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Abstract 

Cauliflower cultivation is challenged by various diseases that can severely impact crop health 

and yield. Traditional disease detection methods are often labour-intensive and prone to 

errors, highlighting the need for automated and efficient prediction systems. In this study, we 

propose the use of Capsule Neural Networks (CapsNet) for disease prediction in cauliflower 

cultivation named as CauliCaps. CapsNet introduces dynamic routing units to capture spatial 

relationships and hierarchical structures within images more effectively than traditional 

Convolutional Neural Networks (CNNs). We assemble a comprehensive dataset of labelled 

cauliflower leaf images, preprocess them for optimal input, and train the CapsNet model 

using an appropriate loss function and optimization algorithm. Metrics including accuracy, 

precision, recall, and F1-score are used to compare the model's performance to state-of-the-

art techniques.  Additionally, we discuss the development of a mobile application based on 

the trained CapsNet model for real-time disease diagnosis in cauliflower cultivation. This 

research aims to advance disease prediction in cauliflower cultivation, enabling proactive 

management strategies and ultimately contributing to improved crop health and 

sustainability. 

Keywords: Disease detection, Capsule Neural Networks, Convolutional Neural Networks, 

Cauliflower disease, Mobile Application. 

Introduction 

Cauliflower (Brassica oleracea L. botrytis) is a cultivar of the Brassica wild cabbage species, 

renowned globally for its nutritional richness, prolific yield, and substantial economic 

contributions to the agricultural sector. Renowned for its versatility in culinary applications, 
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cauliflower has gained widespread popularity as a staple vegetable due to its dense 

concentration of essential nutrients, including vitamins, minerals, and dietary fiber. Its 

adaptability to various climates and soil conditions, coupled with its relatively low 

maintenance requirements, has positioned cauliflower as a preferred choice among farmers 

and consumers alike. Furthermore, its significant economic impact stems from its widespread 

cultivation, with cauliflower serving as a valuable commodity in domestic and international 

markets. As a result, the cultivation of cauliflower plays a vital role in global food security 

and economic sustainability, making it a cornerstone of modern agricultural practices (Li et 

al. 2022). 

Numerous diseases, including black rot, downy mildew, and bacterial spot rot, present 

difficulties for the cauliflower agricultural industry. These diseases have the potential to 

severely affect the growth and productivity of cauliflower crops. It is imperative for farmers 

to promptly identify these diseases and employ appropriate methods to mitigate their impact. 

There are a number of ways to manage cauliflower diseases, including chemical control with 

using pesticides, biological inhibition with aqueous extracts and beneficial microorganisms 

like Bacillus species, and physical methods like sterilization with hot water and the utilization 

of nanoparticles (Liu et al., 2022).  

The use of pesticides in cauliflower cultivation, while essential for protecting crops from 

pests and diseases, presents potential risks to human health and the environment. Pesticides 

contain chemical compounds designed to target and eliminate pests and pathogens that can 

damage cauliflower plants. However, prolonged exposure to pesticides can pose health risks 

to farmworkers, consumers, and surrounding ecosystems. Additionally, diseases caused by 

bacteria or fungi in cauliflower, if left untreated, can lead to various health problems, 

including allergic reactions, when consumed (Pathak et al. 2022). The prevalence of plant 

diseases in cauliflower cultivation significantly affects both the quantity and quality of 

cauliflower produced, leading to substantial losses in annual harvests.  

Traditional methods for detecting cauliflower diseases in agriculture are fraught with 

limitations that hinder effective disease management. Primarily relying on subjective human 

visual inspection, these methods are prone to errors and inconsistencies. Manual inspection 

processes are labor-intensive and time-consuming, often resulting in delayed disease 

detection, which allows for the rapid spread of infections within cauliflower crops. Moreover, 

the costs associated with training and retaining agricultural experts for disease identification 
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pose significant financial burdens, especially for farmers in remote areas with limited access 

to specialized expertise (Kanna et al. 2023).  

Additionally, traditional methods frequently overlook early or asymptomatic infections, as 

they rely on visible symptoms that may not manifest until the disease has progressed 

substantially. Furthermore, these methods are heavily reliant on specific environmental 

conditions, making them less adaptable to diverse agricultural settings. Moreover, the lack of 

proper documentation and data collection further complicates the disease monitoring process, 

hindering efforts to develop effective management strategies. Ultimately, the scalability of 

traditional cauliflower disease detection methods is limited, impeding their widespread 

adoption and effectiveness in agricultural settings. 

Significant progress has been achieved in the creation of mobile applications for the detection 

of plant diseases in recent years. These apps use machine learning algorithms to identify 

patterns and symptoms linked to different diseases. The algorithms were trained on massive 

databases of plant photos. By simply capturing a photo of the affected plant using their 

smartphone, farmers can receive instant feedback on the presence of diseases, along with 

recommendations for treatment and management strategies. The development of mobile 

applications for plant disease detection presents numerous opportunities to revolutionize 

agriculture and empower farmers with valuable tools for crop protection. However, 

challenges such as ensuring accuracy, scalability, and accessibility must be addressed to 

maximize the impact of these applications in real-world farming scenarios (Rimon et al. 

2021).  

There has been a notable increase in demand across several precision agriculture areas for the 

combination of optical imaging, machine vision, and artificial intelligence techniques in 

vegetable disease diagnosis and management (Teet and Hashim, 2023). These cutting-edge 

technologies improve agricultural productivity and sustainability by providing novel 

approaches to the detection, tracking, and mitigation of plant diseases. Plant health factors 

including leaf color, texture, and morphology may be thoroughly analyzed by using optical 

imaging systems, which are outfitted with sophisticated sensors and high-resolution cameras.  

