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Abstract

Cauliflower cultivation is challenged by various diseases that can seve impact crop health

and yield. Traditional disease detection methods are ofteg labg@l-intenSive and prone to

systems. In this study, we
propose the use of Capsule Neural Networks (Cap, 'Slicag®e prediction in cauliflower
cultivation named as CauliCaps. CapsNe amic routing units to capture spatial
relationships and hierarchical structurs images more effectively than traditional
Convolutional Neural Networks (CNNSs). assemble a comprehensive dataset of labelled
cauliflower leaf images, preprocgagthem for ®ptimal input, and train the CapsNet model
using an appropriate loss func timization algorithm. Metrics including accuracy,
precision, recall, and F1-3Qg&e are 0 compare the model's performance to state-of-the-
art techniques. Ad

researchal %: Oisease prediction in cauliflower cultivation, enabling proactive

, discuss the development of a mobile application based on

the trained CapsNe pr real-time disease diagnosis in cauliflower cultivation. This

man and ultimately contributing to improved crop health and

sustaina

YWO Disease detection, Capsule Neural Networks, Convolutional Neural Networks,

Ca er disease, Mobile Application.
Introduction

Cauliflower (Brassica oleracea L. botrytis) is a cultivar of the Brassica wild cabbage species,
renowned globally for its nutritional richness, prolific yield, and substantial economic

contributions to the agricultural sector. Renowned for its versatility in culinary applications,



cauliflower has gained widespread popularity as a staple vegetable due to its dense
concentration of essential nutrients, including vitamins, minerals, and dietary fiber. Its
adaptability to various climates and soil conditions, coupled with its relatively low
maintenance requirements, has positioned cauliflower as a preferred choice among farmers

and consumers alike. Furthermore, its significant economic impact stems from its widespread
cultivation, with cauliflower serving as a valuable commodity in domestic and internatio
markets. As a result, the cultivation of cauliflower plays a vital role in global food secur
and economic sustainability, making it a cornerstone of modern agricultural prac @
al. 2022).

Numerous diseases, including black rot, downy mildew, and pot present

difficulties for the cauliflower agricultural industry. These disea e the potential to

severely affect the growth and productivity of cauliflower crops. It i yerative for farmers
to promptly identify these diseases and employ appropria (£o mitigate their impact.
There are a number of ways to manage cauliflower dige cl@ing chemical control with

using pesticides, biological inhibition with agueo«aEEXtra beneficial microorganisms

like Bacillus species, and physical methgg brilI2QoN with hot water and the utilization

of nanoparticles (Liu et al., 2022).

The use of pesticides in cauliflower cultivat while essential for protecting crops from
pests and diseases, presents poj@fitial Zisks to human health and the environment. Pesticides
contain chemical compoun ed g target and eliminate pests and pathogens that can
ants.

damage cauliflower pl ever, prolonged exposure to pesticides can pose health risks

itations that hinder effective disease management. Primarily relying on subjective human
visual inspection, these methods are prone to errors and inconsistencies. Manual inspection
processes are labor-intensive and time-consuming, often resulting in delayed disease
detection, which allows for the rapid spread of infections within cauliflower crops. Moreover,
the costs associated with training and retaining agricultural experts for disease identification



pose significant financial burdens, especially for farmers in remote areas with limited access

to specialized expertise (Kanna et al. 2023).

Additionally, traditional methods frequently overlook early or asymptomatic infections, as
they rely on visible symptoms that may not manifest until the disease has progressed
substantially. Furthermore, these methods are heavily reliant on specific environment
conditions, making them less adaptable to diverse agricultural settings. Moreover, the lac

proper documentation and data collection further complicates the disease monitoring

hindering efforts to develop effective management strategies. Ultimately, the gcq

patterns and symptoms linked to different diseases. The
databases of plant photos. By simply capturing a
smartphone, farmers can receive instant fg

&

applications for plant disease detection YQ@ents numerous opportunities to revolutionize

ence of diseases, along with

recommendations for treatment and g t straWggies. The development of mobile

agriculture and empower farmers with vaW@able tools for crop protection. However,
challenges such as ensuring agfftiracy scalability, and accessibility must be addressed to
maximize the impact of t icag@ns in real-world farming scenarios (Rimon et al.
2021).

pase in demand across several precision agriculture areas for the
Piging, machine vision, and artificial intelligence techniques in
osis and management (Teet and Hashim, 2023). These cutting-edge

ove agricultural productivity and sustainability by providing novel

Ing systems, which are outfitted with sophisticated sensors and high-resolution cameras.

