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Abstract  

In modern computing environments such as cloud, edge, and fog computing, as well as IoT networks 

and real-time systems, meeting workload deadlines is critical to ensure reliability, quality of service, 

and user satisfaction. The traditional scheduling algorithms often fail to adequately address the 

constraints associated with the workloads, particularly deadlines, the dynamic nature of workloads 

and resources, and the inherent resource limitations. Deadlines are the most important constraints, 

especially for time-sensitive applications. Achieving deadline compliance requires optimal resource 

provisioning, scheduling, resource allocation, resource scaling, workload migration, etc. This paper 

proposes a novel deadline-aware cloudlet scheduling algorithm, the Two-Stage Deadline-Aware 

Cloudlet Scheduling Algorithm (TSDACS), designed to minimize deadline misses through efficient 

resource provisioning and scaling strategies. In stage one, the algorithm provisions virtual machines 

with suitable configurations and quantities based on the requirements of the cloudlets to ensure they 

can be processed within their deadlines. Cloudlets are then scheduled onto the virtual machines in a 

way that minimizes deadline violations. In stage two, if the initially provisioned virtual machines fail 

to meet the deadlines, horizontal scaling is applied, up to a limited threshold, to enhance the 

performance and the deadline compliance. Experimental results demonstrate that the proposed 

TSDACS algorithm outperforms existing approaches, such as CPDALB, DBS, and RDLBS2, in terms 

of deadline miss ratio, makespan, response time, and cost efficiency, while maintaining competitive 

VM utilization and effective load balancing.  

Keywords: Resource Provisioning, Cloudlet Scheduling, Horizontal Scaling, Deadline-aware  

Scheduling. 

 

1. Introduction 

 
The growth of the internet and the widespread adoption of online business necessitated the 

development of advanced data processing and data storage technologies. Cloud computing addresses 

many of the limitations inherent in traditional monolithic computing systems confined to single 

machines or local networks. It enables users to leverage computing resources in an on-demand, 

scalable, and cost-effective manner, providing seamless access to resources hosted in data centers 

operated by various cloud service providers (CSPs) [1]. Cloud platforms provision infrastructural units 

such as virtual machines (VMs), containers, and physical servers online. This provisioning allows 

users to autonomously utilize the resource components of these units, including RAM, CPU, operating 

system, bandwidth, and other network capabilities. Although cloud resources and services are 

pervasive, challenges related to workload execution and data storage on the cloud persist. The benefits 

of the cloud can be realized only when the services delivered by the CSPs align with user requirements, 

performance expectations, and Quality of Service (QoS) parameters. In practice, these three demands 

can be achieved through a combination of techniques, including resource provisioning, cloudlet 

scheduling, resource allocation, load balancing, auto-scaling, Service Level Agreement (SLA) 

management, VM migration, VM consolidation, fault tolerance and availability, data replication and 

backup, energy-efficient computing, performance monitoring and optimization, elastic resource 

management, and workflow management, among others. At the core of all these techniques lies task 

scheduling, or cloudlet scheduling. This paper uses tasks, cloudlets, and jobs interchangeably. 

Cloudlet scheduling is the fundamental process of mapping user workloads to the most appropriate 

provisioned resources or the VMs. By improving cloudlet scheduling, the effectiveness of all other 
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techniques is improved, leading to enhanced overall system performance, including better resource 

utilization, cost efficiency, and consistent QoS guarantees.  

The scheduling algorithms are broadly classified into three basic categories: time-based schedulers, 

strategy-based schedulers, and objective-based schedulers. Time-based schedulers make scheduling 

decisions based on execution timing. Static schedulers determine the schedule before execution, 

whereas dynamic schedulers make decisions at runtime. Strategy-based schedulers focus on the 

approach used to derive a scheduling solution. Heuristic schedulers apply problem-specific rules or 

logic (e.g., Min-Min, Max-Min), while meta-heuristic schedulers employ general-purpose 

optimization strategies to explore the solution space (e.g., Genetic Algorithm, Particle Swarm 

Optimization, Ant Colony Optimization). Objective-based schedulers are designed to optimize 

specific goals, constraints, or quality measures. Examples include fault-tolerant scheduling 

algorithms, QoS-based scheduling algorithms, energy-efficient scheduling algorithms, and deadline-

constrained scheduling algorithms. The selection of a scheduling algorithm often depends on the 

specific requirements of the cloud application, the nature of the workloads, the constraints, and the 

type of resources. In cloudlet scheduling, a constraint refers to any limitation, requirement, or 

condition that must be considered or satisfied when assigning cloudlets to available computational 

resources, such as VMs. Table 1 describes the various constraints that influence the cloudlet 

scheduling. 

Deadline is a critical constraint in cloudlet scheduling as it ensures cloudlets are completed within an 

intended time frame, which is essential for meeting Service Level Agreements (SLAs) and 

maintaining system responsiveness, specifically in time-sensitive applications. The three main types 

of deadline-sensitive scheduling algorithms are hard deadline, soft deadline, and firm deadline 

algorithms. In hard deadline algorithms, cloudlets must be completed strictly before their deadlines, 

as any deadline miss can lead to system failure or unacceptable consequences. Soft deadline 

algorithms tolerate occasional deadline misses without critical impact. The system remains 

operational, although performance may degrade. In firm deadline algorithms, a cloudlet holds no value 

if completed after its deadline. While a deadline miss does not cause system failure, firm deadline 

algorithms discard the cloudlet, as its late execution is considered ineffective. The selection of a 

deadline-sensitive scheduling algorithm can also be based on the periodicity of the cloudlets. The real-

time cloudlets that are executed or activated at regular, fixed time intervals are called periodic 

cloudlets. Each activation is referred to as a job, and these jobs repeat indefinitely. Non-periodic 

cloudlets are those that activate at irregular, unpredictable intervals. In multi-core real-time systems, 

ensuring energy-efficient execution of both periodic and aperiodic cloudlets with precedence 

constraints under energy harvesting constraints is briefed in [2]. The Maximum Miss First (MMF) 

algorithm dynamically prioritizes periodic tasks based on their historical deadline miss ratios to ensure 

fair QoS attainment in soft real-time systems. Hard Deadline Co-Evolutionary Genetic Algorithm 

(HDCGA) schedules workflow applications with strict deadlines in heterogeneous environments [3, 

4]. Scheduling algorithms like Earliest Deadline First (EDF), Rate Monotonic Scheduling (RMS), and 

Deadline Monotonic Scheduling (DMS) work well for periodic cloudlets, while non-periodic 

cloudlets can be managed effectively with algorithms like EDF and Least Laxity First (LLF). EDF is 

suitable for both types of cloudlets. 

EDF always selects the cloudlet with the nearest or earliest deadline for execution. LLF schedules the 

cloudlet with the least laxity (slack time) or the one closest to missing its deadline, where 

laxity=deadline−(current time remaining execution time). RMS grants higher priority to the cloudlets 

with shorter times and schedules them first. The time period of a periodic task refers to the fixed time 

interval between consecutive activations. The DMS algorithm works on relative deadlines. A relative 

deadline is the difference between the absolute cloudlet deadline and the activation time of the periodic 

cloudlet. Activation time is the time at which a cloudlet becomes available for execution. DMS assigns 

higher priority to the cloudlets with shorter relative deadlines and schedules them first. Modified 

versions of EDF, such as the Earliest Feasible Deadline First (EFDF) approach, reduce time 

complexity and the number of cloudlet migrations by using FIFO queues, processor affinity, and 

feasibility checks. The Delayed Rate-Monotonic (DRM) algorithm improves processor utilization and 

reduces cloudlet pre-emptions in real-time systems, demonstrating its superiority over the traditional 

Rate-Monotonic (RM) algorithm [5, 6]. The Improved Least-Laxity-First (ILLF) scheduling 

algorithm reduces cloudlet switching overhead by dynamically adjusting execution time slices for 

periodic cloudlets, proving more efficient than traditional LLF in minimizing pre-emptions [7]. The 

comparative analysis of the four algorithms reveals that EDF is optimal for balanced systems but 

performs poorly during overloads. LLF is also optimal but impractical due to excessive context 
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switches caused by frequent laxity updates. While RMS is simple, DMS improves upon it by 

supporting deadlines shorter than periods. RMS prioritizes tasks with the shortest time periods, 

whereas DMS prioritizes tasks with the shortest relative deadlines [8]. 

Table 1: Constraints Affecting Cloudlet Scheduling 

Type of Constraint Description Examples 

Resource constraints Limitations related to the 

availability and consumption of 

resources. 

Cloudlet resource requirements, 

VM capacity, cloud service 

provider resource limits, etc. 

Cloudlet constraints Requirements and restrictions 

specific to individual cloudlets. 

Deadline, priority, cloudlet 

dependencies, QoS requirements, 

security requirements, etc. 

VM constraints Limitations or requirements related 

to virtual machines. 

Isolation, compatibility, cost, 

performance guarantees, 

geographic location, etc. 

Scheduling constraints Constraints related to the 

algorithms and policies used for 

scheduling cloudlets to VMs. 

Scheduling algorithms, load 

balancing policies, etc. 

Cloud service provider 

constraints 

Restrictions imposed by the cloud 

service provider. 

