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Abstract

Energy efficiency has become central to the sustenance @ geable¥Ygrowth of
communication infrastructure in the advent of Wireless Sensor NetwWSgQi® (WSN) environment.
The paradigm of green Al, emerging relatively recently, focuses ogadcS@ning the models of
machine learning and smart workflows to consume the least nlenergy while maintaining
performance. Deep learning is such an important aspect in it allows predictive analytics,
smart routing, and adaptive decision-making. But, by ing Aal-time energy-conscious of
energy, it will result in wasteful energy usage aaart |fgRime quent route failure in dynamic
roposes an optimized deep learning
reen Al. This is initiated through a

workflow that would be compatible wit/'"g§ giples o

neighborhood, Energy-Efficient
suitability using attention vgl@€s,
achieves well-rounded clustegead
model is followed wi
process data, a vibra
of energyon i ;
way t tion overhead but also to retain relevant information. In the node
classifi a new deep learning model based on Convolutional Neural Network and Long
(CNN-LSTM) is used to learn the node behavior and the sensors' readings
ies and temporal patterns, promoting the robustness of the classification and
. In addition to the workflow, a Cooperative Energy-Aware Preemptive Route
(CE-APRS) mechanism adapts routing paths predicted fail- prone nodes and energy
roactively to prevent breakages and proactive load balancing. The suggested model shows
considerable enhancements in energy-aware learning, and intelligent decision-making in resource-
limited wireless networks.

outing (EECR) calculates a score of cluster head
lization of energy and delay-sensitive link costs and
ation, which saves unwanted energy consumption. The
r Optimization (SSO) to find the optimal subset of features to
d metaheuristic approach in which subsets are evaluated in terms
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1. Introduction

In the rapidly evolving world of urbanization and technologization, the gradual expansion of
artificial intelligence (Al) in urban infrastructure presents a significant opportunity to promote
sustainability in energy management. The Internet of Things (I0T) enables smart cities to transmit
a vast amount of information and data that can be leveraged strategically to optimize encg
consumption through the use of intelligent systems. In [1], the importance of deep learning mq
as an effective tooI for streamlining energy utiIization throughout urban IoT infrast

Meanwhlle, due to significant concerns about the environmental impacts of Al sy,
has become an imperative paradigm. [2] Discusses how enterprise Agmst can gsTore

T cNQEgy-efficient

design principles.

The use of energy-intensive Al operations, in general, and cloud co ing environments, in
particular, is a matter of particular urgency. In dynamic workflow s?uli [3] suggests deep-
learning based scheduling in cloud-based systems to achj y savings through efficient
resource allocation (i.e., computational resources). Mor: of@imization of energy with the
help of Al is implemented in industrial areas and archgsctu e complementary application
erqefficient architectural design, with an
he eMgpgy consumed in buildings through
f urban infrastructure and construction, [5] the
esigned to enhance the energy efficiency of the
onitoring and adaptive control actions. In the
meantime, distributed computing such as fog and cloud computing, are relatively rare in

efficiency wherever fog an s based on loT are used, by smartly allocating tasks
across 10T fog and cloyg er level, [7] elaborates on the possibilities and the problems of
the Green Al initiati oth the potential of the technology and the ethical content of

the sustainable i of Al.

Is proposed based on residual energy, link stability, and relative distances. This

le ensures the selection of only communication-efficient nodes, thereby reducing

reg@indant transmissions and conserving node energy.

en a powerful cluster formation technique is suggested, which is based on the
normalized attention scores, energy levels, and delay-sensitive costs. This mechanism
deploys the most appropriate cluster heads, thereby preventing energy-consuming cluster
topologies and maximizing the network’s lifetime.

> Bio-inspired metaheuristic to create feature subsets that are both most energy-efficient and
accurate, as well as identify feature redundancies. This minimizes overhead on




computation, inference speeds up, and improves learning performance without
compromising data quality, which is essential.

» The nodes' behaviors and sensor readings are classified using a deep learning architecture
that combines a CNN for extracting spatial features and an LSTM for capturing temporal
features. This hybrid model enhances pattern recognition, classification accuracy, and fa
detection in WSNSs.

» A routing strategy is ensured that is adaptive in the event of energy-depleted or poten
unstable nodes, allowing them to be avoided. This technique enhances roujf"Ste
minimizes the overhead cost of rerouting, and dynamically balances the ne @

The remaining portion of the document is divided into sig @ ction hich are

described as follows: Section Il examines the current research er Towards Green Al
optimizing deep learning workflows for energy efficiency used by differeNgguthors. The workflow

of the suggested approach is explained in Section I11, and Section IV entShe findings analysis
and performance data. Section V presents the conclusion.

