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Abstract 

Energy efficiency has become central to the sustenance and manageable growth of 

communication infrastructure in the advent of Wireless Sensor Networks (WSN) environment. 

The paradigm of green AI, emerging relatively recently, focuses on designing the models of 

machine learning and smart workflows to consume the least amount of energy while maintaining 

performance. Deep learning is such an important aspect in WSN as it allows predictive analytics, 

smart routing, and adaptive decision-making. But, by disregarding real-time energy-conscious of 

energy, it will result in wasteful energy usage, short lifetime and frequent route failure in dynamic 

networks. To resolve this challenge, the proposed model proposes an optimized deep learning 

workflow that would be compatible with the principles of Green AI. This is initiated through a 

soft-attention mechanism of Energy-Aware Attention-Based Neighbor Discovery (EA-AND) that 

ranks neighboring nodes via residual energy, link stability as well as relative distances, and only 

the communication-optimal nodes are forwarded to downstream routines. Based on the determined 

neighborhood, Energy-Efficient Cluster Routing (EECR) calculates a score of cluster head 

suitability using attention values, the normalization of energy and delay-sensitive link costs and 

achieves well-rounded cluster head formation, which saves unwanted energy consumption. The 

model is followed with Social Spider Optimization (SSO) to find the optimal subset of features to 

process data, a vibration inspired metaheuristic approach in which subsets are evaluated in terms 

of energy consumption, accuracy of classification and redundancy reduction that does provide a 

way to reduce computation overhead but also to retain relevant information. In the node 

classification task, a new deep learning model based on Convolutional Neural Network and Long 

Short-Term Memory (CNN-LSTM) is used to learn the node behavior and the sensors' readings 

spatial dependencies and temporal patterns, promoting the robustness of the classification and 

finding faults. In addition to the workflow, a Cooperative Energy-Aware Preemptive Route 

Scheduling (CE-APRS) mechanism adapts routing paths predicted fail- prone nodes and energy 

limits proactively to prevent breakages and proactive load balancing. The suggested model shows 

considerable enhancements in energy-aware learning, and intelligent decision-making in resource-

limited wireless networks. 

Keywords: energy efficiency, communication infrastructure, WSN, deep learning, AI, EA-AND, 

EECR, SSO, CNN-LSTM, CE-APRS, node behavior, load balancing 
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1. Introduction  

In the rapidly evolving world of urbanization and technologization, the gradual expansion of 

artificial intelligence (AI) in urban infrastructure presents a significant opportunity to promote 

sustainability in energy management. The Internet of Things (IoT) enables smart cities to transmit 

a vast amount of information and data that can be leveraged strategically to optimize energy 

consumption through the use of intelligent systems. In [1], the importance of deep learning models 

as an effective tool for streamlining energy utilization throughout urban IoT infrastructures is 

emphasized, highlighting their consistency with the objectives of sustainable development. 

Meanwhile, due to significant concerns about the environmental impacts of AI systems, Green AI 

has become an imperative paradigm. [2] Discusses how enterprise AI systems can be more 

environmentally friendly while still performing well through the identification of energy-efficient 

design principles.  

The use of energy-intensive AI operations, in general, and cloud computing environments, in 

particular, is a matter of particular urgency. In dynamic workflow scheduling, [3] suggests deep-

learning based scheduling in cloud-based systems to achieve energy savings through efficient 

resource allocation (i.e., computational resources). Moreover, the optimization of energy with the 

help of AI is implemented in industrial areas and architecture. [4] The complementary application 

of deep learning and reinforcement learning in energy-efficient architectural design, with an 

example of how AI can be utilized in reducing the energy consumed in buildings through 

intelligent architectural design. Within the sector of urban infrastructure and construction, [5] the 

AI4EF framework, a set of AI applications, is designed to enhance the energy efficiency of the 

building sector through the application of real-time monitoring and adaptive control actions. In the 

meantime, distributed computing systems, such as fog and cloud computing, are relatively rare in 

terms of energy optimization. The   hybrid machine learning-based scheduler that increases energy 

efficiency wherever fog and cloud systems based on IoT are used, by smartly allocating tasks 

across IoT fog and cloud. On a higher level, [7] elaborates on the possibilities and the problems of 

the Green AI initiatives, presenting both the potential of the technology and the ethical content of 

the sustainable implementation of AI. 

Contribution of Work  

➢ To achieve a smart ranking of neighboring nodes, an intelligent focused attention 

mechanism is proposed based on residual energy, link stability, and relative distances. This 

module ensures the selection of only communication-efficient nodes, thereby reducing 

redundant transmissions and conserving node energy. 

➢ Even a powerful cluster formation technique is suggested, which is based on the 

normalized attention scores, energy levels, and delay-sensitive costs. This mechanism 

deploys the most appropriate cluster heads, thereby preventing energy-consuming cluster 

topologies and maximizing the network's lifetime. 

➢ Bio-inspired metaheuristic to create feature subsets that are both most energy-efficient and 

accurate, as well as identify feature redundancies. This minimizes overhead on 
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computation, inference speeds up, and improves learning performance without 

compromising data quality, which is essential. 

➢ The nodes' behaviors and sensor readings are classified using a deep learning architecture 

that combines a CNN for extracting spatial features and an LSTM for capturing temporal 

features. This hybrid model enhances pattern recognition, classification accuracy, and fault 

detection in WSNs. 

➢ A routing strategy is ensured that is adaptive in the event of energy-depleted or potentially 

unstable nodes, allowing them to be avoided. This technique enhances route stability, 

minimizes the overhead cost of rerouting, and dynamically balances the network load. 

Organization of Paper  

The remaining portion of the document is divided into significant sections, which are 

described as follows: Section II examines the current research efforts in Towards Green AI 

optimizing deep learning workflows for energy efficiency used by different authors. The workflow 

of the suggested approach is explained in Section III, and Section IV presents the findings analysis 

and performance data. Section V presents the conclusion.  

2. Literature Survey 

The urgent need for increased efficiency, sustainability, and innovation in the construction 

industry by explore the transformative potential of artificial intelligence within a lean construction 

framework. AI’s capabilities can effectively complement lean construction principles, which focus 

on reducing waste and maximizing value, leading to a significant shift in project management [8].  

Renewable Energy Communities can play a vital role in protecting the environment by 

encouraging local use of renewable energy, improving energy management, and decreasing 

consumption through sharing resources and advanced technologies. The author proposed an open 

tool for configuring energy systems dedicated to RECs. OT considers various factors, including 

population size, building type, surface area, energy consumption, heat load, and electrical load, 

among others [9]. 