SLAs, pricing models, policies and 

regulations, etc. 

Additional constraints Other factors that may influence 

scheduling decisions. 

Energy efficiency, fault tolerance, 

scalability, etc. 

Resource limitation poses a critical challenge in ensuring deadline compliance. To address this, 

several techniques, such as resource reservation, task splitting and replication, dynamic resource 

scaling, and task migration among VMs, are used. The reservation-based technique involves pre-

allocating specific computing resources or VMs exclusively for deadline-sensitive tasks. This advance 

reservation reduces resource contention and ensures task completion within its deadline. The task-

splitting method divides complex tasks into smaller sub-tasks to ensure assignments meet their 

deadlines by enabling parallel execution. The replication technique runs multiple copies of the same 

task simultaneously on different VMs and uses the earliest completed result to enhance timeliness. 

Dynamic VM scaling allocates or deallocates VMs in real time driven by workload needs. Scaling 

plays a significant role in providing additional resources when tasks with tight deadlines are 

scheduled. Task migration helps meet deadline compliance by moving tasks from overloaded to 

underutilized VMs, reducing execution delays, and balancing resource usage. Greedy Reclamation of 

Unused Bandwidth-Power Aware (GRUB-PA) is a power-aware scheduling algorithm based on 

resource reservation that dynamically adjusts processor voltage and frequency to reduce energy 

consumption while ensuring deadlines [9]. The Task Duplication-based Scheduling Algorithm 

(TDSA) proactively duplicates critical tasks to optimize performance without violating budget 

constraints [10]. The node scaling model for power-aware scheduling demonstrates that adjusting the 

number of cores and their speeds can minimize power consumption while meeting deadline constraints 

[11]. The migration-aware scheduling technique for multiprocessor systems prioritizes non-periodic 

tasks by migrating them to other processors if their deadlines permit, reducing both response time and 

energy consumption [12]. Several studies have explored dynamic VM scaling to optimize application 

performance and resource utilization. The AppRM tool automatically configures resource controls for 

both VMs and resource pools to meet application Service Level Objectives (SLOs) using reservations, 

limits, and shares techniques. ICLB compares vertical and horizontal scaling strategies in inter-cloud 

environments, demonstrating effective resource optimization through real-time workload monitoring 

and load balancing [13, 14]. VM migration performance has been enhanced through various 

approaches. A fuzzy inference-based framework analyzes factors such as dirty page rate and latency 

to reduce migration time and downtime. A distance-based traffic-aware algorithm improves scalability 

by minimizing round-trip time (RTT) through client proximity and low network traffic [15, 16]. 

Resource scaling and task migration are widely adopted and key techniques for ensuring deadline 

compliance. Task migration is typically costlier than scaling for several reasons. It involves moving 

entire tasks between VMs or physical hosts, including the transfer of memory, CPU state, and I/O 

buffers over the network, which introduces latency, bandwidth overhead, and potential service 

disruption. Both types of scaling generally outperform task migration. Horizontal scaling adds or 

removes VM instances, avoiding costly live state transfers, while vertical scaling adjusts CPU or cores 

within the same VM or host, making it more efficient than task migration by eliminating data transfer. 
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The proposed TSDACS algorithm employs optimal resource provisioning and controlled VM scaling 

to ensure deadline compliance in deadline-sensitive environments. TSDACS is a deadline-aware 

scheduling algorithm designed to optimize key performance metrics, such as deadline compliance, 

makespan, and cost. It also aims to enhance other important indicators, including response time, VM 

utilization ratio, and load balancing. The main contributions of this study include: 

1. Deadline-aware initial VM provisioning: VMs are computed and provisioned based on 

cloudlet characteristics and deadline constraints, avoiding random or arbitrary 

configurations.  

2. Threshold-based horizontal scaling: VM scaling is limited by a fixed threshold to control 

resource consumption, reduce costs, and prevent resource exhaustion for other users. 

3. Adaptive soft deadline scheduling: When the scaling threshold is reached, the scheduler 

adapts by relaxing deadline constraints to avoid cloudlet failures or rejections.  

4. Dynamic feedback-driven scheduling: The system continuously monitors cloudlet 

deadlines and dynamically adjusts scheduling and scaling decisions in response to workload 

variations.  

5. Efficient resource-constrained scheduling: TSDACS maximizes deadline compliance 

even in environments with limited resources while optimizing additional performance 

measures such as makespan, cost, etc. 

The remainder of this research paper is organized into six sections. Section 2 presents a literature 

review of contemporary deadline-sensitive cloudlet scheduling algorithms. Section 3 presents the 

problem model and the proposed framework. Sections 4 and 5 elaborate on the proposed methodology 

and the experimental setup, respectively. The results and discussion are presented in Section 6. 

Finally, Section 7 concludes the paper with final remarks and outlines potential directions for future 

enhancements.  

 

2. Related Work 

 

Scheduling cloudlets is a complex task that involves balancing various, often conflicting, 

performance, Quality of Service (QoS), and efficiency metrics. The schedulers must exhibit a balance 

between measures like makespan, turnaround time, response time, resource utilization, fault tolerance, 

energy efficiency, scalability, reliability, cost, etc. However, achieving an optimal balance between 

these measures is challenging due to inherent trade-offs. For instance, maximizing resource utilization 

can lead to increased energy consumption, while improving fault tolerance may reduce overall system 

efficiency. Therefore, selecting an effective scheduling algorithm often involves making compromises 

and selecting a strategy based on specific workloads, user requirements, or system constraints. In 

particular, scheduling algorithms are essential for meeting QoS requirements such as deadlines for 

ensuring timely cloudlet execution in deadline-sensitive environments. This review explores literature 

on scheduling approaches for deadline-sensitive cloudlets and evaluates their ability to meet deadline 

constraints. 

 

A. Scheduling Deadline-Sensitive Cloudlets 

 Beitollahi et al. modified the EDF algorithm by reserving extra time during scheduling. If any 

cloudlet fails due to a transient fault, it can be re-executed within the reserved time without missing 

its deadline. The Group Priority Earliest Deadline First (GPEDF) scheduling algorithm proposed by 

Qi Li et al. groups cloudlets with similar deadlines to reduce the number of priority levels. This 

approach improves scheduling efficiency, response time, and context-switching performance 

compared to traditional EDF [17, 18]. This paper introduces Min-Min II, an enhanced cloudlet 

scheduler based on the classic Min-Min algorithm that incorporates deadline awareness and 

communication delays to minimize makespan and deadline misses while enhancing VM utilization. 

Min-Min II immediately schedules cloudlets that can meet their deadlines on optimal VMs while 

deferring cloudlets that are violating deadlines by placing them in a waiting queue for later allocation. 

This methodology by Li-Ya Tseng et al. shows improved makespan and better deadline compliance 
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in contrast to the Min-Min algorithm. However, the performance of Min-Min II relies on execution 

time estimates, which may be inaccurate in real-world dynamic environments [19]. This paper 

presents a deadline-constrained workflow scheduling algorithm that optimizes cost and performance 

using Particle Swarm Optimization (PSO). Targeting scientific workflows like Montage and LIGO, 

Maria A. et al. dynamically provision heterogeneous VMs to handle varying workloads, pay-per-use 

billing, and task dependencies. By treating schedules as swarm particles and penalizing deadline 

violations, the method efficiently minimizes execution costs. However, the high computational 

overhead of PSO limits its scalability for large-scale workflows [20]. The Cost Deadline Based (CDB) 

algorithm by Himani et al. aims to reduce deadline misses and costs for both cloud users and providers. 

It uses an Earliest Deadline First (EDF) approach with Min-Min scheduling and space-shared policy, 

prioritizing cloudlets by deadlines and user payment limits. Net profit is estimated based on cloudlet 

parameters and VM costs. The algorithm improves profit and throughput and reduces losses compared 

to traditional methods.  The flexibility of CDB is limited in dynamic environments with unpredictable 

execution times [21].  

Suvendu Chandan Nayak et al. proposed a modified backfilling algorithm using the Vlckovic criteria 

compromise (VIKOR) multi-criteria decision-making method to schedule deadline-based cloudlets. 

Cloudlets are ranked based on execution time and deadlines, with utility, regret, and compromise 

measures. The algorithm ensures optimal resource use and minimal deadline misses by scheduling 

cloudlets in ascending order of the compromise measure. However, the performance relies on accurate 

execution time and deadline estimates, which may limit its effectiveness in dynamic environments 

[22]. The energy-aware task scheduling with deadline constraints (EATSD) approach proposed by 

Ben Alla et al. is based on differential evolution and ELECTRE III multiple-criteria decision-making 

methods, forming the DEEL model for dynamic cloudlet prioritization and VM allocation based on 

Fuzzy Logic and Particle Swarm Optimization techniques. Both the cloudlets and the VMs are fixed 

with priority based on task length, deadline, waiting time, burst time, and the speed of the VMs. 