Machine vision algorithms process the captured images to extract relevant features and
patterns indicative of disease presence or progression. Leveraging artificial intelligence,
including deep learning models like Convolutional Neural Networks (CNNs) and Capsule

Neural Networks (CapsNets), facilitates automated disease diagnosis with remarkable



accuracy and efficiency. By harnessing the power of these cutting-edge technologies, farmers
and agricultural professionals can make informed decisions in real-time, optimizing resource
allocation, minimizing crop losses, and ultimately contributing to the advancement of modern
agriculture. This study aims to leverage CapsNet for disease detection in cauliflower crops
and develop a mobile application for real-time diagnosis. By harnessing the power of deep
learning and mobile technology, we seek to enhance disease prediction accuracy, enable ea

detection, and facilitate timely intervention strategies to safeguard cauliflower producti
Contributions of the work

e By proposing CauliCaps, the use of CapsNet for disease g nw@ycauliflower

cultivation, the study introduces a novel deep learning e that®Burpasses

traditional Convolutional Neural Networks (CNNSs) in captu spatial relationships
and hierarchical structures within images. This advancggent neural network
architecture holds promise for more accurate iCient disease detection in

cauliflower plants.

e In addition to model development BN, the research extends its impact by

appli
Pne disease diagnosis in cauliflower cultivation,

discussing the development o

hon based on the trained CapsNet

model. This application enables reg

empowering farmers with actionable inSghts for proactive management strategies.

e Through experiments, tiffst oroughly evaluates the performance of the CapsNet
model against statg{T-the-art hods. Metrics such as accuracy, precision, recall,

and Fl-score gea m8@eulously analyzed, providing insights into the efficacy and

seapproach for disease prediction in cauliflower cultivation.
Relate

For t tion and identification of agricultural diseases, researchers have put forth a
nu ive frameworks and approaches. Using the Complete Concatenated Block

CB) central functional unit, Arun and Umamaheswari (2023) presented the Complete
Co

tnencrement of parameters in the model by arranging a point-wise convolution layer before

ated Deep Learning (CCDL) framework. The CCDL framework efficiently restricts

each convolution layer. With a reduced model size, the PCCDL-PSCT method obtained an
astounding accuracy of 98.14%. Chug et al. (2023) introduced a novel framework that uses
40 different Hybrid Deep Learning (HDL) models to combine the best aspects of deep
learning with machine learning. Using the IARI-TomEBD dataset, these models showed high



accuracy values ranging from 87.55% to 100%. Using a Fully Convolutional Network (FCN)
algorithm for target crop image segmentation, Huang et al. (2023) suggested an FC-SNDPN-
based automated method for crop leaf disease diagnosis. 97.59% identification accuracy was
attained by the SNDPN method, which combines SNDPN for identifying diseases with FCN
for foreground segmentation. In order to prevent rice crop disease, Haridasan et al. (2023)
used a computer vision-centric strategy that included image processing, machine learni

(ML), and deep learning (DL) approaches. Their approach, which combines CNN and_$

classifier, identified affected areas and classified particular paddy diseases basg %
visual features, yielding a validation accuracy of 91.45%. Together, these r S SRV 1k

crop disease research has advanced significantly. detection and c

jonN@Rveraging a

diverse range of methodologies and frameworks.

A CNN with transfer learning was proposed by Li et al. (2022) to id surface flaws in

fresh-cut cauliflower. With a 99.27% accuracy rate and 240 F1 score, the model—

which is based on MobileNet—performed magnificently

pla
luti neural networks (CNNs). With an

refined using a dataset of
4,790 photos of cauliflower. In order to claggify
with a smartphone, Saad et al. (2022)

ers based on photos taken

astounding 99.06% success rate in dised ion, DenseNet201 demonstrated the highest
accuracy out of multiple transfer learning
Inception V3 and VGG16, Bak I. (2022) presented a web-based tool for plant disease
diagnosis. At 99.44% for trak

impressive results. In ord

pdels. Using deep learning models such as

i 70% for validation, the suggested model produced

imp lant disease detection, Sutaji et al. (2022) presented

and MobileNetVV2 models. Across multiple datasets, the

el, which had an accuracy rate of 98.66%. EfficientNet-B7 fared better in
and six-class classifications, with accuracy rates of 99.95% and 99.12%,
ly. Together, these research show how effective deep learning techniques are at
ifying and categorizing plant diseases, providing viable options for farming

administration and crop condition surveillance.

