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In gas—liquid systems, the preg timation of bubble diameter plays a critical role in analyzing mass
transfer, interfacial area, and flow have suggested a machine-centric loT-integrated computing
paradigm called BubbleGLS, whic ubble diameter in real-time leveraging multimodal sensor data
and hybrid machine learning. T connects pressure, acoustic, flow and optical sensors that are
located above the cylindricalds ese sensors record dynamic parameters which are denoised and normalised
by means of wavelet fi re normalisation. Bubble area, circularity, rise velocity, and acoustic
signatures are used as f tion and combined through DempsterShafer Theory which provides noise
resistance. The leayas ts of Inception network of spatial features based on an image and XGBoost of
structured i wermie model is deployed onto fog and edge devices, and it provides real-time lower
than 30 i nference. The validation of 10 different flow regimes reveals that the level of the mean

Abstract

jon fluid monitoring system, promising a high performance, low-latency, and intelligent character of bubble
diameXer estimation in a full-scale gas and liquid scenario.

Keywords: Bubble diameter estimation, gas—liquid systems, machine learning, edge computing, 10T sensors,
Dempster—Shafer theory, fog analytics, Inception network.
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1. Introduction

Gasliquid multiphasic flows have been the focus of a wide variety of chemical, biological, and industrial
processes, including bioreactors and bubble column reactors, nuclear cooling and petrochemical extraction. Bubble
diameter is one of the parameters that are essential in determining flow characteristics such as interfacial area, mass
and heat transfer coefficient and chemical reaction kinetics [1] [2] [3]. Accurate and prompt measure of bubble
diameter is hence important in order to maximize efficiency, as well as energy savings, besides ensuring safet
operations. Real-time determination of bubble sizes however is a technical challenge, as gasliquid interactio
highly dynamic as well as non-linear. Intrusive probes, high-speed video analysis and wire-mesh sensors a
methods of traditional bubble measurements [4] [5]. Although high-speed cameras deliver high-resolut )
they are computationally demanding and experience loss of frames at high flow rates. Probes su
anemometers are intrusive causing disturbance to flow and inaccurate readings are obtained. \j@e
which are quite durable, are costly and cannot easily be calibrated to various fluids and
traditional techniques cannot enable continuous regular involvement in the real @@ hons even in the
dynamically varying environment since they are subjected to these above limitatiog

Usage of machine learning (ML) and the Internet of Things (IoT)-driV s can become another
alternative to realize non-invasive, massively scalable, and intelligent monitoring. %R the Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), specifically the LongeShSg@Ierm Memory (LSTM)
models have been known to promise in the analysis of fluid flows [9] [10]. C?can O€ used to extract spatial
ericy over time in the sensor data.
dly be executed in edge or fog
. resource-constrained embedded
vision tasks, like object detection and classification, lightuei chite®™ e MobileNet have been tried [11]
[12]. With the estimation of bubble diameter partic i lex and turbulent flow conditions, MobileNet
ble interpretability and speed of ensemble
B learning of highly non-linear, coupled features, which
shows how multimodal 10T sensors integrated with a

models such as Random Forest does not apply dug
prevail in fluid dynamics [13] [14]. Figure 1 illus

machine learning model.
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Figure 1. l10T-Based Estimation of Bubble Diameter in Gas-Liquid Systems




One major disadvantage of a variety of existing ML-based methods is the use of a single modality of the
data, e.g., visual data input or data on time series on sensors. A prediction accuracy can be considerably increased
with a combination of sensor modalities: pressure fluctuations, acoustic signal, flow rate, and optical data.In the case
of gasliquid systems dynamic multimodal fusion is not sufficiently explored [15]. In addition, a large number of the
models use cloud based inference which adds cloud network delay and issues with privacy. Rich Media Content
This paper presents BubbleGLS: a Machine-Centric Computing Model that estimates the diameter of bubbles in
real-time with a multimodal 10T sensor system and a hybrid ML architecture. BubbleGLS incorporates Incep
Networks to exert multiscale spatial features on optical frames and the XGBoost to research in structured di
non-guide sensors. These complimentary models are joined together with a late fusion prediction methd
situations of poor or noisy input data consistency, BubbleGLS uses DempsterShafer Theory, which i
belief-based data fusion, which makes it more robust. This is done by doing all computation at the
enabling low-latency inference without depending on the centralized cloud systems.