Machine vision algorithms process the captured images to extract relevant features and 

patterns indicative of disease presence or progression. Leveraging artificial intelligence, 

including deep learning models like Convolutional Neural Networks (CNNs) and Capsule 

Neural Networks (CapsNets), facilitates automated disease diagnosis with remarkable 
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accuracy and efficiency. By harnessing the power of these cutting-edge technologies, farmers 

and agricultural professionals can make informed decisions in real-time, optimizing resource 

allocation, minimizing crop losses, and ultimately contributing to the advancement of modern 

agriculture. This study aims to leverage CapsNet for disease detection in cauliflower crops 

and develop a mobile application for real-time diagnosis. By harnessing the power of deep 

learning and mobile technology, we seek to enhance disease prediction accuracy, enable early 

detection, and facilitate timely intervention strategies to safeguard cauliflower production. 

Contributions of the work 

• By proposing CauliCaps, the use of CapsNet for disease prediction in cauliflower 

cultivation, the study introduces a novel deep learning architecture that surpasses 

traditional Convolutional Neural Networks (CNNs) in capturing spatial relationships 

and hierarchical structures within images. This advancement in neural network 

architecture holds promise for more accurate and efficient disease detection in 

cauliflower plants. 

• In addition to model development and evaluation, the research extends its impact by 

discussing the development of a mobile application based on the trained CapsNet 

model. This application enables real-time disease diagnosis in cauliflower cultivation, 

empowering farmers with actionable insights for proactive management strategies. 

• Through experiments, the study thoroughly evaluates the performance of the CapsNet 

model against state-of-the-art methods. Metrics such as accuracy, precision, recall, 

and F1-score are meticulously analyzed, providing insights into the efficacy and 

reliability of the proposed approach for disease prediction in cauliflower cultivation. 

Related works 

For the classification and identification of agricultural diseases, researchers have put forth a 

number of creative frameworks and approaches. Using the Complete Concatenated Block 

(CCB) as its central functional unit, Arun and Umamaheswari (2023) presented the Complete 

Concatenated Deep Learning (CCDL) framework. The CCDL framework efficiently restricts 

the increment of parameters in the model by arranging a point-wise convolution layer before 

each convolution layer. With a reduced model size, the PCCDL-PSCT method obtained an 

astounding accuracy of 98.14%. Chug et al. (2023) introduced a novel framework that uses 

40 different Hybrid Deep Learning (HDL) models to combine the best aspects of deep 

learning with machine learning. Using the IARI-TomEBD dataset, these models showed high 
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accuracy values ranging from 87.55% to 100%. Using a Fully Convolutional Network (FCN) 

algorithm for target crop image segmentation, Huang et al. (2023) suggested an FC-SNDPN-

based automated method for crop leaf disease diagnosis. 97.59% identification accuracy was 

attained by the SNDPN method, which combines SNDPN for identifying diseases with FCN 

for foreground segmentation. In order to prevent rice crop disease, Haridasan et al. (2023) 

used a computer vision-centric strategy that included image processing, machine learning 

(ML), and deep learning (DL) approaches. Their approach, which combines CNN and SVM 

classifier, identified affected areas and classified particular paddy diseases based just on 

visual features, yielding a validation accuracy of 91.45%. Together, these results show that 

crop disease research has advanced significantly. detection and classification, leveraging a 

diverse range of methodologies and frameworks. 

A CNN with transfer learning was proposed by Li et al. (2022) to identify surface flaws in 

fresh-cut cauliflower. With a 99.27% accuracy rate and a 99.24% F1 score, the model—

which is based on MobileNet—performed magnificently after being refined using a dataset of 

4,790 photos of cauliflower. In order to classify eggplant disorders based on photos taken 

with a smartphone, Saad et al. (2022) used convolutional neural networks (CNNs). With an 

astounding 99.06% success rate in disease detection, DenseNet201 demonstrated the highest 

accuracy out of multiple transfer learning models. Using deep learning models such as 

Inception V3 and VGG16, Bakr et al. (2022) presented a web-based tool for plant disease 

diagnosis. At 99.44% for training and 98.70% for validation, the suggested model produced 

impressive results. In order to improve plant disease detection, Sutaji et al. (2022) presented 

the combination of the Xception and MobileNetV2 models. Across multiple datasets, the 

ensemble model outperformed individual model results, achieving the best accuracy rate of 

99.10%. EfficientNet was proposed by Chowdhury et al. (2021) to classify tomato illnesses 

based on segmented leaf pictures. Outstanding results were obtained by the Modified U-net 

segmentation model, which had an accuracy rate of 98.66%. EfficientNet-B7 fared better in 

the binary and six-class classifications, with accuracy rates of 99.95% and 99.12%, 

respectively. Together, these research show how effective deep learning techniques are at 

identifying and categorizing plant diseases, providing viable options for farming 

administration and crop condition surveillance. 

In order to accurately identify common vegetable illnesses as tomato powdery mildew, 

cucumber downy mildew, and leaf mold, Xue Zhao et al. (2022) created a novel Deep 

Transfer Learning with Squeeze-and-Excitation ResNet50 (DTL-SE-ResNet50) model. Their 
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model demonstrated impressive performance in both simple and complicated agricultural 

scenarios by utilizing Convolutional Neural Network (CNN) architecture. In comparable 

experimental conditions, DTL-SE-ResNet50 achieved an outstanding 97.24% recognition 

accuracy, demonstrating its superiority over other well-known models such as EfficientNet, 

AlexNet, VGG19, and InceptionV3. Zhao et al. (2021) introduced an innovative deep 

learning-based sorting system tailored for soybean seeds, aimed at accurately identifying and 

sorting high-quality seeds. Their system meticulously collected For accurate seed 

categorization, a deep learning model was utilized, along with an alternative rotation 

technique to obtain surface feature data. The sorting system demonstrated its effectiveness 

and dependability with an astounding accuracy rate of 98.87% and a sorting speed of 222 

seeds per minute. An improved Mask R-CNN algorithm was presented by Long et al. (2021) 

for the purpose of segmenting tomato fruits at different stages of ripeness in greenhouse 

settings. The mean average precision of the refined model was an astounding 95.45% for 

green ripe, half ripe, and fully ripe tomato stages. After the model was integrated with a 

picking robot and put through field testing, it showed an impressive 90% correct recognition 

rate, highlighting its usefulness.  The YOLOv3 algorithm is combined with manual features 

in an innovative method of image processing by Lu et al. (2021) to create a state-of-the-art 

computer vision-based automated grading bot for winter jujubes. Their method, which shown 

its ability to improve agricultural output and efficiency, was developed through extensive 

experimentation and achieved an amazing 97.28% accuracy in grading winter jujubes, with a 

quick detection time of 1.39 seconds. 