EATSD optimizes energy consumption, reduces makespan, and ensures deadline adherence. VM 

migrations have the potential to influence energy savings and scheduling efficiency in dynamic cloud 

environments [23]. The Deadline Constraint-based Scheduling Algorithm (DCSA) introduced by 

Jianpeng Li et al. dynamically classifies cloudlets into regular, emergent, or invalid based on their 

remaining time before deadlines and estimated execution times. It assigns regular cloudlets to idle 

nodes, pre-empting cloudlets for urgent workloads while ensuring suspended cloudlets still meet 

deadlines, and discarding impossible-to-complete cloudlets. Theoretical analysis proves DCSA avoids 

thrashing and deadline misses due to excessive pre-emption. The algorithm balances urgency but 

treats all cloudlets as having similar resource requirements, ignoring potential variations in CPU, 

memory, or IO needs that could affect real-time scheduling decisions [24].  

Sampa Sahoo et al. proposed the Learning Automata-based Scheduling (LAS) algorithm to minimize 

energy consumption and makespan for deadline-sensitive cloudlets. It uses adaptive learning automata 

to dynamically map cloudlets to VMs based on deadlines and VM heterogeneity, improving resource 

utilization and deadline compliance. Though effective, LAS may face scalability issues with large 

cloudlet sets and may result in reduced performance under highly dynamic workloads [25]. Anurina 

Tarafdar et al. present two cloudlet scheduling algorithms: Energy Makespan Aware (EMA), a greedy 

method minimizing Energy Makespan Cost (EMC) for energy-performance balance, and ACOEM, 

which enhances EMA via Ant Colony Optimization for better performance. Both employ three-tier 

(host-VM-cloudlet) optimization and dynamic scaling to meet deadlines efficiently. EMA offers quick 

decisions, while ACOEM delivers superior results through bio-inspired search. The proposed 

approach has two key limitations. First, cloudlet deadlines are artificially determined rather than 

derived from actual application requirements. Second, the methodology assumes all VMs of the same 

type have identical configurations [26]. The paper proposed by Yu Zhang et al. presents a deadline-

aware dynamic scheduling method for edge-cloud systems in Industrial IoT, combining two 

algorithms: Dynamic Time-Sensitive Scheduling algorithm (DSOTS), which prioritizes cloudlets 

based on resource capabilities and deadlines, and the Time-Sensitive Greedy Scheduling algorithm 
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(TSGS), which improves latency and cost through intelligent load balancing. The approach achieves 

faster processing, lower costs, and fewer deadline violations than traditional schedulers, though greedy 

optimization and predictable cloudlet arrivals may result in suboptimal performance [27]. Xiaojian 

He et al. combined Enhanced Ant Colony Optimization (EACO) with Modified Backfilling (MBF) to 

efficiently schedule deadline-constrained cloudlets, balancing energy, makespan, and other QoS 

measures. The EACO scheduler assigns cloudlets to suitable VMs to optimize energy consumption 

and makespan while adhering to deadlines. MBF reorders cloudlets in VM waiting queues to improve 

the cloudlet completion rate. However, the method assumes static workloads and VM configurations, 

and the performance depends on the tuning parameters [28].      Table 2 provides the comparative 

study of the deadline-based scheduling algorithms available in the literature. 

Table 2: Comparative Evaluation of Deadline-Based Scheduling Algorithms 

Ref. 

No. 

Algorithm/Technique Performance Evaluated Advantages/Features Limitations 

Identified 

[29] Deadline-aware and 

Cost-effective Hybrid 

Genetic Task 

Scheduling (DCHG-

TS): Genetic and 

Heterogeneous Earlier 

Finishing Time (HEFT) 

Algorithm. 

Makespan, cost, load 

balancing, and deadline 

compliance. 

Fast convergence, multi-

objective optimization, 

and dynamic load 

balancing. 

High computation 

and static deadlines. 

[30] Priority-aware  

Semi-Greedy (PSG) 

and PSG with Multi-

start  

(PSG-M). 

Deadline satisfaction 

percentage, energy 

consumption, deadline 

violation time, and 

makespan. 

Mixed Integer Linear 

Programming (MILP) 

model, semi-greedy 

approach, and priority-

aware cloudlet sorting 

result in energy 

optimization and 

minimize violations. 

Static deadlines and 

single cloudlet 

execution per fog 

node. 

[31] Heuristic-Based 

Genetic Algorithms 

(HGAs): Bottom-level 

GA (BGA), Top-level 

GA (TGA), and 

Bottom-Top-level GA 

(BTGA) 

Normalized schedule 

cost, deadline 

compliance, and 

executioncost 

minimization. 

Priority-based 

initialization uses b-level 

(critical path) and t-level 

(earliest start time) for 

cloudlet prioritization. 

BTGA integrates both  

b-level and t-level for 

better diversity. 

Static deadlines, 

high complexity, 

and limited 

scalability. 

[32] Adaptive Deadline-

based Dependent Job 

Scheduling (A2DJS). 

Makespan, processor 

utilization, and starvation 

avoidance. 

Two-tier VMs 

(foreground/background) 

optimize resources and 

minimize makespan. 

Resolves task 

dependencies, prioritizes 

deadlines, prevents 

deadlock, and improves 

resource utilization. 

Deployment 

overhead, VM 

switching latency, 

and scalability. 

[33] Efficient Deadline and 

Priority Job Scheduling 

(EDPS). 

Deadline compliance, 

execution time, resource 

utilization, and energy 

consumption. 

Linear Programming 

Problem (LPP) for CPU 

selection and applying 

Shortest Execution First 

Scheduling (SEFS) for 

unconstrained jobs 

achieve a high deadline-

meeting ratio and reduce 

VM usage. 

Scalability and 

energy optimization 

trade-offs. 

[34] Hybrid cloud-based 

Mixed-Integer Linear 

Cost minimization, 

deadline, and security 

compliance. 

Formulated MILP 

workflow scheduling 

minimizes execution 

Static workflow 

parameters and high 

computational 
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Programming (MILP) 

model. 

time, data transfer time, 

and costs while meeting 

deadlines and security 

constraints, and reduces 

inter-cloud 

communications for 

dependent cloudlets. 

complexity for large 

workflows. 

[35] Fuzzy Priority Deadline 

(FPD) approach. 

Deadline compliance, 

cost, makespan, degree of 

imbalance, and SLA 

violation count. 

Combines fuzzy logic 

and heuristic-based 

cloudlet scheduling by 

dynamically determining 

and allocating the optimal 

number of VMs based on 

cloudlet characteristics, 

guaranteeing SLA, and 

ensuring deadline 

compliance and minimal 

cost. 

Fuzzy controller 

tuning, scalability, 

cloudlet length 

specificity, and 

limited priority 

levels. 

[36] Adaptive Deadline-

Based Scheduling 

(ADBS) 

Deadline compliance, 

CPU utilization, 

turnaround time, and 

waiting time. 

The dynamic priority 

assignment, or adjusting 

cloudlet priorities based 

on deadlines, deadline-

aware time slicing, load 

balancing, pre-emption, 

and scalability, improves 

the performance of the 

algorithm. 

Computational 

overhead, task-

length specificity, 

limited priority 

levels, and 

dependency on 

deadline accuracy. 

[37] Deadline and Cost-

aware Genetic 

Algorithm (DCGA) 

Success rate of meeting 

deadlines, execution 

time, and execution cost. 

Considering cloud 

characteristics, a novel 

encoding method and 

improved population 

initialization, crossover, 

and mutation achieve 

high success rates and 

cost efficiency under 

deadlines. 

Does not address 

VM failures, 

cloudlet 

reassignment, and 

the assumption of 

free data transfer 

between VMs. 

[38] Dynamic Scheduling of 

Bag of Tasks-based 

workflows (DSB). 

Success rate of meeting 

deadlines and execution 

cost. 

Grouping tasks into Bags 

of Tasks (BoTs) based on 

dependencies and 

priorities, using Mixed 

Integer Programming 

(MIP) for dynamic VM 

provisioning, and 

considering features like 

elasticity, heterogeneity, 

and VM provisioning 

delays achieve high 

success rates and cost 

efficiency within 

deadlines. 

Reliance on perfect 

runtime estimates, 

IBM ILOG CPLEX, 

scalability, and 

single-objective 

optimization. 

 

B. Comparison Algorithms for Performance Evaluation 

The performance of the proposed TSDACS is compared against three deadline-aware algorithms: 

Capacity Based Deadline Aware Dynamic Load Balancing (CPDALB) algorithm, the Deadline 

Budget Scheduling (DBS) algorithm, and the Receiver Initiated Deadline Aware Load Balancing 

Strategy 2 (RDLBS2) algorithm proposed by Raza Abbas Haidri et al., Mokhtar A. Alworafi et al., 

and Raza A. Haidri et al., respectively. 

In the CPDALB algorithm, the initial schedule is generated using the Min-Min scheduling algorithm. 

Each cloudlet is dynamically evaluated against two key conditions on its assigned VM: (1) whether 
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adding the cloudlet will not exceed the current VM load capacity and (2) whether the cloudlet can 

complete within its deadline. If both conditions are satisfied, the cloudlet remains on the current VM. 