The system is also tested under ten different gasliquid flow regimes, such g
and oscillatory flows, and its performance proves to be uniform under all the rg
better in vital values including the lowest possible MAE of 0.25 mm and the R 2
all of its benchmark models. It is also accurate when tested in conditions of simulaté
be readily applied into the environment. BubbleGLS handles the existing deficiencies g@&recision, multimodal data
combination, scale-out of deployment and lag within bubble calculations syste ggested framework is
based on machine learning and the development of computing to crea eﬁ%[ and rapid strong framework
which can be used in intelligent industrial flow systems.

> which implies that it can

1.1. Main Contribution of the Work

e Machine-based hybrid learning model (a co eption and XGBoost) of the real-time bubble

diameter estimation.

o Information fusion of multimodal sensor s (opticaly acoustic, pressure, flow) with the utilization
of DempsterShafer data fusion.

e Implementation of edge and fog computing t w low latency, real-time inference and scalability to
industrial systems.

e  Strong preprocessing system tha a wavelet denoising and normalization to enhance the quality of data
involving heterogeneous sensgys

e  Seamless system generaliz tocover individual gasliquid flow regimes and confirms its robustness

and robustness to noise.

d ey of related work on bubble estimation using traditional and Al-driven
osed BubbleGLS methodology, including sensor deployment, preprocessing,
rning framework. Section 4 presents experimental results and analysis across
Section 5 concludes the study and outlines future directions.

e gas dispersion. At concentration of frothier of 120 ppm, which is the critical coalescence
CCC) the bubble size was found to have a minimum value of 0.62 mm and the forty obeyed a
ution rather than to a bimodal one[16]. Bubble size was significantly affected by velocity of the gas
er in which at 1.08 cm/s the bubble holdup reached the highest of 27%. The velocity of bubble rise and
of bubble rose linearly, whereas the bubble surface area flux reduced linearly. There was a good correlation
:86) between measured and estimated sizes (average 0.64 mm, E.23M leaves2664TBD 13% error).
Enhancement of situations enhanced flotation.

The paper reports experimental and computational results of a gas liquid stirred tank with the purpose of
offering original information about bubble size distribution, and contributing towards predictive modeling necessary
in an attempt to design chemical and biochemical gas liquid reactors. Critical parameters which contributes to mass




removal and overall fermentation performance including bubble size distribution, gassed power use, and the
presence of gas cavities are examined[17]. Advancement of Two-Fluid and Population Balance models in order to
make correct predictions of gas liquid mixing is also presented. Findings indicate that bubble size prediction in the
impeller region should be predicted accurately to provide a successful prediction of hydrodynamic modeling within
aerated stirred tanks.

There is wide application in water and wastewater plants of bubble aeration and its main disadvantage /g
low gas utilization and high energy requirement. An attempt at finding a solution to this challenge is discus
this study through micro-nanobubbles (MNBSs) that have a large surface area and gas-liquid mass transfer cap!
They created a dynamic model that comprised of mass transfer with force balance (buoyancy, gravity, g ~
and virtual mass forces) to simulate rising velocity of MNB and size changing[18]. Findings |nd|cate i
shrmk and explode at the water surface guaranteeing complete gas dlssolutlon and possmle free

of systems with and without the use of the mixers reveals that the mixers enhance mM¥gRg mostly as opposed to the
dispersing of the gas. The six-element reactor showed the best performance based oathe\@alices of relative standard
deviation (RSD) and bubble diameter; the former had an RSD of 0.793 and a#ﬂe didmeter of 1.384mm, and
37.6% of the eight-element configuration in terms of energy usage. T tions justify the application of the
static mixers in the gas liquid systems.