Methodology 

The research methodology outlined in this section encompasses a comprehensive workflow 

designed to facilitate the detection and management of cauliflower diseases effectively. Fig. 1 

illustrates the sequential flow of the research, which begins with the acquisition and 

characterization of the dataset. The dataset consists of a diverse collection of labelled 

cauliflower leaf images, encompassing both healthy specimens and those afflicted with 

various diseases. Subsequently, preprocessing techniques are applied to the dataset to 

enhance features.  

Feature extraction is a critical step in the methodology, where relevant features are identified 

and extracted from the cauliflower leaf images using Hu moments. This process of disease 

detection involves leveraging advanced techniques, such as Capsule Neural Networks 
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(CapsNet), to capture spatial relationships and hierarchical structures within the images 

effectively. 

 

Figure 1. Flow of the proposed work 

Dataset 

For this research, a comprehensive dataset comprising original and augmented cauliflower 

images was curated to facilitate the analysis of disease detection. The dataset encompasses 

three distinct classes representing different diseases afflicting cauliflower plants, along with 

images of disease-free cauliflower specimens for comparison. These images were 

meticulously compiled from the Manikganj region of Bangladesh, renowned for its vegetable 

production. Specifically, the dataset comprises a total of 656 original images and 7,360 

augmented images, collectively representing a diverse range of disease states and healthy 

cauliflower specimens. Table 1 presents an overview of the total number of photos acquired 

for every class in the collection, illustrating the data distribution among various disease 

categories. This carefully selected information forms the basis for further phases of analysis 
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and model building, allowing powerful machine learning algorithms to accurately 

characterize and forecast cauliflower diseases. 

Table 1. Classes of the dataset 

Classes Total number of images 

No disease 1770 

Black Rot 1800 

Downy Mildew 2060 

Bacterial Spot Rot 1730 

 

 

Figure 2.  Images of the different classes of cauliflower 

 

 

 

Preprocessing 

The preprocessing of the dataset involves several steps to prepare the images for input into 

the Capsule Neural Network (CapsNet) model. To enhance model generalization and increase 

variability, these procedures usually involve standardizing pixel values, minimizing the 

photos to a compatible size, and increasing the dataset. 
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1. Resizing Images: Resize all images to a uniform size to ensure consistency in input 

dimensions. Let Wnew and Hnew represent the new width and height, respectively. For 

each image Ioriginal, the resizing operation can be defined as: 

𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑 = 𝑟𝑒𝑠𝑖𝑧𝑒(𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, 𝑊𝑛𝑒𝑤, 𝐻𝑛𝑒𝑤)                                      (1) 

2. Normalization: Normalize pixel values to a common scale to facilitate model 

training. In order to prepare pixel values for neural network input, they must be scaled 

from their native range—for example, 0-255 for RGB images—to a new range, such 

as 0-1 or -1 to 1. The normalization equation for each pixel pnormalized can be expressed 

as: 

𝑝𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑝𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

255
     (𝑖𝑓 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑡𝑜 𝑟𝑎𝑛𝑔𝑒 0 − 1)                   (2) 

𝑝𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑝𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙−𝑚𝑒𝑎𝑛

𝑠𝑡𝑑
     (𝑖𝑓 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑡𝑜 𝑧𝑒𝑟𝑜 𝑚𝑒𝑎𝑛 𝑎𝑛𝑑 𝑢𝑛𝑖𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)   (3) 

3. Data Augmentation: To boost variability and strengthen model robustness, enhance 

the dataset by using transformations like flipping, rotation, and translation. Let Ioriginal 

represent the original image and Iaugmented denote the augmented image obtained after 

applying transformations. The augmentation process can be represented as: 

𝐼𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝑎𝑢𝑔𝑚𝑒𝑛𝑡(𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)                                          (4) 

where augment(⋅) is a function that applies random transformations. 

4. Splitting Dataset: To evaluate the performance of the model, divide the dataset into 

test, validation, and training sets. Typically, 10% of the dataset is used for testing, 

10% for validation, and 80% for training. 

These preprocessing steps ensure that the dataset is appropriately formatted and augmented to 

train the CapsNet model effectively for cauliflower disease detection. 

 

Feature extraction 

Feature extraction from the dataset involves extracting relevant information or features from 

the images that can be used to train machine learning models. In the context of image data, 

common techniques include extracting texture, color, and shape features. Here's how feature 

extraction can be performed along with equations for each step: 
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Texture Features 

Texture features play a crucial role in capturing the patterns and variations present in pixel 

intensity across an image. These features provide valuable information about the texture 

properties of an image, which can be essential for various computer vision tasks. The 

Haralick texture features calculates texture features based on the co-occurrence matrix of 

pixel intensities within an image. The co-occurrence matrix represents the frequency of 

occurrence of pairs of pixel intensities at a specified distance and direction within the image. 

The equation for computing Haralick texture features involves calculating statistical measures 

such as contrast, correlation, energy, and homogeneity from the co-occurrence matrix. 

