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Abstract—The healthcare sector is becoming more dependent on electronic health records (EHR) for 

disease forecasting, risk evaluation, and mortality analysis. Although AI-driven models have enhanced 

disease prediction, they frequently focus on common diseases and face difficulties with new or rare diseases. 

Furthermore, these models require large datasets for better accuracy, posing challenges in diverse or limited-

data scenarios. To solve these issues, this research proposes a novel Long Short-Term Memory (LSTM)-

Attention network-based meta-learning framework for prediction tasks using time-series data from EHRs. The 

framework is designed to address challenges such as limited sample sizes, imbalanced labels, and the ability 

to predict unseen diseases. The proposed model is capable of handling multiple tasks related to irregular 

patterns and anomalies in time-series signals. The meta-learning approach enables the system to leverage 

knowledge from previous tasks, enhancing its ability to predict new and previously unseen diseases from 

ECG data. The proposed LSTM-Attention model is evaluated against conventional models like Support Vector 

Machine (SVM), Random Forest (RF), and XGBoost. Experimental results demonstrate that the proposed 

model outperforms these models, achieving superior performance in predicting HRV, arrhythmia, and 

abnormalities from ECG signals. The LSTM-Attention model achieves the highest accuracy (0.92), precision 

(0.90), recall (0.91), F1 score (0.91), and ROC-AUC (0.93). Moreover, the prediction time for the proposed model 

is 95 seconds, significantly faster than other models. 

Keywords—Electronic Health Record; Meta-Learning; Electrocardiogram; LSTM with Attention; Disease 

Prediction; Accuracy. 

 

I. INTRODUCTION 

Continuous patient Electronic Health Records (EHR) have received a lot of attention in healthcare analytics 

recently [1]. Many studies have been conducted to create strategies for predicting clinical risks such as death, 

hospital readmission, the onset of a chronic disease, and deterioration of an existing condition. The reasons for 

this include: 1) the difficulty of analyzing patient EHRs due to factors such as noise, sparsity, and inconsistency, 

and 2) the need for reliable health risk prediction models to assist clinical decision-makers in identifying 

potential risks early on so that patients can receive better care. In response to these challenges, a variety of 

computer algorithms have been developed, ranging from more standard methods to Deep Learning (DL) 

models [2]. 

 

A significant difference between healthcare challenges and applications in domains such as robot vision, 

speech evaluation, and machine translation is the scarcity of available sample datasets, as well as the high cost 

or inability to collect additional samples [3]. Each data sample is paired with a specific patient in the context of 

personalized patient risk prediction, which aims to forecast a specific clinical risk for each individual. With a 

narrower focus on a certain condition, the already small world population of 7.5 billion people decreases even 

further. Unfortunately, there is only a limited quantity of patient data available in a certain EHR corpus for 

training a risk prediction model. Furthermore, the clinical dangers being addressed are extremely detailed. A 

lack of comprehensive understanding of the biochemical pathways underlying the majority of deadly diseases 
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complicates the design of effective treatments. To develop models that can reliably predict clinical risk, it is 

essential to maximize the use of limited patient samples alongside existing knowledge about clinical risk and 

predictive models. This study specifically focuses on predicting illness using ECG. ECGs provide a wealth of 

critical physiological information for diagnosing a wide range of cardiac conditions. Their intricate patterns 

carry vital insights, yet understanding these signals often requires highly trained specialists; even experienced 

doctors may struggle to identify subtle trends or apply their knowledge to new or challenging patients.  

 

A. Current Challenges and Proposed Solution 

Recognizing the complexity of ECG analysis underscores the need for advanced computational techniques 

to streamline and enhance diagnostic accuracy. The traditional Machine Learning (ML) pipeline for illness 

diagnosis involves two main steps: feature extraction and model development. Initial methods primarily 

focused on using a single characteristic for diagnosis. However, these standard approaches have proven 

insufficient due to the high level of manual involvement and the requirement for specialized expertise. To 

address these limitations, DL, particularly convolutional neural networks (CNN), have become powerful 

alternatives for disease prediction. These networks automate feature extraction and optimize performance, thus 

minimizing manual intervention in parameter selection. However, DL models require large datasets for 

accurate predictions and are often applicable only for identifying specific diseases. They are not suitable for 

predicting rare diseases or conditions with minimal samples.  

 

To address these challenges, a meta-learning approach is proposed in this work. The LSTM-Attention model 

is chosen as the base model for meta-learning. The proposed system analyzes ECG data and is capable of 

predicting HRV, arrhythmia, and other abnormalities in ECG readings. This model is beneficial for predicting 

rare diseases from ECG signals, thereby improving patient health by facilitating appropriate treatment.  