Organization of Paper

2. Literature Survey

The urgent need for increased efficie g
industry by explore the transformative pq @

encouraging local use of rene
consumption through sharing @€so
tool for configuring energy SY@ems
population size, buildg
among others [9].

y, improving energy management, and decreasing
advanced technologies. The author proposed an open
icated to RECs. OT considers various factors, including
ce area, energy consumption, heat load, and electrical load,

earning for real-time decision making, evolutionary algorithms for
federated learning for distributed knowledge sharing are three
approaches that are uniquely integrated in a novel Adaptive Al-augmented

A systematic approach is necessary to overcome these challenges, including funding Al
infrastructure, establishing robust data governance rules, and fostering a culture of innovation.
This article examines how artificial intelligence is transforming the manufacturing industry, with
a focus on its applications in process control and enhancing efficiency. Through case studies and
analysis of technological developments, it provides stakeholders with practical insights into how
to use Al to gain a competitive advantage and sustain growth [11].




To address these issues, this study proposes a new framework that combines multi-
objective optimization, explainable artificial intelligence, and building information modeling. The
three main components of the framework include: BO-LGBM (Bayesian Optimization-
LightGBM) prediction model and LIME (Local Interpretable Model-Agnostic Explanations) for
energy forecasting and explanation, data generation through Design Builder simulation, and AGE.
MOEA, a multi-objective optimization method for handling uncertainty [12].

enhances project visualization, supporting sustainable infrastructure develop
decision-making. loT-enabled sensors and real-time data analytics are in
infrastructure to harness the capabilities of Al [13].

The authors proposed a new application of tensor decompositi In the Faster R-CNN
framework, leading to the development of our model, T-Faster R-CNN\Qich aims to improve
the energy efficiency and computational performance of deep (‘vin odels for galaxy
classification. By incorporating tensor decomposition, our -CNN significantly reduces

model complexity, memory footprint, and CO2 emissigQs m@@ntaining and, in some cases,

results show that an average of 30% energy SSQngs and a task success rate of over 90% are
achieved. At the same time, the | is kept below 80 ms compared to conventional heuristic-
based offloading methods [15],

The study highlights
enabling real-time mopdgRQ

such as aspect optimj %

role in adaptive paildi

provide a comprehensive overview of the video streaming lifecycle, content
d video quality assessment metrics and models, as well as Al techniques
0 streaming. Furthermore, it conducts an in-depth, state-of-the-art analysis
I-driven approaches to enhance energy efficiency in the end-to-end aspects of video

ital t chnology as a key enabler of Al-driven transformation,
ulation, and optimization of sustainable designs. Applications
flow analysis, and predictive maintenance demonstrate their
2 frameworks such as Building 4.0 and 5.0 promote human-centric,

The research began by collecting and cleaning a large dataset comprising work schedules,
environmental conditions, cooling systems, and sensor data. Descriptive statistics combined with
visualizations provide deep insights into the collated data. Inferential statistics were then used to
investigate the relationships among the various manipulated variables [18].

The author introduces AICD-CDM, a novel framework that integrates several advanced
machine learning techniques, including Linear Regression, Artificial Neural Networks, Random



Forest, Extreme Gradient Boosting, Light Gradient Boosting, and Natural Gradient Boosting, to
address the multifaceted challenges of cost prediction and management in sustainable building

projects [19].

To optimize code and configuration procedures, this study investigates the integration of
artificial intelligence and machine learning with Salesforce development. The primary goal i
evaluate how Al recommendation engines can enhance user satisfaction, code quality, f#
development efficiency. The paper develops an Al recommendation engine and examine
impact on key performance metrics, including development time, error rate, and ¢ 0
accuracy, utilizing both simulated data and empirical analysis. [20].

Table 1 Comparative Analysis of Al Algorithms for Industrial

imi

Ref No. | Author/Year Algorithms Focus area Itations
used
[21] Rehan, et al., | 10T, Al, Cloud | Smart Does not give a real-time adaptive
2021 manufa control; too much emphasis is
placed on conceptual rather than
empirical output.
[22] Lee et al, Case studies are local; the
(2024) applicability of the workflow to
other industrial setups is minimal.
[23] Ayoubi et al., Conceptual, theoretical; does not
(2023) Sustainability have quantitative tests of
efficiency gains.
[24] Ojadi et a rids | Urban energy | Mainly focused on the application
2024 networks of smart grids in urban
environments, the feasibility of
their use in rural settings or mixed
infrastructure is not discussed.
[25] dia al., | Deep Learning, | loT The scalability and real-time
2 Anomly communication performance of large-scale 10T
Detection networks are not well studied;
efficient energy usage can vary
across different devices.
26 Jayanetti et al., | DRL, Multi- | Cloud data centers | Significant computational cost:
2024 Agent Systems DRL models are highly resource-
and data-intensive, conflicting
with the sustainability agenda.
[27] Alharithi et al., | Federated Environmental Federated learning incurs an
(2024) Learning, sustainability additional cost of communication,
LSTM




including real-time discussions
on deployment issues.
[28] Lai etal., 2023 | ML/AI Chemical Applicable only to the (@talyst
Workflow engineering optimization field; it can be
used for the manufacturjgaesec
as a whole or energ

general.
[29] Leeetal., 2022 | Al Workflow General  energy | The workflo zed
savings and support
¥ based on
: there is no
of performance
[30] lyer et al., 2024 | Digital Tech, Al | Green energy Frope is broad to the extent that

enth of technical expertise is
l ; W generally does not outline

specific implementation
strategies or simulate digital
energy system implementations.