ior water electrolysis process have a
trast to the previous works that aimed to study
bbles per experiment with the help of highly
, lication of robust statistical analysis. The
Mobles at acidic and alkaline media with the main factors
such as pH, type of gases, and current density measur8 a 2 3 dimensional factorial design[20]. Interfacial pH
was simulated in finite element computer models under Ng@hing conditions and confirmed experimental results as
well as the importance of pH change g le distribution and cell voltage. The multination solution provides
effective information regarding optimizgon rochemical systems.

The pH changes at the interface, as well as bubble
fundamental role in cell overvoltage and of energy e
the behavior of individual bubbles, the work studig
accurate image processing and edge detection,
essentially results were the production of H 2 and @

3. Methodology

The innovation of combination of edge intelligence, machine-centric design, and hybrid deep

learning to address the iy i bble diameter estimation. BubbleGLS integrates both the spatial and the
temporal, unlike current which focus on one or the other, because BubbleGLS uses an Inception
XGBoost engemb @vides adaptive fog-based processing to make fast accurate deployment and to
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Figure 2. Arch of Proposed Model

3.1 Sensor Deployment and Data Acquisition

The first and most important s
to correctly estimate bubble diameter
sensor nodes. The sensor nodes
column reactor and hide varlous
Each of the nodes is suppligs

ards achieving a truly machine-based computing framework on how
systems is the accurate deployment of intelligent loT-based
ically in the cylindrical observation chamber and the vertical
I locations to record spatiotemporal change of bubbles dynamics.
imodal sensors: pressure transducers to measure the hydrostatic variation,

eir contact with the surrounding fluid. These sensor modules are configured on
sly and they are dynamically addressable by utilizing a lightweight protocol MQTT

nsor node embeds the smartness to perform computing at the data source, which is an essential requirement
T-augmented computation system.

3.2 Signal Preprocessing and Noise Filtering

Raw sensor readings obtained in the gasliquid testing apparatus are usually mixed with noise, vibrations
contributed by the environment and mechanical vibrations. A powerful computing model is endowed into




downstream machine learning tasks by performing a rigorous signal preprocessing pipeline. The structure of this
pipeline is made in a modular computing architecture, with signal cleaning, temporal alignment, and statistical
normalization as starting points. Acoustic and flow signals are denoised in the wavelet basis, (usually Daubechies or
Coiflet families) to remove high-frequency noise and retain sharp transitions characteristic of bubble events. The
pressure and flow sensors are then bandpass filtered with a range of 0.2 Hz to 50 Hz which allows isolation of
meaningful dynamic fluctuations. RGB values of the high-speed optical image images that were stored as RGB-
sequences are converted into grayscale and then the imaging is equalized using a histogram.

f
€y
VU2 = D2+ (f - Af)?

Where H(f) is the transfer function at frequencyf, f, is the center frequency of the pass

H(f) =

resampled as a spline interpolation to acquire a uniform temporal tagging. All signa livered to the model as a
result of this machine-centric preprocessing represent actual, artifact-free physicaldeha¥
form they may be read by the computer.

x—p

7z =

(2)

ag

Where z is the normalized value, x is the origg is the n of the feature and o is the standard

deviation.

Where E,, is the total wavelet , W(j, k) is the wavelet coefficient at level j, index k and M, N are
wavelet levels and time indicates.

