
Journal Pre-proof

TSDACS: Two-Stage Deadline-Aware Cloudlet Scheduler for Time-Critical
Workloads

Gritto D and Muthulakshmi P

DOI: 10.53759/7669/jmc202505161

Reference: JMC202505161

Journal: Journal of Machine and Computing.

Received 30 March 2025

Revised from 02 June 2025

Accepted 17 July 2025

Please cite this article as: Gritto D and Muthulakshmi P, “TSDACS: Two-Stage Deadline-Aware

Cloudlet Scheduler for Time-Critical Workloads”, Journal of Machine and Computing. (2025). Doi:

https:// doi.org/10.53759/7669/jmc202505161.

This PDF file contains an article that has undergone certain improvements after acceptance. These

enhancements include the addition of a cover page, metadata, and formatting changes aimed at

enhancing readability. However, it is important to note that this version is not considered the final

authoritative version of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting,

typesetting, and comprehensive review. These processes are implemented to ensure the article's final

form is of the highest quality. The purpose of sharing this version is to offer early visibility of the article's

content to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may

be identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal

remain in effect.

© 2025 Published by AnaPub Publications.

TSDACS: Two-Stage Deadline-Aware

Cloudlet Scheduler for Time-Critical

Workloads
1D Gritto* , 2P Muthulakshmi

1,2 Department of Computer Science, Faculty of Science and Humanities,

SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, India-603203.

Emails: grittodg@gmail.com, muthulap@srmist.edu.in

*Corresponding Author: D Gritto

Abstract

In modern computing environments such as cloud, edge, and fog computing, as well as IoT networks

and real-time systems, meeting workload deadlines is critical to ensure reliability, quality of service,

and user satisfaction. The traditional scheduling algorithms often fail to adequately address the

constraints associated with the workloads, particularly deadlines, the dynamic nature of workloads

and resources, and the inherent resource limitations. Deadlines are the most important constraints,

especially for time-sensitive applications. Achieving deadline compliance requires optimal resource

provisioning, scheduling, resource allocation, resource scaling, workload migration, etc. This paper

proposes a novel deadline-aware cloudlet scheduling algorithm, the Two-Stage Deadline-Aware

Cloudlet Scheduling Algorithm (TSDACS), designed to minimize deadline misses through efficient

resource provisioning and scaling strategies. In stage one, the algorithm provisions virtual machines

with suitable configurations and quantities based on the requirements of the cloudlets to ensure they

can be processed within their deadlines. Cloudlets are then scheduled onto the virtual machines in a

way that minimizes deadline violations. In stage two, if the initially provisioned virtual machines fail

to meet the deadlines, horizontal scaling is applied, up to a limited threshold, to enhance the

performance and the deadline compliance. Experimental results demonstrate that the proposed

TSDACS algorithm outperforms existing approaches, such as CPDALB, DBS, and RDLBS2, in terms

of deadline miss ratio, makespan, response time, and cost efficiency, while maintaining competitive

VM utilization and effective load balancing.

Keywords: Resource Provisioning, Cloudlet Scheduling, Horizontal Scaling, Deadline-aware

Scheduling.

1. Introduction

The growth of the internet and the widespread adoption of online business necessitated the

development of advanced data processing and data storage technologies. Cloud computing addresses

many of the limitations inherent in traditional monolithic computing systems confined to single

machines or local networks. It enables users to leverage computing resources in an on-demand,

scalable, and cost-effective manner, providing seamless access to resources hosted in data centers

operated by various cloud service providers (CSPs) [1]. Cloud platforms provision infrastructural units

such as virtual machines (VMs), containers, and physical servers online. This provisioning allows

users to autonomously utilize the resource components of these units, including RAM, CPU, operating

system, bandwidth, and other network capabilities. Although cloud resources and services are

pervasive, challenges related to workload execution and data storage on the cloud persist. The benefits

of the cloud can be realized only when the services delivered by the CSPs align with user requirements,

performance expectations, and Quality of Service (QoS) parameters. In practice, these three demands

can be achieved through a combination of techniques, including resource provisioning, cloudlet

scheduling, resource allocation, load balancing, auto-scaling, Service Level Agreement (SLA)

management, VM migration, VM consolidation, fault tolerance and availability, data replication and

backup, energy-efficient computing, performance monitoring and optimization, elastic resource

management, and workflow management, among others. At the core of all these techniques lies task

scheduling, or cloudlet scheduling. This paper uses tasks, cloudlets, and jobs interchangeably.

Cloudlet scheduling is the fundamental process of mapping user workloads to the most appropriate

provisioned resources or the VMs. By improving cloudlet scheduling, the effectiveness of all other

Auth
ors

 Pre-
Proo

f

mailto:grittodg@gmail.com
mailto:muthulap@srmist.edu.in

techniques is improved, leading to enhanced overall system performance, including better resource

utilization, cost efficiency, and consistent QoS guarantees.

The scheduling algorithms are broadly classified into three basic categories: time-based schedulers,

strategy-based schedulers, and objective-based schedulers. Time-based schedulers make scheduling

decisions based on execution timing. Static schedulers determine the schedule before execution,

whereas dynamic schedulers make decisions at runtime. Strategy-based schedulers focus on the

approach used to derive a scheduling solution. Heuristic schedulers apply problem-specific rules or

logic (e.g., Min-Min, Max-Min), while meta-heuristic schedulers employ general-purpose

optimization strategies to explore the solution space (e.g., Genetic Algorithm, Particle Swarm

Optimization, Ant Colony Optimization). Objective-based schedulers are designed to optimize

specific goals, constraints, or quality measures. Examples include fault-tolerant scheduling

algorithms, QoS-based scheduling algorithms, energy-efficient scheduling algorithms, and deadline-

constrained scheduling algorithms. The selection of a scheduling algorithm often depends on the

specific requirements of the cloud application, the nature of the workloads, the constraints, and the

type of resources. In cloudlet scheduling, a constraint refers to any limitation, requirement, or

condition that must be considered or satisfied when assigning cloudlets to available computational

resources, such as VMs. Table 1 describes the various constraints that influence the cloudlet

scheduling.

Deadline is a critical constraint in cloudlet scheduling as it ensures cloudlets are completed within an

intended time frame, which is essential for meeting Service Level Agreements (SLAs) and

maintaining system responsiveness, specifically in time-sensitive applications. The three main types

of deadline-sensitive scheduling algorithms are hard deadline, soft deadline, and firm deadline

algorithms. In hard deadline algorithms, cloudlets must be completed strictly before their deadlines,

as any deadline miss can lead to system failure or unacceptable consequences. Soft deadline

algorithms tolerate occasional deadline misses without critical impact. The system remains

operational, although performance may degrade. In firm deadline algorithms, a cloudlet holds no value

if completed after its deadline. While a deadline miss does not cause system failure, firm deadline

algorithms discard the cloudlet, as its late execution is considered ineffective. The selection of a

deadline-sensitive scheduling algorithm can also be based on the periodicity of the cloudlets. The real-

time cloudlets that are executed or activated at regular, fixed time intervals are called periodic

cloudlets. Each activation is referred to as a job, and these jobs repeat indefinitely. Non-periodic

cloudlets are those that activate at irregular, unpredictable intervals. In multi-core real-time systems,

ensuring energy-efficient execution of both periodic and aperiodic cloudlets with precedence

constraints under energy harvesting constraints is briefed in [2]. The Maximum Miss First (MMF)

algorithm dynamically prioritizes periodic tasks based on their historical deadline miss ratios to ensure

fair QoS attainment in soft real-time systems. Hard Deadline Co-Evolutionary Genetic Algorithm

(HDCGA) schedules workflow applications with strict deadlines in heterogeneous environments [3,

4]. Scheduling algorithms like Earliest Deadline First (EDF), Rate Monotonic Scheduling (RMS), and

Deadline Monotonic Scheduling (DMS) work well for periodic cloudlets, while non-periodic

cloudlets can be managed effectively with algorithms like EDF and Least Laxity First (LLF). EDF is

suitable for both types of cloudlets.

EDF always selects the cloudlet with the nearest or earliest deadline for execution. LLF schedules the

cloudlet with the least laxity (slack time) or the one closest to missing its deadline, where

laxity=deadline−(current time remaining execution time). RMS grants higher priority to the cloudlets

with shorter times and schedules them first. The time period of a periodic task refers to the fixed time

interval between consecutive activations. The DMS algorithm works on relative deadlines. A relative

deadline is the difference between the absolute cloudlet deadline and the activation time of the periodic

cloudlet. Activation time is the time at which a cloudlet becomes available for execution. DMS assigns

higher priority to the cloudlets with shorter relative deadlines and schedules them first. Modified

versions of EDF, such as the Earliest Feasible Deadline First (EFDF) approach, reduce time

complexity and the number of cloudlet migrations by using FIFO queues, processor affinity, and

feasibility checks. The Delayed Rate-Monotonic (DRM) algorithm improves processor utilization and

reduces cloudlet pre-emptions in real-time systems, demonstrating its superiority over the traditional

Rate-Monotonic (RM) algorithm [5, 6]. The Improved Least-Laxity-First (ILLF) scheduling

algorithm reduces cloudlet switching overhead by dynamically adjusting execution time slices for

periodic cloudlets, proving more efficient than traditional LLF in minimizing pre-emptions [7]. The

comparative analysis of the four algorithms reveals that EDF is optimal for balanced systems but

performs poorly during overloads. LLF is also optimal but impractical due to excessive context

Auth
ors

 Pre-
Proo

f

switches caused by frequent laxity updates. While RMS is simple, DMS improves upon it by

supporting deadlines shorter than periods. RMS prioritizes tasks with the shortest time periods,

whereas DMS prioritizes tasks with the shortest relative deadlines [8].

Table 1: Constraints Affecting Cloudlet Scheduling

Type of Constraint Description Examples

Resource constraints Limitations related to the

availability and consumption of

resources.

Cloudlet resource requirements,

VM capacity, cloud service

provider resource limits, etc.

Cloudlet constraints Requirements and restrictions

specific to individual cloudlets.

Deadline, priority, cloudlet

dependencies, QoS requirements,

security requirements, etc.

VM constraints Limitations or requirements related

to virtual machines.