 

B. Problem Statement and Research Contribution 

Identifying diseases from ECG requires more data and is affected by data quality issues such as noise, 

sparsity, and inconsistency. Traditional methods fail to identify rare diseases due to limited datasets. This paper 

proposes a solution that overcomes these challenges by using meta-learning combined with an LSTM-Attention 

model. The key contribution of the research: 

• The meta-learning approach is utilized to predict HRV, arrhythmia, and other abnormalities using a 

single model from minimal ECG data. 

• An LSTM-Attention DL model is proposed to capture temporal features from ECG data, with attention 

mechanisms incorporated to identify the most significant features for enhanced prediction accuracy. 

• The proposed LSTM-Attention model is compared with traditional models such as SVM, XGBoost, and 

RF using quality metrics and execution time. 

• The EHR data is sourced from MIMIC-III, which is highly unstructured and underwent extensive pre-

processing to enhance the accuracy of DL-based meta-learning prediction. 

 

The research paper is organized as follows: Section I details the importance of disease prediction from EHR, 

challenges in current methods, and the need for meta-learning. Section II discusses recent research work on 

EHR data. Section III covers the theoretical concept of meta-learning and the LSTM-Attention model. Section 

IV discusses the experimental setup, data used, and outcomes of the proposed model in disease prediction. 

Section V concludes the research with future work. 
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II. RELATED WORK 

Various risk prediction models have been developed using ML, DL, and EHR data. Some of the recent works 

in this area are highlighted in this section. Using feature extraction, the study  [4] proposed an EHR risk 

prediction model. By initially extracting structured text from EHR data using Natural Language Processing, the 

researchers [5] recommend a system that employs ML techniques to categorize the text as an indicator of "good" 

or "bad" quality and then use it for prediction. Logistic regression and SVM were utilized as ML models. The 

research [6] proposed a system consisting of two models. The initial model included the development of 

interoperable EHR systems with a uniform database structure. Module two covered tasks including cleaning 

and retrieving data from the EHR system, as well as evaluating and forecasting data. Using the proposed 

decision support system, the proposed system's accuracy in forecasting diabetes disease and the EHR system's 

interoperability were assessed. 

The study [7] developed a multi-task learning (MTL) model to make clinical predictions from time-series 

EHR data. To demonstrate that MTL systems can overcome task imbalance and interference, the study [8] 

compares their performance to that of traditional single-task models using a prenatal EHR dataset. With 

uniform input durations and variables, these models may be applied to all patients in the EHR system. Transfer 

learning was employed in one study [9] to address the diminishing data problem in personalized models. The 

study [10] aimed to increase disease prediction accuracy by utilizing EHR temporal data through a new hybrid 

DL architecture. The architecture incorporates both CNN and LSTM networks. Findings support the notion that 

predictive model development should shift toward including complex neural network topologies, potentially 

leading to more personalized models. The paper [11] proposes a model that integrates LSTM and Graph Neural 

Networks (GNNs) to forecast opioid overdose risks, utilizing temporal illness development and patient 

interaction graphs. The model's dependence on extensive EHR data may raise privacy issues, and although 

interpretability has improved, it may still provide difficulties for doctors in real-time scenarios. The research 

[12] examines DL techniques for clinical decision support, utilizing electronic health record data to predict 

illness stages, detect genetic markers, and anticipate hospitalization requirements. Although DL provides great 

accuracy, it remains constrained by the availability and quality of labeled data, as well as the complexity of 

integrating various electronic health record formats.  

The study [13] employs LSTM to evaluate structured EHR data for the automated prediction of surgical site 

infections, surpassing conventional models such as random forests in both precision and area under the ROC 

curve. Although LSTM models exhibit excellent accuracy, they necessitate extensive, pristine, and meticulously 

annotated datasets, which can be difficult to acquire consistently across various healthcare environments. The 

research [14] proposes a hybrid model that integrates LSTM and machine learning techniques to predict new-

onset delirium based on patient data, surpassing the performance of conventional models such as logistic 

regression and LightGBM. The efficacy is significantly reliant on the quality of EHR data and feature selection, 

and the model may encounter difficulties with infrequent or unrecognized conditions. Paper [15] suggests 

extracting and predicting lung cancer from EHR datasets using a DL architecture combined with Natural 

Language Processing (NLP). The text mining model can automatically forecast occurrences from input datasets, 

allowing for optimal cancer predictions. The model was tested in a new context to see how well it performs and 

how resilient DL with NLP is to different datasets. The evaluation demonstrated that the prediction accuracy 

was higher than that of existing methods. However, there are some limitations in the DL models. The scarcity 

of labeled datasets and datasets with long-tailed class distributions complicates a wide range of medical tasks. 

Because general practitioners may be unfamiliar with rare diseases and struggle to differentiate between them, 

an AI-based decision-making model could help improve diagnostic accuracy.In recent research, many 

algorithms have been proposed for handling EHR data and predicting diseases. However, there remains a gap 

between research and real-time implementation. Proposed models often struggle with unseen data, rare 
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diseases, and new conditions. Most studies use data collected from the internet, which is typically sourced from 

specific groups of people within certain locations or age ranges. This limitation makes such data insufficient for 

deploying models in clinical settings. The research aims to address these problems using an LSTM-Attention-

based meta-learning approach. 