3.3 Feature Extraction from M odal S ata

After the sensor Sigaaees ned and normalized the next stage of the BubbleGLS computing pipeline is
the feature extraction stag criWgal in capturing the physical behavior in machine-understandable features.
The method utilizes siste in fluid dynamics as well as statistical computational methods of establishing

valuable de eed. Based on the acoustic and flow signals, bubble emission frequency, root
mean squar power spectral density (PSD) and signal entropy are determined. Signals in pressure
and te e-frequency processed with Short-Time Fourier Transform (STFT) and continuous

N
1 2
Eacoustic = Nz X 4)
i=1

re Eqcoustic 1S the acoustic energy, x; is the acoustic pressure amplitude at sample i and N is the total
of acoustic samples.The high-speed video analysis is used to provide the information of void fraction and
interfacial area concentration. The Sobel filter is applied to every frame of the video to enhance the edges and then
canny edge detector is also run over the video to find the contours. Based on these contours, the values of such
parameters as area, eccentricity and roundness are calculated, which are related to the depth and width of the single
bubbles. Texture descriptors (e.g., Gabor filters, Local Binary Patterns), and morphological characteristics are then
also added to this feature space. The feature vectors in multi modal format (CSV or HDF5) are stored and given as




input to the learning module. Out comes a high dimension, feature matrix that describes the complex interactions of
the gasliquid system, computing optimized.
Y
Y+ V.

)

a =

Where a is the void fraction, 1 is the volume of gas phase and V; is the volume of liquid phase.

3.4 Bubble Contour Detection and Segmentation

The recognition of the separate bubbles in the fluid medium becomes the visual maig

U-Net model that is trained on these labeled datasets produces a binary segmenjg
extent of each bubble. Morphological operations like erosion and dilation are t
masks and remove noise and merge broken contours.

4A ,

Where d,, is the equivalent diameter of bubble and h of ggmentation bubble contour. Each
segmented bubble is analyzed geometrically with descyig ors: udin or and minor axis of each bubble,
equivalent diameter, where the centroid is located a Such descriptors are coded in machine format
as numerical arrays, and so can be readily usg s. The BubbleGLS system leverages this
innovation by uniting computerized visual data -centric statistical modeling, turning very complicated
visual information into discrete and measurable analy¥ hich are needed to determine the diameter.

post process the output

Where C is the circularity,

e processing. In this case, every cluster of the sensors is connected to a
nit which locally analyzes its data feed. These means have these edge nodes
er in the plant network, which has the ability to orchestrate assignments, utilize
Iytics knowledge. Local computing is done on each edge node, and consists of a

system latency and achice
Raspberry Pi 4 or Jetson

d (e.g. sudden change in count rate or skew in diameters), the node raises an alert, which is
ss the MQTT to the dashboard. Such a tier computing paradigm makes sure that the interpretation

dels, edge nodes, and the co-ordination of operation of such at fog based controllers, offers low-latency
uracy inferencing and therefore fills the gap between sensor level information collection and cloud level
analytics.

3.6 Machine-Centric Bubble Diameter Estimation Model

A hybrid learning engine optimized to estimate a desired diameter is at the center of the BubbleGLS
computing framework. This engine unifies the rich features extraction ability of Inception networks, with the




structured gradient boosting of XGBoost, producing a very expressive and accurate machine-focused model.
Inception module operates on the spatial feature maps constructed using the optical images that capture various-
scale textures and bubble-shape pattern characteristics. In the meantime, the tabular data c6onsisting of acoustic and
pressure features as well as derived geometric features is used to train XGBoost. Depending on the training scenario,
there is an ensemble voting scheme, or stacked regression meta-model that combines the outputs of both models.

m
1 .
MAE =" ||d; - &
i=1

Where MAE is the Mean Absolute Error, d; is the true bubble diameter, d; is the predicted b
and n is the number of observations.The Bayesian Optimization of Gaussian Processes is appli

(8)

of the hybrid

design in explaining complex physical behavior is also evident through the h routinely

surpassed R 2 of 0.95 at a variety of flow regimes.
d= wy - dAInception +wy - &XGBoost(g)

Where d is the final predicted diameter, d,nception, dycpoost are e%s from respective models and
w;, w, are model weights (where w; +w, = 1.