If either condition fails, the system searches for an alternative VM that meets both requirements. When 

no suitable VM is found, the cloudlet is migrated to the most underutilized VM to ensure execution 

while minimizing system imbalance. This methodology makes the cloudlets scheduled, even if the 

deadlines are missed. This approach combines deadline awareness with load balancing, using 

migration to optimize both performance and VM utilization. The utilization of a computed deadline 

for each cloudlet and its reliance on the scaling factor k are the limitations of this algorithm. For 

instance, a lower k value assigns tighter deadlines, causing many cloudlets to miss their deadlines, 

while higher k values reduce the likelihood of missed deadlines by allowing more time for cloudlet 

completion. The k value is fixed as 2, which gives a maximum deadline for each cloudlet and creates 

an illusion that the cloudlets are meeting their deadlines. The migration of cloudlets among the VMs 

increases the scheduling cost and time. The algorithm will comply with the deadline for k=2 or more 

and produce fair VM utilization and load balancing [39]. 

The DBS algorithm considers both deadline and budget constraints. It categorizes cloudlets into three 

priority levels: high, fair, and low. High-priority cloudlets must satisfy both deadline and budget 

constraints, whereas fair-priority cloudlets prioritize only deadlines, and low-priority cloudlets 

prioritize only budgets. Each category of cloudlets is scheduled to the VMs in Cluster 1, Cluster 2, or 

Cluster 3. During allocation, the algorithm selects VMs capable of meeting the deadline, budget, or 

both constraints based on completion time and data transfer delay. The cloudlet is assigned to the VM 

with the earliest completion time among the eligible VMs. If no suitable VM is available, the cloudlet 

is rejected, which directly increases the number of deadlines misses and the overall cost. Resource 

utilization and load balancing also remain as challenges for the DBS algorithm [40]. 

The RDLBS2 methodology operates in two key phases. Initially it performs deadline-based allocation, 

where cloudlets are assigned to VMs based on their Expected Finish Time (EFT) to ensure deadlines 

are met. This allocation is carried out using schedulers such as Min-Min or Round Robin. In the second 

phase, RDLBS2 dynamically rebalances cloudlets using a receiver-initiated approach, where 

underloaded VMs pull cloudlets from overloaded ones. The α-conditioned migration ensures that 

cloudlets are only migrated if the target VM offers a significant performance improvement, as 

determined by the parameter α. This mechanism helps minimize penalties for missed deadlines and 

may improve turnaround time and VM utilization. However, the value of α critically influences 

performance: if α is too low (e.g., α=0.1), very few migrations occur, potentially increasing deadline 

misses. Whereas if α is too high (e.g., α=0.5), excessive migrations can increase overhead without 

effectively reducing penalties [41]. 

 

 

3. Problem Modeling and Proposed Framework 

 

A. Problem Definition  

 In cloud environments, especially in time-critical applications, ensuring timely cloudlet execution 

is vital. Scheduling cloudlets with varying arrival times and deadlines onto available VMs is a 

complex and challenging task. Existing scheduling policies often result in deadline violations and 

suboptimal resource usage. TSDACS addresses these issues by introducing a deadline-aware 

scheduling approach that efficiently allocates the cloudlets to the available VMs and dynamically 

scales them within a scaling threshold (sMax). If the existing VMs cannot meet the deadlines of the 

cloudlets, scaling takes place to prevent missing deadlines. Horizontal scaling instantiates the new 

VMs. TSDACS only permits scaling up to a fixed number of times to control operational expenses 

and resource overuse. TSDACS efficiently assigns cloudlets to heterogeneous VMs in a way that 

minimizes deadline violations, makespan, and operational cost within acceptable limits of scaling.  

The primary objective of TSDACS is to minimize: 

1. Deadline miss ratio: The number of cloudlets missing their deadlines. 
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min (
1

cSize
∗ ∑ IcSize

i=1 . (fT(ci) > 𝐷(ci)))      (1) 

    

where fT(ci) and D(ci) are the finishing time and deadline of the cloudlet ci, respectively, and I is an 

indicator function that outputs 1 if the condition inside is true, 0 otherwise. cSize is the total number 

of cloudlets. 

2. Makespan: The total time required to complete all cloudlets. 

min(maxi=1
cSize(fT(ci)))                                                      (2) 

Minimizes the makespan by finding a schedule that ensures the last cloudlet finishes as early as 

possible. 

3. Operational cost: The expense associated with utilizing and scaling virtual machines. 

min (∑ ∑ xij. bCost(vmj). (
L(ci)

S(vmj)
) + ∑ zj. iCost(vmj)

m+sMax
j=m+1 +m+sMax

j=1
cSize
i=1

∑ yj. sCost(vmj)
m+sMax
j=m+1 )        (3) 

where xij∈ {0,1}, zj∈ {0,1}, and yj∈ {0,1} are all binary variables that indicate whether cloudlet ci is 

assigned to VM vmj, whether the VM is actively used, and whether the VM is a scaled VM. The 

operational cost includes both the VM usage costs comprising the base cost (bCost), the infrastructure 

cost (iCost), and the scaling cost (sCost). In this context, m and sMax represent the number of VMs 

instantiated during both stages, L(ci) denotes the length of the ith cloudlet, and S(vmj) indicates the 

speed of the jth VM. 

 

B. System Model 

Cloudlets 

A set of independent and non-pre-emptive cloudlets C={c1, c2, c3, . . ., ccSize} where each cloudlet 

ci is defined by: 

Cloudlet Length L(ci) ∈ℝ+: The computational workload in million instructions (MI). 

Arrival time A(ci) ∈ℝ+: The time at which the cloudlet arrives, in milliseconds. 

Deadline D(ci) ∈ℝ+: The time by which the cloudlet must be completed, in milliseconds, such that  

D(ci) ≥ A(ci) +
L(ci)

S(vmassigned)
        (4) 

where S(vmassigned)is the speed of the VM to which the cloudlet is assigned.  

Virtual Machines 

TSDACS makes use of an initial set of virtual machines, VMinit={vm1, vm2, vm3, . . ., vmm}, and 

a set of scaled virtual machines, VMscaled={vmm+1, vmm+2, vmm+3, . . ., vmm+sMax}, making a 

total number of vmSize=m+sMax VMs, where each VM vmj has:  

Processing speed S(vmj) ∈ℝ+: The processing speed of VM, measured in million instructions per 

second (MIPS). 

Cost C(vmj) ∈ℝ+: The cost of using the VM per unit time, measured in dollars ($). 

Scaling Constraint 

A scaling limit (sMax) ∈ℤ+: The maximum number of virtual machines that can be scaled 

horizontally. 

 

C. Problem Formulation 

The minimum processing speed required for each cloudlet is determined using the formula (10), where 

tF(ci) is the timeframe or the window time within which the cloudlet must be completed to avoid 

deadline misses. The overhead time (oH) refers to the additional time associated with VM 
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provisioning delays, network latencies, etc. For experimental purposes, oH is fixed at 2.5 milliseconds. 

The VM extension factor (vmeF) is introduced to extend the VM speed beyond the actual required 

speed. The vmeF ensures the cloudlet meets its deadline even if a VM speed is slightly slower than 

expected. The vmeF ensures that VM performance remains stable and reliable despite real-time 

execution uncertainties. The vmeF is fixed as 1.15 throughout the experimentation.  

 

Total Cloudlet Length (totalLen) = ∑ L(ci)
cSize
i=1  in MI     (5) 

Time Frame tF(ci) = D(ci) − A(ci) in msec                   (6) 

Maximum Time Frame (mtF) = Max(tF(ci)) in msec     (7) 

Total VM Speed required (totalvmSpeed) =
totalLen

mtF
 in MIPS    (8) 

Average VM Speed required (avgvmSpeed) = 
totalvmSpeed

cSize
 in MIPS   (9) 

Required Processing Speed sVM[i] = 
L(ci)

(tF(ci)−oH))
∗ vmeF in MIPS   (10) 

If vmeF>1, VM speeds are increased beyond the required speeds to prevent deadline misses. 

If vmeF=1, VM speeds are allocated exactly as required, assuming ideal execution conditions.  

If vmeF<1, VM speeds are allocated lower than the required speeds, which may result in missed 

deadlines due to insufficient capacity.  

The per-unit time cost of a VM is based on its speed (S(vmj)) relative to the average speed 

(avgvmSpeed) of all VMs. The base cost (bCost) represents the fundamental cost and is typically 

proportional to the computational capacity of the VM. It is influenced by factors such as the number 

of processing elements or CPU cores, clock speed, RAM size, storage type and size, and network 

bandwidth. The infrastructure cost (iCost) of a VM represents the fixed costs associated with running 

it, regardless of its exact performance. This includes the cost of physical servers in the data center, 

power consumption, maintenance, and administration costs. Scaling cost (sCost) is the monetary 

expense incurred when adding a new VM to the system to meet cloudlet deadlines. 

Cost of VM per unit time C(vmj) = ((
S(vmj)

avgvmSpeed
) ∗ bCost) + iCost + sCost  (11) 

Response Time rT(ci) = S(ci) − A(ci)      (12) 

Response time (rT) is the time taken for a cloudlet to begin execution after its arrival in the system. A 

lower response time indicates better system efficiency. If S(ci)=A(ci), the task starts execution 

immediately. If S(ci)>A(ci), there is a delay due to scheduling, resource unavailability, or other 

factors. Here, S(ci) denotes the start time of the cloudlet ci. 