Isolation, compatibility, cost,

performance guarantees,

geographic location, etc.

Scheduling constraints Constraints related to the

algorithms and policies used for

scheduling cloudlets to VMs.

Scheduling algorithms, load

balancing policies, etc.

Cloud service provider

constraints

Restrictions imposed by the cloud

service provider.

SLAs, pricing models, policies and

regulations, etc.

Additional constraints Other factors that may influence

scheduling decisions.

Energy efficiency, fault tolerance,

scalability, etc.

Resource limitation poses a critical challenge in ensuring deadline compliance. To address this,

several techniques, such as resource reservation, task splitting and replication, dynamic resource

scaling, and task migration among VMs, are used. The reservation-based technique involves pre-

allocating specific computing resources or VMs exclusively for deadline-sensitive tasks. This advance

reservation reduces resource contention and ensures task completion within its deadline. The task-

splitting method divides complex tasks into smaller sub-tasks to ensure assignments meet their

deadlines by enabling parallel execution. The replication technique runs multiple copies of the same

task simultaneously on different VMs and uses the earliest completed result to enhance timeliness.

Dynamic VM scaling allocates or deallocates VMs in real time driven by workload needs. Scaling

plays a significant role in providing additional resources when tasks with tight deadlines are

scheduled. Task migration helps meet deadline compliance by moving tasks from overloaded to

underutilized VMs, reducing execution delays, and balancing resource usage. Greedy Reclamation of

Unused Bandwidth-Power Aware (GRUB-PA) is a power-aware scheduling algorithm based on

resource reservation that dynamically adjusts processor voltage and frequency to reduce energy

consumption while ensuring deadlines [9]. The Task Duplication-based Scheduling Algorithm

(TDSA) proactively duplicates critical tasks to optimize performance without violating budget

constraints [10]. The node scaling model for power-aware scheduling demonstrates that adjusting the

number of cores and their speeds can minimize power consumption while meeting deadline constraints

[11]. The migration-aware scheduling technique for multiprocessor systems prioritizes non-periodic

tasks by migrating them to other processors if their deadlines permit, reducing both response time and

energy consumption [12]. Several studies have explored dynamic VM scaling to optimize application

performance and resource utilization. The AppRM tool automatically configures resource controls for

both VMs and resource pools to meet application Service Level Objectives (SLOs) using reservations,

limits, and shares techniques. ICLB compares vertical and horizontal scaling strategies in inter-cloud

environments, demonstrating effective resource optimization through real-time workload monitoring

and load balancing [13, 14]. VM migration performance has been enhanced through various

approaches. A fuzzy inference-based framework analyzes factors such as dirty page rate and latency

to reduce migration time and downtime. A distance-based traffic-aware algorithm improves scalability

by minimizing round-trip time (RTT) through client proximity and low network traffic [15, 16].

Resource scaling and task migration are widely adopted and key techniques for ensuring deadline

compliance. Task migration is typically costlier than scaling for several reasons. It involves moving

entire tasks between VMs or physical hosts, including the transfer of memory, CPU state, and I/O

buffers over the network, which introduces latency, bandwidth overhead, and potential service

disruption. Both types of scaling generally outperform task migration. Horizontal scaling adds or

removes VM instances, avoiding costly live state transfers, while vertical scaling adjusts CPU or cores

within the same VM or host, making it more efficient than task migration by eliminating data transfer.

Auth
ors

 Pre-
Proo

f

The proposed TSDACS algorithm employs optimal resource provisioning and controlled VM scaling

to ensure deadline compliance in deadline-sensitive environments. TSDACS is a deadline-aware

scheduling algorithm designed to optimize key performance metrics, such as deadline compliance,

makespan, and cost. It also aims to enhance other important indicators, including response time, VM

utilization ratio, and load balancing. The main contributions of this study include:

1. Deadline-aware initial VM provisioning: VMs are computed and provisioned based on

cloudlet characteristics and deadline constraints, avoiding random or arbitrary

configurations.

2. Threshold-based horizontal scaling: VM scaling is limited by a fixed threshold to control

resource consumption, reduce costs, and prevent resource exhaustion for other users.

3. Adaptive soft deadline scheduling: When the scaling threshold is reached, the scheduler

adapts by relaxing deadline constraints to avoid cloudlet failures or rejections.

4. Dynamic feedback-driven scheduling: The system continuously monitors cloudlet

deadlines and dynamically adjusts scheduling and scaling decisions in response to workload

variations.

5. Efficient resource-constrained scheduling: TSDACS maximizes deadline compliance

even in environments with limited resources while optimizing additional performance

measures such as makespan, cost, etc.

The remainder of this research paper is organized into six sections. Section 2 presents a literature

review of contemporary deadline-sensitive cloudlet scheduling algorithms. Section 3 presents the

problem model and the proposed framework. Sections 4 and 5 elaborate on the proposed methodology

and the experimental setup, respectively. The results and discussion are presented in Section 6.

Finally, Section 7 concludes the paper with final remarks and outlines potential directions for future

enhancements.

2. Related Work

Scheduling cloudlets is a complex task that involves balancing various, often conflicting,

performance, Quality of Service (QoS), and efficiency metrics. The schedulers must exhibit a balance

between measures like makespan, turnaround time, response time, resource utilization, fault tolerance,

energy efficiency, scalability, reliability, cost, etc. However, achieving an optimal balance between

these measures is challenging due to inherent trade-offs. For instance, maximizing resource utilization

can lead to increased energy consumption, while improving fault tolerance may reduce overall system

efficiency. Therefore, selecting an effective scheduling algorithm often involves making compromises

and selecting a strategy based on specific workloads, user requirements, or system constraints. In

particular, scheduling algorithms are essential for meeting QoS requirements such as deadlines for

ensuring timely cloudlet execution in deadline-sensitive environments. This review explores literature

on scheduling approaches for deadline-sensitive cloudlets and evaluates their ability to meet deadline

constraints.

A. Scheduling Deadline-Sensitive Cloudlets

 Beitollahi et al. modified the EDF algorithm by reserving extra time during scheduling. If any

cloudlet fails due to a transient fault, it can be re-executed within the reserved time without missing

its deadline. The Group Priority Earliest Deadline First (GPEDF) scheduling algorithm proposed by

Qi Li et al. groups cloudlets with similar deadlines to reduce the number of priority levels. This

approach improves scheduling efficiency, response time, and context-switching performance

compared to traditional EDF [17, 18]. This paper introduces Min-Min II, an enhanced cloudlet

scheduler based on the classic Min-Min algorithm that incorporates deadline awareness and

communication delays to minimize makespan and deadline misses while enhancing VM utilization.

Min-Min II immediately schedules cloudlets that can meet their deadlines on optimal VMs while

deferring cloudlets that are violating deadlines by placing them in a waiting queue for later allocation.

This methodology by Li-Ya Tseng et al. shows improved makespan and better deadline compliance

Auth
ors

 Pre-
Proo

f

in contrast to the Min-Min algorithm. However, the performance of Min-Min II relies on execution

time estimates, which may be inaccurate in real-world dynamic environments [19]. This paper

presents a deadline-constrained workflow scheduling algorithm that optimizes cost and performance

using Particle Swarm Optimization (PSO). Targeting scientific workflows like Montage and LIGO,

Maria A. et al. dynamically provision heterogeneous VMs to handle varying workloads, pay-per-use

billing, and task dependencies. By treating schedules as swarm particles and penalizing deadline

violations, the method efficiently minimizes execution costs. However, the high computational

overhead of PSO limits its scalability for large-scale workflows [20]. The Cost Deadline Based (CDB)

algorithm by Himani et al. aims to reduce deadline misses and costs for both cloud users and providers.

It uses an Earliest Deadline First (EDF) approach with Min-Min scheduling and space-shared policy,

prioritizing cloudlets by deadlines and user payment limits. Net profit is estimated based on cloudlet

parameters and VM costs. The algorithm improves profit and throughput and reduces losses compared

to traditional methods. The flexibility of CDB is limited in dynamic environments with unpredictable

execution times [21].

Suvendu Chandan Nayak et al. proposed a modified backfilling algorithm using the Vlckovic criteria

compromise (VIKOR) multi-criteria decision-making method to schedule deadline-based cloudlets.

Cloudlets are ranked based on execution time and deadlines, with utility, regret, and compromise

measures. The algorithm ensures optimal resource use and minimal deadline misses by scheduling

cloudlets in ascending order of the compromise measure. However, the performance relies on accurate

execution time and deadline estimates, which may limit its effectiveness in dynamic environments

[22]. The energy-aware task scheduling with deadline constraints (EATSD) approach proposed by

Ben Alla et al. is based on differential evolution and ELECTRE III multiple-criteria decision-making

methods, forming the DEEL model for dynamic cloudlet prioritization and VM allocation based on

Fuzzy Logic and Particle Swarm Optimization techniques. Both the cloudlets and the VMs are fixed

with priority based on task length, deadline, waiting time, burst time, and the speed of the VMs.

EATSD optimizes energy consumption, reduces makespan, and ensures deadline adherence. VM

migrations have the potential to influence energy savings and scheduling efficiency in dynamic cloud

environments [23]. The Deadline Constraint-based Scheduling Algorithm (DCSA) introduced by

Jianpeng Li et al. dynamically classifies cloudlets into regular, emergent, or invalid based on their

remaining time before deadlines and estimated execution times. It assigns regular cloudlets to idle

nodes, pre-empting cloudlets for urgent workloads while ensuring suspended cloudlets still meet

deadlines, and discarding impossible-to-complete cloudlets. Theoretical analysis proves DCSA avoids

thrashing and deadline misses due to excessive pre-emption. The algorithm balances urgency but

treats all cloudlets as having similar resource requirements, ignoring potential variations in CPU,

memory, or IO needs that could affect real-time scheduling decisions [24].