  

III. THEORETICAL BACKGROUND 

This section details the theoretical foundation of two important concepts in this research: meta-learning and 

LSTM-Attention networks. It also explains how to integrate the LSTM-Attention model into the meta-learning 

framework. The nomenclature used in the meta-learning and LSTM-Attention networks is provided in 

Appendix 1 for reference. 

A. Meta-Learning 

In this case, the model is designed to learn from a limited number of samples. The key concept behind meta-

learning is to build on prior knowledge rather than starting from scratch to achieve this goal [16]. This approach 

draws upon foundational concepts from supervised machine learning. Here is a model that accepts an 

observation 𝑥 and assigns it a label 𝑦.  𝐷 represents the training data, while 𝜙 represents the model parameters. 

Training is an optimization challenge in supervised learning, to maximize the likelihood of the parameters 

based on the 𝐷 : arg𝑚𝑎𝑥𝜙 log 𝑝(𝜙|𝐷) . The issue is reframed as the determinant of the limit of the 

parameter's marginal probability: arg𝑚𝑎𝑥𝜙 log 𝑝(𝜙)and the data's maximum probability given the parameters: 

arg𝑚𝑎𝑥𝜙 log 𝑝(𝐷|𝜙). A regularizer, such as log 𝑝(𝜙) (e.g., weight decay), can be used, and optimization is 

performed over the dataset with ∑ log 𝑝(𝑦𝑖|𝑥𝑖 , 𝜙)𝑖 . Equations (1-4) describe supervised learning for optimizing 

model parameters based on task-specific data. 

arg𝑚𝑎𝑥𝜙 log 𝑝(𝜙|𝐷) = arg𝑚𝑎𝑥𝜙 𝑙𝑜𝑔
𝑝(𝜙,𝐷)

𝑝(𝐷)
      (1) 

= arg𝑚𝑎𝑥𝜙 log 𝑝(𝜙|𝐷)      (2) 

= arg𝑚𝑎𝑥𝜙 log 𝑝(𝐷|𝜙) + log 𝑝(𝜙)    (3) 

= arg𝑚𝑎𝑥𝜙 ∑ log 𝑝(𝑦𝑖|𝑥𝑖 , 𝜙)𝑖 + log 𝑝(𝜙)    (4) 

Given 𝐷 = {(𝑥1, 𝑦1), . . . , (𝑥𝑘 , 𝑦𝑘) }, where 𝑥𝑖 denotes the input and 𝑦𝑖   denotes the corresponding labels, meta-

learning integrates prior experiences with limited new data inputs. To merge existing knowledge with new 

data points, the problem is expressed in Equation (5) 

arg𝑚𝑎𝑥𝜙 log 𝑝(𝜙|𝐷, 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛)             (5) 

Where, 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛  represents prior or meta-training data. Maintaining 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛  is difficult due to 

significant memory demands. Meta-learning characterizes the meta-training dataset through meta-parameters 

obtained by 𝜃 = arg𝑚𝑎𝑥𝜃 𝑝(𝜃|𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛) . The meta-parameters 𝜃 , derived from 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 , encapsulate 

prior information essential for the rapid execution of new tasks. This task becomes a maximum likelihood issue: 

arg𝑚𝑎𝑥𝜙 log 𝑝(𝜙|𝐷, 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛). Using prior meta-training data, the goal is to optimize the likelihood of the 

parameters concerning the new data. The likelihood process is regarded as an integration of the 𝜃. To estimate 

this integration, a point estimate 𝜃∗  for the 𝜃is used. Meta-training 𝑝(𝜃∗|𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛) involves acquiring meta-

parameters from existing meta-training data, while adaptation 𝑝(𝜙|𝐷, 𝜃∗) focuses on deriving parameters for a 

novel task using both new data and established meta-parameters. Equations (6-10) describe meta-learning for 

optimizing model parameters using prior knowledge from meta-training data to enable fast adaptation to new 

tasks. 

𝑙𝑜𝑔 𝑝(𝜙|𝐷, 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛) = 𝑙𝑜𝑔
𝑝(𝜙,𝐷,𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛)

𝑝(𝐷,𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛)
                 (6) 
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= 𝑙𝑜𝑔 ∫
𝑝(𝜙,𝐷)𝑝(𝜃,𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛)

𝑝(𝐷,𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛)
𝑑𝜃     (7) 

= 𝑙𝑜𝑔 ∫
𝑝(𝜙,𝐷,𝜃)𝑝(𝜃,𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛)

𝑝(𝐷,𝜃)𝑝(𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛)
𝑑𝜃     (8) 

= 𝑙𝑜𝑔 ∫ 𝑝(𝜙|𝐷, 𝜃) 𝑝(𝜃|𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛) 𝑑𝜃    (9) 

     ≈ log 𝑝(𝜙|𝐷, 𝜃∗)𝑝(𝜃∗|𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛)             (10) 

 

Where 𝜃∗ = arg𝑚𝑎𝑥𝜃 𝑝(𝜃|𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛). To estimate the new task arg𝑚𝑎𝑥𝜙 log 𝑝(𝜙|𝐷, 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛) , use 

arg𝑚𝑎𝑥𝜙 log 𝑝(𝜙|𝐷, 𝜃
∗), where 𝜙 represents the task-specific parameters and 𝜃∗ denotes the initial information 

distributed across all tasks.  