3.7 Data Fusion and Model Synchronization

Data fusion is essential in a heterogeneous sg
resilience in model outputs. BubbleGLS framewg

Where m,,(A) is combineg, even A, m,(B), m,(C) are belief mass from source 1 and 2areK
is the conflict coefficient. The ti i of all the sensor feeds is used to accomplish time-synchronized
fusion. A central data fusion alculates confidence based averages or does conflict resolution when the
sensors disagreed. The fug sed to increase accuracy but also achieve system robustness to noisy or

failed sensors. A synchro prediction of bubble diameter is then obtained on the machine learning pipeline
and reflects true spay e dynamics of the physical system.

loaded to the cloud platforms like AWS loT Core or Microsoft Azure 10T Hub depending on
re of deployment. These systems are coupled with NoSQL stores and object storage repositories to
cords and use longitudinal analysis. The live distributions of bubble diameters, statistical grades
ce, skewness) and anomaly flags are displayed using a visualization dashboard based on Grafana.

-¥These computing dashboards give the operators, researchers and engineers the ability to take data-driven
decisions, modify process parameters or trouble-shoot anomalies in the gasliquid system with the minimum turn-
around time.

3.9. Novelty of the Work




The novelty comes from the overall, machine-focused implementation of the loT-sensing, hybrid deep
learning, fog-edge computing integration into the task of providing real-time estimates of the bubble diameter: the
task that is typically limited in its performance by the hardware and signal complications. BubbleGLS is a
multimodal sensor fusion network, which unlike the predecessors, relies exclusively on visual or time based
features, and combines multimodal (optical, acoustic, flow and pressure) information based on Dempster Shafer
Theory which makes it more resistant to noise and uncertainty. The hybrid model which is the combination of
Inception networks and XGBoost can exploit both spatial and structured information at the same time which jg
uncommon mixture within fluid analytics. Moreover, the model can be written on light fog nodes and ha
latency (<30 ms) without the use of the cloud. It enables full deployment and is applicable over a wide range of
regimes with optimisation towards edge-devices, thus making it competitive to real-time industrial app
versatile and scalable mode makes BubbleGLS a unique solution compared to the current products,
a new paradigm in intelligent fluid monitoring by combining the power of Al, loT, and
computing.

Algorithm: BubbleGLS — Machine-Centric Bubble Diameter Estimation

Input:Multimodal sensor data streams: X g coustics Xpressures Xriow» I¢ (Optical image a

Sensor node coordinates and timestamps

Output:Estimated bubble diameter dfor each observed bubble at time
Signal Acquisition and Preprocessing Q
Acquire sensor streams from deployed 10T nodes acr iquid
Il Z-s normalization on numerical sensor data

H(f) = + /I Bandpass filtering to flow and acoustic signals
2= +(rap72
Feature Extraction

1

Eqcoustic = 5 Li=1%; /I Compute acoustic energy

=% /I Compute void fraction from volume readings
Vg+Vl
w = Zﬁ-il YN W, /Il Extract wavelet energy from pressure signal
Convert i apply Sobel/Canny filtering.

Bubble i ometric Analysis

// Equivalent diameter

=— /I Circularity

p2
Edge-Fog Based Inference (Real-Time)

Send extracted features to fog node ML engine.



Run MobileNet or lightweight model to compute quick estimate dfog
Cloud-Based Hybrid Estimation
At cloud, run Inception and XGBoost on complete feature set.

d = wy - dinception + W1 * dxcoost /I Compute ensemble prediction

Sensor Fusion and Consistency Check

Fuse redundant predictions using Dempster—Shafer theory:
m15(4) = —Tpnc=ami(B) - m,(C)

Return:Final predicted bubble diameter dfor all detected bubbles at timestamp t.