 Deep reinforcement learning for real-time decision making, evolutionary algorithms for 

global optimization, and federated learning for distributed knowledge sharing are three 

complementary AI approaches that are uniquely integrated in a novel Adaptive AI-augmented 

Offloading framework proposed by the authors. Under maximum user load, the AAEO framework 

maintains consistent task completion times with only a 12% increase, while achieving up to a 35% 

improvement in QoE and a 40% reduction in energy consumption [10]. 

 A systematic approach is necessary to overcome these challenges, including funding AI 

infrastructure, establishing robust data governance rules, and fostering a culture of innovation. 

This article examines how artificial intelligence is transforming the manufacturing industry, with 

a focus on its applications in process control and enhancing efficiency. Through case studies and 

analysis of technological developments, it provides stakeholders with practical insights into how 

to use AI to gain a competitive advantage and sustain growth [11]. 
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 To address these issues, this study proposes a new framework that combines multi-

objective optimization, explainable artificial intelligence, and building information modeling. The 

three main components of the framework include: BO-LGBM (Bayesian Optimization-

LightGBM) prediction model and LIME (Local Interpretable Model-Agnostic Explanations) for 

energy forecasting and explanation, data generation through Design Builder simulation, and AGE-

MOEA, a multi-objective optimization method for handling uncertainty [12]. 

 AI-powered automation improves safety procedures, monitors compliance, and reduces 

human errors on construction sites. Moreover, Building Information Modeling with AI integration 

enhances project visualization, supporting sustainable infrastructure development and better 

decision-making. IoT-enabled sensors and real-time data analytics are integrated with smart urban 

infrastructure to harness the capabilities of AI [13]. 

 The authors proposed a new application of tensor decomposition within the Faster R-CNN 

framework, leading to the development of our model, T-Faster R-CNN, which aims to improve 

the energy efficiency and computational performance of deep learning models for galaxy 

classification. By incorporating tensor decomposition, our T-Faster R-CNN significantly reduces 

model complexity, memory footprint, and CO2 emissions while maintaining and, in some cases, 

even improving morphological classification accuracy [14]. 

 The authors proposed using reinforcement learning and a deep Q-network to learn the 

optimal task offloading strategy based on the network state, battery state, and the processing time 

required for the task. Several experiments are conducted on the proposed framework, and the 

results show that an average of 30% energy savings and a task success rate of over 90% are 

achieved. At the same time, the latency is kept below 80 ms compared to conventional heuristic-

based offloading methods [15]. 

 The study highlights digital twin technology as a key enabler of AI-driven transformation, 

enabling real-time monitoring, simulation, and optimization of sustainable designs. Applications 

such as aspect optimization, energy flow analysis, and predictive maintenance demonstrate their 

role in adaptive buildings, while frameworks such as Building 4.0 and 5.0 promote human-centric, 

data-driven sustainability [16]. 

 The authors provide a comprehensive overview of the video streaming lifecycle, content 

delivery, energy, and video quality assessment metrics and models, as well as AI techniques 

employed in video streaming. Furthermore, it conducts an in-depth, state-of-the-art analysis 

focusing on AI-driven approaches to enhance energy efficiency in the end-to-end aspects of video 

streaming systems [17]. 

 The research began by collecting and cleaning a large dataset comprising work schedules, 

environmental conditions, cooling systems, and sensor data. Descriptive statistics combined with 

visualizations provide deep insights into the collated data. Inferential statistics were then used to 

investigate the relationships among the various manipulated variables [18]. 

 The author introduces AICD-CDM, a novel framework that integrates several advanced 

machine learning techniques, including Linear Regression, Artificial Neural Networks, Random 
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Forest, Extreme Gradient Boosting, Light Gradient Boosting, and Natural Gradient Boosting, to 

address the multifaceted challenges of cost prediction and management in sustainable building 

projects [19]. 

 To optimize code and configuration procedures, this study investigates the integration of 

artificial intelligence and machine learning with Salesforce development.  The primary goal is to 

evaluate how AI recommendation engines can enhance user satisfaction, code quality, and 

development efficiency.  The paper develops an AI recommendation engine and examines its 

impact on key performance metrics, including development time, error rate, and customization 

accuracy, utilizing both simulated data and empirical analysis. [20]. 

Table 1 Comparative Analysis of AI Algorithms for Industrial Energy Optimization 

 

Ref No. Author/Year Algorithms 

used 

Focus area Limitations 

[21] Rehan, et al., 

2021 

IoT, AI, Cloud Smart 

manufacturing 

Does not give a real-time adaptive 

control; too much emphasis is 

placed on conceptual rather than 

empirical output. 

[22] Lee et al., 

(2024)  

AI workflows Industrial AI Case studies are local; the 

applicability of the workflow to 

other industrial setups is minimal. 

[23] Ayoubi  et al., 

(2023)  

AI, Lean 

principles 

Digital lean, 

Sustainability 

Conceptual, theoretical; does not 

have quantitative tests of 

efficiency gains. 

[24] Ojadi et al., 

2024 

AI, Smart Grids Urban energy 

networks 

Mainly focused on the application 

of smart grids in urban 

environments, the feasibility of 

their use in rural settings or mixed 

infrastructure is not discussed. 

[25] Lydia et al., 

2021 

Deep Learning, 

Anomly 

Detection  

IoT 

communication 

The scalability and real-time 

performance of large-scale IoT 

networks are not well studied; 

efficient energy usage can vary 

across different devices. 

[26] Jayanetti et al., 

2024 

DRL, Multi-

Agent Systems 

Cloud data centers Significant computational cost: 

DRL models are highly resource- 

and data-intensive, conflicting 

with the sustainability agenda. 

[27] Alharithi et al., 

(2024)  

Federated 

Learning, 

LSTM 

Environmental 

sustainability 

Federated learning incurs an 

additional cost of communication, 
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including real-time discussions 

on deployment issues. 

[28] Lai et al., 2023 ML/AI 

Workflow 

Chemical 

engineering 

Applicable only to the catalyst 

optimization field; it cannot be 

used for the manufacturing sector 

as a whole or energy systems in 

general. 

[29] Lee et al., 2022 AI Workflow General energy 

savings 

The workflow is non-customized 

and does not support 

customization practices based on 

industry prerequisites; there is no 

standardization of performance 

measurements. 

[30] Iyer et al., 2024 Digital Tech, AI Green energy Its scope is broad to the extent that 

the depth of technical expertise is 

lost; it generally does not outline 

specific implementation 

strategies or simulate digital 

energy system implementations. 

 

Table 1, which presents a comparative analysis of AI algorithms in industrial energy 

optimization, provides the reader with an understanding of the various AI algorithms that can be 

applied in the field of energy optimization across different industries. It contains a list of 

algorithms, areas of focus, and limitations of each study. Although some tasks address AI in smart 

manufacturing or IoT, many have drawbacks, such as a small operational scale or being non-real-

time. Some newer techniques, like DRL and Federated Learning, show great potential but are 

highly computationally or communication-intensive. 