In order to accurately identify common vegetable illnesses as tomato powdery mildew,
cucumber downy mildew, and leaf mold, Xue Zhao et al. (2022) created a novel Deep
Transfer Learning with Squeeze-and-Excitation ResNet50 (DTL-SE-ResNet50) model. Their



model demonstrated impressive performance in both simple and complicated agricultural
scenarios by utilizing Convolutional Neural Network (CNN) architecture. In comparable
experimental conditions, DTL-SE-ResNet50 achieved an outstanding 97.24% recognition
accuracy, demonstrating its superiority over other well-known models such as EfficientNet,
AlexNet, VGG19, and InceptionV3. Zhao et al. (2021) introduced an innovative deep
learning-based sorting system tailored for soybean seeds, aimed at accurately identifying

sorting high-quality seeds. Their system meticulously collected For accurat S

categorization, a deep learning model was utilized, along with an alternatiy
technique to obtain surface feature data. The sorting system demonstrated ’
and dependability with an astounding accuracy rate of 98.87% ang# SO 'r&j of 222
; @ ng etal. (2021)
for the purpose of segmenting tomato fruits at different stages of Y@eness in greenhouse

ding 95.45% for

green ripe, half ripe, and fully ripe tomato stages. A del was integrated with a

seeds per minute. An improved Mask R-CNN algorithm was pre 0

settings. The mean average precision of the refined model was ,asto

picking robot and put through field testing, it showe@Pan resgge 90% correct recognition
rate, highlighting its usefulness. The YQ m is combined with manual features

experimentation and achieved 0 97.28% accuracy in grading winter jujubes, with a

quick detection time of 1.38%econ
Methodology

The resegrch tlined in this section encompasses a comprehensive workflow

e detection and management of cauliflower diseases effectively. Fig. 1

of the dataset. The dataset consists of a diverse collection of labelled
leaf images, encompassing both healthy specimens and those afflicted with
diseases. Subsequently, preprocessing techniques are applied to the dataset to

eniance features.

Feature extraction is a critical step in the methodology, where relevant features are identified
and extracted from the cauliflower leaf images using Hu moments. This process of disease

detection involves leveraging advanced techniques, such as Capsule Neural Networks



(CapsNet), to capture spatial relationships and hierarchical structures within the images

effectively.

Dataset

Data Preprocessing

and Augmentation O

Model Architecture

Designing

l

Model Training ,
and Evaluation

lgure" ™ =|ow of the proposed work

Dataset

For this ehensive dataset comprising original and augmented cauliflower
facilitate the analysis of disease detection. The dataset encompasses

es representing different diseases afflicting cauliflower plants, along with

sly compiled from the Manikganj region of Bangladesh, renowned for its vegetable
ction. Specifically, the dataset comprises a total of 656 original images and 7,360
augmented images, collectively representing a diverse range of disease states and healthy
cauliflower specimens. Table 1 presents an overview of the total number of photos acquired
for every class in the collection, illustrating the data distribution among various disease

categories. This carefully selected information forms the basis for further phases of analysis



and model building, allowing powerful machine learning algorithms to accurately
characterize and forecast cauliflower diseases.

Table 1. Classes of the dataset

Classes Total number of images
No disease 1770
Black Rot 1800
Downy Mildew 2060
Bacterial Spot Rot 1730

Downy |Black Ro acteria Healthy Healthy
Mildew t Rot Leaf Bulb

Images of the different classes of cauliflower

rocessing
The preprocessing of the dataset involves several steps to prepare the images for input into

the Capsule Neural Network (CapsNet) model. To enhance model generalization and increase

variability, these procedures usually involve standardizing pixel values, minimizing the

photos to a compatible size, and increasing the dataset.



1. Resizing Images: Resize all images to a uniform size to ensure consistency in input
dimensions. Let Whew and Hnew represent the new width and height, respectively. For

each image loriginal, the resizing operation can be defined as:
Iresized = reSize(Ioriginal' Wnew' Hnew) (1)

2. Normalization: Normalize pixel values to a common scale to facilitate mo
training. In order to prepare pixel values for neural network input, they must be sca

from their native range—for example, 0-255 for RGB images—to a new r

as 0-1 or -1 to 1. The normalization equation for each pixel pnormalized Cafde

as:

__ Poriginal

Prormatizea =~ (if scalingtor 1) (2)
Pnormalized = W (if scaling to zero meawd umit variance) (3)

3. Data Augmentation: To boost variability angas odel robustness, enhance

the dataset by using transformation g, r , and translation. Let lorigina
represent the original image ang @ lenotS@pe augmented image obtained after
applying transformations. The aug"gag##tion process can be represented as:

™ ted — AUG ent(loriginal) (4)
where augment(:) is a functi random transformations.