Equation for computing Haralick texture features:  

𝑇𝐻𝑎𝑟𝑎𝑙𝑖𝑐𝑘 =
1

𝑁
∑ 𝑝(𝑖, 𝑗) log 𝑝(𝑖, 𝑗)𝑁

𝑖=1                                            (5) 

where 𝑝(𝑖,𝑗) is the co-occurrence matrix of pixel intensities.  

Color Features 

Color features provide valuable information about the overall color composition, which is 

often indicative of specific characteristics or attributes of the objects within the image. 

Knowing the color distribution will help us differentiate between normal and unhealthy 

cauliflower leaves in the context of study on cauliflower disease identification. A color 

histogram represents the frequency distribution of different color intensities or channels 

present in the image. By quantifying the occurrence of each color intensity level, we can 

characterize the overall color composition of the image. 

The equation for computing a color histogram feature H(c) is as follows: 

𝐻(𝑐) = ∑ ∑ 𝐼(𝑖, 𝑗)𝑀
𝑗=1

𝑁
𝑖=1                                                       (6) 

where 𝐼(𝑖,𝑗) is the intensity of pixel (𝑖,𝑗) and 𝑁 and 𝑀 are the dimensions of the image. 

 

Shape Features 

Shape features describe the geometric properties and contours of objects within an image, 

providing valuable information about the structure of the objects. The method for 

representing shape features is through Hu moments, which are invariant to translation, 

rotation, and scale changes. These moments capture the shape characteristics of an object by 
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considering the spatial distribution of pixel intensities within its boundary. The equation for 

computing Hu moments is given by: 

𝜂𝑖𝑗 = ∑ ∑ 𝑥𝑖𝑦𝑖
𝑦𝑥 𝐼(𝑥, 𝑦)                                                        (7) 

Here, I (x, y)  represents the intensity of the pixel at coordinates (x, y) , and 𝜂𝑖𝑗 denotes the 

raw moments of the image.  

By computing Hu moments for each object or region of interest within an image, we obtain a 

set of shape descriptors that characterize its geometry. By extracting these features from the 

cauliflower images in the dataset, we can create a feature vector for each image. These 

feature vectors can then be used as input to CapsNet model for disease detection. 

Capsule network with self-attention routing for disease detection 

Capsule networks with self-attention routing offer a novel approach for cauliflower disease 

detection, leveraging the benefits of both capsule networks and self-attention mechanisms. 

Capsule networks (CapsNets) aim to address the limitations of traditional CNNs by 

introducing dynamic routing between capsules, allowing them to capture hierarchical 

relationships and spatial hierarchies more effectively. Self-attention mechanisms, on the other 

hand, enable the model to focus on the most relevant features within the input data, 

enhancing its ability to extract discriminative information. 

1. Input Data Preparation: The extracted shape features, including Hu moments, serve 

as input to the Capsule network. These features encode the geometric properties of 

cauliflower images, facilitating disease detection based on shape characteristics. 

2. Primary Capsule Layer: The primary capsule layer in the CapsNet plays a crucial 

role in encoding the input features obtained from the Hu moments into a meaningful 

representation. Let's denote the input vector obtained from the Hu moments as 𝑢, 

where 𝑢=[𝑢1,𝑢2,...,𝑢𝑛], and 𝑛 represents the dimensionality of the input vector. 

Each capsule 𝑖 in the primary capsule layer aims to capture specific features or 

attributes of the cauliflower leaf image. The output of each capsule is computed by 

applying a transformation to the input vector 𝑢 and then squashing the resulting vector 

to ensure its length is between 0 and 1. Mathematically, the output of capsule 𝑖 can be 

represented as: 

𝑣𝑖 = Squash(𝑊𝑖 . u)                                                           (8) 

Auth
ors

 Pre-
Proo

f



Where 𝑣𝑖 is the output vector of capsule 𝑖, 𝑊𝑖 represents the weight matrix associated 

with capsule i, and Squash is the non-linear "squashing" function that ensures the 

length of the output vector is between 0 and 1. 

The weight matrix 𝑊𝑖 captures the transformation applied to the input vector 𝑢 to 

produce the output vector 𝑣𝑖. Each capsule in the primary capsule layer has its own set 

of weights 𝑊𝑖, allowing it to learn specific features from the input vector. 

3. Self- attention: The self-attention mechanism in CapsNets enables capsules to 

selectively attend to important features within the input vector while suppressing less 

relevant information. Mathematically, the self-attention mechanism can be described 

as follows: 

Let U be the input vector obtained from the Hu moments, represented as 

U=[𝑢1,𝑢2,...,𝑢𝑛], where 𝑛 is the dimensionality of the input vector. 

The self-attention mechanism computes attention weights 𝛼𝑖 for each element 𝑥𝑖 in the 

input vector, indicating its importance relative to other elements. This is achieved 

through a mechanism that learns to assign weights adaptively based on the input's 

context. The attention weights are computed as follows: 

𝛼𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓(𝑈))                                                  (9) 

where 𝑓(U) is a function that computes a score for each element in the input vector, 

and the softmax function normalizes these scores to obtain a probability distribution 

over the elements. The softmax function is defined as: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑢𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

                                        (10) 

The attention weights 𝛼𝑖 determine how much importance is given to each element ui 

during the subsequent computation steps. A component's attention weight determines 

how much of an output it produces; lower weight components are essentially 

suppressed. 

Once the attention weights are computed, the input vector is transformed using these 

weights to obtain the attended representation Uatt: 

𝑈𝑎𝑡𝑡 = ∑ 𝛼𝑖. 𝑢𝑖
𝑛
𝑖=1                                              (11) 
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The attended representation 𝑈𝑎𝑡𝑡 captures the most relevant features of the input 

vector, emphasizing important elements while attenuating less relevant ones. This 

attended representation is then passed to the subsequent layers of the CapsNet for 

further processing. 