Table 1, which presents a comp @ hlysis W Al algorithms in industrial energy
optimization, provides the reader with an crinding of the various Al algorithms that can be
applied in the field of energy optimization\@oss different industries. It contains a list of
algorithms, areas of focus, and limitgglons of eachWudy. Although some tasks address Al in smart
manufacturing or loT, many hav s, such as a small operational scale or being non-real-

ention-Based Neighbor Discovery (EA-AND) mechanism, where the
jng nodes is determined based on residual energy, link stability, and relative
s with the most efficient communication are carried into the next steps. When
es are extracted, the Energy-Efficient Cluster Routing (EECR) phase utilizes the

al” cluster heads, thereby minimizing communication overhead and reducing energy-
intenSive communication. To further reduce the computational overhead, the Social Spider
Optimization (SSO) technique is employed in the feature selection task, where subsets are
evaluated in terms of energy cost, classification accuracy, and redundancy reduction. A CNN-
LSTM hybrid model is used in node behavior and fault classification. Both CNN and LSTM record
spatial and temporal dependencies, respectively, resulting in better and more reliable decision-
making. Lastly, the Cooperative Energy-Aware Preemptive Route Scheduling (CE-APRS) module



dynamically reconfigures the routing paths to bypass nodes with no energy or those likely to fail,
and the process remains proactive in balancing these loads and ensuring stable data transfer.
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oposed energy-efficient deep learning architecture for intelligent
in Wireless Sensor Networks (WSNs). The first part of the framework,

Cluster Routing module, which aims to make the cluster head energy-aware and
e, using attention scoring and normalized values. Next, a metaheuristic approach
al Spider Optimization (SSO) mimics spider behavior (using vibrations) to select the
levant and non-redundant features, effectively reducing computation load. The optimized
features are then fed into a hybrid deep learning model that combines Long Short-Term Memory
(LSTM) and Convolutional Neural Network (CNN) architectures. This model captures both
temporal and spatial relationships of the sensor telemetry, enabling accurate classification of node
behavior and fault detection. The insights gained are utilized in a Cooperative Energy-Cure
Preemptive Route Scheduling (CECPRS) module, which actively modifies routing paths to bypass




energy-depleted or failure-prone nodes, ensuring balanced and robust communication. This entire
process results in energy-efficient, optimized routing and intelligent classification, significantly
enhancing WSN performance in line with Green Al principles.

3.1) Energy-Aware Attention-Based Neighbor Discovery (EA-AND)

Energy-Aware Attention-Based Neighbor Discovery (EA-AND) is a primitive used i
suggested work to detect the most appropriate neighboring nodes in the resource-limited wir®ge
sensor network scenario. In contrast to the conventional neighbor discovery schemes
fixed signal or distance measure is considered, EA-AND adaptively scores the sur
by considering an amalgamation of important parameters- remaining energy, |4
RSSI) and relative distance to destination or cluster head. This model gf i
based on the energy-efficient designs of Green Al, which allows eg
focus on its neighbors first of all not only by their strengths in relatio
their sustainability in relation to energy usage. Through normalization Sg@the attention weights,
this approach is guaranteed of selecting reliable energy source (Withfec ® relying on energy)
and nodes with the most efficient communications to fur, p|0 cluster and route the data.
Therefore EA-AND makes a direct contribution to the,o ty@f energy consumption with
high-quality neighbor connectivity which is within SCo rall sustainable and energy-
con conscious networking within Green Al

nectivity but also by

In the EA-AND mechanism the i Ss is computation of a composite node quality
score per neighboring node. This score is [*g@ed as Q;, which combines three very important
quantities namely residual energy E;, link reliaD%@y R; and distance to the destination or cluster

head D;. The combined score is d ed as
Q="5" 1)
in which E; d aining battery power of node i in terms of its capability of

aiding further comm tivities. R; is the same as signal strength or quality of the link and
in this way, the gole connections are given less priority. The distance D; is an inverse

a formulation will guarantee the node with the high level of energy
stable ties and shorter distances communication to have a higher composite

'= S () @

Where, N is the number of the total neighbour nodes. The equation also makes the focus
values of all neighbors range between 0-1 and when their focus values are summated gives a value
of 1, thereby providing a relative weighted importance to each node. The nodes that have a high




Q; value receive more attention distribution, and this implies that there is a greater possibility that
it would be chosen during routing or clustering processes. This softmax-enabled normalization
plays a close role in making an adaptive and contextual decision in the resource-limited wireless
networks node, in light of thinking lightweight attention mechanisms in Green Al.