3. Proposed Methodology  

The proposed model introduces a composite, energy-aware deep learning process of Wireless 

Sensor Networks (WSNs) based on the dynamics of Green AI. The first step in the methodology 

is the Energy-Aware Attention-Based Neighbor Discovery (EA-AND) mechanism, where the 

ranking of neighboring nodes is determined based on residual energy, link stability, and relative 

distance. The nodes with the most efficient communication are carried into the next steps. When 

neighbor nodes are extracted, the Energy-Efficient Cluster Routing (EECR) phase utilizes the 

concept of attention scores and normalized path costs (including energy and delay) to select the 

optimal cluster heads, thereby minimizing communication overhead and reducing energy-

intensive communication. To further reduce the computational overhead, the Social Spider 

Optimization (SSO) technique is employed in the feature selection task, where subsets are 

evaluated in terms of energy cost, classification accuracy, and redundancy reduction. A CNN-

LSTM hybrid model is used in node behavior and fault classification. Both CNN and LSTM record 

spatial and temporal dependencies, respectively, resulting in better and more reliable decision-

making. Lastly, the Cooperative Energy-Aware Preemptive Route Scheduling (CE-APRS) module 

Auth
ors

 Pre-
Proo

f



dynamically reconfigures the routing paths to bypass nodes with no energy or those likely to fail, 

and the process remains proactive in balancing these loads and ensuring stable data transfer. 
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Figure 1. Proposed Architecture Diagram 

 Figure1 illustrates the proposed energy-efficient deep learning architecture for intelligent 

routing and classification in Wireless Sensor Networks (WSNs). The first part of the framework, 

Energy-Aware Attention-Based Neighbor Discovery, identifies the optimal communication nodes 

based on residual energy, link stability, and proximity. These nodes are then transmitted to the 

Energy-Efficient Cluster Routing module, which aims to make the cluster head energy-aware and 

delay-sensitive, using attention scoring and normalized values. Next, a metaheuristic approach 

called Social Spider Optimization (SSO) mimics spider behavior (using vibrations) to select the 

most relevant and non-redundant features, effectively reducing computation load. The optimized 

features are then fed into a hybrid deep learning model that combines Long Short-Term Memory 

(LSTM) and Convolutional Neural Network (CNN) architectures. This model captures both 

temporal and spatial relationships of the sensor telemetry, enabling accurate classification of node 

behavior and fault detection. The insights gained are utilized in a Cooperative Energy-Cure 

Preemptive Route Scheduling (CECPRS) module, which actively modifies routing paths to bypass 
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energy-depleted or failure-prone nodes, ensuring balanced and robust communication. This entire 

process results in energy-efficient, optimized routing and intelligent classification, significantly 

enhancing WSN performance in line with Green AI principles. 

3.1) Energy-Aware Attention-Based Neighbor Discovery (EA-AND) 

Energy-Aware Attention-Based Neighbor Discovery (EA-AND) is a primitive used in the 

suggested work to detect the most appropriate neighboring nodes in the resource-limited wireless 

sensor network scenario. In contrast to the conventional neighbor discovery schemes where a prior 

fixed signal or distance measure is considered, EA-AND adaptively scores the surrounding nodes 

by considering an amalgamation of important parameters- remaining energy, link stability (e.g., 

RSSI) and relative distance to destination or cluster head. This model of attention-based design is 

based on the energy-efficient designs of Green AI, which allows each node of the architecture to 

focus on its neighbors first of all not only by their strengths in relation to connectivity but also by 

their sustainability in relation to energy usage. Through normalization of the attention weights, 

this approach is guaranteed of selecting reliable energy source (with respect to relying on energy) 

and nodes with the most efficient communications to further build cluster and route the data. 

Therefore EA-AND makes a direct contribution to the optimality of energy consumption with 

high-quality neighbor connectivity which is within the scope of overall sustainable and energy-

con conscious networking within Green AI systems. 

In the EA-AND mechanism the initial process is computation of a composite node quality 

score per neighboring node. This score is labeled as 𝑄𝑖, which combines three very important 

quantities namely residual energy 𝐸𝑖, link reliability 𝑅𝑖 and distance to the destination or cluster 

head 𝐷𝑖. The combined score is described as 

𝑄𝑖 =
𝐸𝑖.𝑅𝑖

𝐷𝑖
          (1) 

in which 𝐸𝑖 denotes the remaining battery power of node 𝑖 in terms of its capability of 

aiding further communication activities. 𝑅𝑖 is the same as signal strength or quality of the link and 

in this way, the weaker or unstable connections are given less priority. The distance 𝐷𝑖 is an inverse 

measure that discourages nodes which are more distant and therefore consume more energy to 

communicate with. Such a formulation will guarantee the node with the high level of energy 

availability, good and stable ties and shorter distances communication to have a higher composite 

score, and therefore become better candidates of being considered in further communications. The 

attention score 𝛼𝑖 is achieved by the softmax function in order to normalize the quality scores of 

all adjacent nodes and convert them into probabilistic weights. The score of attention is provided 

as, 

𝛼𝑖 =
exp(𝑄𝑖)

∑ exp(𝑄𝑗)𝑁
𝑗=1

         (2) 

Where, 𝑁 is the number of the total neighbour nodes. The equation also makes the focus 

values of all neighbors range between 0-1 and when their focus values are summated gives a value 

of 1, thereby providing a relative weighted importance to each node. The nodes that have a high 
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𝑄𝑖 value receive more attention distribution, and this implies that there is a greater possibility that 

it would be chosen during routing or clustering processes. This softmax-enabled normalization 

plays a close role in making an adaptive and contextual decision in the resource-limited wireless 

networks node, in light of thinking lightweight attention mechanisms in Green AI. 

After the computation of the attention scores, a pattern recognition step is followed in the 

EA-AND model to isolate the most promising neighbors. And the optimal set of neighbors, which 

is called 𝑁∗, is found choosing the top-𝑘 nodes that have the greatest attention scores: 

𝑁∗ = 𝑇𝑂𝑃𝑘({𝛼𝑖}𝑖=1
𝑁 )         (3) 

This sub set consists of only the best combination of energy efficiency reliable connectivity 

and the most amount of low-cost communications with the neighbor only. 𝑘 can either be 

predetermined or dynamically modified in accordance to the application specific restrictions like 

data rate or network density or even an energy budget. A further (not strictly necessary) variant of 

the model is the case when a link cost function is employed: 

𝐿𝑖 =
𝐷𝑖

𝐸𝑖.𝑅𝑖
          (4) 

Which is inverse in correlation with the composite quality score. This expression is a cost 

for links using greater energy, or delivering lesser quality, and it gives a more reasonable 

measurement in assessing whether or not a neighbor is suboptimal to consider. The link cost is 

especially a preferred method in situations when reducing the communication overhead is 

important or the residual energy must be maximized. The proposed approach helps to achieve 

sustainable and high-performance wireless sensor networks communication since link quality, 

distance, and energy become incorporated into a unified model based on the concept of attention. 