CapsNets' ability to detect illnesses in photos of cauliflower leaves is improved by the 

self-attention method, which allows the network to dynamically alter the attention 

weights based on the context of the input. The model's ability to recognize complex 

patterns and geographical relationships in the input data is made possible by this 

adaptive attention mechanism, which eventually raises the precision and resilience of 

agricultural disease detection systems. 

4. Routing by Agreement: Routing by agreement facilitates the flow of information 

between capsules in different layers, enabling effective feature extraction and 

representation learning. In the context of cauliflower disease detection, routing by 

agreement plays a vital role in capturing relevant spatial relationships and dependencies 

within the input data, thereby enhancing the model's ability to detect diseases accurately. 

Prediction Vector Calculation: In the primary capsule layer, each capsule computes its 

prediction vector based on the input data. Let 𝑢𝑖 denote the output vector of capsule 𝑖 in 

the primary layer. The prediction vector 𝑣𝑗 of capsule 𝑗 in the subsequent layer is 

computed as a weighted sum of the prediction vectors of all capsules in the primary layer: 

𝑣𝑗 = 𝑆𝑞𝑢𝑎𝑠ℎ(∑ 𝑐𝑖𝑗𝑖 𝑢𝑖)                                                   (12) 

Here, 𝑐𝑖𝑗 represents the coupling coefficients between capsule 𝑖 in the primary layer and 

capsule 𝑗 in the subsequent layer. The Squash function ensures that the length of the 

output vector is between 0 and 1, preserving the spatial relationships encoded in the 

predictions. 

Routing Coefficients Update: The routing coefficients 𝑐𝑖𝑗 are updated iteratively based 

on the agreement between the predictions of capsules in the primary layer and the 

predictions of capsules in the subsequent layer. The agreement is measured using a 

similarity metric, such as the dot product or cosine similarity, between the prediction 

vectors: 

𝑐𝑖𝑗 ← 𝑐𝑖𝑗 + Δ𝑐𝑖𝑗                                                             (13) 

Auth
ors

 Pre-
Proo

f



where Δ𝑐𝑖𝑗 is the update to the routing coefficient computed based on the agreement 

between the prediction vectors of capsule 𝑖 in the primary layer and capsule 𝑗 in the 

subsequent layer. 

Dynamic Routing: The routing coefficients are updated dynamically over multiple 

iterations to allow capsules to reach a consensus on the importance of different features. 

This dynamic routing process ensures that capsules attend to the most informative 

features for disease detection, improving the model's predictive accuracy. The dynamic 

routing process can be described mathematically as follows: 

Let 𝑐𝑖𝑗 represent the routing coefficient between capsule 𝑖 in the primary layer and capsule 

j in the subsequent layer at iteration 𝑡t. Initially, these routing coefficients are typically set 

to small, positive values or initialized randomly. 

At each iteration t, the routing coefficients are updated based on the agreement between 

the prediction vectors of capsules in the primary layer and the prediction vectors of 

capsules in the subsequent layer. This agreement can be computed using a similarity 

metric such as the dot product or cosine similarity. 

The update rule for the routing coefficients is given by: 

𝑐𝑖𝑗
(𝑡+1)

← 𝑐𝑖𝑗
(𝑡)

+ Δ𝑐𝑖𝑗
(𝑡)

                                                             (14) 

where Δ𝑐𝑖𝑗
(𝑡)

 represents the change in the routing coefficient at iteration t. This change is 

computed based on the agreement between the prediction vectors of capsule i in the 

primary layer and capsule 𝑗 in the subsequent layer. 

The dynamic routing process continues for multiple iterations until convergence, where 

the routing coefficients stabilize and capsules reach a consensus on the importance of 

different features. This iterative updating mechanism allows CapsNets to effectively 

capture complex spatial relationships and dependencies within the input data, leading to 

improved predictive accuracy for disease detection. 

Output layer: The last step in the process of predicting whether an input image belongs 

to specific diseases class is the output layer of the Capsule Network for the identification 

of cauliflower disease. The output of each capsule in the output layer represents the 

likelihood or confidence score that the input image belongs to the designated class of 

disease, and each capsule corresponds to a different disease class. 
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Similar to the method outlined for the primary capsule layer, dynamic routing can be used 

to mathematically calculate the output of the capsules in the output layer. Let 𝑣𝑗 represent 

the output vector of capsule 𝑗 in the output layer. Each capsule's output is decided by how 

well its prediction vector matches the prediction vectors of the other capsules in the main 

capsule layer. In the output layer, the output of capsule 𝑗 is provided by: 

𝑣𝑗 = 𝑆𝑞𝑢𝑎𝑠ℎ(∑ 𝑏𝑖𝑗𝑖 𝑢𝑖)                                                   (15) 

Where 𝑢𝑖 is the output vector of capsule 𝑖 in the primary layer. 𝑏𝑖𝑗 represents the coupling 

coefficients between capsule 𝑖 in the primary layer and capsule 𝑗 in the output layer. The 

output of each capsule in the output layer represents the probability distribution over the 

disease classes, with higher values indicating a higher confidence that the input image 

belongs to the corresponding disease class. The final prediction can then be made based 

on the capsule with the highest probability score, thus determining the predicted disease 

class for the input image. Algorithm 1 shows the flow of the proposed work. 

Algorithm 1. Proposed algorithm flow 

Input: Dataset of cauliflower leaf images with corresponding labels 

Output: Predictions for disease class of input images 

1. Initialize parameters and hyperparameters for the Capsule Network. 

2. Preprocess the input images (e.g., resize, normalize). 

3. Extract features from the input images using Hu moments. 

4. Construct the Capsule Network architecture: 

    - Define input layer for receiving the Hu moment vectors. 

    - Construct primary capsule layer with capsules representing different features. 

    - Implement self-attention routing mechanism for dynamic routing. 

    - Design output capsule layer for disease class predictions. 