Sampa Sahoo et al. proposed the Learning Automata-based Scheduling (LAS) algorithm to minimize

energy consumption and makespan for deadline-sensitive cloudlets. It uses adaptive learning automata

to dynamically map cloudlets to VMs based on deadlines and VM heterogeneity, improving resource

utilization and deadline compliance. Though effective, LAS may face scalability issues with large

cloudlet sets and may result in reduced performance under highly dynamic workloads [25]. Anurina

Tarafdar et al. present two cloudlet scheduling algorithms: Energy Makespan Aware (EMA), a greedy

method minimizing Energy Makespan Cost (EMC) for energy-performance balance, and ACOEM,

which enhances EMA via Ant Colony Optimization for better performance. Both employ three-tier

(host-VM-cloudlet) optimization and dynamic scaling to meet deadlines efficiently. EMA offers quick

decisions, while ACOEM delivers superior results through bio-inspired search. The proposed

approach has two key limitations. First, cloudlet deadlines are artificially determined rather than

derived from actual application requirements. Second, the methodology assumes all VMs of the same

type have identical configurations [26]. The paper proposed by Yu Zhang et al. presents a deadline-

aware dynamic scheduling method for edge-cloud systems in Industrial IoT, combining two

algorithms: Dynamic Time-Sensitive Scheduling algorithm (DSOTS), which prioritizes cloudlets

based on resource capabilities and deadlines, and the Time-Sensitive Greedy Scheduling algorithm

Auth
ors

 Pre-
Proo

f

(TSGS), which improves latency and cost through intelligent load balancing. The approach achieves

faster processing, lower costs, and fewer deadline violations than traditional schedulers, though greedy

optimization and predictable cloudlet arrivals may result in suboptimal performance [27]. Xiaojian

He et al. combined Enhanced Ant Colony Optimization (EACO) with Modified Backfilling (MBF) to

efficiently schedule deadline-constrained cloudlets, balancing energy, makespan, and other QoS

measures. The EACO scheduler assigns cloudlets to suitable VMs to optimize energy consumption

and makespan while adhering to deadlines. MBF reorders cloudlets in VM waiting queues to improve

the cloudlet completion rate. However, the method assumes static workloads and VM configurations,

and the performance depends on the tuning parameters [28]. Table 2 provides the comparative

study of the deadline-based scheduling algorithms available in the literature.

Table 2: Comparative Evaluation of Deadline-Based Scheduling Algorithms

Ref.

No.

Algorithm/Technique Performance Evaluated Advantages/Features Limitations

Identified

[29] Deadline-aware and

Cost-effective Hybrid

Genetic Task

Scheduling (DCHG-

TS): Genetic and

Heterogeneous Earlier

Finishing Time (HEFT)

Algorithm.

Makespan, cost, load

balancing, and deadline

compliance.

Fast convergence, multi-

objective optimization,

and dynamic load

balancing.

High computation

and static deadlines.

[30] Priority-aware

Semi-Greedy (PSG)

and PSG with Multi-

start

(PSG-M).

Deadline satisfaction

percentage, energy

consumption, deadline

violation time, and

makespan.

Mixed Integer Linear

Programming (MILP)

model, semi-greedy

approach, and priority-

aware cloudlet sorting

result in energy

optimization and

minimize violations.

Static deadlines and

single cloudlet

execution per fog

node.

[31] Heuristic-Based

Genetic Algorithms

(HGAs): Bottom-level

GA (BGA), Top-level

GA (TGA), and

Bottom-Top-level GA

(BTGA)

Normalized schedule

cost, deadline

compliance, and

executioncost

minimization.

Priority-based

initialization uses b-level

(critical path) and t-level

(earliest start time) for

cloudlet prioritization.

BTGA integrates both

b-level and t-level for

better diversity.

Static deadlines,

high complexity,

and limited

scalability.

[32] Adaptive Deadline-

based Dependent Job

Scheduling (A2DJS).

Makespan, processor

utilization, and starvation

avoidance.

Two-tier VMs

(foreground/background)

optimize resources and

minimize makespan.

Resolves task

dependencies, prioritizes

deadlines, prevents

deadlock, and improves

resource utilization.

Deployment

overhead, VM

switching latency,

and scalability.

[33] Efficient Deadline and

Priority Job Scheduling

(EDPS).

Deadline compliance,

execution time, resource

utilization, and energy

consumption.

Linear Programming

Problem (LPP) for CPU

selection and applying

Shortest Execution First

Scheduling (SEFS) for

unconstrained jobs

achieve a high deadline-

meeting ratio and reduce

VM usage.

Scalability and

energy optimization

trade-offs.

[34] Hybrid cloud-based

Mixed-Integer Linear

Cost minimization,

deadline, and security

compliance.

Formulated MILP

workflow scheduling

minimizes execution

Static workflow

parameters and high

computational

Auth
ors

 Pre-
Proo

f

Programming (MILP)

model.

time, data transfer time,

and costs while meeting

deadlines and security

constraints, and reduces

inter-cloud

communications for

dependent cloudlets.

complexity for large

workflows.

[35] Fuzzy Priority Deadline

(FPD) approach.

Deadline compliance,

cost, makespan, degree of

imbalance, and SLA

violation count.

Combines fuzzy logic

and heuristic-based

cloudlet scheduling by

dynamically determining

and allocating the optimal

number of VMs based on

cloudlet characteristics,

guaranteeing SLA, and

ensuring deadline

compliance and minimal

cost.

Fuzzy controller

tuning, scalability,

cloudlet length

specificity, and

limited priority

levels.

[36] Adaptive Deadline-

Based Scheduling

(ADBS)

Deadline compliance,

CPU utilization,

turnaround time, and

waiting time.

The dynamic priority

assignment, or adjusting

cloudlet priorities based

on deadlines, deadline-

aware time slicing, load

balancing, pre-emption,

and scalability, improves

the performance of the

algorithm.

Computational

overhead, task-

length specificity,

limited priority

levels, and

dependency on

deadline accuracy.

[37] Deadline and Cost-

aware Genetic

Algorithm (DCGA)

Success rate of meeting

deadlines, execution

time, and execution cost.

Considering cloud

characteristics, a novel

encoding method and

improved population

initialization, crossover,

and mutation achieve

high success rates and

cost efficiency under

deadlines.

Does not address

VM failures,

cloudlet

reassignment, and

the assumption of

free data transfer

between VMs.

[38] Dynamic Scheduling of

Bag of Tasks-based

workflows (DSB).

Success rate of meeting

deadlines and execution

cost.

Grouping tasks into Bags

of Tasks (BoTs) based on

dependencies and

priorities, using Mixed

Integer Programming

(MIP) for dynamic VM

provisioning, and

considering features like

elasticity, heterogeneity,

and VM provisioning

delays achieve high

success rates and cost

efficiency within

deadlines.

Reliance on perfect

runtime estimates,

IBM ILOG CPLEX,

scalability, and

single-objective

optimization.

B. Comparison Algorithms for Performance Evaluation

The performance of the proposed TSDACS is compared against three deadline-aware algorithms:

Capacity Based Deadline Aware Dynamic Load Balancing (CPDALB) algorithm, the Deadline

Budget Scheduling (DBS) algorithm, and the Receiver Initiated Deadline Aware Load Balancing

Strategy 2 (RDLBS2) algorithm proposed by Raza Abbas Haidri et al., Mokhtar A. Alworafi et al.,

and Raza A. Haidri et al., respectively.

In the CPDALB algorithm, the initial schedule is generated using the Min-Min scheduling algorithm.

Each cloudlet is dynamically evaluated against two key conditions on its assigned VM: (1) whether

Auth
ors

 Pre-
Proo

f

adding the cloudlet will not exceed the current VM load capacity and (2) whether the cloudlet can

complete within its deadline. If both conditions are satisfied, the cloudlet remains on the current VM.

If either condition fails, the system searches for an alternative VM that meets both requirements. When

no suitable VM is found, the cloudlet is migrated to the most underutilized VM to ensure execution

while minimizing system imbalance. This methodology makes the cloudlets scheduled, even if the

deadlines are missed. This approach combines deadline awareness with load balancing, using

migration to optimize both performance and VM utilization. The utilization of a computed deadline

for each cloudlet and its reliance on the scaling factor k are the limitations of this algorithm. For

instance, a lower k value assigns tighter deadlines, causing many cloudlets to miss their deadlines,

while higher k values reduce the likelihood of missed deadlines by allowing more time for cloudlet

completion. The k value is fixed as 2, which gives a maximum deadline for each cloudlet and creates

an illusion that the cloudlets are meeting their deadlines. The migration of cloudlets among the VMs

increases the scheduling cost and time. The algorithm will comply with the deadline for k=2 or more

and produce fair VM utilization and load balancing [39].

The DBS algorithm considers both deadline and budget constraints. It categorizes cloudlets into three

priority levels: high, fair, and low. High-priority cloudlets must satisfy both deadline and budget

constraints, whereas fair-priority cloudlets prioritize only deadlines, and low-priority cloudlets

prioritize only budgets. Each category of cloudlets is scheduled to the VMs in Cluster 1, Cluster 2, or

Cluster 3. During allocation, the algorithm selects VMs capable of meeting the deadline, budget, or

both constraints based on completion time and data transfer delay. The cloudlet is assigned to the VM

with the earliest completion time among the eligible VMs. If no suitable VM is available, the cloudlet

is rejected, which directly increases the number of deadlines misses and the overall cost. Resource

utilization and load balancing also remain as challenges for the DBS algorithm [40].

The RDLBS2 methodology operates in two key phases. Initially it performs deadline-based allocation,

where cloudlets are assigned to VMs based on their Expected Finish Time (EFT) to ensure deadlines

are met. This allocation is carried out using schedulers such as Min-Min or Round Robin. In the second

phase, RDLBS2 dynamically rebalances cloudlets using a receiver-initiated approach, where

underloaded VMs pull cloudlets from overloaded ones. The α-conditioned migration ensures that

cloudlets are only migrated if the target VM offers a significant performance improvement, as

determined by the parameter α. This mechanism helps minimize penalties for missed deadlines and

may improve turnaround time and VM utilization. However, the value of α critically influences

performance: if α is too low (e.g., α=0.1), very few migrations occur, potentially increasing deadline

misses. Whereas if α is too high (e.g., α=0.5), excessive migrations can increase overhead without

effectively reducing penalties [41].