 

In summary, acquiring a new skill involves two stages.  The first stage is gaining proficiency with the meta-

learning parameter 𝜃∗ = arg𝑚𝑎𝑥𝜃 𝑝(𝜃|𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛), followed by refining it using a limited number of examples 

𝜙∗ = arg𝑚𝑎𝑥𝜙 𝑝(𝜙|𝐷, 𝜃
∗).  

 

 

Fig. 1. Meta-Learning for new task prediction. 

 

Figure 1 shows the working of meta-learning in new task prediction and it illustrates the involvement of 

meta-parameters in new tasks and how meta-parameters are updated based on task-specific parameters using 

a limited number of new input/output pairs. Ultimately, the updated 𝜙∗ is utilized for prediction. The algorithm 

1 gives the working of meta-learning model. 

Algorithm 1: Meta-Learning 

Input: Meta-training data 𝑫𝒎𝒆𝒕𝒂−𝒕𝒓𝒂𝒊𝒏 , New task data 𝑫𝒏𝒆𝒘 , Parameters 𝜽,𝝓 

Output: Adapted model parameters 𝝓∗ , performance. 

Step 1: Initialize Meta-parameters 𝜽. 

For each task 𝑻𝒊 in 𝑫𝒎𝒆𝒕𝒂−𝒕𝒓𝒂𝒊𝒏 : 

a. Extract the training data 𝑫𝒊  for task 𝑻𝒊 . 

b. Train the model on task 𝑻𝒊 using the current 𝜽. 

c. Update meta-parameters 𝜽. 

𝜽∗ = 𝐚𝐫𝐠𝒎𝒂𝒙𝜽 𝒑(𝜽|𝑫𝒎𝒆𝒕𝒂−𝒕𝒓𝒂𝒊𝒏) 

Step 2: Adapt at New Task 

a. Extract New Task Data 

b. Initialize Task-Specific Parameters 𝝓 
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c. Update task-specific parameters 𝝓 using new task data 𝑫 and the prior 𝜽∗. 

𝝓∗ = 𝐚𝐫𝐠𝒎𝒂𝒙𝝓 𝒑(𝝓|𝑫, 𝜽
∗) 

Step 3: Evaluate the Adapted Model 

Step 4: Repeat Steps 2 and 3 to adapt the model to different tasks, using the prior 𝜽∗. 

 

B. LSTM-Attention 

This section details the importance of combining LSTM and the Attention mechanism. First, the architecture 

and working of LSTM and the Attention mechanism are detailed. Next, the proposed model is explained. 

 

LSTM: When handling large volumes of sequencing data, LSTM is recommended as a training method [17]. 

The gated state enables LSTM to exercise more control over the transmission state compared to the standard 

RNN. After a long state 𝑐(𝑡−1), the forget gate 𝑓(𝑡)  retains or discards the input. The input gate 𝑐(𝑡−1) determines 

whether to allow the input data to the current state of the memory cell 𝑐(𝑡) . The output gate 𝑜(𝑡)  functions 

similarly to the input gate by deciding to send the signal from the current to the next layer. Equations (11-15) 

illustrate the calculation principles for each gate structure [24].  

𝑓(𝑡) = 𝜎(𝑊𝑓𝑥(𝑡) + 𝑉𝑓ℎ(𝑡−1) + 𝑏𝑓)      (11) 

𝑖(𝑡) = 𝜎(𝑊𝑖𝑥(𝑡) + 𝑉𝑖ℎ(𝑡−1) + 𝑏𝑖)      (12) 

𝑜(𝑡) = 𝜎(𝑊𝑜𝑥(𝑡) + 𝑉𝑜ℎ(𝑡−1) + 𝑏𝑜)      (13) 

𝑐(𝑡) = 𝑓𝑡⨂ 𝑐(𝑡−1) + 𝑖(𝑡)⨂ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥(𝑡) + 𝑉𝑐ℎ(𝑡−1) + 𝑏𝑐)            (14) 

ℎ(𝑡) = 𝑜(𝑡)⨂𝑡𝑎𝑛ℎ (𝑐(𝑡) )       (15) 

The input sequence 𝑥 = (𝑥1, 𝑥2 . . . 𝑥𝑛) and the output sequence ℎ = (ℎ1, ℎ2 . . . ℎ𝑛) are defined as follows. The 

weight matrix 𝑊  and vector 𝑉 re-established, with 𝑏 representing the threshold. The sigmoid activation 

function 𝜎(𝑥) = 1 1 + 𝑒−𝑥 ⁄  is defined, and the dot product is indicated by ⊗. 