3.2) Energy-Efficient Cluster Routing (EECR) 

After finding the best adjacent nodes during the EA-AND procedure, the proposed system 

comes up to another stage named Energy-Efficient Cluster Routing (EECR). During this phase, 

the already calculated attention scores 𝛼𝑖 will be utilized to enable smart and energy-sensitive 

clustering. To determine whether a node is eligible to be Cluster Head (CH), each node focuses on 

a compliment score i.e., a combination of four important parameters namely its attention score 

issued by EA-AND, its normalized residual energy, its distance to the base station and the present 

weight of the communications or latency that the node is experiencing. Such a scoring function 

will guarantee that nodes chosen as heads of cluster are not only energy wealthy, but strategically 

positioned and less saturated hence data gathering will be effective and more data in a fewer 

number of clusters hence less transmission overhead. After selecting the CHs, the rest of the nodes 

are added to the cluster whose head has the best trade off in terms of remaining attention and cost 

of link. In the process, EECR is able to eclipse what was established by EA-AND to support 

scalable, energy efficient, and the delay aware routing, dramatically maximizing network lifetime 

and in tandem meeting the vision of Green AI in respect of sustainable network design. 
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Cluster head selection the cluster head selection process starts with calculating a Cluster 

Head Suitability Score according to each node 𝑖 in the best neighbor set 𝑁∗ from the EA-AND 

module. This is a score that is denoted by Equation (5) and is characterised as: 

𝐿𝑖_𝑆𝑐𝑜𝑟𝑒𝑖 = 𝜆1. 𝛼𝑖 + 𝜆2.
𝐸𝑖

�̅�
− 𝜆3.

𝐷𝑖

𝐷𝑚𝑎𝑥
− 𝜆4.

𝑇𝑖

𝑇𝑚𝑎𝑥
     (5) 

Here, the 𝛼𝑖 is called the attention score of the node 𝑖 during neighbor discovery, i.e., its 

energy-reliability-distance trade-off. The given coefficient 𝐸𝑖 normalizes residual energy 𝐸𝑖 of the 

node to the average energy �̅� of the entire set of neighbors in such a way that, preferably, nodes 

with many neighbors are assigned high equiprobabilities. The 
𝐷𝑖

𝐷𝑚𝑎𝑥
 term represents the distance to 

the sink node or base station 𝐷𝑖 as a ratio to the maximum distance to the sink node 𝐷𝑚𝑎𝑥 so that 

the distant nodes are not preferred because they may experience more transmission energy. The 

last term, 
𝑇𝑖

𝑇𝑚𝑎𝑥
 is the normalized communication latency 𝑇𝑖 or queueing latency so as to penalize 

overloaded nodes by dividing standard latency by maximum latency. The 𝜆1, 𝜆2, 𝜆3, 𝜆4 weights 

provide the possibility of fine tuning of each factor according to the energy-delay limitations of 

the application. In sum, this equation would provide balance and adaptive clustering head selection 

that facilitates both the network life span and low-latency communications. 

After calculating the score of each node as a cluster head, the node with the highest score 

is selected as the best Cluster Head which is standardized as follows, Equation (6): 

𝐶𝐻∗ = arg max
𝑖∈𝑁∗

(𝐶𝐻_𝑆𝑐𝑜𝑟𝑒𝑖)        (6) 

In this case, the selected Cluster Head is denoted by 𝐶𝐻∗ ; description of the list of top-𝑘 

neighbors in EA-AND as 𝑁∗. Such choices guarantee that leaders capable of the optimal energy 

availability, the favorite position, as well as low communication cost are appointed and comprise 

the center of every cluster in the routing hierarchy. After selecting the cluster heads, all the non-

CH nodes need to choose the cluster to which they can join. This is addressed as a cluster 

association rule as shown in Equation (7): 

𝐽𝑜𝑖𝑛𝑗 = arg max
𝑖∈𝐶

(𝛼𝑖 − 𝛽. 𝐿𝑖𝑗)        (7) 

In this equation, node 𝑗 decides to be a part of the cluster head 𝑖 which would provide the 

best trade-off of its attention score 𝛼𝑖 and the link costs 𝐿𝑖𝑗. The link cost 𝐿𝑖𝑗 is normally assumed 

to be 
𝐷𝑖𝑗

𝐸𝑖.𝑅𝑖𝑗
 where 𝐷𝑖𝑗 is the distance between node 𝑗 and the CH 𝑖, 𝐸𝑖 is the residual energy in the 

CH, and 𝑅𝑖𝑗 is the reliability of the link between the two nodes. The coefficient 𝛽 is a penalty 

parameter making the algorithm aggressive to what extent it searches out the expensive links. This 

rule will make sure the nodes will join clusters not only on the basis of leadership strength (through 

attention score) but also on the basis of energy-efficient, reliable and short-range connection. 

EECR mechanism that widens the output of EA-AND to create sustainable and balanced 

communication clusters. This solution is smart in terms of lower power usage, shortening latency 
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during transmission, and neither stressing nodes significantly nor loading them in an uncontrolled 

manner, thus perfectly fitting the Green AI mission on the scalability of WSN deployment. 

