pseudo code of the Hippopotamus Optimization (HO) which is used 

to while optimizing the hyper-parameters of the heart disease prediction model. The algorithm 

iteratively modifies a set of solutions, through maturation estimation and the pose auto position 

road map. 

3.3. PO Algorithm for HD Prediction  

The PO algorithm is - a nature-inspired optimization method that imitates the hunting 

strategies and agility of pumas. It is applied to optimize the hyper parameters of machine learning 

models, improving their effectiveness in predicting heart disease. The process begins by 

initializing a population of N pumas, where each puma represents a candidate solution encoded as 

a vector of hyper parameters.  

Where D is the number of hyperparameters.  

Xi = {xi1, xi2, … … xiD}      for   i = 1,2, … … , N       (7) 

Table 3 Pseudocode for the Puma Optimization Algorithm 

Pseudocode for PO Algorithm:  

# Initialize parameters   Auth
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N = number of solutions  

D  =  number  of 

 hyperparametersmax_iter = 

maximum  iterations population = 

initialize population (N, D) best 

solution = None best_fitness = -in f # 

Main optimization loop for iter in range 

(max_iter):     for i in range (N):   

Fitness = evaluate fitness (population[i])          

if fitness >best_fitness:             best_fitness 

= fitness             best_solution = 

population[i]     for i in range(N):          r1, 

r2 = random (), random ()   

Population[i] = population[i] + r1 * (best_solution - population[i]) + r2 * (random_solution() -  

Population[i])   

# Return the best solution and its fitness return 

best_solution, best_fitness 

#Functions 

definitialize_population(N, D):   

    # Initialize N solutions with D hyperparameters return 

[random_solution(D) for _ in range(N)]   

 

The following table 3 contains a step-by-step pseudocode that has been applied in PO 

algorithm for hyperparameter optimization. It starts by initializing the population and parameters 

like the size and dimension of population. The fitness of each solution is analysed and the best 

solution is updated in turn. Solutions are directed to the optimum and a randomized solution to 

balance the exploration and exploitation when doing optimization. 

3.4. Optimization using ROA 

ROA is designed to optimize continuous variables in search spaces, making it suitable for 

hyperparameter tuning in machine learning models. Below is an outline of how the ROA can be 

applied to optimize a machine learning model for HD prediction. The velocity vector is updated 

using the difference between the current position and the best-known positions.   

𝑉𝑖(𝑡 + 1) = 𝛽. 𝑉𝑖(𝑡) + 𝛾. (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡))     (8) 

Where β is an inertia weight, γ is a learning factor and Xbest is the best solution found so far.  

Table 4 Pseudocode for Real-Parameter Optimization Algorithm (ROA) 
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Pseudo code for ROA Algorithm 

# Initialize parameters   

N = number of solutions   

D = number of hyper parameters 

smax_iter = maximum iterations 

alpha = step size beta = inertia 

weight gamma = learning factor   

Population = initialize_population (N, 

D) velocity = initialize_velocity (N, D) 

best_solution = none best_fitness = -

inf # Main optimization loop for iter in 

range (max_iter):     for i in range (N):   

Fitness = evaluate_fitness (population[i])          

if fitness >best_fitness:   

best_fitness = fitness             best_solution =  

Population[i]     for i in range (N):          

r1, r2 = random (), random ()   

Velocity[i] = beta * velocity[i] + gamma * r1 * (best_solution - population[i])          

Population[i] = population[i] + alpha * velocity[i]   

 

The following table 4 represents the ROA algorithm under which the hyperparameters of 

machine learning models are optimized. The process begins with the initialization of the 

population and velocity after which fitness is assessed iteratively. Solution development is done 

continually and it depends on performance. The solutions are optimized with the help of inertia, 

learning and step size to make it converge to the optimal solutions. 

4. Results And Discussions  

The identification model of heart diseases proposed shows a critical element of improvement 

in the classification realization based on fitting a neural network. Based on the results of Real-

Parameter Optimization Algorithm (ROA) and Bayesian hyperparameter tuning, the model 

produces better values of accuracy, precision, sensitivity, and specificity. The ROA-based model 

is always superior to other known techniques like the Hippopotamus Optimization (HO), and 

Puma Optimization (PO). This shows that it has high sensitivity in identifying the cases of heart 

disease and reduces errors in labelling the disease. 
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Table 5  Performance of proposed algorithm 

Models  Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PO 88  86  90  89  

HO 81  80  85  80  

Proposed (NN + 

ROA) 

97 95 94 92 

 

Table 5 demonstrates a comparison between the performance of three models on the basis 

of optimization approach, where three models include Puma Optimization (PO), Hippopotamus 

Optimization (HO), and the proposed model enriched by Real-Parameter Optimization Algorithm 

(ROA), which are compared using the four important metrics (accuracy, precision, sensitivity, and 

specificity). The overall performance of the proposed model is proven to be better with 97 percent 

accuracy and 95 percent precision and therefore it is very reliable in it accuracy and false positive. 