5. Initialize routing coefficients. 

6. Perform dynamic routing between capsule layers: 

    - For each capsule in the primary layer: 

        a. Compute prediction vectors based on input vectors and weights. 

        b. Update routing coefficients based on agreement with predictions. 

    - Iterate routing process for multiple iterations. 

7. Compute predictions in the output capsule layer: 

    - For each capsule in the output layer: 
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        a. Compute output vector based on input vectors and weights. 

        b. Apply squashing function to ensure output vector is between 0 and 1. 

8. Determine the predicted disease class based on the capsule with the highest 

probability score. 

9. Train the Capsule Network using backpropagation and optimization algorithms. 

10. Evaluate the performance of the trained model on a validation dataset. 

11. Adjust hyperparameters and model architecture as necessary based on evaluation 

results. 

12. Test the final model on unseen data to assess generalization performance. 

13. Repeat steps 9-12 for multiple epochs until satisfactory performance is achieved. 

14. Deploy the trained model for real-world disease detection applications. 

 

Mobile App Development 

The mobile application developed in this research is designed for real-time cauliflower 

disease detection and is built using Kotlin Multiplatform Mobile (KMM), enabling 

deployment on both Android and iOS platforms. It features an intuitive user interface 

developed with XML and Android SDK for capturing images of cauliflower leaves directly 

from the field. The app performs real-time image processing and analysis using the 

embedded CapsNet model to identify diseases on the spot. Additionally, it includes a 

middleware layer developed in Python 3.9 to facilitate communication between the mobile 

app and a cloud server, allowing centralized storage and further analysis. The app also 

supports image orientation correction, data visualization, and report generation, making 

it a practical tool for farmers to receive instant disease diagnosis and management 

recommendations. 
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Figure 3. Disease detection using Mobile application  

• Android App Development with Android SDK and XML: In this research, XML 

is used to develop the front-end activities of the mobile application, which is 

especially delivered as an Android application using the Android Software 

Development Kit (SDK). The layout and UI components of an Android app's user 

interface are defined using XML, and the Android SDK offers a full suite of tools and 

modules for this purpose. 

• Middleware Development with Python 3.9: To facilitate communication between 

the mobile app and the cloud server, a middleware layer is implemented using Python 

3.9. This middleware serves as an intermediary, handling data transmission and 

processing requests from the mobile app before forwarding them to the cloud server. 

Python's versatility and robustness make it well-suited for developing this middleware 

component. 

• Image Capture and Orientation Correction: The mobile app features functionality 

for capturing photos of infected plants. When taking pictures of plants, an orientation 

handler that operates as a background service thread inside the application is in charge 

of adjusting for any tilt or camera angle problems. This guarantees that the images are 

orientated and aligned correctly for precise illness diagnosis. 

Auth
ors

 Pre-
Proo

f



• User Interface Design for Intuitive Interaction: The user interface of the mobile 

app is designed to be intuitive and user-friendly, allowing farmers to easily capture 

photos of infected plants. The UI elements are carefully crafted to provide clear 

instructions and guidance, ensuring seamless interaction and minimal learning curve 

for users. 

• Real-time Image Processing and Analysis: Upon capturing a photo of an infected 

plant, the mobile app initiates real-time image processing and analysis to identify any 

signs of disease. This functionality is powered by CapsNet model integrated into the 

app, enabling rapid and accurate detection of plant diseases. 

• Cloud Integration for Data Storage and Analysis: The mobile app seamlessly 

integrates with a cloud server for storing captured images and analysis results. This 

cloud-based architecture enables centralized data storage and allows for further 

analysis and processing of collected data. Additionally, cloud services may provide 

scalability and reliability benefits for handling large volumes of data. 

• Data Visualization and Reporting: The app includes features for visualizing disease 

detection results and generating reports based on the analysis findings. Through 

interactive charts, graphs, and visualizations, farmers can gain insights into the 

prevalence and severity of plant diseases in their crops. These visualizations aid in 

decision-making and resource allocation for disease management strategies. 

Experimental results and discussion 

For the experimental setup, cauliflower leaf images with corresponding disease labels were 

collected and divided into training, validation, and test sets. The Capsule Network 

architecture was implemented using Python with TensorFlow/Keras for model development. 

The network's parameters and hyperparameters were initialized, and the Hu moments were 

extracted as features from the input images. The Capsule Network was trained using the 

training set with backpropagation and optimization algorithms, while the validation set was 

used to fine-tune the model's hyperparameters and architecture. The performance of the 

trained model was evaluated on the test set to assess its generalization capability and 

accuracy in predicting the disease class of cauliflower leaf images. 

Table 2 listing the hyperparameters and their corresponding values used in the Capsule 

Network-based approach for cauliflower disease detection. 

Table 2. Hyperparameters and their values 
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Hyperparameter Value 

Learning rate 0.001 

Batch size 32 

Number of capsules 128 

Primary capsule size 8x8 

Output capsule size 4 

Routing iterations 3 

Dropout rate 0.2 

Activation function ReLU 

Optimizer Adam 

Loss function Categorical cross-entropy 

Epochs 50 

These hyperparameters were chosen based on preliminary experiments and empirical 

observations to achieve optimal performance in terms of accuracy and convergence speed 

during training.  

The model's performance was measured for evaluation using a variety of measures, including 

the confusion matrix, precision, recall, accuracy, and F1-score. The percentage of test images 

that are accurately classified is known as accuracy. The precision measure evaluates the 

model's ability to prevent false positives by calculating the ratio of accurately predicted 

positive cases to all anticipated positive cases. Recall measures how well the model can 

identify all positive cases by calculating the ratio of accurately predicted positive cases to all 

actual positive cases. The F1-score strikes a balance between recall and precision by 

combining the two into a single metric. Auth
ors

 Pre-
Proo

f



 

Figure 4. Confusion matrix 

Important information on the effectiveness of the cauliflower disease detection model can be 

obtained from the confusion matrix in Figure 4. Overall, the model demonstrates promising 

results, with a considerable number of correct predictions across different disease classes. 