4. Splitting Data aluate the performance of the model, divide the dataset into

ture extraction

Feature extraction from the dataset involves extracting relevant information or features from
the images that can be used to train machine learning models. In the context of image data,
common techniques include extracting texture, color, and shape features. Here's how feature

extraction can be performed along with equations for each step:



Texture Features

Texture features play a crucial role in capturing the patterns and variations present in pixel
intensity across an image. These features provide valuable information about the texture
properties of an image, which can be essential for various computer vision tasks. The
Haralick texture features calculates texture features based on the co-occurrence matrix g

pixel intensities within an image. The co-occurrence matrix represents the frequency

occurrence of pairs of pixel intensities at a specified distance and direction within tj

The equation for computing Haralick texture features involves calculating statisti
such as contrast, correlation, energy, and homogeneity from the cQ@ence
Equation for computing Haralick texture features:

1 .. ..
Tharatick = Ezli\’:l p(i,j)logp(i,)) (5)
where p(i,j) is the co-occurrence matrix of pixel intensitie ,

Color Features

Color features provide valuable informgie t tNgyoverall color composition, which is

often indicative of specific characterS ittributes” of the objects within the image.

Knowing the color distribution will help W@adifferentiate between normal and unhealthy

cauliflower leaves in the conte study onvcauliflower disease identification. A color
histogram represents the fr ibution of different color intensities or channels
present in the image. By ntifyj e occurrence of each color intensity level, we can

osition of the image.

color histogram feature H(c) is as follows:

H(c) = Xili Xj2, 1)) (6)

e Features

Shape features describe the geometric properties and contours of objects within an image,
providing valuable information about the structure of the objects. The method for
representing shape features is through Hu moments, which are invariant to translation,

rotation, and scale changes. These moments capture the shape characteristics of an object by



considering the spatial distribution of pixel intensities within its boundary. The equation for

computing Hu moments is given by:

Nij = Xx Ly X'y 1(x,y) (7)

Here, | (x, y) represents the intensity of the pixel at coordinates (x, y) , and 7;; denotes the

raw moments of the image.

By computing Hu moments for each object or region of interest within an image, we

set of shape descriptors that characterize its geometry. By extracting these featyre

cauliflower images in the dataset, we can create a feature vector fggae

-y

Capsule network with self-attention routing for disease detection

feature vectors can then be used as input to CapsNet model for disg

Capsule networks with self-attention routing offer a novel ro’ for Cauliflower disease

detection, leveraging the benefits of both capsule netw, elf-attention mechanisms.

Capsule networks (CapsNets) aim to address li of traditional CNNs by
ing them to capture hierarchical
-attention mechanisms, on the other
hand, enable the model to focus on theNggost relevant features within the input data,

enhancing its ability to extract disggminative inf®rmation.

1. Input Data Preparg eyracted shape features, including Hu moments, serve

as input to the Capsgle ne . These features encode the geometric properties of

ting disease detection based on shape characteristics.

[u1,u2,...,un], and n represents the dimensionality of the input vector.

ch capsule i in the primary capsule layer aims to capture specific features or
attributes of the cauliflower leaf image. The output of each capsule is computed by
applying a transformation to the input vector u and then squashing the resulting vector
to ensure its length is between 0 and 1. Mathematically, the output of capsule i can be

represented as:

v; = Squash(W;.u) (8)



Where v; is the output vector of capsule i, Wi represents the weight matrix associated
with capsule i, and Squash is the non-linear "squashing™ function that ensures the

length of the output vector is between 0 and 1.

The weight matrix W; captures the transformation applied to the input vector u to
produce the output vector vi. Each capsule in the primary capsule layer has its own s

of weights Wi, allowing it to learn specific features from the input vector.

3. Self- attention: The self-attention mechanism in CapsNets enables

selectively attend to important features within the input vector while s
relevant information. Mathematically, the self-attention meg ca described

as follows:

Let U be the input vector obtained from the Hu mo s, represented as

U=[w1,20,...,un], where n is the dimensionality of thegdapui@pector.

The self-attention mechanism computes attengn ts ) for each element x; in the

input vector, indicating its importag to elements. This is achieved

&

context. The attention weights are SQg@Puted as follows:

through a mechanism that learg

weNgts adaptively based on the input's

a; = sof tMax(f (U)) (9)
where f(U) is a fungs putes a score for each element in the input vector,
and the softmax fUNgon n izes these scores to obtain a probability distribution
over the ele e S@tmax function is defined as:

eXi
softmax(u;) = m (10)

at(SQiion weights a; determine how much importance is given to each element u;
url e subsequent computation steps. A component's attention weight determines

much of an output it produces; lower weight components are essentially

uppressed.
Once the attention weights are computed, the input vector is transformed using these
weights to obtain the attended representation U

Uatt = 11'1=1 a;. u; (11)



The attended representation U%t captures the most relevant features of the input
vector, emphasizing important elements while attenuating less relevant ones. This
attended representation is then passed to the subsequent layers of the CapsNet for

further processing.

CapsNets' ability to detect illnesses in photos of cauliflower leaves is improved by th

self-attention method, which allows the network to dynamically alter the attent

weights based on the context of the input. The model's ability to recognize
patterns and geographical relationships in the input data is made poggi
adaptive attention mechanism, which eventually raises the pregisd

agricultural disease detection systems.