VM Utilization vmUt(Vmj) =
bT(vmj)

msT
            (13) 

Average VM Utilization (avmUt) = (
1

vmSize
∗ ∑

bT(vmj)

msT

vmSize
j=1 )    (14) 

Makespan (msT) = Max(∑ fT(ci)
cSize
i=1 )      (15) 

Where vmSize is the total number of VMs utilized during the schedule, i.e., the number of VMs 

initially created and the number of scaled VMs (vmSize=m+sMax). The busy time of a VM, bT(vm), 

refers to the total amount of time a VM spends executing cloudlets. Makespan (msT) represents the 

maximum finishing time among all cloudlets. A lower msT indicates that all cloudlets complete 

execution more quickly, which in turn improves overall system throughput and resource efficiency. 

Load Imbalance Level (libL) = √
1

vmSize
∗ ∑ (vmUt(vmj) − avmUt)

2m
j=1    (16) 

Auth
ors

 Pre-
Proo

f



 
 

Load imbalance level (libL) computes the deviation of individual VM utilization from the average 

utilization. A lower libL value indicates better load balancing, depicting the cloudlets are distributed 

evenly across VMs. 

Profit = baseFee − (C(vmj) ∗ eT(ci) + (penalty ∗ lT(ci))    (17) 

Loss = (C(vmj) ∗ eT(ci) + (penalty ∗ lT(ci))      (18) 

lT(ci) = {
0,  fT(ci) ≤ D(ci)

  fT(ci) − D(ci), fT(ci) > D(ci)
      (19) 

Total Gain = Max(Profit − Loss, 0)       (20) 

Total Loss = Max(Loss − Profit, 0)       (21) 

Profit represents the total earnings of a cloud service provider from executing a cloudlet. It consists 

of a fixed base fee (revenue), minus the cost of VM execution time and any penalty for late completion. 

Loss accounts for the total cost incurred, including the VM usage cost and the penalty due to late 

execution. A higher profit and lower loss indicate efficient execution with minimal delays. Where 

base Fee is the fixed charge for cloudlet execution, C(vmj) is the per-unit time cost of a VM as depicted 

in (11), penalty is the cost deducted for late completion of the cloudlet, and lT is the late time. Total 

Gain and Total Loss measure the overall financial gain of executing the cloudlets in a cloud 

environment and are based on profit and loss.  

If Profit is greater than Loss, then Total Gain=Profit-Loss. Otherwise, Total Gain = 0. 

If Loss is greater than Profit, then Total Loss=Loss-Profit. Otherwise, Total Loss = 0.  

Deadline Miss Ratio (dmR) = (
1

cSize
∗ ∑ IcSize

i=1 . (fT(ci) > D(ci)))*100   (22) 

The deadline miss ratio (dmR) measures the proportion of cloudlets that miss their deadlines out of 

the total number of cloudlets. 

 

D. Proposed Framework 

The framework of the TSDACS algorithm is illustrated in Figure 1. TSDACS comprises five major 

functional components. The cloudlet manager handles the cloudlets arriving at different intervals and 

prioritizes them based on their respective deadlines. The VM provisioner module calculates the initial 

minimum number of VMs required for executing the cloudlets while ensuring deadline compliance. 

Initially, it provisions a set (vminit) of VMs with m instances. The cloudlet scheduler is a core 

component of TSDACS, responsible for assigning cloudlets to the initially provisioned m VMs in a 

manner that avoids deadline violations. It contains two sub-modules: the soft deadline scheduler and 

the hard deadline scheduler. Although the VMs set up in stage 1 are initially estimated to be sufficient 

for executing cloudlets within their deadlines, unpredictable execution dynamics, such as runtime 

delays, workload spikes, or VM load and performance variability, may lead to deadline violations. 

Stage 2 addresses this issue by dynamically scaling the system, provisioning additional VMs as needed 

to maintain deadline compliance. The deadline compliance monitor oversees the system for any 

deadline violations. Upon detecting a deadline miss, it triggers the scale master module. The scale 

master horizontally scales the system by provisioning an additional VM. However, the number of 

scalings is restricted to a maximum of sMax times. Thus, the maximum number of VMs in the system 

becomes m+sMax. Cloudlets continue to be scheduled using the hard deadline scheduler module as 

long as the deadlines are met. If deadline compliance cannot be maintained even after reaching the 

maximum VM limit, the cloudlets are scheduled using the soft deadline scheduler, which assigns 

cloudlets based on the earliest finishing time among VMs. This method of cloudlet execution, even 

after deadlines are missed using the soft deadline scheduler, ensures cloudlet completion and reduces 

overall delay, preserving system responsiveness and user satisfaction. Thereby, TSDACS avoids the 

over-provisioning of resources, ensures the deadline of cloudlets, and maintains the overall 

performance. 
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Figure 1: Proposed TSDACS Framework 

 
4. Proposed Methodology 

The TSDACS algorithm is a deadline-aware cloudlet scheduling algorithm designed for deadline-

sensitive cloud environments. It focuses on minimizing deadline violations and makespan while 

ensuring optimal cost management by efficiently allocating cloudlets to the available VMs. The 

algorithm also aims to reduce response time and improve VM utilization and load balancing. TSDACS 

operates in two stages. In the first stage, the optimal number of VMs is provisioned based on cloudlet 

requirements, considering factors such as VM processing speed, RAM, storage, and bandwidth. 

Instead of provisioning randomly configured VMs, the algorithm estimates cloudlet demands and 

provisions suitable VMs accordingly. This targeted approach enhances deadline compliance. 

However, even with appropriately provisioned VMs, cloudlets may still miss deadlines due to 

overheads such as scheduling delays, resource contention, high VM load, etc.  

Task migration, over-provisioning of resources, resource scaling, and soft deadline handling are 

commonly used techniques to manage deadlines in time-sensitive applications. However, task 

migration and over-provisioning can be costly and may introduce execution delays and resource 

wastage due to their associated overheads. To address deadline misses, TSDACS employs dynamic 

horizontal VM scaling to provision additional VMs as needed and soft deadline handling to improve 

the likelihood of meeting deadlines. The second stage involves adding a limited number of VMs to 

improve deadline compliance. The number of additional VMs is limited by an estimated threshold to 

avoid over-provisioning, control costs, reduce infrastructure load, optimize resource utilization, and 

ensure quality service delivery. TSDACS also applies a soft allocation strategy by assigning cloudlets 

to VMs with the earliest finishing time, thereby further reducing overall delay and mitigating 

execution slowdowns. Algorithm 4.1 outlines the overall functionality of the TSDACS algorithm, 

while Algorithms 4.2 to 4.5 detail the individual operations involved. 

Algorithm 4.1: Two-Stage Deadline-Aware Cloudlet Scheduler (TSDACS) 

Input:  

C←Set of cloudlets ci = (L(ci), A(ci), D(ci)), ∀ i ∈ {1, 2, ..., cSize}. 

Output:  

An optimized cloudlet-VM mapping with minimal deadline misses (dM), response time (rT), 

makespan (msT), and load imbalance level (libL), along with improved virtual machine utilization 

(vmUt), and profit/loss. 

Begin TSDACSMapper 

1. Sort cloudlets: 
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    Sort cloudlets in C by their deadlines D(ci) in ascending order. 

2. Estimate required VMs˗vmEstimator () 

Compute the minimum processing speed required for each cloudlet and store it in sVM[]. 

Sort sVM [] in descending order. 

Select m VMs from sVM [] for initial provisioning. 

Calculate operational cost per unit time C(vmⱼ) for each VM. 

Create a set of VMs where VM= {vmj | vmj=(S(vmⱼ), C(vmⱼ)), ∀ j ∈ {1, 2, ..., m}}. 

Set the upper threshold for VM scaling (sMax). 

3. Initialize execution time matrix˗initexeMatrix () 

    Compute execution time estimates for all cloudlet-VM pairs. 

4. Schedule cloudlets using findBestVM (), scale Master (), softDeadlineScheduler (), and submit 

Cloudlet () 

       For each cloudlet ci∈ C: 

Find the best VM that meets the deadline for ci by invoking findBestVM(ci). 

If no suitable VM is found (vmId==-1): 

Check if scaling is allowed (scaling≤sMax): 

If scaling is allowed, invoke scaleMaster(ci, tF(ci)) to provision a new VM.  

Calculate cost and characteristic for the new VM (steps 2d and 2e). 

Re-invoke findBestVM(ci) to set the new VM as the best VM. 

If scaling is not allowed (scaling>sMax) then 

Invoke softDeadlineScheduler () to assign ci to the VM with the earliest finishing times. 

Assign ci to the best VM using submit Cloudlet (). 

Repeat 4a to 4c until all cloudlets are scheduled. 

5. Compute performance metrics˗performanceEstimates () 

    Compute dM, rT, msT, vmUt, libL, and profit/loss. 

6. Print final schedule˗printCloudlets () 

    Output the cloudlet-VM mapping and performance summary. 

End TSDACSMapper 

VM Configuration Estimation and Generation: In this stage, the cloudlets are first sorted by their 

deadlines, giving higher priority to cloudlets with tighter deadlines to ensure timely execution. The 

algorithm then invokes vmGenerator () to determine the ideal number of VMs required for executing 

the cloudlets, denoted as m. The algorithm calculates the minimum processing speed required for each 

cloudlet and stores it in sVM [], using formula (10). The estimated VM speeds are then sorted in 

descending order to prioritize assigning higher-speed VMs to cloudlets with more critical deadlines. 