It has high sensitivity (94%) in detecting the cases of heart diseases and high specificity (92%) in 

vetting non-disease cases. Conversely, PO and HO have a lower score in all the metrics, which 

yields the successfulness of the suggested ROA-based model. 
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              Figure 2 Accuracy and Precision Comparison 

The comparison figure 2 gives the accuracy and the precision of the three types of models, 

namely, Puma Optimization (PO), Hippopotamus Optimization (HO), and that of the proposed 

one the Neural Network optimized with the Real-Parameter Optimization Algorithm (ROA). Out 

of the three, the proposed model is the one that results in the highest accuracy of 97 percent which 

implies that the model exhibits high (correct) classification of heart disease cases. It also achieves 

level of precision at 95% which is an indication that it is effective in reducing false positives. 

Conversely, the PO model performs reasonably well recording an accuracy and precision of 88 

and 86 percent respectively whereas the HO model shows the lowest results of 81 and 80 percent 

correspondingly. This number shows the strength of the offered ROA-based method. 

 
 

Figure 3 Sensitivity and Specificity Comparison 

 

The figure 3 below provides a relative measure of sensitivity and specificity of three 

models namely Puma Optimization (PO), Hippopotamus optimization (HO), and the Neural 

Network optimized using Real-Parameter Optimization Algorithm (ROA). At 94 percent, the 

proposed model is the most sensitive, beating both PO and HO with 90 percent and 85 percent 

respectively which measures how well the model is able to pick correct instances of actual heart 

disease cases. The proposed model is also better on specificity, the correct identification of the 

non-disease cases, which is 92%, compared to 89% PO and 80% HO. These findings indicate the 

stable and adequate classification of the suggested model. 
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(a)Input data of DWT algorithm for HD 

prediction 

(b)Detail coefficients of DWT algorithm for 

HD prediction 

Figure 4 (a), (b) Input Signal and Multi-level DWT Detail Coefficients for HD Prediction 

Figure 4 (a), (b) the Input Signal and Multi-level DWT Detail Coefficients of Heart Disease 

(HD) Prediction.  (a) Raw signal that is used as input data in DWT-based feature extraction. That 

is, (b) the input signal with the multi-resolution analysis of this signal through the DWT, and Level 

3, Level 2 and Level 1 data, which contain a far-to-fine variation that is instrumental in continuous 

HD prediction. 

 

 

 
 

(a) Denoised image of DWT algorithm 

for HD prediction 

(b) Compressed image of DWT algorithm for 

HD prediction 

Figure 5 Signal denoising and compression process using the Discrete Wavelet Transform 

The denoising and compression steps of Discrete Wavelet Transform (DWT) used with 

heart disease (HD) signals prediction are illustrated in figure 5 (a), (b). The noise is eliminated in 

Figure 5 (a) and only significant features of the original signal are retained in the form of a 

smoother and more definite representation of the signal. Figure 5(b), represents the process of 

compression of signal, comparing signal compressed and the original signal. The compression 
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scores 97.98 % of retained energy and also puts 84.62 % of the coefficients to zero in the process. 

The operations, which improve quality and reduce the level of complexity, enrich the entire HD 

prediction system accuracy. 

 
 

(a) Histogram of DWT algorithm for HD 

prediction 

(b) Cumulative histogram of DWT algorithm for 

HD prediction 

Figure 6 (a), (b) Histogram and Cumulative Histogram of DWT Algorithm for HD Prediction 

The denoising and compression steps of Discrete Wavelet Transform (DWT) used with 

heart disease (HD) signals prediction are illustrated in figure 6(a), (b). The noise is eliminated in 

Figure 6 (a) and only significant features of the original signal are retained in the form of a 

smoother and more definite representation of the signal. Figure 6(b), represents the process of 

compression of signal, comparing signal compressed and the original signal. The compression 

scores 97.98 % of retained energy and also puts 84.62 % of the coefficients to zero in the process. 

The operations, which improve quality and reduce the level of complexity, enrich the entire HD 

prediction system accuracy. 