4. Routing by Agreement: Routing by agreement facilitates low of information
between capsules in different layers, enabling effective geat extraction and
representation learning. In the context of caulifl ease detection, routing by

agreement plays a vital role in capturing releva Igonships and dependencies

re
within the input data, thereby enhancing R OONRs abillty to detect diseases accurately.

7

prediction vector based on the input daf@l et u; denote the output vector of capsule i in

Prediction Vector Calculation: In Bry capsUle layer, each capsule computes its

the primary layer. The predigaon vector ¥, of capsule j in the subsequent layer is
computed as a weighted s diction vectors of all capsules in the primary layer:
V= Squash(Y; Cij w;) (12)

@ Jupling coefficients between capsule i in the primary layer and

Wlent layer. The Squash function ensures that the length of the

tween 0 and 1, preserving the spatial relationships encoded in the

Ro Coefficients Update: The routing coefficients ci; are updated iteratively based
e agreement between the predictions of capsules in the primary layer and the
redictions of capsules in the subsequent layer. The agreement is measured using a
similarity metric, such as the dot product or cosine similarity, between the prediction

vectors:

Cij — Cij + ACij (13)



where Aci; is the update to the routing coefficient computed based on the agreement
between the prediction vectors of capsule i in the primary layer and capsule j in the

subsequent layer.

Dynamic Routing: The routing coefficients are updated dynamically over multiple
iterations to allow capsules to reach a consensus on the importance of different feature
This dynamic routing process ensures that capsules attend to the most informat

features for disease detection, improving the model's predictive accuracy. The

routing process can be described mathematically as follows:

Let c;j represent the routing coefficient between capsule i in the g &1 capsule
are t

j in the subsequent layer at iteration tt. Initially, these routing cally set

to small, positive values or initialized randomly.

(14)
where Acl.(jt) represents igthe routing coefficient at iteration t. This change is
computed based Qg eement between the prediction vectors of capsule i in the

complex spatial relationships and dependencies within the input data, leading to
ved predictive accuracy for disease detection.

utput layer: The last step in the process of predicting whether an input image belongs
to specific diseases class is the output layer of the Capsule Network for the identification
of cauliflower disease. The output of each capsule in the output layer represents the
likelihood or confidence score that the input image belongs to the designated class of

disease, and each capsule corresponds to a different disease class.



Similar to the method outlined for the primary capsule layer, dynamic routing can be used
to mathematically calculate the output of the capsules in the output layer. Let v; represent
the output vector of capsule j in the output layer. Each capsule's output is decided by how
well its prediction vector matches the prediction vectors of the other capsules in the main

capsule layer. In the output layer, the output of capsule j is provided by:

v = Squash(zi b;; ul-) (

Where u; is the output vector of capsule i in the primary layer. b;; represents t

coefficients between capsule i in the primary layer and capsule j in the ut 8
ib

1. Initialize parameters and hyperpara@aers for the Capsule Network.

2. Preprocess the input i (e.g., resize, normalize).
3. Extract features fr ul@mages using Hu moments.
4. Construct the Cagle N architecture:

eceiving the Hu moment vectors.

agn output capsule layer for disease class predictions.

routing coefficients.

erform dynamic routing between capsule layers:

- For each capsule in the primary layer:
a. Compute prediction vectors based on input vectors and weights.
b. Update routing coefficients based on agreement with predictions.

- Iterate routing process for multiple iterations.

7. Compute predictions in the output capsule layer:

- For each capsule in the output layer:




a. Compute output vector based on input vectors and weights.

b. Apply squashing function to ensure output vector is between 0 and 1.
8. Determine the predicted disease class based on the capsule with the highest
probability score.
9. Train the Capsule Network using backpropagation and optimization algorithms.
10. Evaluate the performance of the trained model on a validation dataset.
11. Adjust hyperparameters and model architecture as necessary based on evalyati
results.

12. Test the final model on unseen data to assess generalization perforgnce

13. Repeat steps 9-12 for multiple epochs until satisfactory cev@achieved.

14. Deploy the trained model for real-world disease detect Btions.

Mobile App Development ,

The mobile application developed in this researc
disease detection and is built using Koilds
features an intuitive user interface

deployment on both Android and iO34atiy
developed with XML and Android SH ages of cauliflower leaves directly
P image processing and analysis using the

from the field. The app performs rea
embedded CapsNet model to identify discq@es on the spot. Additionally, it includes a

gneg for real-time cauliflower
iplat obile (KMM), enabling

middleware layer developed in on 3.9 toYacilitate communication between the mobile
app and a cloud server, alloyhg ralized storage and further analysis. The app also
supports image orientatio n ata visualization, and report generation, making
it a practical tool for ers ceive instant disease diagnosis and management

recommendations.