3.3) Social Spider Optimization (SSO) 

Once the desirable neighbors have been identified through EA-AND process and the best 

cluster heads have been identified through EECR, the final component of the proposed model 

should be the Social Spider Optimization (SSO) that will help to further optimize the feature 

selection and network-based energy consumption reduction. In such a system, a spider in SSO 

algorithm corresponds to a solution candidate, subset of features (or routing attributes) that are 

applied in data transmission or classification directions inside the cluster. Each solution of a spider 

is determined as fit or not based on multi-objective function which places the requirement of 

energy consumption, accuracy and redundancy at a balance point. The proposed approach not only 

increases the efficiency of routing since it introduces the idea of SSO but also complies with the 

ideas of Green AI, which orchestrates the removal of irrelevant features and encourages 

lightweight, sustainable computation within the network. SSO as such, is an intelligent post-

processing process that optimizes energy-performance trade-off as determined by the processes of 

EA-AND and EECR, so that WSNs can be assured of long-term operation in resource constrained 

environments. The SSO algorithm would start the process of feature selection by considering every 

candidate solution with the help of a multi-objective fitness function in the form of the Equation 

(8): 

𝐿𝑖𝑗 = 𝑤1. (1 −
𝐸𝑢𝑠𝑒𝑑(𝑥)

𝐸𝑡𝑜𝑡𝑎𝑙
) + 𝑤2. 𝐴(𝑥) − 𝑤3. 𝑅(𝑥)     (8) 

𝐿𝑖𝑗 is the feature set that is selected by a spider (agent) in this expression and it is a mixture 

of attributes which is used during classification or during routing. The first term (1 −
𝐸𝑢𝑠𝑒𝑑(𝑥)

𝐸𝑡𝑜𝑡𝑎𝑙
) 

promotes feature subsets that have a lesser energy consumption with 𝐸𝑢𝑠𝑒𝑑(𝑥) set to be the 

predicted energy necessary to process the features chosen and the 𝐸𝑡𝑜𝑡𝑎𝑙 to be the total energy 

available in the system. The second term, 𝐴(𝑥), measures the level of classification or routing 

success attained with the help of the chosen features, providing the guarantees that the level of 

energy efficiency would not undermine the quality of decisions. 𝑅(𝑥) is the third term which 

penalized the existence of overlapping or useless features in order to reduce computational cost. 

The weights 𝑤1, 𝑤2, 𝑤3 are arbitrary and subsequently, they determine the level of significance 

between energy saving, accuracy and feature compactness respectively. This fitness goal also 

applies the principle of energy efficiency, high precision and non-redundancy, corresponding to 

the goal of Green AI in power-limited networks. In order to enhance contact between candidate 

solutions, the spiders within SSO algorithm, use vibration signals to communicate with each other 

with limitation of the vibration strength given by the equation (9): 

𝑉𝑖𝑗 =
𝑓(𝑥𝑗)

1+𝑑𝑖𝑗
2           (9) Auth
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In this case, 𝑉𝑖𝑗 is the grade of oscillation felt by the spider 𝑖 due to spider𝑗. The numerator 

𝑓(𝑥𝑗) shows the value of the fitness of the spider 𝑗 solution, i.e., better solutions lead to intensified 

vibrations. It is divided by a denominator such as 𝑑𝑖𝑗
2  which is the squared distance (e.g., Hamming 

or Euclidean) between feature subsets 𝑥𝑖 and 𝑥𝑗 and reduces the strength of this measure as the 

difference between them grows. Intensifying the influence of solutions that are stronger and closer 

through this biologically inspired mechanism promotes sphere-like social learning, and the effect 

minimizes the chances of premature convergence. Each spider will then decide the most influential 

neighboring solution, i.e., by choosing the solution that produces the strongest vibration defined 

in Equation (10): 

𝑗∗ = arg max
𝑗≠𝑖

(𝑉𝑖𝑗)         (10) 

The step makes sure that all the spiders are following the best solution at least in their social 

network thus driving the population into globally optimal sets of features. The index 𝑗∗ identifies 

the one neighboring agent that has the best combination in solution quality and being close to the 

current agent and as a result, exploration and exploitation can be balanced. Then the feature subset 

is updated by each spider by going toward the best neighbor solution as in Equation (11): 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝛾. (𝑥𝑗∗
(𝑡)

− 𝑥𝑖
(𝑡)

)       (11) 

And the terms 𝑥𝑖
(𝑡)

 and 𝑥𝑗∗
(𝑡)

 in this equation are the current feature vector and the neighbor 

feature vector, respectively, are at iteration 𝑡, and the parameter gamma, gamma 𝛾 ∈ [0,1] is the 

learning rate which is specific to the degree to which the neighbor influences are adopted. This 

formulation is well-regulated towards the superiorly performing solution and upon the subsequent 

step of linearization in discrete problems (e.g., in feature selection), the reformed feature vector 

retains a valid form. The update mechanism allows the population to converge to good feature 

subsets with non-redundant feature subsets that are energy-aware and maintain diversity to 

optimize the entire feature subset. It will make sure that the least energy-consuming, correct, and 

lightweight sets of features are chosen to be used in further routing and decision-making processes 

and its overall sustainability and performance. 
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Figure 2. Feature Selection Using Social Spider Optimization (SSO) Algorithm 

Figure 2 illustrates the operations of the Social Spider Optimization (SSO) feature selection 

algorithm in machine learning or optimization applications. They begin with the initiation of a 

population of spiders, where each spider represents a candidate solution or feature subset. A fitness 

evaluation measures the quality or performance of the feature subset, and it is evaluated using 

spiders with a fitness function based on classification accuracy or information gain. The next step 

is to calculate the most influential neighbor for each spider, simulating spiders responding to 

another spider in a web. According to such interaction, both spiders improve the subset of their 

features by approaching improved solutions based on their neighbors. The process is repeated until 

the best or almost optimal solutions are achieved, which are the most informative and minimum 

sets of features. The algorithm ends when the termination condition is satisfied, typically after a 

specified number of passes or a convergence value is reached. 

3.4) Long Short-Term Memory – Convolutional Neural Network (LSTM-CNN) 

This section involves data collection, comparing past and current data for performance, 

testing, verification, and training. It also includes continuous parameter monitoring, data 

measurement, and classification to detect and address issues early. The selection path defines the 

section, with each network assigned to measure the process's network connection. This helps 

establish the framework's size, position, and shape of the process. The approach segments each 

data point within the network connection, ensuring consistent and diverse performance monitoring. 
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Additionally, numerous connected devices can easily support a wide range of connection levels, 

enabling continuous process monitoring at any time. 

Equation 12 compiles data, assesses data accuracy, and determines the performance 

parameter range. Let's assume the 𝑃𝑛, 𝑞𝑚 is an input data variable, and g is a collection of the data. 

𝑥𝑖
(𝑡)

= 𝑤(𝑠𝑎 ∙ 𝑀𝑛 + 𝑠𝑏 ∙ 𝑝𝑛 + 𝑞𝑚)                                                                           (12) 

Equation 13 demonstrates that testing and training involve analyzing each type of data, 

measuring prediction accuracy, and calculating historical data based on the original performance 

dataset. let's assume the𝑠𝑎, 𝑠𝑏 is a testing data value. 

𝑓𝑒 = 𝑤(𝑥𝑚, 𝑠𝑏 . ) = 𝑤(𝑠𝑎 ∙ 𝑝𝑛 + 𝑞𝑚)                                                                          (13) 

Equation 14 illustrates how training data can reduce the minimum data requirements and 

channel mismatches, improve performance, maximize prediction accuracy, and expand the 

performance reliability range. Let's assume the 𝜎( 𝑠 𝑎[𝑥𝑚−1] is a maximize and minimize the value 

range, and 𝑔𝑖 is an overall testing range. 