After the computation of the attention scores, a pattern recognition step is followed in
EA-AND model to isolate the most promising neighbors. And the optimal set of neighbors,
is called N*, is found choosing the top-k nodes that have the greatest attention scores:

N* =TOP({a;}iL1) 3

This sub set consists of only the best combination of energy efficig e Cco vity
and the most amount of low-cost communications with the neig either be
predetermined or dynamically modified in accordance to the applica ific restrictions like
data rate or network density or even an energy budget. A further (not st necessary) variant of
the model is the case when a link cost function is employed: ,

L=k (4)

Which is inverse in correlation with the compglite O ore. This expression is a cost
for links using greater energy, or deliveyg : lity, and it gives a more reasonable
i ptimal to consider. The link cost is
especially a preferred method in situatic n reducing the communication overhead is
important or the residual energy must be ma>S@aized. The proposed approach helps to achieve
sustainable and high-performance Jgkeless sensof networks communication since link quality,
distance, and energy become inc into a unified model based on the concept of attention.

3.2) Energy-Efficient Clu Routi CR)

nt nodes during the EA-AND procedure, the proposed system
ed Energy-Efficient Cluster Routing (EECR). During this phase,
scores a; will be utilized to enable smart and energy-sensitive

comes up to another
the already cal

munications or latency that the node is experiencing. Such a scoring function
that nodes chosen as heads of cluster are not only energy wealthy, but strategically

r of clusters hence less transmission overhead. After selecting the CHs, the rest of the nodes
are added to the cluster whose head has the best trade off in terms of remaining attention and cost
of link. In the process, EECR is able to eclipse what was established by EA-AND to support
scalable, energy efficient, and the delay aware routing, dramatically maximizing network lifetime
and in tandem meeting the vision of Green Al in respect of sustainable network design.




Cluster head selection the cluster head selection process starts with calculating a Cluster
Head Suitability Score according to each node i in the best neighbor set N* from the EA-AND
module. This is a score that is denoted by Equation (5) and is characterised as:

L;_Score; = Ay.a; + 4. T — 3. DDi — g2t (5)

ax Tmax

Here, the «; is called the attention score of the node i during neighbor discovery, i.d
energy-reliability-distance trade-off. The given coefficient E; normalizes residual energ
node to the average energy E of the entire set of neighbors in such a way that, prefe ‘

with many neighbors are assigned high equiprobabilities. The term represe :

the sink node or base station D; as a ratio to the maximum dlstance tg no masx SO that

the distant nodes are not preferred because they may experience @ Ission'Wmergy. The
is the normalized communication latency T; or queueiqgency so as to penalize

T
last term, . L

max

overloaded nodes by dividing standard latency by maximum latenc
provide the possibility of fine tuning of each factor accordi energy-delay limitations of
the application. In sum, this equation would provide balanc ive clustering head selection
that facilitates both the network life span and low-later@#® c urggations.

, A2, A3, A4 Weights

After calculating the score of each
is selected as the best Cluster Head whic

cl head, the node with the highest score
dized 2®follows, Equation (6):

CH* = arg r,rell%g((CH_Scorei) (6)
L

In this case, the selected C, Head is denoted by CH™ ; description of the list of top-k
neighbors in EA-AND as N*. guarantee that leaders capable of the optimal energy
availability, the favorite posglPn, as low communication cost are appointed and comprise
the center of every clustepi routing hierarchy. After selecting the cluster heads, all the non-

attention score a; and the link costs L;;. The link cost L;; is normally assumed

ere D;; is the distance between node j and the CH i, E; is the residual energy in the

ij Is the reliability of the link between the two nodes. The coefficient g is a penalty
eter making the algorithm aggressive to what extent it searches out the expensive links. This
rule will make sure the nodes will join clusters not only on the basis of leadership strength (through
attention score) but also on the basis of energy-efficient, reliable and short-range connection.
EECR mechanism that widens the output of EA-AND to create sustainable and balanced
communication clusters. This solution is smart in terms of lower power usage, shortening latency



during transmission, and neither stressing nodes significantly nor loading them in an uncontrolled
manner, thus perfectly fitting the Green Al mission on the scalability of WSN deployment.