3. Problem Modeling and Proposed Framework

A. Problem Definition

 In cloud environments, especially in time-critical applications, ensuring timely cloudlet execution

is vital. Scheduling cloudlets with varying arrival times and deadlines onto available VMs is a

complex and challenging task. Existing scheduling policies often result in deadline violations and

suboptimal resource usage. TSDACS addresses these issues by introducing a deadline-aware

scheduling approach that efficiently allocates the cloudlets to the available VMs and dynamically

scales them within a scaling threshold (sMax). If the existing VMs cannot meet the deadlines of the

cloudlets, scaling takes place to prevent missing deadlines. Horizontal scaling instantiates the new

VMs. TSDACS only permits scaling up to a fixed number of times to control operational expenses

and resource overuse. TSDACS efficiently assigns cloudlets to heterogeneous VMs in a way that

minimizes deadline violations, makespan, and operational cost within acceptable limits of scaling.

The primary objective of TSDACS is to minimize:

1. Deadline miss ratio: The number of cloudlets missing their deadlines.

Auth
ors

 Pre-
Proo

f

min (
1

cSize
∗ ∑ IcSize

i=1 . (fT(ci) > 𝐷(ci))) (1)

where fT(ci) and D(ci) are the finishing time and deadline of the cloudlet ci, respectively, and I is an

indicator function that outputs 1 if the condition inside is true, 0 otherwise. cSize is the total number

of cloudlets.

2. Makespan: The total time required to complete all cloudlets.

min(maxi=1
cSize(fT(ci))) (2)

Minimizes the makespan by finding a schedule that ensures the last cloudlet finishes as early as

possible.

3. Operational cost: The expense associated with utilizing and scaling virtual machines.

min (∑ ∑ xij. bCost(vmj). (
L(ci)

S(vmj)
) + ∑ zj. iCost(vmj)

m+sMax
j=m+1 +m+sMax

j=1
cSize
i=1

∑ yj. sCost(vmj)
m+sMax
j=m+1) (3)

where xij∈ {0,1}, zj∈ {0,1}, and yj∈ {0,1} are all binary variables that indicate whether cloudlet ci is

assigned to VM vmj, whether the VM is actively used, and whether the VM is a scaled VM. The

operational cost includes both the VM usage costs comprising the base cost (bCost), the infrastructure

cost (iCost), and the scaling cost (sCost). In this context, m and sMax represent the number of VMs

instantiated during both stages, L(ci) denotes the length of the ith cloudlet, and S(vmj) indicates the

speed of the jth VM.

B. System Model

Cloudlets

A set of independent and non-pre-emptive cloudlets C={c1, c2, c3, . . ., ccSize} where each cloudlet

ci is defined by:

Cloudlet Length L(ci) ∈ℝ+: The computational workload in million instructions (MI).

Arrival time A(ci) ∈ℝ+: The time at which the cloudlet arrives, in milliseconds.

Deadline D(ci) ∈ℝ+: The time by which the cloudlet must be completed, in milliseconds, such that

D(ci) ≥ A(ci) +
L(ci)

S(vmassigned)
 (4)

where S(vmassigned)is the speed of the VM to which the cloudlet is assigned.

Virtual Machines

TSDACS makes use of an initial set of virtual machines, VMinit={vm1, vm2, vm3, . . ., vmm}, and

a set of scaled virtual machines, VMscaled={vmm+1, vmm+2, vmm+3, . . ., vmm+sMax}, making a

total number of vmSize=m+sMax VMs, where each VM vmj has:

Processing speed S(vmj) ∈ℝ+: The processing speed of VM, measured in million instructions per

second (MIPS).

Cost C(vmj) ∈ℝ+: The cost of using the VM per unit time, measured in dollars ($).

Scaling Constraint

A scaling limit (sMax) ∈ℤ+: The maximum number of virtual machines that can be scaled

horizontally.

C. Problem Formulation

The minimum processing speed required for each cloudlet is determined using the formula (10), where

tF(ci) is the timeframe or the window time within which the cloudlet must be completed to avoid

deadline misses. The overhead time (oH) refers to the additional time associated with VM

Auth
ors

 Pre-
Proo

f

provisioning delays, network latencies, etc. For experimental purposes, oH is fixed at 2.5 milliseconds.

The VM extension factor (vmeF) is introduced to extend the VM speed beyond the actual required

speed. The vmeF ensures the cloudlet meets its deadline even if a VM speed is slightly slower than

expected. The vmeF ensures that VM performance remains stable and reliable despite real-time

execution uncertainties. The vmeF is fixed as 1.15 throughout the experimentation.

Total Cloudlet Length (totalLen) = ∑ L(ci)
cSize
i=1 in MI (5)

Time Frame tF(ci) = D(ci) − A(ci) in msec (6)

Maximum Time Frame (mtF) = Max(tF(ci)) in msec (7)

Total VM Speed required (totalvmSpeed) =
totalLen

mtF
 in MIPS (8)

Average VM Speed required (avgvmSpeed) =
totalvmSpeed

cSize
 in MIPS (9)

Required Processing Speed sVM[i] =
L(ci)

(tF(ci)−oH))
∗ vmeF in MIPS (10)

If vmeF>1, VM speeds are increased beyond the required speeds to prevent deadline misses.

If vmeF=1, VM speeds are allocated exactly as required, assuming ideal execution conditions.

If vmeF<1, VM speeds are allocated lower than the required speeds, which may result in missed

deadlines due to insufficient capacity.

The per-unit time cost of a VM is based on its speed (S(vmj)) relative to the average speed

(avgvmSpeed) of all VMs. The base cost (bCost) represents the fundamental cost and is typically

proportional to the computational capacity of the VM. It is influenced by factors such as the number

of processing elements or CPU cores, clock speed, RAM size, storage type and size, and network

bandwidth. The infrastructure cost (iCost) of a VM represents the fixed costs associated with running

it, regardless of its exact performance. This includes the cost of physical servers in the data center,

power consumption, maintenance, and administration costs. Scaling cost (sCost) is the monetary

expense incurred when adding a new VM to the system to meet cloudlet deadlines.

Cost of VM per unit time C(vmj) = ((
S(vmj)

avgvmSpeed
) ∗ bCost) + iCost + sCost (11)

Response Time rT(ci) = S(ci) − A(ci) (12)

Response time (rT) is the time taken for a cloudlet to begin execution after its arrival in the system. A

lower response time indicates better system efficiency. If S(ci)=A(ci), the task starts execution

immediately. If S(ci)>A(ci), there is a delay due to scheduling, resource unavailability, or other

factors. Here, S(ci) denotes the start time of the cloudlet ci.

VM Utilization vmUt(Vmj) =
bT(vmj)

msT
 (13)

Average VM Utilization (avmUt) = (
1

vmSize
∗ ∑

bT(vmj)

msT

vmSize
j=1) (14)

Makespan (msT) = Max(∑ fT(ci)
cSize
i=1) (15)

Where vmSize is the total number of VMs utilized during the schedule, i.e., the number of VMs

initially created and the number of scaled VMs (vmSize=m+sMax). The busy time of a VM, bT(vm),

refers to the total amount of time a VM spends executing cloudlets. Makespan (msT) represents the

maximum finishing time among all cloudlets. A lower msT indicates that all cloudlets complete

execution more quickly, which in turn improves overall system throughput and resource efficiency.

Load Imbalance Level (libL) = √
1

vmSize
∗ ∑ (vmUt(vmj) − avmUt)

2m
j=1 (16)

Auth
ors

 Pre-
Proo

f

Load imbalance level (libL) computes the deviation of individual VM utilization from the average

utilization. A lower libL value indicates better load balancing, depicting the cloudlets are distributed

evenly across VMs.

Profit = baseFee − (C(vmj) ∗ eT(ci) + (penalty ∗ lT(ci)) (17)

Loss = (C(vmj) ∗ eT(ci) + (penalty ∗ lT(ci)) (18)

lT(ci) = {
0, fT(ci) ≤ D(ci)

 fT(ci) − D(ci), fT(ci) > D(ci)
 (19)

Total Gain = Max(Profit − Loss, 0) (20)

Total Loss = Max(Loss − Profit, 0) (21)

Profit represents the total earnings of a cloud service provider from executing a cloudlet. It consists

of a fixed base fee (revenue), minus the cost of VM execution time and any penalty for late completion.

Loss accounts for the total cost incurred, including the VM usage cost and the penalty due to late

execution. A higher profit and lower loss indicate efficient execution with minimal delays. Where

base Fee is the fixed charge for cloudlet execution, C(vmj) is the per-unit time cost of a VM as depicted

in (11), penalty is the cost deducted for late completion of the cloudlet, and lT is the late time. Total

Gain and Total Loss measure the overall financial gain of executing the cloudlets in a cloud

environment and are based on profit and loss.

If Profit is greater than Loss, then Total Gain=Profit-Loss. Otherwise, Total Gain = 0.

If Loss is greater than Profit, then Total Loss=Loss-Profit. Otherwise, Total Loss = 0.

Deadline Miss Ratio (dmR) = (
1

cSize
∗ ∑ IcSize

i=1 . (fT(ci) > D(ci)))*100 (22)

The deadline miss ratio (dmR) measures the proportion of cloudlets that miss their deadlines out of

the total number of cloudlets.

D. Proposed Framework

The framework of the TSDACS algorithm is illustrated in Figure 1. TSDACS comprises five major

functional components. The cloudlet manager handles the cloudlets arriving at different intervals and

prioritizes them based on their respective deadlines. The VM provisioner module calculates the initial

minimum number of VMs required for executing the cloudlets while ensuring deadline compliance.

Initially, it provisions a set (vminit) of VMs with m instances. The cloudlet scheduler is a core

component of TSDACS, responsible for assigning cloudlets to the initially provisioned m VMs in a

manner that avoids deadline violations. It contains two sub-modules: the soft deadline scheduler and

the hard deadline scheduler. Although the VMs set up in stage 1 are initially estimated to be sufficient

for executing cloudlets within their deadlines, unpredictable execution dynamics, such as runtime

delays, workload spikes, or VM load and performance variability, may lead to deadline violations.