N
O
v



Mobile App

kEapturing Plant ImaQESﬁ

Image Capture
Module

(— Correcting Clrlemation—J

Communicating with Cloud Server# Cloud Server
Orientation

Correction Service

k » Middleware

Transmitting (Python 3.9)
Data to
Middleware

[Slortng Data and Results —
Data Storage
& Analysis on ,
Cloud Data

I Visualization
Visualizigg R and Reporting

Figure 3. Disease dg ing ile application

e Android App Development with Yg@roid SDK and XML: In this research, XML

is used to develop the front-end acW@pties of the mobile application, which is

especially delivered an droid application using the Android Software

e l@out and Ul components of an Android app's user
ing XML, and the Android SDK offers a full suite of tools and

Development Kit

middleware serves as an intermediary, handling data transmission and
ro g requests from the mobile app before forwarding them to the cloud server.
on's versatility and robustness make it well-suited for developing this middleware
omponent.

Image Capture and Orientation Correction: The mobile app features functionality
for capturing photos of infected plants. When taking pictures of plants, an orientation
handler that operates as a background service thread inside the application is in charge
of adjusting for any tilt or camera angle problems. This guarantees that the images are

orientated and aligned correctly for precise illness diagnosis.



e User Interface Design for Intuitive Interaction: The user interface of the mobile
app is designed to be intuitive and user-friendly, allowing farmers to easily capture
photos of infected plants. The Ul elements are carefully crafted to provide clear
instructions and guidance, ensuring seamless interaction and minimal learning curve
for users.

e Real-time Image Processing and Analysis: Upon capturing a photo of an infec

plant, the mobile app initiates real-time image processing and analysis to idengfy a

signs of disease. This functionality is powered by CapsNet model mtegrat |

4 D
Q 2

cloud-based architecture enables centralized data storage aNgallows for further

app, enabling rapid and accurate detection of plant diseases.

e Cloud Integration for Data Storage and Analysis: T a eamlessly

integrates with a cloud server for storing captured images ysis results. This

analysis and processing of collected data. Additionally, Ices may provide

scalability and reliability benefits for handling lar

e Data Visualization and Reporting: The a cl res for visualizing disease
detection results and generating 4§ ba on the analysis findings. Through
interactive charts, graphs, and Ptions, tarmers can gain insights into the
prevalence and severity of plant disgges in their crops. These visualizations aid in

decision-making and reso allocation¥Yor disease management strategies.

Experimental results and

For the experimental liflower leaf images with corresponding disease labels were

collected and divj training, validation, and test sets. The Capsule Network
architecjgire ) . d using Python with TensorFlow/Keras for model development.
The pet paraNQ@gers and hyperparameters were initialized, and the Hu moments were
extra es from the input images. The Capsule Network was trained using the
backpropagation and optimization algorithms, while the validation set was
e-tune the model's hyperparameters and architecture. The performance of the
model was evaluated on the test set to assess its generalization capability and

accuracy in predicting the disease class of cauliflower leaf images.

Table 2 listing the hyperparameters and their corresponding values used in the Capsule

Network-based approach for cauliflower disease detection.

Table 2. Hyperparameters and their values



Hyperparameter Value
Learning rate 0.001
Batch size 32
Number of capsules 128
Primary capsule size 8x8
Output capsule size 4
Routing iterations 3
Dropout rate 0.2
Activation function ReLU
Optimizer Adam
Loss function Categofftal ropy
P
Epochs @

These hyperparameters were chosen ba on preliminary experiments and empirical
observations to achieve optimal performance Wpterms of accuracy and convergence speed

during training.

The model's performance mea for evaluation using a variety of measures, including

call, accuracy, and F1-score. The percentage of test images

the two into a single metric.



Confusion Matrix for Cauliflower Disease Detection

2000

1750

No disease

1500

1250

Black Rot

Actual Labels

- 250

Bacterial Spot Rot Downy Mildew

No disease Black Rot

sion matrix

Important information on the effectiveness of tNgrcauliflower disease detection model can be

obtained from the confusion rix gmiaigure 4. Overall, the model demonstrates promising
results, with a considera umbe, orrect predictions across different disease classes.
The high values along nal for the classes "No disease” and "Downy Mildew" in the
orfectly identifies cases in these categories. Additionally, the
model gow: Q performance in detecting 'Black Rot' and 'Bacterial Spot Rot,'

with areldWg@ly h numbers of correct predictions. However, there are some

hCcatiON observed, particularly between 'Black Rot' and 'Downy Mildew," where a
nces is wrongly classified. Despite these misclassifications, the overall
of the model remains satisfactory, showcasing its ability to effectively identify
erentiate between different cauliflower disease classes. These results highlight the
potential of the model in contributing to improved disease management practices in

cauliflower cultivation, ultimately leading to enhanced crop health and productivity.