End Algorithm

4. Results and Discussions

0, rt data processing, and

ems. The system itself starts by
and deployed in strategic locations
I-time various distributions of
nsmission, and high-speed optical

BubbleGLS working principle is based on the convergence of real-time se
machine-based computing to determine bubble diameter accurately in gagliguid
the application of multimodal sensors based on the employed Internet
throughout the chamber filled with fluids. These sensors
heterogeneous data types, like pressure change, temperature varj
image of gas bubble moving upward with influence 4l
synchronized and connected wirelessly using lovy® r CoAP communication protocols but data
transmission is real-time and energy efficient. TR
the following steps: denoising, normalization, and

hancement. These procedures are imminent to process
the input data rigorously to compute modeling. The Al is deep centered with a hybrid deep learning engine of
Inception networks (to recognize spatial patterns) and XCWgost (to regress features underlying the structure) and the
training is performed such that the correlatigme that occurred”between physical measurements and bubble geometries
estimate the sizes of the bubbles.

One innovation of Bubb S tion of fog edge computing - the machine learning model is
exactly executed on the edge d (e.g.! n Nano) with low latency and low bandwidth utilization. The
combination of multimodal gems the DempsterShafer Theory enhances the reliability of predictions where
the underlying condition or ertain. The last result that contains a real-time bubble size distribution,
counts, and anomalies gd d-based dashboard is visualized and used to make decisions. This machine-
oriented cycle of Sgen., | learning, and feed-back renders BubbleGLS an effective structure of real-time
scaling ana | em. Figure 3 illustrates the performance metrics of fog and edge computing across
system




Fog and Edge Computing Performance Metrics
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Figure 3. Fog and Edge Computing Perfg @cs

Table 1: Bubble Diameter Prediction Accuracy sofilie Error in mm)

Flow Regime BubbleGLS leNet Random Forest
Bubbly 0.25 0.48 0.59
Slug 0.32 0.58 0.68
Churn 0.71 0.79
Annular 0.63 0.74
Transitional . 0.6 0.69
Turbulent Bubbly 0.49 0.53 0.62
Coalescing Slug 0.61 0.65 0.76
Dispersed Bubble 0.52 0.58 0.67
Stratified 0.48 0.54 0.63
Oscillatory 0.51 0.55 0.65




Bubble Diameter Prediction Accuracy (MAE)

MAE (mm)

I o o o o
iS wn o ~ o
-

\

e
w

—e— BubbleGLS

Flow Regime
CNN-LSTM —a

Table

MobileNet

far much better than BubbleGLS.
employed in BubbleGLS that is

Flow Regime BubbleGLS MobileNet Random Forest
Bubbly 0.972 0.882 0.841
Slug 0. 0.861 0.82
Churn 0.832 0.798
Annular 0.846 0.805
Transitional 0.85 0.812
0.87 0.829
0.841 0.799
0.86 0.825
0.865 0.828
0.862 0.824

and Figure 5 demonstrates the R 2 scores which measure the fidelity of the model and accuracy of
prediction with accurate bubble diameters. R 2 values obtained by BubbleGLS above 0.95 indicate an
It and almost all ranges of flows. In a bubble and stratified flow, it produces 0.972 and 0.965 respectively,
onfirms that it is quite confident in the results of its prediction. Comparatively, both CNN-LSTM and
MobileNet are also behind, but the values of R 2 often range between 0.83 and 0.89 with the Random Forest lagging
behind by mostly reaching below 0.83.