Attention Mechanism: The attention mechanism (AM) addresses the problem of information overload when 

computational resources are limited by allocating those resources to more critical tasks. A larger number of 

parameters allows the model to store more information and effectively represent features within neural 

networks, however, this could end in information overload. Applying an AM helps the network prioritize 

relevant input data, filtering out non-essential information and focusing only on what is necessary for the task 

at hand. The attention value is determined through two processes: (1) defining attention distributions for each 

input dataset and (2) using these distributions to compute the weighted average of the input data. Equations 

(16) to (19) illustrate the computational concepts of the AM.  

ℎ𝑡 = 𝑅𝑁𝑁(𝑥𝑡 , ℎ𝑡−1)        (16) 

𝑐𝑖 = ∑ 𝛼𝑖𝑗ℎ𝑗
𝑛
𝑗=1         (17) 

𝛼𝑖𝑗 =
𝑒𝑥𝑝(𝑠(ℎ𝑡,ℎ𝑠̅̅ ̅))

∑ 𝑒𝑥𝑝(𝑠(ℎ𝑡,ℎ𝑠̅̅ ̅))
𝑛
𝑘=1

       (18) 

𝑠(ℎ𝑡 , ℎ𝑠̅̅̅) = ℎ𝑡 , ℎ𝑠̅̅̅               (19) 

The hidden state variable ℎ𝑡  is generated by merging the input 𝑥 with the previous hidden state ℎ𝑡−1 . The 

𝑐𝑖  represents the weighted average of all hidden layers as well as the following hidden layer unit. The weight 

ratio of the hidden layer units is represented by α. Consequently, the target value is ℎ𝑠̅̅̅, where 𝑠 represents the 

weight calculation method.  
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Proposed Model: Combining the AM into the LSTM network enables the model to achieve high prediction 

accuracy. Regardless of the input signal sequence length, conventional LSTM may transform it into a fixed 

length, which limits the model's ability to learn from extensive sequences. To enhance prediction accuracy, the 

AM fortifies connections between hidden layers and highlights significant information by assigning weight 

components. The network encoder utilizes the AM to retain intermediate outputs. The proposed model is 

trained to detect correlations between input and output sequences by selectively learning meaningful 

representations from the input sequence. Figure 5 illustrates how the AM computes the score for each variable 

by utilizing intermediate variables obtained from the hidden layers of the LSTM. The weight assigned to each 

variable reflects its relative importance. Ultimately, the vector layer captures important features from the input, 

integrates it, and assigns additional weight.  

 

Fig. 2. LSTM-Attension architecture. 

 

After integrating LSTM with the AM, Equations (19)–(23) present the conditions for updating each parameter. 

(

 
 

𝑓(𝑡)
𝑛

𝑖(𝑡)
𝑛

𝑜(𝑡)
𝑛

𝑔(𝑡)
𝑛
)

 
 
= (

𝜎
𝜎
𝜎
𝑡𝑎𝑛ℎ

)𝑍𝐿+𝑀
𝑛 (

𝐸𝑑𝑡−1
𝑛

ℎ𝑡−1
𝑛

𝑣𝑡

)      (19) 

𝑣𝑡 = ∑ 𝛽𝑖
𝑡𝑥𝑖

𝑁
𝑖          (20) 

𝑠𝑖
𝑡 = 𝑊𝑠 𝑡𝑎𝑛ℎ(𝑊ℎℎ(𝑡−1)

𝑛 +𝑊𝑥𝑥𝑖 + 𝑏𝑠)     (21) 

𝛽𝑖
𝑡 =

𝑒𝑥𝑝(𝑠𝑘
𝑡)

∑ 𝑒𝑥𝑝(𝑠𝑘
𝑡)𝑛

𝑘=1
        (22) 

∑ 𝛽𝑖
𝑡 = 1𝑁

𝑖          (23) 

where 𝑍𝐿+𝑀
𝑛  represents the n-th layer parameters, 𝜎 denotes the sigmoid function. The embedding matrix is 

indicated as 𝐸𝑑𝑡−1
𝑛 , with 𝐿 referring to the LSTM dimension. The context vector 𝑣𝑡 represents the relevant input 

vector at the time 𝑡, with 𝑀  denoting the dimension of 𝑣𝑡 . The relevance score 𝑠𝑖
𝑡  determines the attention 

weights 𝛽𝑖
𝑡. The networks for the attributes 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁} can obtain attention weights after acquiring their 

relevant scores. The weight matrices applied in the proposed network at the time 𝑡′ are detailed in Equations 

(24-26). 