Table 3. Performance of the models



Algorithm Accuracy | Precision | Recall | F1
Score

Proposed CapsNet 0.95 0.93 0.96 0.94

CNN (Haridasan et al. (2023)) 0.88 0.85 0.89 0.87

DenseNet201 (Saad et al.|0.91 0.89 0.92 0.90

(2022))

Mask R-CNN ( Long et al. |0.89 0.86 091 |0.88

(2021))

Fully Convolutional Network ( | 0.85 0.82 0.87

Huang et al. (2023))

algorithms in terms of precision, recall, ag : F1 score. This superior performance

suggests that CapsNet effectively cap @

within cauliflower leaf images, enabling a5gate disease detection. Comparing the CapsNet

As seen in Table 3, the suggested CapsNet mode&amy better than the other
ompl

features and spatial relationships
with the CNN model, we observe a substan®®p improvement across all metrics. CapsNet
achieves a higher accuracy (0.
and F1 score (0.94 vs.

architecture of CapsNe

vh

own for its dense connectivity patterns, and Mask R-CNN, a popular model
segmentation, exhibit respectable performance but fall short compared to
in this specific application. Finally, comparing CapsNet with the Fully
Convolutional Network (FCN), we again observe significant performance gains across all
metrics. FCN, while effective in semantic segmentation tasks, appears to struggle with
capturing the intricate features and spatial relationships necessary for cauliflower disease
detection. CapsNet's capsule-based architecture, with its ability to model part-whole

relationships and dynamic routing, proves advantageous in this context. Overall, the superior



performance of the proposed CapsNet model underscores the importance of innovative
architectural designs and feature learning mechanisms in addressing complex image analysis
tasks such as cauliflower disease detection. The capsule-based approach offers promising
avenues for further advancements in agricultural image processing and disease diagnosis.The
proposed CapsNet model achieved an accuracy of 95%, precision of 93%, recall of 96%o,
and an F1-score of 94%, demonstrating its superior performance in cauliflower dise

detection. Compared to traditional CNN models, which achieved an accuracy of 88% and

F1l-score of 87%, CapsNet outperformed across all evaluation metrics, highlj

effectiveness in capturing complex spatial features and improving classificati li

Accuracy Comparison
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\ Figure 5. Accuracy of the algorithms
e cor@arison of accuracy scores among different algorithms in Figure 5 provides valuable
w nto their performance of cauliflower disease detection. The proposed CapsNet
i

ithm stands out with the highest accuracy score of 0.95, indicating its superior capability
n accurately identifying and classifying cauliflower diseases. This suggests that the CapsNet
model, with its innovative architecture and routing mechanisms, effectively leverages the
features extracted from cauliflower leaf images to make precise predictions. Following

closely is the DenseNet201 algorithm, with an accuracy score of 0.91, showcasing its strong



performance in disease detection. This highlights the effectiveness of DenseNet201, known
for its dense connectivity pattern, in capturing intricate features and patterns within the
cauliflower leaf images. The CNN algorithm demonstrates respectable performance with an
accuracy score of 0.88. This score illustrates the CNN model's ability to correctly detect
cauliflower diseases based on picture characteristics, even though it is significantly lower
than CapsNet and DenseNet201. Additionally, both Mask R-CNN and the Fu

Convolutional Network exhibit competitive performance, with accuracy scores of 0.8

0.85, respectively. These algorithms, despite their slightly lower accuracy scores cq

CapsNet and DenseNet201, still demonstrate effectiveness in cauliflower dig@#Se

ONQa, achieving

accurate and reliable disease detection results, with CapsNet &

Overall, the comparison underscores the importance of algorithyg s
@ as a particularly

promising approach in this domain.
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Figure 6. Precision of the algorithms
The precision values obtained from the proposed CapsNet model and other existing
algorithms in Figure 6 reflect the ability of each method to correctly classify positive

instances among all predicted positive instances. The proposed CapsNet model demonstrates

the highest precision among the compared algorithms, achieving an impressive precision



score of 0.93. This suggests that the CapsNet model excels in accurately identifying
cauliflower disease instances while minimizing false positives. In contrast, the CNN model
achieved a precision of 0.85, indicating a slightly lower accuracy in correctly identifying
positive instances. Similarly, the DenseNet201 model achieved a precision score of 0.89,
indicating a robust performance in correctly classifying positive instances, albeit slightly
lower than the CapsNet model. The Mask R-CNN model, achieved a precision score of 0.