R2 Score Comparison

E BubbleGLS = CNN-LSTM R M I Random Forest

learning nonlinearity dynamics of gas liquid integ
unstructured learning of XGBoost provide the BY
varied data patterns. Table 2, therefore, supports the
bubble detection situations which are complex in nature:

@Fvith the conclusive advantage in retaining accuracy at
gth of the model and its overall ability to be generalized to

Table 3: 1 ce Time per Frame (in milliseconds)

Flow Regime CNN-LSTM MobileNet Random Forest
Bubbly 385 22.1 18.7
Slug 39.2 23 19.1
Churn 41 24.3 20
Annular, . 40.6 23.5 19.5
39.7 23.2 19
38.9 22.8 18.9
40.8 24 19.8
28.3 39.3 23.3 19.3
ified 27.7 38.6 22.6 18.8
illatory 28.2 39.5 23.1 19.2

Table 3 and Figure 6 provides the comparison of the inference time of each model under various flow
conditions. The operational needs to be real-time when it comes to gasliquid systems, and the BubbleGLS operates
relatively well with an average speed of 28 milliseconds per frame. Although this is more than MobileNet and
Random Forest (that fluctuate between 18 till 24 ms), it is much less than CNN-LSTM, which almost reaches 41 ms
when there is churn flow. It is amazing who balanced BubbleGLS, it can perform in near real time without hurting



the quality of its predictions. This makes it among the most appropriate when it comes to edge and fog applications
where speed is as important as precision.

Inference Time per Frame (in milliseconds)

40
m
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E
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()
c
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Flow Regi
B BubbleGLS [ CNN-LSTM Mob B Random Forest
Figure 6. Inferencg rame illiseconds)

In addition, BubbleGLS exhibits a stabilit
towards machine centric industry computation. This md
and this is a vital requirement in the employment of X
monitoring programmes.

nference. Computational efficient nature is a key feature
is not only precise but responsive as presented in Table 3
type of model in systems requiring time-sensitive

: Model Size (MB)

Size (MB)
ubbleGLS 46.3
N-LSTM 82.5
MobileNet 25.4
Random Forest 17.6
XGBoost 31.2
ResNet50 98.7
SVM 14.2
LightGBM 22.9
Decision Tree 115
KNN 12.4

Table 4 and Figure 7 represents a comparison of the sizes of the models in megabytes with a reflection to
their deployment viability and storage feasibility. With a size of 46.3 MB, BubbleGLS remains of an appropriate
large scale, not too complex, nor too deployable, in particular on edge machines, such as Jetson Nano or Raspberry
Pi. It is also much smaller than CNN-LSTM and ResNet50 (82.5 MB and 98.7 MB, respectively), and it is not as
suitable to embedded and real-time infrastructures. Although MobileNet and Random Forest are less substantial,
their accuracy is a far cry compared to the others as depicted in the tables above.




Model Size Distribution (MB)

LightGBM SVM
Decision Tree
KNN
22.9 M2 MB ResNet50
11.5 MB
12.4 MB
BubbleGLS 98.7 MB
46.3 MB
31.2 MB
82.5 MB
17.6 MB
25.4 MB ,XGBoost
CNN-LSTM
Ra m Forest
bileNet
Figure 7. Mod Distribution (MB)

The size efficiency in BubbleGLS is the result o imized techniques in achieving architecture fusion and
pruning that achieve learning capacity wg make the memory requirements bloated. Moreover, smaller models
such as SVM and KNN are compact gllkicient in terms of computation during the process of inference.
Table 4 accordingly proves the claigh S remains lightweight but with prediction power thus sticks to
the objective of the machine-cent@gind IoT. tible computing system.

AE under Different Noise Levels (in dB)

Noise Level (d bleGLS CNN-LSTM MobileNet Random Forest

0.27 0.45 0.51 0.63
0.29 0.48 0.54 0.67
0.31 0.53 0.59 0.7
0.35 0.57 0.62 0.75
0.37 0.6 0.66 0.79
25 0.41 0.65 0.7 0.83
30 0.44 0.69 0.74 0.87
35 0.48 0.72 0.78 0.9
40 0.51 0.75 0.81 0.94

45 0.55 0.79 0.85 0.97




Table 5 and Figure 8 investigates the robustness of every model at growing noise levels, which replace a
real situation degradation of signals. BubbleGLS performs better than various other models, and MAE rises
modestly, by 0.27 to 0.55 mm (0 to 45 dB). Conversely, CNN-LSTM, MobileNet and Random Forest surge in error
with noise, peak at 0.97 mm of noise in the case of Random Forest at 45 dB of noise.