𝑤𝑡′,𝑖ℎ
′ = 𝑤𝑡′ , 𝑖ℎ𝛽𝑡′        (24) 

𝑤𝑡′,𝑜ℎ
′ = 𝑤𝑡′ , 𝑜ℎ𝛽𝑡′        (25) 

𝑤𝑡′,𝑓ℎ
′ = 𝑤𝑡′, 𝑓ℎ𝛽𝑡′        (26) 
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Enhancing the weights allows the network to focus on capturing significant data. The LSTM-Attention 

mechanism improves prediction accuracy by identifying the most important temporal features from the limited 

ECG data. The algorithm 2 gives the working of LSTM-Attention model. 

Algorithm 2: LSTM-Attention Model 

Input: Sequence of input data 𝑿. LSTM hidden states 𝒉, Attention weights 𝜶 

Output: Accuracy. 

Step 1: LSTM Update 

a. Forget gate: 𝒇𝒕 = 𝝈(𝑾𝒇. 𝒙𝒕 + 𝑽𝒇. 𝒉𝒕−𝟏 + 𝒃𝒇) 

b. Input gate: 𝒊𝒕 = 𝝈(𝑾𝒊. 𝒙𝒕 + 𝑽𝒊. 𝒉𝒕−𝟏 + 𝒃𝒊) 

c. Output gate: 𝒐𝒕 = 𝝈(𝑾𝒐. 𝒙𝒕 + 𝑽𝒐. 𝒉𝒕−𝟏 + 𝒃𝒐) 

d. Memory cell update: 𝒄𝒕 = 𝒇𝒕⨀ 𝒄𝒕−𝟏 + 𝒊𝒕⨀𝒕𝒂𝒏𝒉(𝑾𝒄. 𝒙𝒕 + 𝑽𝒄. 𝒉𝒕−𝟏 + 𝒃𝒄) 

e. Hidden state update: 𝒉𝒕 = 𝒐𝒕⨀𝒕𝒂𝒏𝒉(𝒄𝒕) 

Step 2: Attention Mechanism 

a. Calculate hidden state at time 𝒕: 𝒉𝒕 = 𝑹𝑵𝑵(𝒙𝒕, 𝒉𝒕−𝟏) 

b. Compute the attention score for each input: 𝒔𝒊
𝒕 = 𝑾𝒔. 𝒕𝒂𝒏𝒉(𝑾𝒉. 𝒉𝒕−𝟏 +𝑾𝒙. 𝒙𝒊 + 𝒃𝒔) 

c. Calculate the attention weight 𝜷𝒊
𝒕 =

𝒆𝒙𝒑(𝒔𝒊
𝒕)

∑ 𝒆𝒙𝒑(𝒔𝒌
𝒕 )𝒏

𝒌=𝟏
 

d. Ensure that the attention weights sum to 1 ∑ 𝜷𝒊
𝒕 = 𝟏𝑵

𝒊  

Step 3: Update the LSTM parameters using Attention 

a. 𝒘𝒕′,𝒊𝒉
′ = 𝒘𝒕′ , 𝒊𝒉𝜷𝒕′         

b. 𝒘𝒕′,𝒐𝒉
′ = 𝒘𝒕′ , 𝒐𝒉𝜷𝒕′  

c. 𝒘𝒕′,𝒇𝒉
′ = 𝒘𝒕′ , 𝒇𝒉𝜷𝒕′  

Step 4: Evaluate the LSTM-Attention Model using accuracy 

Step 5: Repeat Steps 2 and 3 if evaluation outcome not staisfied 

 

C. LSTM-Attention-based Meta-Learning 

The LSTM-Attention model captures the most important temporal features from ECG, which helps identify 

abnormalities in the ECG. The integration of LSTM-Attention in the meta-learning concept can handle a single 

model for a variety of task predictions using ECG data. This helps the model to learn from past data and adapt 

quickly and accurately to new tasks. 

The process of LSTM-Attention-based meta-learning is detailed as follows: The ECG input is given to the 

LSTM model, which captures the temporal features that help understand the health condition of an individual. 

The AM refines the features and identifies the most important ones from the LSTM output by adjusting the 

weight metrics. LSTM gives importance to all features, but not all features contribute equally to the prediction 

task. LSTM-Attention is trained on each task, such as HRV prediction, arrhythmia prediction, and 

abnormalities. For each task, the model uses specific features from the ECG related to that task. Meta-learning 

is used during training to optimize the meta-parameters for quick adaptation to various tasks. If new ECG data 

with a new disease comes, the proposed framework can identify the new or unseen disease using the meta-

parameters learned during training. Therefore, the framework predicts the new task using previous training 

and task knowledge with minimal data. 

IV. RESULT AND DISCUSSION 

The section details the experimental setup, data used in the research, and the evaluation of the proposed 

model in comparison with existing models. 