𝐷𝑖 = 𝜎( 𝑠 𝑎[𝑀𝑛−1] + 𝑀𝑛)                                                                                           (14) 

Equation 15 demonstrates how to classify data in the testing dataset, separating testing and 

training sets to choose appropriate data and identify misclassified instances during the process. 

Let’s assume the 𝑘𝑖 is a data classification range. 

𝑘𝑗 = 𝜎(𝑍𝑝 ∙ [𝑀𝑛−1] + 𝑀𝑛)                                                                                           (15) 

Equation 16 indicates that data collection, a thoroughly checked and verified process, is 

normalized according to each network connection's performance. Let’s assume the  𝑎𝑖 is 

normalized data, 𝑚𝑖∙𝑖+𝑠−1 is an input data 

𝑝𝑗 = (𝑘𝑗)𝑘(ℎ ∙ 𝑛𝑖∙𝑖+𝑠−1 + 𝑐)                                                                                         (16) 

Equation 17 demonstrates that it measures testing and training performance, then chooses 

the correct path to connect each network to the proper input for optimal performance. Let's assume 

that a 𝑝1 + 𝑝2,…..,𝑝𝑛−𝑓is a value of the data variables.  

𝑝 = [𝑝1 + 𝑝2,…..,𝑝𝑛−𝑓 + 1]                                                                                             (17) 

Equation 18 demonstrates that each path in the network connection of the performance is 

used to calculate the size, shape, and position of the signal issue in the process. Let's assume the 

𝑎2,…..,𝑎𝑛−𝑓 is a maximize and minimize the values. 

𝑝 = 𝑚𝑎𝑥 ∗ 𝑚𝑖𝑛{̀ 𝑝1 + 𝑝2,…..,𝑝𝑛−𝑓 + 1}                                                                          (18) 

Equation 19 demonstrates how testing and training data are classified to separate values 

and prevent misclassified data from impacting performance. This enables accurate prediction of 
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the process's performance, including calculating the positive and negative rates of accuracy. Let's 

assume the 𝐹(𝑗|𝑛, 𝜃) is a classification of the data range. 

𝐹(𝑗|𝑛, 𝜃) =
𝑒𝑥𝑝(𝑥𝑖

(𝑗)
)

∑ 𝑒𝑥𝑝(𝑥
𝑖
(𝑗)

)𝑛
𝑖=1

                                                                                                    (19) 

The CNN method demonstrates that different types of connected devices can seamlessly 

handle various connection levels to maintain continuous process monitoring at all times. The 

LSTM method analyzes past data in relation to current data for performance evaluation, testing, 

verification, and training purposes. Additionally, it involves ongoing monitoring of parameters 

and the measurement of their data values. 

3.5) Cooperative Energy-Aware Preemptive Route Scheduling 

The section represents an original workload used to plot the energy curve as a function of 

power consumption over time. The priority is further determined by the urgency of the features 

and the estimation of green efficiency. Then, depending on the batch size and power consumption, 

we vary the execution speed, for example, by lowering the clock speed. Knowledge distillation is 

the process of transferring performance from a large teacher model to a smaller student model. 

This enables scheduling that adapts in real time to sporadic workload demands and energy 

constraints. Based on this information, the system recalculates the task's energy consumption 

estimates. 

The equation represents the original workload used to plot the energy curve as a function 

of power consumption over time. Participating nodes share these curves, which show the baseline 

of their energy behavior. A central coordinator collects them and determines peak times, overlap 

periods, and idle times. This sharing partnership reduces the burden of energy usage across the 

system and distributes the load more effectively. It also aids in future scheduling by indicating 

which nodes to start or stop. Let assume the Kπ(FG) − the energy curve as a function. 

𝐹(𝑗|𝑛, 𝜃) = Kϕ(FG) − ∑ (yn − xn)j∈Sφ
FG−Sπ

FG                                                   (20) 

The equation is planned for the activities that are set in the equation based on the timeline 

and energy line. For each task, the scheduler sets the intensity based on performance. The priority 

is further applied to the urgency of the features and the estimation of green efficiency. This 

involves the ratio of energy consumption to product output. This strategy helps select tasks with a 

good balance between energy and accuracy, ensuring consistency with green AI policies, and 

assumes the ∑ (yn − xn) + yTKj∈Sφ
FG−Sπ

FG − ratio of energy consumption to product output. 

 

Kπ(FG) = Kϕ(FG) − ∑ (yn − xn) + yTKj∈Sφ
FG−Sπ

FG                                                    (21) 

The equation acts as an active clock meter, tracking both real-time energy supply and load. 

If a medium-priority task is launched before the energy capacity is sufficient, it will preempt 

(temporarily pause or slow down) existing low-priority tasks. Then, depending on the batch size 

and power consumption, we vary the execution speed, for example by lowering the clock speed. 

This is fast and responsive, and ensures that the energy budget is not exceeded. The process 
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constantly changes in response to feedback from workload and energy curves, and let's assume the 

∑ (yn − xn) + Yik∈Sπ
i − existing low-priority tasks.  

∑ (yn − xn) + yTKj∈Sφ
FG−Sπ

FG < ∑ (yn − xn) + Yik∈Sπ
i                                                  (22) 

The equation is a manipulation of the equations that involves pruning to minimize the 

model and quantization to reduce computational requirements. Knowledge distillation is the 

process of transferring performance from a large teacher model to a smaller student model. 

Bayesian hyper parameter tuning determines optimized settings faster than grid search. These 

techniques significantly reduce energy consumption and computational load while maintaining 

performance. Let's assume the K∅(FG) −Optimized the faster grid search. 

K∅(FG) < ∑ (yn − xn) + yTK + (yi − xi)j∈Sφ
FG−Sπ

FG                                                      (23) 

The Equations 24 and 25 with a complex workflow that leverages Deep Reinforcement 

Learning (DRL) and Graph Neural Networks (GNNs). The dependencies of all represent a 

workflow graph, and the GNN depicts their interdependencies. DRL agents are trained to learn 

cost-saving scheduling policies and policies that reduce energy consumption. This approach 

enables scheduling that adapts in real time to sporadic workload demands and energy constraints. 

This will also provide feedback to help improve the system, and let assume the 

∑ (yn − xn)j∈Sφ
FG∩Sπ

FG − energy constraints.  