The high values along the diagonal for the classes "No disease" and "Downy Mildew" in the 

matrix show that the model correctly identifies cases in these categories. Additionally, the 

model shows commendable performance in detecting 'Black Rot' and 'Bacterial Spot Rot,' 

with relatively high numbers of correct predictions. However, there are some 

misclassifications observed, particularly between 'Black Rot' and 'Downy Mildew,' where a 

portion of instances is wrongly classified. Despite these misclassifications, the overall 

performance of the model remains satisfactory, showcasing its ability to effectively identify 

and differentiate between different cauliflower disease classes. These results highlight the 

potential of the model in contributing to improved disease management practices in 

cauliflower cultivation, ultimately leading to enhanced crop health and productivity. 

Table 3. Performance of the models 
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As seen in Table 3, the suggested CapsNet model performs noticeably better than the other 

algorithms in terms of precision, recall, accuracy, and F1 score. This superior performance 

suggests that CapsNet effectively captures the complex features and spatial relationships 

within cauliflower leaf images, enabling accurate disease detection.  Comparing the CapsNet 

with the CNN model, we observe a substantial improvement across all metrics. CapsNet 

achieves a higher accuracy (0.95 vs. 0.88), precision (0.93 vs. 0.85), recall (0.96 vs. 0.89), 

and F1 score (0.94 vs. 0.87). This improvement can be attributed to the capsule-based 

architecture of CapsNet, which allows for better representation learning and dynamic routing, 

enabling the model to focus on relevant features and relationships within the data. Similarly, 

comparing CapsNet with DenseNet201 and Mask R-CNN, we see consistent improvements 

in accuracy, precision, recall, and F1 score. CapsNet outperforms these models, indicating its 

effectiveness in capturing and leveraging informative features for disease detection. 

DenseNet201, known for its dense connectivity patterns, and Mask R-CNN, a popular model 

for instance segmentation, exhibit respectable performance but fall short compared to 

CapsNet in this specific application. Finally, comparing CapsNet with the Fully 

Convolutional Network (FCN), we again observe significant performance gains across all 

metrics. FCN, while effective in semantic segmentation tasks, appears to struggle with 

capturing the intricate features and spatial relationships necessary for cauliflower disease 

detection. CapsNet's capsule-based architecture, with its ability to model part-whole 

relationships and dynamic routing, proves advantageous in this context. Overall, the superior 

Algorithm Accuracy Precision Recall F1 

Score 

Proposed CapsNet 0.95 0.93 0.96 0.94 

CNN  (Haridasan et al. (2023)) 0.88 0.85 0.89 0.87 

DenseNet201 (Saad et al. 

(2022)) 

0.91 0.89 0.92 0.90 

Mask R-CNN ( Long et al. 

(2021)) 

0.89 0.86 0.91 0.88 

Fully Convolutional Network ( 

Huang et al. (2023)) 

0.85 0.82 0.87 0.84 
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performance of the proposed CapsNet model underscores the importance of innovative 

architectural designs and feature learning mechanisms in addressing complex image analysis 

tasks such as cauliflower disease detection. The capsule-based approach offers promising 

avenues for further advancements in agricultural image processing and disease diagnosis.The 

proposed CapsNet model achieved an accuracy of 95%, precision of 93%, recall of 96%, 

and an F1-score of 94%, demonstrating its superior performance in cauliflower disease 

detection. Compared to traditional CNN models, which achieved an accuracy of 88% and an 

F1-score of 87%, CapsNet outperformed across all evaluation metrics, highlighting its 

effectiveness in capturing complex spatial features and improving classification reliability. 

 

 

Figure 5. Accuracy of the algorithms 

The comparison of accuracy scores among different algorithms in Figure 5 provides valuable 

insights into their performance of cauliflower disease detection. The proposed CapsNet 

algorithm stands out with the highest accuracy score of 0.95, indicating its superior capability 

in accurately identifying and classifying cauliflower diseases. This suggests that the CapsNet 

model, with its innovative architecture and routing mechanisms, effectively leverages the 

features extracted from cauliflower leaf images to make precise predictions. Following 

closely is the DenseNet201 algorithm, with an accuracy score of 0.91, showcasing its strong 
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performance in disease detection. This highlights the effectiveness of DenseNet201, known 

for its dense connectivity pattern, in capturing intricate features and patterns within the 

cauliflower leaf images. The CNN algorithm demonstrates respectable performance with an 

accuracy score of 0.88. This score illustrates the CNN model's ability to correctly detect 

cauliflower diseases based on picture characteristics, even though it is significantly lower 

than CapsNet and DenseNet201. Additionally, both Mask R-CNN and the Fully 

Convolutional Network exhibit competitive performance, with accuracy scores of 0.89 and 

0.85, respectively. These algorithms, despite their slightly lower accuracy scores compared to 

CapsNet and DenseNet201, still demonstrate effectiveness in cauliflower disease detection. 

Overall, the comparison underscores the importance of algorithm selection in achieving 

accurate and reliable disease detection results, with CapsNet emerging as a particularly 

promising approach in this domain. 