3.3) Social Spider Optimization (SSO)

Once the desirable neighbors have been identified through EA-AND process and the be
cluster heads have been identified through EECR, the final component of the proposed
should be the Social Spider Optimization (SSO) that will help to further optimize the fed

increases the efficiency of routing since it introduces the idea of SSG
ideas of Green Al, which orchestrates the removal of irrelevant T8
lightweight, sustainable computation within the network. SSO as{n

processing process that optimizes energy-performance trad ermined by the processes of
EA-AND and EECR, so that WSNs can be assured of logg pdAtion in resource constrained
environments. The SSO algorithm would start the pro 0 election by considering every
candidate solution with the help of a multi- ss function in the form of the Equation
(8):
— Eysed (%)

Lij —Wl.(l—m)+W2.A(X)—W3.R (8)

L;; is the feature set that is ed by a spider (agent) in this expression and it is a mixture
of attributes which is used d if(@tion or during routing. The first term (1 —E“Ld(x))

total

promotes feature subsets thX@ave sser energy consumption with E,g.4(x) set to be the
ss the features chosen and the E;,:,; to be the total energy

wjy are arbitrary and subsequently, they determine the level of significance
er0@®saving, accuracy and feature compactness respectively. This fitness goal also
inciple of energy efficiency, high precision and non-redundancy, corresponding to
Green Al in power-limited networks. In order to enhance contact between candidate
s, the spiders within SSO algorithm, use vibration signals to communicate with each other
with limitation of the vibration strength given by the equation (9):

_Sx) (9)

YT 1+dy




In this case, V;; is the grade of oscillation felt by the spider i due to spiderj. The numerator
£ (x;) shows the value of the fitness of the spider j solution, i.e., better solutions lead to intensified
vibrations. It is divided by a denominator such as dizj which is the squared distance (e.g., Hamming
or Euclidean) between feature subsets x; and x; and reduces the strength of this measure as the
difference between them grows. Intensifying the influence of solutions that are stronger and clg
through this biologically inspired mechanism promotes sphere-like social learning, and the ¢
minimizes the chances of premature convergence. Each spider will then decide the most jg

neighboring solution, i.e., by choosing the solution that produces the strongest vibrg
in Equation (10):

j* =arg r’;.lfg((Vij)

The step makes sure that all the spiders are following the best s at least in their social
network thus driving the population into globally optimal sets of feature e index j* identifies
the one neighboring agent that has the best combination in solutionwty being close to the

current agent and as a result, exploration and exploitation ¢ ced. Then the feature subset
i

is updated by each spider by going toward the best nei as in Equation (11):
xi(t+1) _ xi(t) +y. (xj(*t) _ xi(t)) (11)

And the terms x;* and x’
feature vector, respectively, are at iteration t, the parameter gamma, gamma y € [0,1] is the
learning rate which is specific to thedegree to ch the neighbor influences are adopted. This
formulation is well-regulated towgs uperiorly performing solution and upon the subsequent
step of linearization in discre s J®.g., in feature selection), the reformed feature vector
retains a valid form. The ufSg@ie me sm allows the population to converge to good feature
subsets with non-redyg re subsets that are energy-aware and maintain diversity to
optimize the entire fg et. Yt will make sure that the least energy-consuming, correct, and
lightweight sets gEfe hosen to be used in further routing and decision-making processes
and its ov st vy and performance.

O
e

in this are the current feature vector and the neighbor

Initialize Population of
Spiders

Evaluate Feature
Subsets Using
Fitness Function

N
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Figure 2. Feature Selection Using @gial Spider Optimization (SSO) Algorithm

Figure 2 illustrates the oper, s of the Social Spider Optimization (SSO) feature selection
algorithm in machine learnin i ion applications. They begin with the initiation of a
population of spiders, wher resents a candidate solution or feature subset. A fitness

of passes or a convergence value is reached.
ort-Term Memory — Convolutional Neural Network (LSTM-CNN)

This section involves data collection, comparing past and current data for performance,
testing, verification, and training. It also includes continuous parameter monitoring, data
measurement, and classification to detect and address issues early. The selection path defines the
section, with each network assigned to measure the process's network connection. This helps
establish the framework's size, position, and shape of the process. The approach segments each
data point within the network connection, ensuring consistent and diverse performance monitoring.




Additionally, numerous connected devices can easily support a wide range of connection levels,
enabling continuous process monitoring at any time.

Equation 12 compiles data, assesses data accuracy, and determines the performance
parameter range. Let's assume the B,, g, is an input data variable, and g is a collection of the data.

xi(t) =w(sq My +sp pn+ Qm) (12)

Equation 13 demonstrates that testing and training involve analyzing each tyg
measuring prediction accuracy, and calculating historical data based on the original
dataset. let's assume thes,, s, is a testing data value.

fe = W(Xp, Sp.) = W(Sq " Pnt+ qm) (13)

Equation 14 illustrates how training data can reduce the min ta requirements and
channel mismatches, improve performance, maximize prediction acSgacy, and expand the
performance reliability range. Let's assume the o ( s ;[xy,-1] iSa mave minimize the value
range, and g; is an overall testing range.