A. Experimental Set-up 

The experiment was conducted on the Google Colaboratory platform. The data are stored in Google Drive 

for easy access. The Graphics Processing Unit (GPU) available in Colab was used to run the code. The code is 
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written in Python. The scikit-learn library is used for data processing and model evaluation. The model is 

imported from TensorFlow. The proposed method block diagram is given in Figure 3. The MIMIC-III data is 

collected and the required preprocessing is done. Then, the three different tasks are taken, and the LSTM-

attention model is designed and tuned for each task individually using the meta-learning concept. If new data 

comes in, the proposed meta-learning-based LSTM-attention model can predict the disease accurately. The 

outcome of the model is evaluated using standard metrics. 

 

 

Fig. 3. Block diagram of the proposed method for disease prediction from EHR data. 

 

B. Data Collection and Processing 

The MIMIC III dataset [18], which includes medical information for intensive care units, was used in this 

pilot study. MIMIC-III is a database that contains the medical records of more than 60,000 individuals who were 

hospitalized in the intensive care units of Beth Israel Deaconess Medical Center between 2001 and 2012. This 

database holds extensive data. The study dataset primarily focuses on ECG data stored in EDF (European Data 

Format) files. The EDF format is widely used for storing time-series data from various biological signals. The 

main components of an EDF file include the metadata within the header section and the signal data in the main 

body of the file. In the context of the dataset, the EDF files likely contain multiple channels of ECG data collected 

over time. The ECG signal, representing the heart's electrical activity, is crucial for diagnosing and monitoring 

cardiac conditions. QRS points refer to annotations on the QRS complex in an ECG signal. Accurate recognition 

of the QRS complex is essential for tasks such as HRV analysis, arrhythmia detection, and other abnormalities. 

The first pre-processing step is to identify the missing data and fill in the missing values using the imputation 

method. Next, the data using the Synthetic Minority Over-sampling Technique (SMOTE) method [19] to ensure 

the data is balanced, with each label in the dataset having equal samples. For feature extraction, the HRV 

distribution is calculated using standard deviation and rolling windows. Figure 4 shows the outcome of the 

HRV analysis and rolling window.  
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Fig. 4.                  a) HRV distribution                 b) Rolling Window. 

 

 Finally, segmentation and normalization are performed on the data. In segmentation, the continuous signal 

is divided into meaningful intervals. For normalization, the standardization technique is applied to convert the 

values of the data into a range from 0 to 1. This helps to reduce the memory usage and complexity of model 

training. Figure 5 provides the signal plot before and after normalization.  

 

Fig. 5. Signal plot before and after normalization. 

C. Result Comparison 

After processing the data, it is provided to the meta-learning framework, which includes the LSTM-

Attention model. To evaluate the effectiveness of the proposed LSTM-Attention model, it is compared with 

other models such as SVM, Random Forest (RF), and XGBoost. All the models are implemented within the 

meta-learning framework. The three tasks—HRV prediction, arrhythmia prediction, and abnormality 

prediction—are performed using the same dataset. The processed data is split into training, validation, and test 

sets in a 7:2:1 ratio. The LSTM-Attention model is trained on each task individually, and metrics such as 

accuracy and loss are used during the training and validation processes. The results of the LSTM-Attention 

model for each task are shown in Figures 6-8.  Auth
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Fig. 6. Performance plot of propsoed model for HRV prediction. 

 

Fig. 7. Performance plot of propsoed model for Arrhythmia prediction. 
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Fig. 8. Performance plot of propsoed model for Abnormality prediction. 

 

After training and validation, the model is tested to evaluate its performance. The evaluation metrics such 

as accuracy, precision, recall, F1 score, and ROC-AUC are compared in addition to processing time. The highest 

metrics of accuracy, precision, recall, F1 score, and ROC-AUC are attained by the proposed model, with values 

of 0.92, 0.90, 0.91, 0.91, and 0.93, respectively. Next, the highest scores for accuracy (0.87), precision (0.83), recall 

(0.85), F1 score (0.84), and ROC-AUC (0.88) are attained by RF. XGBoost shows better results, and finally, SVM 

performs the worst. The metric values for all models are shown in Table 1. The table also provides the formulas 

to calculate the metrics, where TP, TN, FP, FN represent the True Positive, True Negative, False Positive, and 

False Negative for the model's prediction. 