Kπ(FG) = K∅(FG) ∑ (yn − xn)j∈Sφ
FG∩Sπ

FG                                                                           (24) 

∑ (yn − xn)j∈Sφ
FG∩Sπ

FG                                                                                                         (25) 

The equation 26 represents a monitoring subsystem that captures online performance 

measurements, including energy consumption, execution time, and deadline overruns. Based on 

this information, the system recalculates the task's energy consumption estimates and refines the 

heuristic or DRL policies based on the schedule. The system needs to adapt to changing workloads 

and node placements, which is achieved by periodic retraining of the DRL agents. Task patterns 

and power profiles are adapted to suit any software or hardware changes. This cycle helps maintain 

energy efficiency and improves system flexibility, let's assume the K∅(FG) − Based on the 

schedule and energy efficiency. 

K∅(FG) = ∑ (yn − xn) + ∑ (yn − xn)j∈Sφ
FG∩Sπ

FG +h∈π
FG yTK                                                (26) 

The method is a sharing partnership method that reduces the burden of energy usage across 

the system and distributes the load more effectively. It selects tasks with a good balance between 

energy and accuracy, ensuring consistency with green AI policies. It is fast and responsive, and 

ensures that the energy budget is not exceeded. The approach significantly reduces energy 

consumption and computational load while maintaining performance. This method enables 

scheduling that adapts in real time to sporadic workload demands and energy constraints. Task 

patterns and power profiles are adjusted to accommodate any software or hardware changes. This 

cycle helps maintain energy efficiency and enhances system flexibility. 

4. Results & Discussion  
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The proposed model demonstrates significant advancements in energy preservation and 

intelligent routing in Wireless Sensor Networks (WSNs). Through the Energy-Aware Attention-

Based Neighbor Discovery (EA-AND), the system selects the best neighboring nodes, considering 

residual energy, link quality, and minimizing unnecessary traffic. The Energy-Efficient Cluster 

Routing (EECR) guarantees stable output picking of the cluster head, improving network 

endurance and load distribution. The Social Spider Optimization (SSO) feature selection method 

favors minimizing computation with no negative impact on data relevance. The CNN-LSTM 

hybrid model enhances node classification performance by learning spatial-temporal patterns. CE-

APRS is a proactive algorithm that prevents the use of failure-prone routes to minimize both route 

breakages. The outcomes include a decrease in energy consumption, an extended network life, and 

improved fault tracing. 

                                Table 2. Simulation Parameters 

 

 

Parameter Name Parameter Values 

Number of Nodes 100 

Initial Energy Per Node 2 Joules 

Transmission Range 20 meters 

Data packer size 4000 bits 

Control packet size 200 bits 

Simulation time 1000 seconds 

 

Table 2 shows a simulation conducted with carefully chosen parameters, creating a realistic 

environment for a Wireless Sensor Network (WSN). To represent medium-scale deployments 

often used in bright environments or for environmental monitoring, 100 sensor nodes are randomly 

distributed within the network field. Each node starts with an initial energy of 2 Joules, reflecting 

a battery-limited scenario common in the real world of IoT and WSNs. A transmission range of 

20 meters ensures short-range communication, which improves multi-hop routing and energy-

efficient data relaying by neighboring nodes. Sensor data and other important information are 

transmitted in data packets up to 4000 bits, while control packets used for routing and protocol 

signaling are limited to 200 bits to reduce overhead. A simulation duration of 1000 seconds 

provides enough time for accurate performance analysis, covering multiple rounds of clustering, 

routing, and data transmission to assess the network's energy consumption, node stability, and 

adaptability over time. 

4.2) Comparison Table  

Table 3. Performance Metrics Comparison for Different AI Models 
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Models  Energy 

Consumption  

(kWh)  

Computation 

Time (s) 

Network 

Through

put 

(MB/s)  

Model 

Accuracy 

(%)  

Prediction 

Latency 

(ms) 

Storage 

Efficiency 

(MB) 

Packet 

Delivery 

Ratio 

(%) 

Energy 

Efficien

cy 

(bits/Jo

ule) 

ANN 2.8 140 25 85 120 140 87.5 310 

SVM 2.1 110 18 82 100 100 85.2 350 

Random 

Forest 

3.5 160 15 88 150 180 89.1 280 

GRU 2.3 100 30 90 90 120 92.3 410 

CECPRS 1.6 75 35 94 60 85 96.8 480 

 

Table 3 shows the overall analysis of different types of artificial intelligence, ANN, SVM, 

Random Forest, GRU and CECPRS proposed applications, comparing them based on eight critical 

measures of their performance regarding a Wireless Sensor Networks compares the proposed 

CECPRS and GRU models with existing approaches based on other means of performance 

measures currently applied in Wireless Sensor Networks ( WSNs). The CECPRS model has an 

overall performance that has made it stand out from all others, exhibiting its superior ability in 

energy-saving and intelligent network endeavors. It also consumes the least amount of energy (1.6 

kWh) and takes the shortest time to compute (75 seconds), which means it is efficient in both 

processing and energy usage. In addition, CECPRS has the maximum network throughput (35 

MB/s) and model accuracy (94%) to provide quality and stable data processing. Make it the most 

predictable at 6.0ms, allowing for faster decision-making, which is vital in a dynamic network. It 

also provides optimized storage (85 MB) and a maximum packet delivery ratio (96.8%), which 

makes it very secure and stable in communications. Most importantly, it is the most efficient in 

performance, with a level of 480 bits/Joule, which speaks to its high capacity for processing greater 

volumes of information using an equivalent amount of energy. 
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Figure 3. Illustrates Energy Consumption 

Figure 3 presents a comparative analysis of the energy usage in five machine learning and 

deep learning models: ANN, SVM, Random Forest (RF), GRU, and the proposed CECPRS model. 

The vertical bars represent energy consumption in kilowatt-hours (kWh), and this chart provides 

a clear picture of the models' efficiency. The Random Forest model consumes the most energy, 

with 3.5 kWh being used, while the ANN consumes 2.8 kWh, GRU consumes 2.3 kWh, and SVM 

consumes 2.1 kWh. Unlike this, the proposed CECPRS model has the lowest energy consumption 

value, which is as low as 1.6 kWh, indicating that it is more energy-efficient. This large-scale 

decrease further supports the effectiveness of the CECPRS model in minimizing computational 

overhead and power consumption, making it an optimal option for energy-aware, sustainable AI 

use cases in network-based situations. 
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Figure 4. Illustrates Computation Time 

According to Figure 4, the five other models —CECPRS, GRU, Random Forest (RF), 

SVM, and ANN —were compared based on their computation time in seconds. The CECPRS 

model also exhibits optimal performance, with a computing time of 75-140 seconds, and lower 

values for all workload levels. Comparatively, the GRU model has relatively long computation 

time with a maximum of 150 seconds, and the closest is Random Forest, which has a computation 

time of 100-145 seconds. The SVM model begins at approximately 95 seconds, rises to a peak 

around 140 seconds, and then declines. The ANN model performs decently, with computation time 

oscillating between 85 and 130 seconds. 