D; =0(s q[Mp_1]+M,) (14)

Equation 15 demonstrates how to clag
training sets to choose appropriate data
Let’s assume the k; is a data classification

\E) e testing dataset, separating testing and
mi sified instances during the process.

kj = U(Zp ’ [Mn—l] + M) (15)
Equation 16 indicates thajfiat ection, a thoroughly checked and verified process, is

normalized according to ea rk Monnection's performance. Let’s assume the a; is

normalized data, m;.;,_; 1S S@INpUt

p; = (kj)k(h - npies (16)

es that it measures testing and training performance, then chooses
ct each network to the proper input for optimal performance. Let's assume

(17)
culate the size, shape, and position of the signal issue in the process. Let's assume the

n—r 1S @ maximize and minimize the values.

p= max mun{p; + pz,...Pn-r + 1} (18)

Equation 19 demonstrates how testing and training data are classified to separate values
and prevent misclassified data from impacting performance. This enables accurate prediction of




the process's performance, including calculating the positive and negative rates of accuracy. Let's
assume the F(j|n, 6) is a classification of the data range.

exp(xlg ))

s, exp(x)

F(jIn,0) = (19)

The CNN method demonstrates that different types of connected devices can seamlg
handle various connection levels to maintain continuous process monitoring at all times.

verification, and training purposes. Additionally, it involves ongoing monitoring o
and the measurement of their data values. {

3.5) Cooperative Energy-Aware Preemptive Route Scheduling

rve as a function of
rgency of the features
gower consumption,

The section represents an original workload used to plot the
power consumption over time. The priority is further determined by tf
and the estimation of green efficiency. Then, depending on the batch sigs al

we vary the execution speed, for example, by lowering the ¢ . Knowledge distillation is
the process of transferring performance from a large teac to a smaller student model.
This enables scheduling that adapts in real time to wdlkload demands and energy
constraints. Based on this information, the s alcu e task's energy consumption

estimates.

The equation represents the origin® ad used to plot the energy curve as a function
of power consumption over time. Participatir'§godes share these curves, which show the baseline
of their energy behavior. A central coordinator q@lects them and determines peak times, overlap

periods, and idle times. This sharj artnership reduces the burden of energy usage across the

system and distributes the loa ively. It also aids in future scheduling by indicating
which nodes to start or stop, asslme 1 K..(FG) — the energy curve as a function.
F(jln,6) =K FG_STF;G(yn — Xp) (20)

for the activities that are set in the equation based on the timeline
the scheduler sets the intensity based on performance. The priority
urgency of the features and the estimation of green efficiency. This
involve f energy consumption to product output. This strategy helps select tasks with a

good n energy and accuracy, ensuring consistency with green Al policies, and
assum (pc._szc.(yn — X,) + yrg — ratio of energy consumption to product output.
b ) = K¢(FG) - Zjeng_sf;G(Yn - Xn) + Y1k (21)

The equation acts as an active clock meter, tracking both real-time energy supply and load.
If a medium-priority task is launched before the energy capacity is sufficient, it will preempt
(temporarily pause or slow down) existing low-priority tasks. Then, depending on the batch size
and power consumption, we vary the execution speed, for example by lowering the clock speed.
This is fast and responsive, and ensures that the energy budget is not exceeded. The process



constantly changes in response to feedback from workload and energy curves, and let's assume the
ZkeS}T(yD —x,) +Y; — existing low-priority tasks.

Zjesgc—sftG(Yn —Xp) + Y1k < Zkes}t(Yn —Xp) +Y; (22)

The equation is a manipulation of the equations that involves pruning to minimize j§
model and quantization to reduce computational requirements. Knowledge distillation ig
process of transferring performance from a large teacher model to a smaller student mOgR
Bayesian hyper parameter tuning determines optimized settings faster than grid segfet
techniques significantly reduce energy consumption and computational load whide
performance. Let's assume the K4 (FG) —Optimized the faster grid search.

Ky (FG) < Zjeng_szG(Yn —Xp) +yrx + (vi — X1)

The Equations 24 and 25 with a complex workflow that lev Deep Reinforcement
Learning (DRL) and Graph Neural Networks (GNNs). The depende of all represent a
workflow graph, and the GNN depicts their interdependencies. DR?@]en are trained to learn

onsumption. This approach

ands and energy constraints.
flem, and let assume the

enables scheduling that adapts in real time to sporadic wor!
This will also provide feedback to help im@e
Zjengns};G(Yn — X,) — €nergy constraints.

KT[(FG) = K(Z)(FG) ZjengnszG(Yn - Xn) (24)

Zjengnsf[G(Yn - Xn) (25)

The equation 26 represefls a itoring subsystem that captures online performance
measurements, including ene mpon, execution time, and deadline overruns. Based on
this information, the syste alcul e task's energy consumption estimates and refines the
heuristic or DRL policigssng the schedule. The system needs to adapt to changing workloads
and node placements @ acMeved by periodic retraining of the DRL agents. Task patterns
and power profiles areqad Jo suit any software or hardware changes. This cycle helps maintain
' Bves system flexibility, let's assume the Ky(FG) — Based on the

iency.