 

Table 1.  Performance comparison of proposed LSTM-Attention model with conventional models 

Methods Formula SVM [20] Random 

Forest [21] 

XGBoost 

[22] 

Proposed 

LSTM-

Attention 

 

Accuracy 

TP + TN

TP + TN + FP + FN
 

0.85 0.87 0.86 0.92 

 

Precision 

TP

TP + FP
 

0.81 0.83 0.82 0.90 

Recall TP

TP + FN
 

0.84 0.85 0.83 0.91 

F1 Score 2 ∗ Precision ∗ Recall

Precision + Recall
 

0.82 0.84 0.83 0.91 

ROC_AUC 
∫ (

TP

TP + FN
)𝑑 (

FP

FP + TN
)

1

0

 
0.86 0.88 0.87 0.93 
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Finally, processing time is important when deploying the model in real-time applications. The proposed 

model takes just 95 seconds to predict the disease from ECG data, while the other models—SVM, Random 

Forest, and XGBoost—take 120 seconds, 115 seconds, and 110 seconds, respectively. The quality metrics show 

the effectiveness of the proposed model in disease prediction, and the processing time indicates that the model 

can be deployed in real-time applications. Figures 9–14 show the comparison plots for the quality metrics and 

processing time attained by the models. The visual graphs help in a better understanding of the model 

evaluation. 

 

Fig. 9. Accuracy comparison of proposed LSTM-Attention-based Meta-learning model with conventional 

models. 

 

 

Fig. 10. Precision comparison of proposed LSTM-Attention-based Meta-learning model with conventional 

models. 
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Fig. 11. Recall comparison of proposed LSTM-Attention-based Meta-learning model with conventional 

models. 

 

 

Fig. 12. F1-Score comparison of proposed LSTM-Attention-based Meta-learning model with conventional 

models. 
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Fig. 13. ROC-AUC comparison of proposed LSTM-Attention-based Meta-learning model with 

conventional models. 

 

 

 

Fig. 14. Processing time comparison of proposed LSTM-Attention-based Meta-learning model with 

conventional models. 

 

V. CONCLUSION 

The research aims to propose an efficient model for predicting all types of diseases from ECG data. While 

many research models are available, they are often generalized and fail to account for unique patient data, 

particularly when dealing with rare diseases. To address this issue, the research proposes a novel LSTM-

Attention-based meta-learning model for predicting diseases from ECG signals in EHR data. The ECG data in 

EHR is often limited, but by using the proposed model, it is capable of predicting three different tasks: HRV, 

arrhythmia, and abnormality prediction. The integration of AI models and meta-learning can solve many 

problems in the healthcare field by providing accurate predictions with limited data, unseen data, etc. The 

proposed model is compared with SVM, RF, and XGBoost, and it achieves the highest accuracy of 0.92, 

outperforming RF with an accuracy of 0.87. The proposed model improves prediction accuracy by 5%. 
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Additionally, compared to other models, the proposed model requires minimal time (95 seconds) to predict 

diseases from ECG data. The quality and processing time of the model ensure that it can be implemented in 

clinical applications. The proposed framework will help healthcare professionals predict and treat diseases as 

early as possible. 

In the future, to enhance the accuracy of the proposed model, multi-modal data will be used. Other data, 

such as medical imaging, will be incorporated with ECG data to provide a comprehensive health profile. To 

deploy the proposed model in real-time, it will be further refined for integration into a wearable device for 

continuous health monitoring and immediate disease prediction. 
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Appendix 1. Nomenclature 

 

Symbol Description 

𝒙 Observation/input data 

𝒚 Corresponding label/output 

𝑫 Training data set 

𝝓 Model parameters 

𝒑(𝝓) Prior probability of the model parameters 

𝑫𝒎𝒆𝒕𝒂−𝒕𝒓𝒂𝒊𝒏 Meta-training data set 

 
𝜽 

Meta-parameters learned from the meta-

training data 

𝜽∗ Point estimate of the meta-parameters 

𝒇𝒕 Forget gate in LSTM 

𝒊𝒕 Input gate in LSTM 

𝒐𝒕 Output gate in LSTM 

𝒄𝒕 Cell state in LSTM 

𝒉𝒕 Hidden state in LSTM 

𝝈(𝒙) Sigmoid activation function 

𝒉𝒕 Hidden state vector generated by RNN at time 

step 𝑡 

𝜶𝒊,𝒋 Attention weight for the 𝑖-th element and 𝑗-th 

time step 

𝜶𝒊,𝒋 Normalized attention weight  

𝒔(𝒉𝒕, 𝒉𝒔) Similarity function between hidden states  

𝒗𝒕 Context vector at time 𝑡 in AM 

𝜷𝒊
𝒕 Attention weight at time 𝑡 for the 𝑖-th input 

𝒘(𝒕′),𝒊𝒉 Weight matrix for input-hidden layer 

connections at time 𝑡′ 

𝒘(𝒕′),𝒐𝒉 Weight matrix for output-hidden layer 

connections at time 𝑡′ 

𝒁(𝑳+𝑴)
𝒏  𝑛-th layer parameters of the LSTM-Attention 

network 

𝑾𝒔 Weight matrix for the similarity function in AM 

𝑾𝒉 Weight matrix for hidden state in AM 

𝑾𝒙 Weight matrix for input in AM 

𝒃𝒔 Bias term for the similarity function in AM 
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