indicating a commendable performance in correctly identifying positive instances. Ejna

the Fully Convolutional Network achieved a precision score of 0.82, demo
respectable but comparatively lower precision than the CapsNet model S

algorithms. Overall, these precision values provide insights into Q ti s of each

algorithm in accurately classifying cauliflower disease instances, proposed CapsNet

model showcasing the highest precision among the evaluated methods?
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Figure 7. Recall score of the algorithms
With a recall score of 0.96, the suggested CapsNet algorithm outperformed all other actual
positive cases in Figure 7 in accurately identifying true positive instances. This suggests that

the CapsNet model has a high sensitivity in detecting cauliflower diseases, making it

particularly effective in capturing instances of diseased cauliflower plants. The CNN model



achieved a recall score of 0.89, which although slightly lower than CapsNet, still
demonstrates a good ability to capture true positive instances. Similarly, the DenseNet201
algorithm, performed well with a recall score of 0.92, indicating its capability to effectively
identify diseased cauliflower plants. The Mask R-CNN model achieved a recall score of 0.91,
further reinforcing its efficacy in capturing true positive instances of cauliflower diseases.
Lastly, the Fully Convolutional Network (FCN) algorithm exhibited a recall score of 0.

indicating a satisfactory performance in correctly identifying diseased cauliflower pla

@

Overall, these findings suggest that the CapsNet outperform the others in termg

highlighting their potential for accurate cauliflower disease detection.

F1 Score Comparison
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Figure 8. F1 score of the algorithms

e comgparison among the proposed CapsNet and four existing algorithms indicates
ces in their performance for cauliflower disease detection in Figure 8. The
del achieves the highest F1 score of 0.94, signifying its superior balance between
cisfon and recall. This suggests that the CapsNet effectively captures both true positives
and avoids false positives and false negatives, demonstrating its robustness in distinguishing
between diseased and healthy cauliflower plants. Conversely, the CNN model, despite being
a widely used approach, lags behind with an F1 score of 0.87. This indicates a comparatively

lower accuracy in disease classification, possibly due to limitations in feature extraction or



model complexity. The DenseNet201 model performs slightly better with an F1 score of 0.90,
suggesting improved performance in capturing intricate features within the cauliflower leaf
images. Mask R-CNN, a popular instance segmentation model, achieves an F1 score of 0.88,
demonstrating competitive performance in disease detection. Finally, the Fully Convolutional
Network (FCN) exhibits the lowest F1 score of 0.84, indicating relatively weaker
performance compared to the other models. This could be attributed to limitations

capturing fine-grained features or challenges in classifying diverse disease patterns. Qyer

! AN
d 4

the comparison highlights the effectiveness of CapsNet in achieving accurate aj

cauliflower disease detection, showcasing its potential for enhancing agric a

and crop management strategies.
Loss

The difference between the actual ground truth values in the trai?d nd the predicted

values of a machine learning model is quantified by the 1on, which is also referred
to as the cost function or objective function. Minggi he @bss function value during
training signifies that the model's predictio e closerto the real values.

0.8 —— Training Loss

- Validation Loss
0.7 1

0.6

Epochs

Figure 9. Training and validation loss

The training and validation loss for the cauliflower disease detection model during 50 epochs
is displayed in Figure 9. The training and validation losses first drop off quickly in the early
epochs, suggesting that the model is successfully picking up on the patterns and features in



the training set. This phase is characterized by significant improvements in performance as
the model adjusts its weights and parameters to minimize the loss function. The training and
validation loss curves show a gradual convergence as the number of epochs grows. This
shows that after a certain number of training epochs, the model's performance stabilizes and
may not improve much. The model is successfully identifying the underlying patterns in the
data and generalizing well to new data, as indicated by the overall declining trend in b

training and validation loss.

Conclusion

The proposed research has demonstrated the effectiveness of Car;? ork (CapsNet) for
cauliflower disease detection, offering promising implicg agricultural practices and
crop management. By leveraging advanced deepgle hniques, particularly the

CapsNet architecture, the study has achiaue nific vancements in accurately

@ au er plants. The CapsNet model
O sting algorithms, as evidenced by its high F1

score, indicating a robust balance between p

identifying and classifying diseases

exhibited superior performance compare
ision and recall. This highlights the potential
of CapsNet to revolutionize dis etection in agriculture, offering farmers a powerful tool

to mitigate crop losses and } veR| yield. Additionally, the development of a mobile

application interface furth han e accessibility and usability of the CapsNet model,

apture and analyze plant images in real-time. Moving

ing early, accurate, and accessible disease detection directly in the field. By reducing
dependence on manual inspection and chemical treatments, it promotes timely and targeted
interventions, minimizing crop loss and environmental impact. With its high precision, real-
time mobile integration, and scalability, CauliCaps empowers farmers with intelligent

decision-making tools that enhance productivity, reduce waste, and support resilient, data-



driven farming practices paving the way for a more sustainable and technology-enabled

agricultural future
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