Next, a subset of VMs is selected based on the total estimated computational requirement, denoted as 

totalvmSpeed. The minimum number of VMs (m) is determined by cumulatively selecting elements 
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from sVM [] until their sum meets or exceeds totalvmSpeed (i.e., sum(sVM[])≥totalvmSpeed). Each 

selected VM is then allocated computational resources and assigned an operational cost according to 

its processing speed. To manage scalability, a maximum scaling threshold (sMax) is defined. This 

threshold limits the number of VM scaling operations based on workload distribution, thereby 

avoiding excessive resource provisioning that could overutilize the data center infrastructure in real-

time scenarios. The workload balance (wB) is an adaptive parameter that regulates how much the 

system can scale VMs dynamically based on the workload-to-VM ratio. It helps balance performance, 

cost, and resource utilization during times when the execution dynamics of the cloudlets are 

unpredictable. This ensures limited scalability and deadline compliance. The vmGenerator () 

algorithm is depicted in 4.2.  

Algorithm 4.2: vmGenerator () 

Input:  

C←Set of cloudlets ci = (L(ci), A(ci), D(ci)), ∀ i ∈ {1, 2, ..., cSize}. 

Output:  

m←Number of required VMs. 

vm[m]←Array of configured VMs. 

Begin vmEstimator () 

for each cloudlet ci in C: 

totalLen= totalLen+L(ci) 

tF(ci)←D(ci)-A(ci) 

mtF←max (mtF, tF(ci)) 

end for 

totalvmSpeed←ceil(totalLen/mtF) 

avgvmSpeed←ceil(totalvmSpeed/cSize) 

Compute the minimum processing speed required sVM []: 

for each cloudlet ci in C: 

sVM[i]←ceil(L(ci)/(tF(ci)-oH)*vmeF) 

end for 

Sort sVM [] in descending order 

Select m VMs from sVM[]: 

m←0 

cumSpeed←0 

for i=0 to cSize-1 do 

cumSpeed←cumSpeed+sVM[i] 

m←m+1 

if cumSpeed≥totalVMSpeed then 
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break 

end if 

end for 

Initialize parameters: nPes, ram, bw, size, vmm, iCost, bCost. 

Calculate the VM operational cost and create VMs: 

for each VM vmj in m: 

C(vmⱼ)←((sVM[j]/avgvmSpeed) *bCost) +iCost 

vm[j]←vm.add(id=j, S(vmj)=sVM[j], nPes, ram, bw, size, vmm, cost=C(vmⱼ)) 

end for 

Define the upper threshold for VM scaling: 

Compute VM scaling threshold (sMax) for limiting the number of VM scalings. 

sMax←floor((cSize/vmSize)*wB) 

End 

Cloudlet Execution and Performance Evaluation: Once the VMs are provisioned, cloudlet 

scheduling and execution take place. The initexeMatrix() function is invoked to compute the expected 

execution times of cloudlets across the available VMs, allowing for informed decision-making. 

Cloudlets are then scheduled using the findBestVM (), scaleMaster(), softDeadlineScheduler (), and 

submitCloudlet() functions. The findBestVM () function determines the most suitable VM for each 

cloudlet based on execution time and deadline constraints. Cloudlets are always scheduled to VMs 

with the minimum completion time that meets the deadline. However, if no suitable VM is available, 

the algorithm checks whether additional VMs can be created within the predefined maximum scaling 

threshold (sMax). If scaling is possible, the scaleMaster() function is invoked to dynamically provision 

a new VM to handle the potential deadline miss. The cloudlet is then assigned to either an existing or 

a newly created VM, ensuring execution proceeds without violating the deadline. If a new VM cannot 

be provisioned or no suitable VM is available, the cloudlet(s) are allocated to the VM with the earliest 

completion time using softDeadlineScheduler (). This process continues until all cloudlets have been 

successfully scheduled using the submit Cloudlet () method, supported by the TSDACSMapper (). 

Once execution is completed, the algorithm evaluates key performance metrics to assess scheduling 

efficiency. The performance Estimates () function computes the dM, rT, msT, vmUt, libL, and 

profit/loss. Finally, the print Cloudlets () function outputs the cloudlet-VM mapping and execution 

details. 

Algorithm 4.3: findBestVM () 

Input:  

x←Index of the cloudlet to be scheduled. 

vm[]←List of VMs provisioned. 

exeMat[][]←Execution time matrix. 

sMax←Maximum number VMs that can be scaled. 

scaling←Current number of VMs that have been scaled. 

Output: 
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vmId→ID of the selected VM for execution. 

Begin findBestVM () 

Initialize variables: min←∞, vmId←-1, c←C[x]. 

Find the best available VM: 

for j=0 to vm.size()-1 do 

if (exeMat[x][j] <min and exeMat[x][j] <=D(x)) then 

min←exeMat[x][j] 

vmId←j 

end if  

end for 

Handle missed deadline through scaling: 

if (vmId== -1 and scaling Smax) then  

vmId←scaleMaster (c, tF(c))  

end if 

Handle missed deadline by allocating cloudlet c to the VM with earliest finishing time: 

if (vmId==-1 and scaling>sMax) then  

for j=0 to vm. size ()-1 do 

if (exeMat[x][j] <min) then 

min←exeMat[x][j] 

vmId←j 

end if 

end for 

end if  

upgradeexeMatrix () 

return vmId 

End  

Algorithm 4.4: scale Master(ci, tF(ci)) 

Input: 

L(ci)←Cloudlet length.   

tF(ci)←Time frame for execution. 

Output: 

vmId→ID of the newly created VM or -1 if scaling fails. 

Begin scaleMaster(ci, tF(ci)) 
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Initialize VM parameters: nPes, ram, bw, size, vmm, iCost, bCost, sCost. 

Compute VM speed, cost and create a new VM: 

sVM[j]←ceil(L(ci)/(tF(ci)-oH)*vmeF) 

C(vmⱼ)←((sVM[j]/avgvmSpeed) *bCost) +iCost+sCost 

Check for total available MIPS: 

if (taMIPS<S(vmj)) then 

Print "Insufficient Resource!!" 

return -1 

end if 

else 

vm[j]←vm.add(id=j, S(vmj)=sVM[j], nPes, ram, bw, size, vmm, cost=C(vmⱼ)) 

scaling←scaling+1 

end else 

End 

Algorithm 4.5: submit Cloudlet() 

Input:  

C←Set of cloudlets ci = (L(ci), A(ci), D(ci)), ∀ i ∈ {1, 2, ..., cSize}. 

Output: 

exeC→List of executed cloudlets. 

cloudletMap→Map storing execution details (start time, finish time, VM ID, status, etc.). 

Begin submitCloudlet ()  

Call TSDACSMapper(C)  

 Log the execution details of each cloudlet into cloudletMap.   

End   

Time Complexity Analysis  

The efficiency and scalability of any scheduling algorithm largely depend on its time complexity. The 

CPDALB, DBS, and TSDACS algorithms have a time complexity of O(n2m), indicating that their 

runtime grows quadratically with the number of cloudlets n and linearly with the number of virtual 

machines m. In contrast, the RDLBS2 algorithm has a time complexity of O(nm), which grows 

linearly with the product of n and m, making it more efficient in terms of computational overhead. 

From a time complexity perspective, RDLBS2 outperforms CPDALB, DBS, and TSDACS. However, 

when considering performance metrics such as the number of deadline misses, makespan, and cost, 

RDLBS2 lags behind CPDALB and TSDACS. Even though TSDACS incurs higher computational 

overhead due to its enhanced cloudlet-to-VM mapping, dynamic VM scaling, and adaptive soft 

allocation techniques, this overhead leads to faster cloudlet execution and fewer missed deadlines. 

Additionally, its ability to reduce VM over-provisioning makes TSDACS particularly effective in 

environments where meeting deadlines and resource constraints are critical. 
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5. Experimental Setup 

We have evaluated the proposed TSDACS algorithm through simulation using the Java-based Cloud 

Sim 3.0.3 toolkit, a simulator for modelling and evaluating cloud infrastructures. The simulation 

environment of TSDACS consists of a single data center with 5 to 15 host instances. Hosts use the 

VmSchedulerSpaceShared policy and support dual-core or quad-core processors with a bandwidth of 

10000 Mbps. The system operates on the Linux operating system with Xen as the hypervisor and a 

maximum host memory capacity of 100000 MB each. Cloudlets are scheduled using 

CloudletSchedulerSpaceShared, with lengths ranging from 10000 to 75000000 MI, 6 to 200 cloudlets 

in total, and 1 processing element (PE) per cloudlet. We compute the number of VMs and their 

configuration based on the length of the cloudlet, the arrival time, and the deadline constraint. The 

specifications of VMs used in the experimental evaluation generally vary from 2 to 50 VMs, with 

each configured with 1 PE, 512 MB of memory, and a bandwidth of 1000 Mbps. VM speeds range 

between 5000 and 250000 MIPS. The simulator was run on Windows 10 with an AMD PRO A4-

4350B R4 (2 CPU + 3 GPU cores, 2.50 GHz), 4 GB of RAM, and a 64-bit x64-based processor. 