 

Output of HO algorithm for HD prediction  Output of PO algorithm for HD prediction  
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Best Score Obtained So Far for HD 

prediction  

 
 

Best Score Obtained So Far for HD prediction  

 
Bestpos(end, :) for HD prediction 

 
Adult1pos(end, :) for HD prediction 

 

Figure 7 Optimization results of HO and PO algorithms for HD prediction (comparison result) 

The figure 7 displays the final position of the best solution found by the HO algorithm at 

the end of the optimization process. The "bestpos" array contains the parameter values 

corresponding to the optimal solution, and the graph illustrates these values. This output helps in 

understanding the specific parameter settings that led to the best performance of the predictive 

model. PO algorithm aims to find optimal solutions by simulating the pursuit and capture of prey 

by pumas, leveraging strategies such as stealth, speed, and coordinated movement. Similar to the 

HO algorithm, Best Score Obtained So Far (Convergence Curve) Graph tracks the best fitness 

score achieved by the PO algorithm over iterations. The convergence curve provides a visual 

representation of how quickly and effectively an algorithm identifies the optimal solution during 
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the optimization process. A steeper curve means the algorithm is converging faster, while the final 

value on the curve reflects the quality of the best solution found.  

 

 

 
 

 
 

 

 

Figure 8 illustrates the optimization results achieved using the ROA algorithm for heart disease 

prediction 

Figure 8 illustrates optimization result of the ROA algorithm for heart disease prediction. 

ROA is designed to optimize the real-valued parameters, making it ideal for fine –tuning complex 

predictive model such as those used in HD prediction. Its performance is evaluated by averaging 

the best solution obtained across 30 different optimization functions, providing a comprehensive 

assessment of its effectiveness. These results shown through various graphs, demonstrate how 

ROA efficiently navigates the solution space to find the best parameter configurations. Compared 

to both PO and HO algorithms, ROA consistently delivers better optimization performance, 

providing to be more robust and reliable across diverse scenarios when optimizing heart disease 

prediction model. 
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Discussions:  

 

The suggested heart disease prediction model can be considered an improvement with the 

use of optimization-based machine learning and innovative preprocessing methods. Discrete 

Wavelet Transform (DWT) is efficient in preparing the dataset by removing the noise as well as 

scaling down the signals leading to improved quality of data to be analyzed. The next step to make 

the system even better, Principal Component Analysis (PCA) helps to decrease the dimensionality 

and concentrate on the medical-relevant features only. This does not only accelerate computation 

but also avoids overfitting in the predictive model. The neural network, which has been optimized 

using the Real-Parameter Optimization Algorithm (ROA), is of better performance because the 

ROA has a strong convergence capability and can find the global optimum points. Also, by using 

Bayesian optimization, the hyperparameters are optimized, which improves the accuracy and 

applicability of the model. The ROA-based approach presents the biggest performance values 97 

percent accuracy, 95 percent precision, 94 percent sensitivity, 92 percent specificity according to 

the comparisons with the traditional models HO and PO which indicates the superiority of the 

ROA-based approach in terms of sensitivity to disease cases or correct diagnosis of non-disease 

cases. Such findings emphasize the prospect of practical usage of the system in not only medical 

diagnostics but in the fields where early and accurate identification is essential. The overall 

stability in various measures proves the strength of the model and assists its adoption to the 

application in reality in heart disease preventing and management devices. 

5. Conclusion 

The work outlines an efficient computing model of predicting heart disease at an earlier 

stage through the sophisticated methods of machine learning and optimization. The approach 

includes the noise reduction and signal normalizing process by means of Discrete Wavelet 

Transform (DWT) to provide clean and reliable data used in input. PCA is used to detect the most 

important attributes and minimize dimensionality by neglecting insignificant information though 

maintaining the significant clinical data. The prediction mechanism is submitted to the parameters 

of a Neural Network model which is optimized by means of the Real-Parameter Optimization 

Algorithm (ROA) because it has a high convergence rate and stability value. Bayesian 

hyperparameter tuning is also implemented to affect model performance even more. The suggested 

model attains remarkable performance with 97 % accuracy, 95 % precision, 94 % sensitivity, and 

92 % specificity, which reveals impressive facts when transposed with classic optimization 

algorithms, such as Hippopotamus Optimization (HO) and Puma Optimization (PO). The results 

show that the suggested ROA-based neural network framework is strong and effective and can 

therefore be a useful tool in the accurate and timely diagnosis of heart diseases in the real-life 

approach to healthcare. 
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