Stage 2 addresses this issue by dynamically scaling the system, provisioning additional VMs as needed

to maintain deadline compliance. The deadline compliance monitor oversees the system for any

deadline violations. Upon detecting a deadline miss, it triggers the scale master module. The scale

master horizontally scales the system by provisioning an additional VM. However, the number of

scalings is restricted to a maximum of sMax times. Thus, the maximum number of VMs in the system

becomes m+sMax. Cloudlets continue to be scheduled using the hard deadline scheduler module as

long as the deadlines are met. If deadline compliance cannot be maintained even after reaching the

maximum VM limit, the cloudlets are scheduled using the soft deadline scheduler, which assigns

cloudlets based on the earliest finishing time among VMs. This method of cloudlet execution, even

after deadlines are missed using the soft deadline scheduler, ensures cloudlet completion and reduces

overall delay, preserving system responsiveness and user satisfaction. Thereby, TSDACS avoids the

over-provisioning of resources, ensures the deadline of cloudlets, and maintains the overall

performance.

Auth
ors

 Pre-
Proo

f

Figure 1: Proposed TSDACS Framework

4. Proposed Methodology

The TSDACS algorithm is a deadline-aware cloudlet scheduling algorithm designed for deadline-

sensitive cloud environments. It focuses on minimizing deadline violations and makespan while

ensuring optimal cost management by efficiently allocating cloudlets to the available VMs. The

algorithm also aims to reduce response time and improve VM utilization and load balancing. TSDACS

operates in two stages. In the first stage, the optimal number of VMs is provisioned based on cloudlet

requirements, considering factors such as VM processing speed, RAM, storage, and bandwidth.

Instead of provisioning randomly configured VMs, the algorithm estimates cloudlet demands and

provisions suitable VMs accordingly. This targeted approach enhances deadline compliance.

However, even with appropriately provisioned VMs, cloudlets may still miss deadlines due to

overheads such as scheduling delays, resource contention, high VM load, etc.

Task migration, over-provisioning of resources, resource scaling, and soft deadline handling are

commonly used techniques to manage deadlines in time-sensitive applications. However, task

migration and over-provisioning can be costly and may introduce execution delays and resource

wastage due to their associated overheads. To address deadline misses, TSDACS employs dynamic

horizontal VM scaling to provision additional VMs as needed and soft deadline handling to improve

the likelihood of meeting deadlines. The second stage involves adding a limited number of VMs to

improve deadline compliance. The number of additional VMs is limited by an estimated threshold to

avoid over-provisioning, control costs, reduce infrastructure load, optimize resource utilization, and

ensure quality service delivery. TSDACS also applies a soft allocation strategy by assigning cloudlets

to VMs with the earliest finishing time, thereby further reducing overall delay and mitigating

execution slowdowns. Algorithm 4.1 outlines the overall functionality of the TSDACS algorithm,

while Algorithms 4.2 to 4.5 detail the individual operations involved.

Algorithm 4.1: Two-Stage Deadline-Aware Cloudlet Scheduler (TSDACS)

Input:

C←Set of cloudlets ci = (L(ci), A(ci), D(ci)), ∀ i ∈ {1, 2, ..., cSize}.

Output:

An optimized cloudlet-VM mapping with minimal deadline misses (dM), response time (rT),

makespan (msT), and load imbalance level (libL), along with improved virtual machine utilization

(vmUt), and profit/loss.

Begin TSDACSMapper

1. Sort cloudlets:

Auth
ors

 Pre-
Proo

f

 Sort cloudlets in C by their deadlines D(ci) in ascending order.

2. Estimate required VMs˗vmEstimator ()

Compute the minimum processing speed required for each cloudlet and store it in sVM[].

Sort sVM [] in descending order.

Select m VMs from sVM [] for initial provisioning.

Calculate operational cost per unit time C(vmⱼ) for each VM.

Create a set of VMs where VM= {vmj | vmj=(S(vmⱼ), C(vmⱼ)), ∀ j ∈ {1, 2, ..., m}}.

Set the upper threshold for VM scaling (sMax).

3. Initialize execution time matrix˗initexeMatrix ()

 Compute execution time estimates for all cloudlet-VM pairs.

4. Schedule cloudlets using findBestVM (), scale Master (), softDeadlineScheduler (), and submit

Cloudlet ()

 For each cloudlet ci∈ C:

Find the best VM that meets the deadline for ci by invoking findBestVM(ci).

If no suitable VM is found (vmId==-1):

Check if scaling is allowed (scaling≤sMax):

If scaling is allowed, invoke scaleMaster(ci, tF(ci)) to provision a new VM.

Calculate cost and characteristic for the new VM (steps 2d and 2e).

Re-invoke findBestVM(ci) to set the new VM as the best VM.

If scaling is not allowed (scaling>sMax) then

Invoke softDeadlineScheduler () to assign ci to the VM with the earliest finishing times.

Assign ci to the best VM using submit Cloudlet ().

Repeat 4a to 4c until all cloudlets are scheduled.

5. Compute performance metrics˗performanceEstimates ()

 Compute dM, rT, msT, vmUt, libL, and profit/loss.

6. Print final schedule˗printCloudlets ()

 Output the cloudlet-VM mapping and performance summary.

End TSDACSMapper

VM Configuration Estimation and Generation: In this stage, the cloudlets are first sorted by their

deadlines, giving higher priority to cloudlets with tighter deadlines to ensure timely execution. The

algorithm then invokes vmGenerator () to determine the ideal number of VMs required for executing

the cloudlets, denoted as m. The algorithm calculates the minimum processing speed required for each

cloudlet and stores it in sVM [], using formula (10). The estimated VM speeds are then sorted in

descending order to prioritize assigning higher-speed VMs to cloudlets with more critical deadlines.

Next, a subset of VMs is selected based on the total estimated computational requirement, denoted as

totalvmSpeed. The minimum number of VMs (m) is determined by cumulatively selecting elements

Auth
ors

 Pre-
Proo

f

from sVM [] until their sum meets or exceeds totalvmSpeed (i.e., sum(sVM[])≥totalvmSpeed). Each

selected VM is then allocated computational resources and assigned an operational cost according to

its processing speed. To manage scalability, a maximum scaling threshold (sMax) is defined. This

threshold limits the number of VM scaling operations based on workload distribution, thereby

avoiding excessive resource provisioning that could overutilize the data center infrastructure in real-

time scenarios. The workload balance (wB) is an adaptive parameter that regulates how much the

system can scale VMs dynamically based on the workload-to-VM ratio. It helps balance performance,

cost, and resource utilization during times when the execution dynamics of the cloudlets are

unpredictable. This ensures limited scalability and deadline compliance. The vmGenerator ()

algorithm is depicted in 4.2.

Algorithm 4.2: vmGenerator ()

Input:

C←Set of cloudlets ci = (L(ci), A(ci), D(ci)), ∀ i ∈ {1, 2, ..., cSize}.

Output:

m←Number of required VMs.

vm[m]←Array of configured VMs.

Begin vmEstimator ()

for each cloudlet ci in C:

totalLen= totalLen+L(ci)

tF(ci)←D(ci)-A(ci)

mtF←max (mtF, tF(ci))

end for

totalvmSpeed←ceil(totalLen/mtF)

avgvmSpeed←ceil(totalvmSpeed/cSize)

Compute the minimum processing speed required sVM []:

for each cloudlet ci in C:

sVM[i]←ceil(L(ci)/(tF(ci)-oH)*vmeF)

end for

Sort sVM [] in descending order

Select m VMs from sVM[]:

m←0

cumSpeed←0

for i=0 to cSize-1 do

cumSpeed←cumSpeed+sVM[i]

m←m+1

if cumSpeed≥totalVMSpeed then

Auth
ors

 Pre-
Proo

f

break

end if

end for

Initialize parameters: nPes, ram, bw, size, vmm, iCost, bCost.

Calculate the VM operational cost and create VMs:

for each VM vmj in m:

C(vmⱼ)←((sVM[j]/avgvmSpeed) *bCost) +iCost

vm[j]←vm.add(id=j, S(vmj)=sVM[j], nPes, ram, bw, size, vmm, cost=C(vmⱼ))

end for

Define the upper threshold for VM scaling:

Compute VM scaling threshold (sMax) for limiting the number of VM scalings.

sMax←floor((cSize/vmSize)*wB)

End

Cloudlet Execution and Performance Evaluation: Once the VMs are provisioned, cloudlet

scheduling and execution take place. The initexeMatrix() function is invoked to compute the expected

execution times of cloudlets across the available VMs, allowing for informed decision-making.

Cloudlets are then scheduled using the findBestVM (), scaleMaster(), softDeadlineScheduler (), and

submitCloudlet() functions. The findBestVM () function determines the most suitable VM for each

cloudlet based on execution time and deadline constraints. Cloudlets are always scheduled to VMs

with the minimum completion time that meets the deadline. However, if no suitable VM is available,

the algorithm checks whether additional VMs can be created within the predefined maximum scaling

threshold (sMax). If scaling is possible, the scaleMaster() function is invoked to dynamically provision

a new VM to handle the potential deadline miss. The cloudlet is then assigned to either an existing or

a newly created VM, ensuring execution proceeds without violating the deadline. If a new VM cannot

be provisioned or no suitable VM is available, the cloudlet(s) are allocated to the VM with the earliest

completion time using softDeadlineScheduler (). This process continues until all cloudlets have been

successfully scheduled using the submit Cloudlet () method, supported by the TSDACSMapper ().

Once execution is completed, the algorithm evaluates key performance metrics to assess scheduling

efficiency. The performance Estimates () function computes the dM, rT, msT, vmUt, libL, and

profit/loss. Finally, the print Cloudlets () function outputs the cloudlet-VM mapping and execution

details.

Algorithm 4.3: findBestVM ()

Input:

x←Index of the cloudlet to be scheduled.

vm[]←List of VMs provisioned.

exeMat[][]←Execution time matrix.

sMax←Maximum number VMs that can be scaled.

scaling←Current number of VMs that have been scaled.

Output:

Auth
ors

 Pre-
Proo

f

vmId→ID of the selected VM for execution.

Begin findBestVM ()

Initialize variables: min←∞, vmId←-1, c←C[x].

Find the best available VM:

for j=0 to vm.size()-1 do

if (exeMat[x][j] <min and exeMat[x][j] <=D(x)) then

min←exeMat[x][j]

vmId←j

end if

end for

Handle missed deadline through scaling:

if (vmId== -1 and scaling Smax) then

vmId←scaleMaster (c, tF(c))

end if

Handle missed deadline by allocating cloudlet c to the VM with earliest finishing time:

if (vmId==-1 and scaling>sMax) then

for j=0 to vm. size ()-1 do

if (exeMat[x][j] <min) then

min←exeMat[x][j]

vmId←j

end if

end for

end if

upgradeexeMatrix ()

return vmId

End

Algorithm 4.4: scale Master(ci, tF(ci))

Input:

L(ci)←Cloudlet length.

tF(ci)←Time frame for execution.