 

 

Figure 6. Precision of the algorithms 

The precision values obtained from the proposed CapsNet model and other existing 

algorithms in Figure 6 reflect the ability of each method to correctly classify positive 

instances among all predicted positive instances. The proposed CapsNet model demonstrates 

the highest precision among the compared algorithms, achieving an impressive precision 
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score of 0.93. This suggests that the CapsNet model excels in accurately identifying 

cauliflower disease instances while minimizing false positives. In contrast, the CNN model 

achieved a precision of 0.85, indicating a slightly lower accuracy in correctly identifying 

positive instances. Similarly, the DenseNet201 model achieved a precision score of 0.89, 

indicating a robust performance in correctly classifying positive instances, albeit slightly 

lower than the CapsNet model. The Mask R-CNN model, achieved a precision score of 0.86, 

indicating a commendable performance in correctly identifying positive instances. Finally, 

the Fully Convolutional Network achieved a precision score of 0.82, demonstrating a 

respectable but comparatively lower precision than the CapsNet model and some other 

algorithms. Overall, these precision values provide insights into the effectiveness of each 

algorithm in accurately classifying cauliflower disease instances, with the proposed CapsNet 

model showcasing the highest precision among the evaluated methods. 

 

  

Figure 7. Recall score of the algorithms 

With a recall score of 0.96, the suggested CapsNet algorithm outperformed all other actual 

positive cases in Figure 7 in accurately identifying true positive instances. This suggests that 

the CapsNet model has a high sensitivity in detecting cauliflower diseases, making it 

particularly effective in capturing instances of diseased cauliflower plants. The CNN model 

Auth
ors

 Pre-
Proo

f



achieved a recall score of 0.89, which although slightly lower than CapsNet, still 

demonstrates a good ability to capture true positive instances. Similarly, the DenseNet201 

algorithm, performed well with a recall score of 0.92, indicating its capability to effectively 

identify diseased cauliflower plants. The Mask R-CNN model achieved a recall score of 0.91, 

further reinforcing its efficacy in capturing true positive instances of cauliflower diseases. 

Lastly, the Fully Convolutional Network (FCN) algorithm exhibited a recall score of 0.87, 

indicating a satisfactory performance in correctly identifying diseased cauliflower plants. 

Overall, these findings suggest that the CapsNet outperform the others in terms of recall, 

highlighting their potential for accurate cauliflower disease detection. 

 

Figure 8. F1 score of the algorithms 

The F1 score comparison among the proposed CapsNet and four existing algorithms indicates 

notable differences in their performance for cauliflower disease detection in Figure 8. The 

CapsNet model achieves the highest F1 score of 0.94, signifying its superior balance between 

precision and recall. This suggests that the CapsNet effectively captures both true positives 

and avoids false positives and false negatives, demonstrating its robustness in distinguishing 

between diseased and healthy cauliflower plants. Conversely, the CNN model, despite being 

a widely used approach, lags behind with an F1 score of 0.87. This indicates a comparatively 

lower accuracy in disease classification, possibly due to limitations in feature extraction or 
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model complexity. The DenseNet201 model performs slightly better with an F1 score of 0.90, 

suggesting improved performance in capturing intricate features within the cauliflower leaf 

images. Mask R-CNN, a popular instance segmentation model, achieves an F1 score of 0.88, 

demonstrating competitive performance in disease detection. Finally, the Fully Convolutional 

Network (FCN) exhibits the lowest F1 score of 0.84, indicating relatively weaker 

performance compared to the other models. This could be attributed to limitations in 

capturing fine-grained features or challenges in classifying diverse disease patterns. Overall, 

the comparison highlights the effectiveness of CapsNet in achieving accurate and reliable 

cauliflower disease detection, showcasing its potential for enhancing agricultural practices 

and crop management strategies. 

Loss 

The difference between the actual ground truth values in the training data and the predicted 

values of a machine learning model is quantified by the loss function, which is also referred 

to as the cost function or objective function. Minimizing the loss function value during 

training signifies that the model's predictions are getting closer to the real values. 

 

Figure 9. Training and validation loss 

The training and validation loss for the cauliflower disease detection model during 50 epochs 

is displayed in Figure 9. The training and validation losses first drop off quickly in the early 

epochs, suggesting that the model is successfully picking up on the patterns and features in 
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the training set. This phase is characterized by significant improvements in performance as 

the model adjusts its weights and parameters to minimize the loss function. The training and 

validation loss curves show a gradual convergence as the number of epochs grows. This 

shows that after a certain number of training epochs, the model's performance stabilizes and 

may not improve much. The model is successfully identifying the underlying patterns in the 

data and generalizing well to new data, as indicated by the overall declining trend in both 

training and validation loss. 

 

 

Conclusion 

The proposed research has demonstrated the effectiveness of Capsule Network (CapsNet) for 

cauliflower disease detection, offering promising implications for agricultural practices and 

crop management. By leveraging advanced deep learning techniques, particularly the 

CapsNet architecture, the study has achieved significant advancements in accurately 

identifying and classifying diseases affecting cauliflower plants. The CapsNet model 

exhibited superior performance compared to existing algorithms, as evidenced by its high F1 

score, indicating a robust balance between precision and recall. This highlights the potential 

of CapsNet to revolutionize disease detection in agriculture, offering farmers a powerful tool 

to mitigate crop losses and improve overall yield. Additionally, the development of a mobile 

application interface further enhances the accessibility and usability of the CapsNet model, 

empowering farmers to easily capture and analyze plant images in real-time. Moving 

forward, future research endeavors could focus on expanding the applicability of CapsNet to 

other crops and agricultural domains, as well as exploring additional features and 

optimizations to further enhance model performance. Overall, the findings underscore the 

transformative potential of deep learning in agriculture and underscore the importance of 

continued innovation in leveraging technology for sustainable food production and global 

food security.CauliCaps has the potential to significantly advance sustainable agriculture by 

enabling early, accurate, and accessible disease detection directly in the field. By reducing 

dependence on manual inspection and chemical treatments, it promotes timely and targeted 

interventions, minimizing crop loss and environmental impact. With its high precision, real-

time mobile integration, and scalability, CauliCaps empowers farmers with intelligent 

decision-making tools that enhance productivity, reduce waste, and support resilient, data-
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driven farming practices paving the way for a more sustainable and technology-enabled 

agricultural future 
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