 

Figure 5. Illustrates Network Throughput  

Figure 5 illustrates the throughput performance of the network (in MB/s) for various 

models, including ANN, SVM, Random Forest (RF), GRU, and the given CECPRS model. The 

vertical axis uses the throughput capacity of the network (remaining within the boundaries of 15 

MB/s and 35 MB/s), and the horizontal axis bears the names of the models in the sequence of the 

better performance. After observing the graph, it can be concluded that the CECPRS model can 

achieve a throughput of up to 35 MB/s, which is a significant indication of its high potential to 

manage data in a distributed system and process data efficiently. By contrast, the throughput in 

ANN and SVM is also the least, ranging between 15 and 18 MB/s, implying that these models 

would have limitations in handling data and would also be slower at communicating across 

networks. Random Forest and GRU demonstrate medium-level performance, achieving a 

maximum speed of 25-30 MB/s. Auth
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Figure 6. Illustrates Model Accuracy (%)  

Figure 6 presents the distribution of model accuracy (%), achieved by five models: ANN, 

SVM, Random Forest (RF), GRU, and the proposed CECPRS, as a colored scatter plot. The 

vertical axis represents the percentage accuracy level, which varies between 85% and 94%, 

whereas the horizontal axis denotes the scaling of progression, starting with traditional models 

(ANN, SVM) and progressing to deep learning models of higher levels (GRU, CECPRS). In the 

plot, an evident upward trend is apparent, as the accuracy of the models increases from ANN and 

SVM to RF and GRU. Consequently, CECPRS demonstrates the highest accuracy, reaching a 

maximum of 94 percent. The fact that data points are intensely concentrated in the low end with 

ANN and SVM (approximately 82% to 85%) shows a relatively low predictive power of these two 

methods. In the meantime, GRU and CECPRS target distribution shifts to the right and upwards; 

as a result, they demonstrate increased learning potential and generalization. 

 

Figure 7. Illustrates Prediction Latency (ms)  
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As shown in Figure 7, the prediction latency (ms) of different AI models and optimization 

algorithms varies. The latency range spans from 120 ms to 100 ms, 150 ms to 90 ms, and 60 ms, 

respectively. These values indicate the time required for each approach to generate a prediction 

after processing the input data. Lower latency responses are more responsive, which is crucial in 

real-time or energy-efficient applications. The model with a 60 ms latency is the most efficient 

and is suitable for use in IoT-driven smart grids or predictive maintenance, which are time-

sensitive. Conversely, the approach with a 150 ms latency is slower than the others and may affect 

the real-time performance of decision-making. 

 

Figure 8. Illustrates Storage Efficiency (MB)  

Storage Efficiency (MB) is depicted in Figure 8 in various models or system 

configurations. These results are 140 MB, 100 MB, 180 MB, 120 MB, and 85 MB, respectively. 

The values of storage efficiency of higher order denote a better utilization of available storage 

resources to cope with massive data, while ensuring optimal system performance. The setup that 

reaches 180 MB indicates that the best storage can handle such data, meaning it can utilize superior 

compression or various data management methods. On the other hand, the 85 MB configuration 

suggests a less efficient use of storage, possibly due to redundancy or poorly optimized storage 

structures. Overall, the graph indicates that storage optimization plans can significantly impact the 

sustainability and scalability of data-intensive applications, particularly those based on AI and 

energy efficiency. 
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Figure 9. Illustrates Packet Delivery Ratio (%) 

Figure 9  presents a comparative study of the Packet Delivery Ratio (PDR) for five models: 

ANN, SVM, Random Forest (RF), GRU, and the proposed CECPRS model. Packet Delivery Ratio 

is one of the most essential parameters and metrics in Wireless Sensor Networks (WSNs), defining 

the success of data transmission with no packet loss. One of the models, CECPRS, performs better 

than the rest and has a PDR of 96.8, indicating that it is resilient enough to withstand any network 

failure and that its data routes are correctly managed. GRU is next with 92.3%, and it enjoys 

learning temporal dependency. Random Forest achieves 89.1%, which is rather good and 

marginally worse, apparently as a result of its unswerving decision-making structure. The PDRs 

of SVM and ANN are lower and equal \mbox{85.2} and 87.5 percent respectively and it indicates 

that the latter are less able to accept dynamic changes in networks. The high performance of the 

CECPRS model is attributed to energy-aware routing, proactive scheduling, and intelligent fault 

tolerance, which leads to strong data transmission and minimal packet loss in the resource-

constrained WSN setting. 
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Figure 10. Illustrates Energy Efficiency (bits/Joule) 

In Figure 10, a comparative analysis of Energy Efficiency in bits per Joule is presented for 

five models: ANN, SVM, Random Forest (RF), GRU, and CECPRS. This can be defined as the 

efficiency of every model in processing and transmitting data while using energy in Wireless 

Sensor Networks (WSNs). The CECPRS model performs the best, with an energy efficiency of 

480 bits per Joule, which is superior to all others. The meaning of this is that it can provide more 

successful computation and data transfer in comparison to the quantity of energy utilized, implying 

that it is exceptionally applicable in conditions of resource constraint. The second-best, with 410 

bits/Joule, is the GRU, based on its time memory capabilities, followed by SVM and ANN with 

moderate efficiencies of 350 and 310 bits/Joule, respectively. The Random Forest model proves 

to be the least efficient, with a value of 280 bits/Joule, possibly due to its complex ensemble 

architecture. 

5. Conclusion  

In this study, an optimized deep learning-based workflow compatible with the principles of 

Green AI has been proposed to address the urgent challenge of energy inefficiency in Wireless 

Sensor Networks (WSNs). The model uses an Energy-Aware Attention-Based Neighbor 

Discovery (EA-AND) process and the Energy-Efficient Cluster Routing (EECR) algorithm to 

reduce redundant transmissions and ensure optimal cluster heads. Finally, Social Spider 

Optimization (SSO) will be integrated to eliminate computational overheads while maintaining 

vital data for making informed decisions. The CNN-LSTM hybrid model will improve node 

behavior recognition by capturing both spatial and temporal dependencies, thus enhancing fault 

detection and network awareness. Additionally, the Cooperative Energy-Aware Preemptive Route 

Scheduling (CE-APRS) is a proactive module that adapts to dynamic network conditions to 

prevent route failures and promote a fair distribution of energy throughout the system. Overall, the 

proposed model significantly enhances the adaptive, energy-efficient, and resilient operation of 

WSNs, supporting the sustainable development of next-generation communication systems. 
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