Output:

vmId→ID of the newly created VM or -1 if scaling fails.

Begin scaleMaster(ci, tF(ci))

Auth
ors

 Pre-
Proo

f

Initialize VM parameters: nPes, ram, bw, size, vmm, iCost, bCost, sCost.

Compute VM speed, cost and create a new VM:

sVM[j]←ceil(L(ci)/(tF(ci)-oH)*vmeF)

C(vmⱼ)←((sVM[j]/avgvmSpeed) *bCost) +iCost+sCost

Check for total available MIPS:

if (taMIPS<S(vmj)) then

Print "Insufficient Resource!!"

return -1

end if

else

vm[j]←vm.add(id=j, S(vmj)=sVM[j], nPes, ram, bw, size, vmm, cost=C(vmⱼ))

scaling←scaling+1

end else

End

Algorithm 4.5: submit Cloudlet()

Input:

C←Set of cloudlets ci = (L(ci), A(ci), D(ci)), ∀ i ∈ {1, 2, ..., cSize}.

Output:

exeC→List of executed cloudlets.

cloudletMap→Map storing execution details (start time, finish time, VM ID, status, etc.).

Begin submitCloudlet ()

Call TSDACSMapper(C)

 Log the execution details of each cloudlet into cloudletMap.

End

Time Complexity Analysis

The efficiency and scalability of any scheduling algorithm largely depend on its time complexity. The

CPDALB, DBS, and TSDACS algorithms have a time complexity of O(n2m), indicating that their

runtime grows quadratically with the number of cloudlets n and linearly with the number of virtual

machines m. In contrast, the RDLBS2 algorithm has a time complexity of O(nm), which grows

linearly with the product of n and m, making it more efficient in terms of computational overhead.

From a time complexity perspective, RDLBS2 outperforms CPDALB, DBS, and TSDACS. However,

when considering performance metrics such as the number of deadline misses, makespan, and cost,

RDLBS2 lags behind CPDALB and TSDACS. Even though TSDACS incurs higher computational

overhead due to its enhanced cloudlet-to-VM mapping, dynamic VM scaling, and adaptive soft

allocation techniques, this overhead leads to faster cloudlet execution and fewer missed deadlines.

Additionally, its ability to reduce VM over-provisioning makes TSDACS particularly effective in

environments where meeting deadlines and resource constraints are critical.

Auth
ors

 Pre-
Proo

f

5. Experimental Setup

We have evaluated the proposed TSDACS algorithm through simulation using the Java-based Cloud

Sim 3.0.3 toolkit, a simulator for modelling and evaluating cloud infrastructures. The simulation

environment of TSDACS consists of a single data center with 5 to 15 host instances. Hosts use the

VmSchedulerSpaceShared policy and support dual-core or quad-core processors with a bandwidth of

10000 Mbps. The system operates on the Linux operating system with Xen as the hypervisor and a

maximum host memory capacity of 100000 MB each. Cloudlets are scheduled using

CloudletSchedulerSpaceShared, with lengths ranging from 10000 to 75000000 MI, 6 to 200 cloudlets

in total, and 1 processing element (PE) per cloudlet. We compute the number of VMs and their

configuration based on the length of the cloudlet, the arrival time, and the deadline constraint. The

specifications of VMs used in the experimental evaluation generally vary from 2 to 50 VMs, with

each configured with 1 PE, 512 MB of memory, and a bandwidth of 1000 Mbps. VM speeds range

between 5000 and 250000 MIPS. The simulator was run on Windows 10 with an AMD PRO A4-

4350B R4 (2 CPU + 3 GPU cores, 2.50 GHz), 4 GB of RAM, and a 64-bit x64-based processor.

Due to the structural constraints of the Cloud Sim simulator, TSDACS uses horizontal scaling instead

of vertical scaling. The scheduling models in Cloud Sim, such as VmScheduler and Cloudlet

Scheduler, operate based on the assumption of fixed resource capacities for VMs and fixed

requirements for cloudlets. The configuration of a VM, including CPU speed, RAM, and bandwidth,

is determined at the time of VM creation and remains constant throughout the simulation. Similarly,

the requirements of a cloudlet, such as the number of PEs and its expected CPU, RAM, and bandwidth

usage, are set during its creation and do not change during execution. Vertical scaling involves the

dynamic adjustment of VM resources or configurations during execution. cloud Sim 3.0 does not

support these characteristics. As a result, TSDACS adopts a controlled horizontal scaling approach,

where additional VMs can be provisioned as needed to meet workload deadline demands. The

performance measures used to evaluate the TSDACS algorithm include makespan, profit, loss, total

gain, total loss, response time, VM utilization ratio, load imbalance level, scaling limits, deadline

misses, and deadline miss ratio.

6. Results and Discussion

This section presents and analyses the experimental results of the proposed TSDACS algorithm in

comparison with three existing deadline-aware scheduling algorithms: CPDALB, DBS, and RDLBS2.

The evaluation focuses on key performance metrics, including deadline compliance, makespan,

response time, VM utilization, load balancing, and cost benefits. Each metric is discussed in detail to

highlight the effectiveness and practical advantages of TSDACS in deadline-sensitive cloud

computing environments.

A. Results

Table 3 demonstrates the performance of the TSDACS algorithm under varying workload conditions,

emphasizing its flexibility in efficient VM management, attaining deadlines, and maximizing

profitability. The table includes the number of VMs provisioned during both the initial allocation and

the scaling stages. Key metrics reported are makespan (msT), profit and loss, average response time

(arT), average VM utilization (avmUt), load imbalance level (libL), and the number of deadlines

misses after scaling. Tables 4, 5, and 6 present the performance of the CPDALB, DBS, and RDLBS2

algorithms, respectively, while Tables 7 and 8 provide a consolidated comparison of all four

algorithms.

Table 3: Performance of TSDACS Algorithm

Auth
ors

 Pre-
Proo

f

Table:4 Performance of CPDLAB Algorithm

S.

No

.

No. of

Cloudlet

s

Tota

l No.

of

VMs

Makespa

n (msT)

in msec

Profit in

$

Loss in $ Average

Respons

e Time

(arT) in

msec

Average

VM

Utilizatio

n

(avmUt)

Load

Imbalanc

e Level

(libL)

No. of

Deadlin

e Misses

1 6 2 107.22 $35.53 $3.75 17.08 0.8 0.01 1

2 10 4 153.66 $59.72 $9.79 25.42 0.65 0.04 1

3 15 5 172.53 $89.68 $16.19 28.55 0.66 0.15 2

4 24 11 462.81 $149.50 $64.78 44.77 0.59 0.24 1

5 37 13 760.16 $237.09 $154.56 96.64 0.62 0.1 3

6 46 15 836.49 $299.09 $214.37 103 0.64 0.21 5

7 57 9 790.27 $356.67 $165.02 118.79 0.85 0.08 4

8 66 10 396.35 $397.30 $94.58 50.44 0.87 0.06 5

9 75 5 972.71 $501.94 $551.53 406.57 0.96 0.01 3

10 84 6 747.62 $564.09 $614.33 318.47 0.65 0.24 6

11 97 6 1457.66 $649.72 $628.88 358.09 0.95 0.02 7

12 105 42 1384.63 $714.88 $692.69 77.45 0.66 0.15 0

13 120 35 3833.17 $949.17 $1,699.8

3

296.34 0.63 0.19 6

14 142 16 2546.63 $968.44 $1,055.9

2

255.98 0.73 0.12 9

15 157 18 7085.89 $1,014.9

8

$2,963.9

0

776.8 0.56 0.09 5

16 166 12 2405.78 $465.08 $2,992.4

6

890.69 0.85 0.05 12

17 173 10 2674.13 $589.77 $3,128.1

9

902.98 0.86 0.05 14

18 188 15 2571.03 $692.03 $3,787.8

2

975.82 0.82 0.08 11

19 192 23 1858.88 $385.59 $1,738.0

6

211.41 0.45 0.11 0

20 200 29 4436.79 $1,682.2

2

$4,380.8

9

1127.66 0.86 0.06 10

S.

N

o.

No.

of

Clou

dlets

Initial

No. of

VMs

(Stage:

1)

Total No.

of VMs

after

Scaling

(Stage:2)

Makes

pan

(msT)

in

msec

Profit

in $

Loss

in $

Average

Response

Time

(arT) in

msec

Averag

e VM

Utilizat

ion

(avmUt

)

Load

Imbala

nce

Level

(libL)

No. of

Deadline

Misses

after

Scaling

(Stage:2)

1 6 2 2 90.28 $35.2

8

$1.67 8.08 0.75 0.07 0

2 10 3 4 140.68 $59.0

2

$3.69 16.42 0.58 0.02 0

3 15 5 5 161.02 $88.4

9

$6.16 19.55 0.67 0.2 0

4 24 10 11 453.57 $145.

22

$32.3

4

35.77 0.55 0.18 0

5 37 12 13 741.1 $226.

36

$67.7

9

87.64 0.59 0.26 2

6 46 14 15 821.4 $282.

23

$91.0

6

94 0.63 0.13 0

7 57 7 9 776.01 $343.

11

$54.1

2

109.79 0.79 0.04 0

8 66 8 10 379.77 $389.

69

$31.4

4

41.44 0.8 0.09 0

9 75 3 5 956.66 $444.

26

$55.5

1

397.57 0.78 0.05 1

10 84 4 6 729.24 $495.

29

$30.7

9

309.47 0.59 0.2 0

11 97 6 6 1373.4

9

$579.

84

$92.8

5

349.09 0.95 0.06 0

12 105 41 42 1325.5

5

$676.

70

$426.

34

68.45 0.66 0.18 6

13 120 34 35 3774.6

5

$843.

84

$964.

58

287.34 0.67 0.14 5

14 142 9 16 2491.3

7

$878.

90

$429.