—Xp) + ZjesgcnsﬁG(Yn —Xp) + YTK (26)

ethod is a sharing partnership method that reduces the burden of energy usage across
te d distributes the load more effectively. It selects tasks with a good balance between
d accuracy, ensuring consistency with green Al policies. It is fast and responsive, and
s that the energy budget is not exceeded. The approach significantly reduces energy
consumption and computational load while maintaining performance. This method enables
scheduling that adapts in real time to sporadic workload demands and energy constraints. Task
patterns and power profiles are adjusted to accommodate any software or hardware changes. This
cycle helps maintain energy efficiency and enhances system flexibility.

4. Results & Discussion



The proposed model demonstrates significant advancements in energy preservation and
intelligent routing in Wireless Sensor Networks (WSNs). Through the Energy-Aware Attention-
Based Neighbor Discovery (EA-AND), the system selects the best neighboring nodes, considering
residual energy, link quality, and minimizing unnecessary traffic. The Energy-Efficient Cluster
Routing (EECR) guarantees stable output picking of the cluster head, improving network

APRS is a proactive algorithm that prevents the use of failure-prone routes to minigi}
breakages. The outcomes include a decrease in energy consumption, an extendegiEtw
improved fault tracing.

Table 2. Simulation Parameters

Parameter Name Paramete
Number of Nodes
Initial Energy Per Node
Transmission Range
Data packer size
Control packet size

Simulation time

seconds

Table 2 shows a simul condyciar with carefully chosen parameters, creating a realistic
environment for a Wireless or Network (WSN). To represent medium-scale deployments
for environmental monitoring, 100 sensor nodes are randomly
ield. Each node starts with an initial energy of 2 Joules, reflecting

Ited to 200 bits to reduce overhead. A simulation duration of 1000 seconds
gh time for accurate performance analysis, covering multiple rounds of clustering,
d data transmission to assess the network's energy consumption, node stability, and
ility over time.

4.2) Comparison Table

Table 3. Performance Metrics Comparison for Different Al Models




Models | Energy Computation | Network | Model Prediction | Storage Packet Energy
Consumption | Time (s) Through | Accuracy | Latency Efficiency | Delivery | Efficien
(kWh) put (%) (ms) (MB) Ratio Cy
(MBI/s) (%) ts/Jo
ul
ANN 2.8 140 25 85 120 140 87.5
SVM 2.1 110 18 82 100 100 g
Random |35 160 15 88 150 180 @ 280
Forest
GRU 2.3 100 30 90 90 92.3 410
CECPRS | 1.6 75 35 94 60 | 96.8 480

Table 3 shows the overall analysis of different tgge tifjal intelligence, ANN, SVM,
Random Forest, GRU and CECPRS proposed gaalic s, C g them based on eight critical
measures of their performance regarding 5S or Networks compares the proposed
CECPRS and GRU models with existf hes ba2®ed on other means of performance
measures currently applied in Wireless Se etworks ( WSNs). The CECPRS model has an
overall performance that has made it stand out™@@m all others, exhibiting its superior ability in
energy-saving and intelligent netw ndeavors. IT also consumes the least amount of energy (1.6
kwWh) and takes the shortest tim@to te (75 seconds), which means it is efficient in both
processing and energy usa ItioglCECPRS has the maximum network throughput (35
MB/s) and model accuracy ide quality and stable data processing. Make it the most
predictable at 6.0ms, 3 ster decision-making, which is vital in a dynamic network. It
also provides optimiz p (85 MB) and a maximum packet delivery ratio (96.8%), which
makes it in communications. Most importantly, it is the most efficient in

\

to
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Figure 3. lllustrates Energy C

Figure 3 presents a comparative analysis of t er in five machine learning and
deep learning models: ANN, SVM, Random R RU, and the proposed CECPRS model.
The vertical bars represent energy consug @ ilowceghours (kwh), and this chart provides
a clear picture of the models' efficiency. Nga R@fdom Forest model consumes the most energy,
with 3.5 kWh being used, while the ANN conSegges 2.8 kwh, GRU consumes 2.3 kWh, and SVM
consumes 2.1 kWh. Unlike this, the proposed CESPRS model has the lowest energy consumption
value, which is as low as 1.6 k icating that it is more energy-efficient. This large-scale
decrease further supports the of the CECPRS model in minimizing computational
overhead and power consuriQe it an optimal option for energy-aware, sustainable Al
use cases in network-b

Y

Computation Time (s)




Figure 4. lllustrates Computation Time

According to Figure 4, the five other models —CECPRS, GRU, Random Forest (RF),
SVM, and ANN —were compared based on their computation time in seconds. The CECPRS
model also exhibits optimal performance, with a computing time of 75-140 seconds, and lower
values for all workload levels. Comparatively, the GRU model has relatively long computag
time with a maximum of 150 seconds, and the closest is Random Forest, which has a comput
time of 100-145 seconds. The SVM model begins at approximately 95 seconds, rises Jaad
around 140 seconds, and then declines. The ANN model performs decently, with comy
oscillating between 85 and 130 seconds.