Due to the structural constraints of the Cloud Sim simulator, TSDACS uses horizontal scaling instead 

of vertical scaling. The scheduling models in Cloud Sim, such as VmScheduler and Cloudlet 

Scheduler, operate based on the assumption of fixed resource capacities for VMs and fixed 

requirements for cloudlets. The configuration of a VM, including CPU speed, RAM, and bandwidth, 

is determined at the time of VM creation and remains constant throughout the simulation. Similarly, 

the requirements of a cloudlet, such as the number of PEs and its expected CPU, RAM, and bandwidth 

usage, are set during its creation and do not change during execution. Vertical scaling involves the 

dynamic adjustment of VM resources or configurations during execution. cloud Sim 3.0 does not 

support these characteristics. As a result, TSDACS adopts a controlled horizontal scaling approach, 

where additional VMs can be provisioned as needed to meet workload deadline demands. The 

performance measures used to evaluate the TSDACS algorithm include makespan, profit, loss, total 

gain, total loss, response time, VM utilization ratio, load imbalance level, scaling limits, deadline 

misses, and deadline miss ratio. 

 

6. Results and Discussion 

 

This section presents and analyses the experimental results of the proposed TSDACS algorithm in 

comparison with three existing deadline-aware scheduling algorithms: CPDALB, DBS, and RDLBS2. 

The evaluation focuses on key performance metrics, including deadline compliance, makespan, 

response time, VM utilization, load balancing, and cost benefits. Each metric is discussed in detail to 

highlight the effectiveness and practical advantages of TSDACS in deadline-sensitive cloud 

computing environments. 

A. Results 

Table 3 demonstrates the performance of the TSDACS algorithm under varying workload conditions, 

emphasizing its flexibility in efficient VM management, attaining deadlines, and maximizing 

profitability. The table includes the number of VMs provisioned during both the initial allocation and 

the scaling stages. Key metrics reported are makespan (msT), profit and loss, average response time 

(arT), average VM utilization (avmUt), load imbalance level (libL), and the number of deadlines 

misses after scaling. Tables 4, 5, and 6 present the performance of the CPDALB, DBS, and RDLBS2 

algorithms, respectively, while Tables 7 and 8 provide a consolidated comparison of all four 

algorithms. 

Table 3: Performance of TSDACS Algorithm 
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Table:4 Performance of CPDLAB Algorithm 

S. 

No

. 

No. of 

Cloudlet

s 

Tota

l No. 

of 

VMs  

Makespa

n (msT) 

in msec 

Profit in 

$ 

Loss in $ Average 

Respons

e Time  

(arT) in 

msec 

Average 

VM 

Utilizatio

n 

(avmUt)  

Load 

Imbalanc

e Level 

(libL) 

No. of 

Deadlin

e Misses  

1 6 2 107.22 $35.53 $3.75 17.08 0.8 0.01 1 

2 10 4 153.66 $59.72 $9.79 25.42 0.65 0.04 1 

3 15 5 172.53 $89.68 $16.19 28.55 0.66 0.15 2 

4 24 11 462.81 $149.50 $64.78 44.77 0.59 0.24 1 

5 37 13 760.16 $237.09 $154.56 96.64 0.62 0.1 3 

6 46 15 836.49 $299.09 $214.37 103 0.64 0.21 5 

7 57 9 790.27 $356.67 $165.02 118.79 0.85 0.08 4 

8 66 10 396.35 $397.30 $94.58 50.44 0.87 0.06 5 

9 75 5 972.71 $501.94 $551.53 406.57 0.96 0.01 3 

10 84 6 747.62 $564.09 $614.33 318.47 0.65 0.24 6 

11 97 6 1457.66 $649.72 $628.88 358.09 0.95 0.02 7 

12 105 42 1384.63 $714.88 $692.69 77.45 0.66 0.15 0 

13 120 35 3833.17 $949.17 $1,699.8

3 

296.34 0.63 0.19 6 

14 142 16 2546.63 $968.44 $1,055.9

2 

255.98 0.73 0.12 9 

15 157 18 7085.89 $1,014.9

8 

$2,963.9

0 

776.8 0.56 0.09 5 

16 166 12 2405.78 $465.08 $2,992.4

6 

890.69 0.85 0.05 12 

17 173 10 2674.13 $589.77 $3,128.1

9 

902.98 0.86 0.05 14 

18 188 15 2571.03 $692.03 $3,787.8

2 

975.82 0.82 0.08 11 

19 192 23 1858.88 $385.59 $1,738.0

6 

211.41 0.45 0.11 0 

20 200 29 4436.79 $1,682.2

2 

$4,380.8

9 

1127.66 0.86 0.06 10 

S. 

N

o. 

No. 

of 

Clou

dlets 

Initial 

No. of 

VMs 

(Stage:

1) 

Total No. 

of VMs 

after 

Scaling 

(Stage:2) 

Makes

pan 

(msT) 

in 

msec 

Profit 

in $ 

Loss 

in $ 

Average 

Response 

Time 

(arT) in 

msec 

Averag

e VM 

Utilizat

ion 

(avmUt

) 

Load 

Imbala

nce 

Level 

(libL) 

No. of  

Deadline  

Misses 

after 

Scaling 

(Stage:2) 

1 6 2 2 90.28 $35.2

8 

$1.67 8.08 0.75 0.07 0 

2 10 3 4 140.68 $59.0

2 

$3.69 16.42 0.58 0.02 0 

3 15 5 5 161.02 $88.4

9 

$6.16 19.55 0.67 0.2 0 

4 24 10 11 453.57 $145.

22 

$32.3

4 

35.77 0.55 0.18 0 

5 37 12 13 741.1 $226.

36 

$67.7

9 

87.64 0.59 0.26 2 

6 46 14 15 821.4 $282.

23 

$91.0

6 

94 0.63 0.13 0 

7 57 7 9 776.01 $343.

11 

$54.1

2 

109.79 0.79 0.04 0 

8 66 8 10 379.77 $389.

69 

$31.4

4 

41.44 0.8 0.09 0 

9 75 3 5 956.66 $444.

26 

$55.5

1 

397.57 0.78 0.05 1 

10 84 4 6 729.24 $495.

29 

$30.7

9 

309.47 0.59 0.2 0 

11 97 6 6 1373.4

9 

$579.

84 

$92.8

5 

349.09 0.95 0.06 0 

12 105 41 42 1325.5

5 

$676.

70 

$426.

34 

68.45 0.66 0.18 6 

13 120 34 35 3774.6

5 

$843.

84 

$964.

58 

287.34 0.67 0.14 5 

14 142 9 16 2491.3

7 

$878.

90 

$429.

08 

246.98 0.72 0.1 3 

15 157 15 18 7011.7

7 

$859.

16 

$902.

33 

767.8 0.55 0.12 2 
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Table 5:  Performance of DBS Algorithm 

S. 

No. 

No. of 

Cloudlets 

Total 

No. 

of 

VMs 

Makespan 

(msT) in 

msec 

Profit in 

$ 

Loss in $ Average 

Response 

Time 

(arT) in 

msec 

Average 

VM 

Utilization 

(avmUt) 

in msec 

Load 

Imbalance 

Level 

(libL) 

No. of 

Deadline 

Misses 

1 6 2 93.76 $36.84 $7.24 16.74 0.73 0.05 0 

2 10 4 139.99 $120.65 $40.67 16.57 0.61 0.2 13 

3 15 5 155.49 $66.94 $20.62 17.69 0.69 0.12 12 

4 24 11 452.84 $157.33 $29.32 47.91 0.57 0.18 11 

5 37 13 779.71 $298.08 $132.71 95.08 0.56 0.18 1 

6 46 15 951.16 $310.37 $205.42 101.06 0.55 0.17 0 

7 57 9 741.07 $375.83 $167.67 129.66 0.74 0.14 5 

8 66 10 318.36 $362.41 $64.94 50.67 0.75 0.11 15 

9 75 5 1168.82 $457.65 $536.28 365.8 0.77 0.15 5 

10 84 6 1105.43 $504.73 $651.12 350.16 0.45 0.04 17 

11 97 6 1409.11 $682.71 $595.61 370.38 0.88 0.05 7 

12 105 42 1455.04 $748.33 $677.51 156.41 0.57 0.16 8 

13 120 35 3788.76 $980.14 $1,676.23 249.78 0.59 0.19 2 

14 142 16 2429.74 $964.03 $1,032.86 237.83 0.71 0.13 6 

15 157 18 7746.35 $1,062.92 $2,936.45 1205 0.48 0.21 10 

16 166 12 2893.51 $426.37 $3,006.89 867.99 0.64 0.03 0 

17 173 10 2957.33 $642.37 $3,151.40 878.84 0.61 0.04 3 

18 188 15 3322.56 $673.24 $3,754.97 916.78 0.55 0.05 1 

19 192 23 1845.23 $429.07 $1,764.78 246.35 0.4 0.07 7 

20 200 29 4839.13 $1,662.85 $4,348.94 1193.43 0.71 0.16 10 

 

Table 6: Performance of RDLBS2 Algorithm 

S. 

No

. 