08

246.98 0.72 0.1 3

15 157 15 18 7011.7

7

$859.

16

$902.

33

767.8 0.55 0.12 2

Auth
ors

 Pre-
Proo

f

Table 5: Performance of DBS Algorithm

S.

No.

No. of

Cloudlets

Total

No.

of

VMs

Makespan

(msT) in

msec

Profit in

$

Loss in $ Average

Response

Time

(arT) in

msec

Average

VM

Utilization

(avmUt)

in msec

Load

Imbalance

Level

(libL)

No. of

Deadline

Misses

1 6 2 93.76 $36.84 $7.24 16.74 0.73 0.05 0

2 10 4 139.99 $120.65 $40.67 16.57 0.61 0.2 13

3 15 5 155.49 $66.94 $20.62 17.69 0.69 0.12 12

4 24 11 452.84 $157.33 $29.32 47.91 0.57 0.18 11

5 37 13 779.71 $298.08 $132.71 95.08 0.56 0.18 1

6 46 15 951.16 $310.37 $205.42 101.06 0.55 0.17 0

7 57 9 741.07 $375.83 $167.67 129.66 0.74 0.14 5

8 66 10 318.36 $362.41 $64.94 50.67 0.75 0.11 15

9 75 5 1168.82 $457.65 $536.28 365.8 0.77 0.15 5

10 84 6 1105.43 $504.73 $651.12 350.16 0.45 0.04 17

11 97 6 1409.11 $682.71 $595.61 370.38 0.88 0.05 7

12 105 42 1455.04 $748.33 $677.51 156.41 0.57 0.16 8

13 120 35 3788.76 $980.14 $1,676.23 249.78 0.59 0.19 2

14 142 16 2429.74 $964.03 $1,032.86 237.83 0.71 0.13 6

15 157 18 7746.35 $1,062.92 $2,936.45 1205 0.48 0.21 10

16 166 12 2893.51 $426.37 $3,006.89 867.99 0.64 0.03 0

17 173 10 2957.33 $642.37 $3,151.40 878.84 0.61 0.04 3

18 188 15 3322.56 $673.24 $3,754.97 916.78 0.55 0.05 1

19 192 23 1845.23 $429.07 $1,764.78 246.35 0.4 0.07 7

20 200 29 4839.13 $1,662.85 $4,348.94 1193.43 0.71 0.16 10

Table 6: Performance of RDLBS2 Algorithm

S.

No

.

No. of

Cloudlet

s

Total

No.

of

VMs

Makespa

n (msT)

in msec

Profit in

$

Loss in $ Average

Respons

e Time

(arT) in

msec

Average

VM

Utilizatio

n

(avmUt)

in msec

Load

Imbalanc

e Level

(libL)

No. of

Deadlin

e

Misses

1 6 2 98.6 $35.53 $4.13 35.02 0.75 0.12 1

2 10 4 159.04 $59.72 $9.49 43.76 0.59 0.16 1

3 15 5 165.18 $89.60 $15.37 13.47 0.6 0.12 2

4 24 11 497.77 $149.52 $66.99 59.57 0.51 0.17 1

5 37 13 806.44 $237.13 $154.13 115.35 0.63 0.18 4

6 46 15 904.57 $299.18 $215.34 102.87 0.56 0.13 5

7 57 9 708.82 $357.73 $177.76 106.51 0.75 0.14 6

8 66 10 311.59 $397.72 $98.71 66.83 0.84 0.08 7

9 75 5 1171.89 $511.43 $506.03 387.63 0.74 0.04 2

10 84 6 1101.17 $568.11 $652.95 319.93 0.52 0.01 13

11 97 6 1351.88 $659.76 $641.96 363.18 0.91 0.03 0

12 105 42 1311.14 $727.77 $798.89 91.83 0.68 0.14 8

13 120 35 4085.07 $941.88 $1,648.1

3

294.45 0.61 0.25 9

16 166 10 12 2354 $235.

52

$325.

21

881.69 0.65 0.03 2

17 173 9 10 2626.8

6

$235.

40

$276.

62

893.98 0.65 0.07 1

18 188 13 15 2519.6

4

$492.

44

$409.

62

966.82 0.71 0.11 0

19 192 20 23 1794 $368.

08

$330.

29

202.41 0.57 0.09 0

20 200 26 29 4361.9

4

$1,35

5.74

$1,20

2.30

1118.66 0.74 0.04 2

Auth
ors

 Pre-
Proo

f

14 142 16 2508.73 $965.64 $1,033.3

0

243.94 0.69 0.15 10

15 157 18 6926.72 $1,085.8

7

$3,855.2

8

790.31 0.59 0.25 11

16 166 12 2972.15 $463.08 $2,955.8

3

876.08 0.61 0.03 12

17 173 10 2885.59 $574.12 $2,908.5

7

897.35 0.68 0.05 13

18 188 15 3184.48 $682.08 $3,661.9

4

974.43 0.64 0.03 15

19 192 23 1686.05 $399.00 $1,831.3

3

215.13 0.51 0.02 0

20 200 29 4796.19 $1,676.1

2

$4,459.5

1

1145.74 0.71 0.18 17

Table 7: Consolidated Key Performance Indicator Table-1

S. No. Algorithm(s) Average

Makespan

(amsT) in

msec

Total

Profit in $

Total Loss

in $

Total Gain

in $

Total Loss

in $

1 CPDALB 1782.7205 $10,802.49 $24,957.54 $944.57 $15,099.62

2 DBS 1929.6695 $10,962.86 $24,801.63 $1,217.78 $15,056.55

3 RDLBS2 1881.6535 $10,880.99 $25,695.64 $907.41 $15,722.06

4 TSDACS 1744.15 $9,034.57 $5,733.79 $3,595.60 $294.82

Table 8: Consolidated Key Performance Indicator Table-2

S. No. Algorithm(s) Average

Response

Time (arT) in

msec

Average

VM

utilization

(avmUt)

Average

Load

Imbalance

Level

(alibL)

No. of

Deadline

Misses

(dM)

Deadline

Miss Ratio

(dmR) %

1 CPDALB 354.1475 0.733 0.103 105 5.36

2 DBS 375.7065 0.628 0.1215 133 6.79

3 RDLBS2 357.169 0.656 0.114 137 6.99

4 TSDACS 345.1475 0.68 0.109 24 1.22

B. Discussion

6.2.1 Makespan (msT): Figure 2 depicts the average makespan (amsT) performance of the four

algorithms. A good scheduling algorithm should result in a minimal makespan, or overall completion

time. The experimental evaluation demonstrates that the performance of TSDACS surpasses

CPDALB, DBS, and RDLBS2 by 2.16%, 9.62%, and 7.31%, respectively. The makespan metric is

indirectly associated with resource efficiency, cost savings, and the timely execution of workloads.

Even a small reduction in makespan leads to substantial savings, better resource utilization, and a

higher quality of service. In deadline-sensitive cloud environments, an ideal algorithm must balance

meeting deadlines while minimizing makespan, and the results indicate that TSDACS is highly

suitable for such environments.

6.2.2 Response Time (rT): TSDACS also outperforms the other three algorithms in terms of response

time (rT), showing reductions of 2.45%, 8.135%, and 3.37%. Similar to makespan reduction,

minimizing response time plays a significant role in resource efficiency, cost savings, and the timely

execution of workloads. Figure 3 illustrates the average response time across all four algorithms. Auth
ors

 Pre-
Proo

f

 Figure 2: Makespan Comparison

 Figure 3: Response Time Comparison

6.2.3 Virtual Machine Utilization and Load Imbalance Level (vmUt & libL): Figure 4 compares

four algorithms based on average VM utilization (avmUt) and average load imbalance level (alibL).

CPDALB achieves the highest utilization (0.733) and the lowest imbalance (0.103), while DBS shows

the lowest utilization (0.628) and a slightly higher imbalance (0.121). RDLBS2 and TSDACS exhibit

moderate utilization of 0.656 and 0.680, with load imbalance levels of 0.114 and 0.109, respectively.

Although CPDALB outperforms TSDACS in terms of average VM utilization and load imbalance

level, it does not achieve optimal performance in meeting deadlines. In deadline-sensitive

environments, meeting deadlines takes priority over maximizing VM utilization or load balancing.

6.2.4 Total Gain and Total Loss: Figure 5 shows the total gain and total loss performance of all four

algorithms. CPDALB, DBS, and RDLBS2 have high losses between $15,000 and $15,700 and gains

under $1,250. In contrast, TSDACS has the highest gain of $3,595.60 and the lowest loss of $294.82,

showing much better financial results. This demonstrates that TSDACS is a good choice for cloud

service providers and users working in critical, time-sensitive environments. TSDACS achieves about

66% to 75% more gain than the other algorithms and reduces losses by about 98%, almost eliminating

losses compared to the other three algorithms.

Auth
ors

 Pre-
Proo

f

 Figure 4: VM utilization and Load Imbalance Comparison

Figure 5: Total Gain and Total Loss Comparison

6.2.5 Deadline Misses and Deadline Miss Ratio (dM & dmR): The two Figures 6 & 7, compare the

deadline misses (dM) and deadline miss ratio (dmR) of four algorithms. TSDACS demonstrates the

best performance with the fewest deadline misses (24) and the lowest miss ratio (1.22%), while

RDLBS2 records the highest number of misses (137) and the highest miss ratio (6.99%). CPDALB

and DBS result in deadline miss ratios of 5.36% and 6.79%, respectively. Overall, TSDACS shows

superior efficiency in meeting deadlines compared to the other algorithms. The lower deadline misses

of TSDACS depict that it is highly effective for deadline-sensitive environments and suitable for time-

critical applications.

Figure 6: Deadline Miss Comparison

Auth
ors

 Pre-
Proo

f

 Figure 7: Deadline Miss Ratio Comparison

7. Conclusion

The TSDACS algorithm offers an effective solution for deadline-sensitive cloudlet scheduling

through a two-stage optimization process: initial VM provisioning based on cloudlet requirements,

followed by runtime scaling that is horizontal and controlled, along with soft cloudlet allocation.