CECPRS
GRU | /
RF P
e
SVM p
v
Network Throughput
/ (N[BF:'S)
25 15 30 35
luglates Network Throughput
Figure 5 illustra roughput performance of the network (in MB/s) for various

models, including A
vertical axis uses the
MB/s an
better

dom Forest (RF), GRU, and the given CECPRS model. The
[t capacity of the network (remaining within the boundaries of 15
orizontal axis bears the names of the models in the sequence of the
observing the graph, it can be concluded that the CECPRS model can

Is also the least, ranging between 15 and 18 MB/s, implying that these models
imitations in handling data and would also be slower at communicating across
¥ Random Forest and GRU demonstrate medium-level performance, achieving a
um speed of 25-30 MBY/s.




94
90
88
82
85
Figure 6 presents the distribution of model acc eved by five models: ANN,
SVM, Random Forest (RF), GRU, and the geanos s a colored scatter plot. The

: hich varies between 85% and 94%,
g gy progre®ion, starting with traditional models
odels of higher levels (GRU, CECPRS). In the

uracy of the models increases from ANN and
demonstrates the highest accuracy, reaching a

whereas the horizontal axis denotes the 4
(ANN, SVM) and progressing to deep lear
plot, an evident upward trend is apparent, as the
SVM to RF and GRU. Conseque CECPRS

maximum of 94 percent. The facfgh points are intensely concentrated in the low end with
ANN and SVM (approximat; 29010 8o40) shows a relatively low predictive power of these two
methods. In the meantime, and PRS target distribution shifts to the right and upwards;
as a result, they demo N CIQged learning potential and generalization.

Prediction Latency (ms)

GRU

RF

N svM
_~ CECPRS

i ANN

120 100 150 90 60

Figure 7. lllustrates Prediction Latency (ms)




As shown in Figure 7, the prediction latency (ms) of different Al models and optimization
algorithms varies. The latency range spans from 120 ms to 100 ms, 150 ms to 90 ms, and 60 ms,
respectively. These values indicate the time required for each approach to generate a prediction
after processing the input data. Lower latency responses are more responsive, which is crucial in
real-time or energy-efficient applications. The model with a 60 ms latency is the most efficieg
and is suitable for use in loT-driven smart grids or predictive maintenance, which are t}
sensitive. Conversely, the approach with a 150 ms latency is slower than the others and may a\gg
the real-time performance of decision-making.

ANN Storage Efficiency (MB

—

e SVM
RF

GRU

=== CECPRS

140 @ 1

Figure 8.

strates Stomge Efficiency (MB)

Storage Efficiency (
configurations. These resul
The values of storage efficie

jcted in Figure 8 in various models or system
el 00 MB, 180 MB, 120 MB, and 85 MB, respectively.
of higher order denote a better utilization of available storage
, While ensuring optimal system performance. The setup that
e best storage can handle such data, meaning it can utilize superior
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Packet Delivery Ratio (%)

Figure 9 presents a comparative study gé Ratio (PDR) for five models:
ANN, SVM, Random Forest (RF), GRU, ag ECPRS model. Packet Delivery Ratio

the success of data transmission with no packg@ss. One of the models, CECPRS, performs better
than the rest and has a PDR of 96.8, indicating t

learning temporal dependenc orest achieves 89.1%, which is rather good and
marginally worse, apparent its unswerving decision-making structure. The PDRs

CECPRS model is a energy-aware routing, proactive scheduling, and intelligent fault
tolerance 4hi gPong data transmission and minimal packet loss in the resource-
constrgine
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Figure 10. lllustrates Energy Efficiency (bits/Joul

In Figure 10, a comparative analysis of Energy Efficiggaaaind@ts per Joule is presented for
five models: ANN, SVM, Random Forest (RF), GRU, ang ef R&. This can be defined as the
efficiency of every model in processing and transmi & e using energy in Wireless
Sensor Networks (WSNs). The CECPRS mqg C , with an energy efficiency of
480 bits per Joule, which is superior to al ing of this is that it can provide more
successful computation and data transfer |
that it is exceptionally applicable in conditiON@f resource constraint. The second-best, with 410
bits/Joule, is the GRU, based on its time memoNggapabilities, followed by SVM and ANN with
moderate efficiencies of 350 and its/Joule, respectively. The Random Forest model proves
to be the least efficient, with 0 bits/Joule, possibly due to its complex ensemble
architecture.

5. Conclusion

ransmissions and ensure optimal cluster heads. Finally, Social Spider
O) will be integrated to eliminate computational overheads while maintaining
making informed decisions. The CNN-LSTM hybrid model will improve node
cognition by capturing both spatial and temporal dependencies, thus enhancing fault
yon and network awareness. Additionally, the Cooperative Energy-Aware Preemptive Route
Scheduling (CE-APRS) is a proactive module that adapts to dynamic network conditions to
prevent route failures and promote a fair distribution of energy throughout the system. Overall, the
proposed model significantly enhances the adaptive, energy-efficient, and resilient operation of
WSNs, supporting the sustainable development of next-generation communication systems.
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