No. of 

Cloudlet

s 

Total 

No. 

of 

VMs  

Makespa

n (msT) 

in msec 

Profit in 

$ 

Loss in $ Average 

Respons

e Time  

(arT) in 

msec 

Average 

VM 

Utilizatio

n 

(avmUt) 

in msec 

Load 

Imbalanc

e Level 

(libL) 

No. of  

Deadlin

e 

Misses  

1 6 2 98.6 $35.53 $4.13 35.02 0.75 0.12 1 

2 10 4 159.04 $59.72 $9.49 43.76 0.59 0.16 1 

3 15 5 165.18 $89.60 $15.37 13.47 0.6 0.12 2 

4 24 11 497.77 $149.52 $66.99 59.57 0.51 0.17 1 

5 37 13 806.44 $237.13 $154.13 115.35 0.63 0.18 4 

6 46 15 904.57 $299.18 $215.34 102.87 0.56 0.13 5 

7 57 9 708.82 $357.73 $177.76 106.51 0.75 0.14 6 

8 66 10 311.59 $397.72 $98.71 66.83 0.84 0.08 7 

9 75 5 1171.89 $511.43 $506.03 387.63 0.74 0.04 2 

10 84 6 1101.17 $568.11 $652.95 319.93 0.52 0.01 13 

11 97 6 1351.88 $659.76 $641.96 363.18 0.91 0.03 0 

12 105 42 1311.14 $727.77 $798.89 91.83 0.68 0.14 8 

13 120 35 4085.07 $941.88 $1,648.1

3 

294.45 0.61 0.25 9 

16 166 10 12 2354 $235.

52 

$325.

21 

881.69 0.65 0.03 2 

17 173 9 10 2626.8

6 

$235.

40 

$276.

62 

893.98 0.65 0.07 1 

18 188 13 15 2519.6

4 

$492.

44 

$409.

62 

966.82 0.71 0.11 0 

19 192 20 23 1794 $368.

08 

$330.

29 

202.41 0.57 0.09 0 

20 200 26 29 4361.9

4 

$1,35

5.74 

$1,20

2.30 

1118.66 0.74 0.04 2 
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14 142 16 2508.73 $965.64 $1,033.3

0 

243.94 0.69 0.15 10 

15 157 18 6926.72 $1,085.8

7 

$3,855.2

8 

790.31 0.59 0.25 11 

16 166 12 2972.15 $463.08 $2,955.8

3 

876.08 0.61 0.03 12 

17 173 10 2885.59 $574.12 $2,908.5

7 

897.35 0.68 0.05 13 

18 188 15 3184.48 $682.08 $3,661.9

4 

974.43 0.64 0.03 15 

19 192 23 1686.05 $399.00 $1,831.3

3 

215.13 0.51 0.02 0 

20 200 29 4796.19 $1,676.1

2 

$4,459.5

1 

1145.74 0.71 0.18 17 

 

Table 7: Consolidated Key Performance Indicator Table-1 

S. No. Algorithm(s) Average 

Makespan 

(amsT) in 

msec 

Total 

Profit in $ 

Total Loss 

in $ 

Total Gain 

in $ 

Total Loss 

in $ 

1 CPDALB 1782.7205 $10,802.49 $24,957.54 $944.57 $15,099.62 

2 DBS 1929.6695 $10,962.86 $24,801.63 $1,217.78 $15,056.55 

3 RDLBS2 1881.6535 $10,880.99 $25,695.64 $907.41 $15,722.06 

4 TSDACS 1744.15 $9,034.57 $5,733.79 $3,595.60 $294.82 

Table 8: Consolidated Key Performance Indicator Table-2 

S. No. Algorithm(s) Average 

Response 

Time (arT) in 

msec 

Average 

VM 

utilization 

(avmUt) 

Average 

Load 

Imbalance 

Level 

(alibL) 

No. of 

Deadline 

Misses 

(dM) 

Deadline 

Miss Ratio 

(dmR) % 

1 CPDALB 354.1475 0.733 0.103 105 5.36 

2 DBS 375.7065 0.628 0.1215 133 6.79 

3 RDLBS2 357.169 0.656 0.114 137 6.99 

4 TSDACS 345.1475 0.68 0.109 24 1.22 

 

B. Discussion 

 

6.2.1 Makespan (msT): Figure 2 depicts the average makespan (amsT) performance of the four 

algorithms. A good scheduling algorithm should result in a minimal makespan, or overall completion 

time. The experimental evaluation demonstrates that the performance of TSDACS surpasses 

CPDALB, DBS, and RDLBS2 by 2.16%, 9.62%, and 7.31%, respectively. The makespan metric is 

indirectly associated with resource efficiency, cost savings, and the timely execution of workloads. 

Even a small reduction in makespan leads to substantial savings, better resource utilization, and a 

higher quality of service. In deadline-sensitive cloud environments, an ideal algorithm must balance 

meeting deadlines while minimizing makespan, and the results indicate that TSDACS is highly 

suitable for such environments. 

6.2.2 Response Time (rT): TSDACS also outperforms the other three algorithms in terms of response 

time (rT), showing reductions of 2.45%, 8.135%, and 3.37%. Similar to makespan reduction, 

minimizing response time plays a significant role in resource efficiency, cost savings, and the timely 

execution of workloads. Figure 3 illustrates the average response time across all four algorithms. Auth
ors
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f



 
 

 
                        Figure 2: Makespan Comparison 

 

                
                        Figure 3: Response Time Comparison 

 

6.2.3 Virtual Machine Utilization and Load Imbalance Level (vmUt & libL): Figure 4 compares 

four algorithms based on average VM utilization (avmUt) and average load imbalance level (alibL). 

CPDALB achieves the highest utilization (0.733) and the lowest imbalance (0.103), while DBS shows 

the lowest utilization (0.628) and a slightly higher imbalance (0.121). RDLBS2 and TSDACS exhibit 

moderate utilization of 0.656 and 0.680, with load imbalance levels of 0.114 and 0.109, respectively. 

Although CPDALB outperforms TSDACS in terms of average VM utilization and load imbalance 

level, it does not achieve optimal performance in meeting deadlines. In deadline-sensitive 

environments, meeting deadlines takes priority over maximizing VM utilization or load balancing.  

6.2.4 Total Gain and Total Loss: Figure 5 shows the total gain and total loss performance of all four 

algorithms. CPDALB, DBS, and RDLBS2 have high losses between $15,000 and $15,700 and gains 

under $1,250. In contrast, TSDACS has the highest gain of $3,595.60 and the lowest loss of $294.82, 

showing much better financial results. This demonstrates that TSDACS is a good choice for cloud 

service providers and users working in critical, time-sensitive environments. TSDACS achieves about 

66% to 75% more gain than the other algorithms and reduces losses by about 98%, almost eliminating 

losses compared to the other three algorithms. 
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        Figure 4:  VM utilization and Load Imbalance Comparison    

 
Figure 5: Total Gain and Total Loss Comparison 

 

6.2.5 Deadline Misses and Deadline Miss Ratio (dM & dmR): The two Figures 6 & 7, compare the 

deadline misses (dM) and deadline miss ratio (dmR) of four algorithms. TSDACS demonstrates the 

best performance with the fewest deadline misses (24) and the lowest miss ratio (1.22%), while 

RDLBS2 records the highest number of misses (137) and the highest miss ratio (6.99%). CPDALB 

and DBS result in deadline miss ratios of 5.36% and 6.79%, respectively. Overall, TSDACS shows 

superior efficiency in meeting deadlines compared to the other algorithms. The lower deadline misses 

of TSDACS depict that it is highly effective for deadline-sensitive environments and suitable for time-

critical applications. 

 

Figure 6: Deadline Miss Comparison 
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          Figure 7: Deadline Miss Ratio Comparison 

7. Conclusion  

 

The TSDACS algorithm offers an effective solution for deadline-sensitive cloudlet scheduling 

through a two-stage optimization process: initial VM provisioning based on cloudlet requirements, 

followed by runtime scaling that is horizontal and controlled, along with soft cloudlet allocation. 

Avoiding overprovisioning and resource wastage is essential in a cloud environment. TSDACS 

achieves these goals through its combined approach. Experimental results demonstrate that TSDACS 

consistently outperforms existing deadline-aware scheduling algorithms such as CPDALB, DBS, and 

RDLBS2 across key metrics, including deadline miss ratio, makespan, response time, and monetary 

gains. It achieves a notably low deadline miss ratio of 1.22% and records the lowest makespan and 

response time, with improvements of at least 2.16% and 2.45%, respectively, indicating faster and 

more efficient cloudlet execution. Financially, TSDACS provides the highest total gain and the lowest 

total loss, achieving up to 75% more gain and 98% less loss than the other comparison algorithms. 

While CPDALB leads slightly in VM utilization and load balancing, TSDACS proves more effective 

in meeting deadlines by maintaining better VM utilization and load distribution, which is critical in 

time-sensitive cloud environments. As TSDACS records the fewest deadline misses and the lowest 

miss ratio, along with improved overall performance, it confirms its reliability for real-time, deadline-

driven cloud applications.  

The performance of the TSDACS algorithm can be further enhanced by implementing AI-driven auto-

scaling, which adjusts VM capacity in real time based on workload variations, thereby improving the 

performance efficiency. Additionally, TSDACS can be extended to support energy-aware scheduling, 

minimizing energy consumption while still meeting deadlines, ultimately reducing operational costs.  
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