Avoiding overprovisioning and resource wastage is essential in a cloud environment. TSDACS

achieves these goals through its combined approach. Experimental results demonstrate that TSDACS

consistently outperforms existing deadline-aware scheduling algorithms such as CPDALB, DBS, and

RDLBS2 across key metrics, including deadline miss ratio, makespan, response time, and monetary

gains. It achieves a notably low deadline miss ratio of 1.22% and records the lowest makespan and

response time, with improvements of at least 2.16% and 2.45%, respectively, indicating faster and

more efficient cloudlet execution. Financially, TSDACS provides the highest total gain and the lowest

total loss, achieving up to 75% more gain and 98% less loss than the other comparison algorithms.

While CPDALB leads slightly in VM utilization and load balancing, TSDACS proves more effective

in meeting deadlines by maintaining better VM utilization and load distribution, which is critical in

time-sensitive cloud environments. As TSDACS records the fewest deadline misses and the lowest

miss ratio, along with improved overall performance, it confirms its reliability for real-time, deadline-

driven cloud applications.

The performance of the TSDACS algorithm can be further enhanced by implementing AI-driven auto-

scaling, which adjusts VM capacity in real time based on workload variations, thereby improving the

performance efficiency. Additionally, TSDACS can be extended to support energy-aware scheduling,

minimizing energy consumption while still meeting deadlines, ultimately reducing operational costs.

Conflict of interest: The authors declare no conflicts of interest(s).

Data Availability Statement: The Datasets used and /or analysed during the current study available from

the corresponding author on reasonable request.

Funding: No fundings.

Consent to Publish: All authors gave permission to consent to publish.

References

[1] Alkaam, Nora Omran, et al. "Hybrid Henry Gas-Harris Hawks Comprehensive-Opposition

Algorithm for Task Scheduling in Cloud Computing." IEEE Access (2025).

[2] Goubaa, Aicha, et al. "Scheduling periodic and aperiodic tasks with time, energy harvesting

and precedence constraints on multi-core systems."Information Sciences 520 (2020): 86-104.

[3] Asiaban, Sedigheh, Mohsen Ebrahimi Moghaddam, and M. Abbaspour. "A Real-Time

Scheduling Algorithm for Soft Periodic Tasks."International Journal of Digital Content

Technology and its Applications 3.4 (2009.

Auth
ors

 Pre-
Proo

f

[4] Visheratin, Alexander, et al. "Hard-deadline constrained workflows scheduling using

metaheuristic algorithms."Procedia Computer Science 66 (2015): 506-514.

[5] Singh, Jagbeer. "An algorithm to reduce the time complexity of earliest deadline first

scheduling algorithm in real-time system." arXiv preprint arXiv:1101.0056 (2010).

[6] Naghibzadeh, Mahmoud. "A modified version of rate-monotonic scheduling algorithm and its'

efficiency assessment."Proceedings of the Seventh IEEE International Workshop on Object-

Oriented Real-Time Dependable Systems. (WORDS 2002). IEEE, 2002.

[7] Zhang, Wei, et al. "An improved least-laxity-first scheduling algorithm of variable time slice

for periodic tasks."6th IEEE International Conference on Cognitive Informatics. IEEE, 2007.

[8] Shinde, Vijayshree, and Seema C. Biday. "Comparison of real time task scheduling

algorithms."Int. J. Comput. Appl 158.6 (2017): 37-41.

[9] Scordino, Claudio, and Giuseppe Lipari. "A resource reservation algorithm for power-aware

scheduling of periodic and aperiodic real-time tasks." IEEE Transactions on Computers 55.12

(2006): 1509-1522.

[10] Yao, Fuguang, Changjiu Pu, and Zongyin Zhang. "Task duplication-based scheduling

algorithm for budget-constrained workflows in cloud computing." IEEE Access 9 (2021):

37262-37272.

[11] Yu, Lei, Fei Teng, and Frederic Magoules. "Node scaling analysis for power-aware real-time

tasks scheduling." IEEE Transactions on Computers 65.8 (2015): 2510-2521.

[12] Khan, Ayaz Ali, et al. "A migration aware scheduling technique for real-time aperiodic tasks

over multiprocessor systems." IEEE Access 7 (2019): 27859-27873.

[13] Lu, Lei, et al. "Application-driven dynamic vertical scaling of virtual machines in resource

pools." 2014 IEEE Network Operations and Management Symposium (NOMS). IEEE, 2014.

[14] Sotiriadis, Stelios, et al. "Vertical and horizontal elasticity for dynamic virtual machine

reconfiguration." IEEE Transactions on Services Computing 99 (2016): 1-1.

[15] Alyas, Tahir, et al. "Performance Framework for Virtual Machine Migration in Cloud

Computing." Computers, Materials & Continua 74.3 (2023).

[16] Shahapure, Nagamani H., and P. Jayarekha. "Distance and traffic based virtual machine

migration for scalability in cloud computing." Procedia computer science 132 (2018): 728-

737.

[17] Beitollahi, Hakem, Seyed Ghassem Miremadi, and Geert Deconinck. "Fault-tolerant earliest-

deadline-first scheduling algorithm." 2007 IEEE International Parallel and Distributed

Processing Symposium. IEEE, 2007.

[18] Li, Qi, and Wei Ba. "A group priority earliest deadline first scheduling algorithm." Frontiers

of Computer Science 6 (2012): 560-567.

[19] Tseng, Li-Ya, Yeh-Hao Chin, and Shu-Ching Wang. "A deadline-based task scheduling with

minimized makespan." International Journal of Innovative Computing, Information and

Control 5.6 (2009): 1665-1679.

[20] Rodriguez, Maria Alejandra, and Rajkumar Beya. "Deadline based resource provisioning and

scheduling algorithm for scientific workflows on clouds." IEEE transactions on cloud

computing 2.2 (2014): 222-235.

[21] Sidhu, Harmanbir Singh. "Cost-deadline based task scheduling in cloud computing." 2015

Second International Conference on Advances in Computing and Communication

Engineering. IEEE, 2015.

[22] Nayak, Suvendu Chandan, and Chitaranjan Tripathy. "Deadline based task scheduling using

multi-criteria decision-making in cloud environment." Ain Shams Engineering Journal 9.4

(2018): 3315-3324.

[23] Ben Alla, Said, et al. "An efficient energy-aware tasks scheduling with deadline-constrained

in cloud computing." Computers 8.2 (2019): 46.

[24] Li, Jianpeng, et al. "Task scheduling algorithm for heterogeneous real-time systems based on

deadline constraints." 2019 IEEE 9th International Conference on Electronics Information and

Emergency Communication (ICEIEC). IEEE, 2019.

Auth
ors

 Pre-
Proo

f

[25] Sahoo, Sampa, Bibhudatta Sahoo, and Ashok Kumar Turuk. "A learning automata-based

scheduling for deadline sensitive task in the cloud." IEEE Transactions on Services Computing

14.6 (2019): 1662-1674.

[26] Tarafdar, Anurina, et al. "Energy and makespan aware scheduling of deadline sensitive tasks

in the cloud environment." Journal of Grid Computing 19 (2021): 1-25.

[27] Zhang, Yu, et al. "Deadline-aware dynamic task scheduling in edge–cloud collaborative

computing." Electronics 11.15 (2022): 2464.

[28] He, Xiaojian, et al. "A two-stage scheduling method for deadline-constrained task in cloud

computing." Cluster Computing 25.5 (2022): 3265-3281.

[29] Iranmanesh, Amir, and Hamid Reza Naji. "DCHG-TS: a deadline-constrained and cost-

effective hybrid genetic algorithm for scientific workflow scheduling in cloud computing."

Cluster Computing 24 (2021): 667-681.

[30] Azizi, Sadoon, et al. "Deadline-aware and energy-efficient IoT task scheduling in fog

computing systems: A semi-greedy approach." Journal of network and computer applications

201 (2022): 103333.

[31] Verma, Amandeep, and Sakshi Kaushal. "Deadline constraint heuristic-based genetic

algorithm for workflow scheduling in cloud." International Journal of Grid and Utility

Computing 5.2 (2014): 96-106.

[32] Komarasamy, Dinesh, and Vijayalakshmi Muthuswamy. "Adaptive deadline based dependent

job scheduling algorithm in cloud computing." 2015 Seventh International Conference on

Advanced Computing (ICoAC). IEEE, 2015.

[33] Ohee, Muhammad Makama Mahmudur Rahman, et al. "An Efficient Deadline Based Priority

Job Scheduling in Mobile Cloud Computing." IET Communications 19.1 (2025): e70031.

[34] Abdi, Somayeh, Mohammad Ashjaei, and Saad Mubeen. "Deadline-constrained security-

aware workflow scheduling in hybrid cloud architecture." Future Generation Computer

Systems 162 (2025): 107466.

[35] Qamar, Saad, Nesar Ahmad, and Parvez Mahmood Khan. "Task Scheduling for Public Clouds

Using a Fuzzy Controller-Based Priority-and Deadline-Aware Approach." Future Internet 17.4

(2025): 148.

[36] Effah, Emmanuel, et al. "Exploring the Landscape of CPU Scheduling Algorithms: A

Comprehensive Survey and Novel Adaptive Deadline-Based Approach." International Journal

of Computer Science and Information Security (IJCSIS) 23.1 (2025).

[37] Ma, Xiaojin, et al. "An IoT-based task scheduling optimization scheme considering the

deadline and cost-aware scientific workflow for cloud computing." EURASIP Journal on

Wireless Communications and Networking 2019.1 (2019): 1-19.

[38] Anwar, Nazia, and Huifang Deng. "Elastic scheduling of scientific workflows under deadline

constraints in cloud computing environments." Future Internet 10.1 (2018): 5.

[39] Haidri, Raza Abbas, Chittaranjan Padmanabh Katti, and Prem Chandra Saxena. "Capacity

based deadline aware dynamic load balancing (CPDALB) model in cloud computing

environment." International Journal of Computers and Applications 43.10 (2021): 987-1001.

[40] Alworafi, Mokhtar A., and Suresha Mallappa. "A collaboration of deadline and budget

constraints for task scheduling in cloud computing." Cluster Computing 23.2 (2020): 1073-

1083.

[41] Haidri, Raza A., et al. "A deadline aware load balancing strategy for cloud computing."

Concurrency and Computation: Practice and Experience 34.1 (2022): e6496. Auth
ors

 Pre-
Proo

f