MAE under Different Noise Levels

o 0.45 0.51 0.63 I
0 0.48 0.54 0.67 09
o 0.53 0.59 0.70 -0
30 0.57 0.62
. T
% 0 - 0.65 0.70
;3 - 0.44 0.69 0.74
1 - 0.48 0.72 0.78
Q- 0.51 0.75
hE 0.55 0.79
BubbleGLS CNN-LSTM et flom Forest

Figure 8. MA§ erent e Levels

These results highlight the noise resistan e of the BubbleGLS design that comprises edge-level
filtering, wavelet based denoising and robust multimOSg@hfusion. This is essential in the practical application in
industry plants where interferences are acouystic, thermal 2% also electrical. Table 5 confirms that, BubbleGLS is
not only high-performance model in go umstances, but also reliable, fault-tolerant model that can be applied

in real world industrial conditions tha and consistent bubble inspection.

4.1. Discussion

Experimental corg ) bbleGLS on 10 gasliquid flow regimes shows its obvious advantages
compared to other model; Its®T the MAE, we can see the proposed model constantly showing scores as
low as 0.25 mm, compare mm of CNN-LSTM, 0.48 mm of MobileNet, and 0.59 mm of Random Forest.
This indic ble to capture the fluid dynamics of complex systems, and in particular, non-
linear parts mics, such as churn or slug flow. This advantage is also confirmed by the comparisons
bbleGLS scores an average of 0.97 and more in various regimes which is an excellent
edicting and actually observing bubble sizes. This predictive fidelity is attributed to the
ility of the multi-scale feature extraction of Inception and structured regression of XGBoost
ic natural geometry and flow-induced variation of gas bubbles.

ive systems. MobileNet produces slightly better latency (~22 ms), but worse accuracy and thus is not such a
well-rounded method as BubbleGLS. BubbleGLS is very robust in noisy surroundings. When signal-to-noise ratios
are negatively affected, the MAE changes by a small amount (0.27 mm to 0.55 mm) but other models are impacted
significantly. The ability to achieve such robustness rests on the model data fusion approach based on
DempsterShafer Theory, that is able to merge sensor inputs very well, and at the same time discount the effect of
unreliable sources. Its model architecture of 46.3 MB allows compatibility with edge and embedded systems and its




modular deployment allows decentralized processing of data by fog layers. This also increases the scalability but
also decreases the burden proposed to cloud resources thereby increasing the responsiveness and efficiency of the
system. All these results support the efficacy of BubbleGLS in achieving the right balance of accuracy, latency, and
robustness along with deployability, which are important benchmarks in contemporary setting of industrial loT
applications encompassing fluid systems.

5. Conclusion and Future Work

In our study we have introduced a new machine-centric, loT-coupled bubble diameter esti
framework in gas-liquid systems in real-time BubbleGLS. It uses a hybrid type architecture based og

improve the accuracy and robustness even further. BubbleGLS is executed on fog- based ed
low-latency and high-frequency inference that are of use in industrial real-time _
analysis on a variety of ten different flow regimes revealed that the model i X ven in ideal
circumstances, it was noted that BubbleGLS recorded a mean absolute error
greater than 0.97 at all settings, a factor that easily places it ahead of state-of-the™ gprtitors like CNN-LSTM,
MobileNet, and Random Forest. The system also demonstrated aspect of robustness Wg&en used in noisy condition,
hence it can be implemented in practical use in dynamic industrial space. Many useful sions are possible with
the framework. The model could be extended to be able to track bubbles in 3%@] a volumetric shape, either
through stereo vision or a depth frame generated in LiDAR. By int p1i0 digital twin systems, predictive
simulation of the flow dynamics on the basis of real-time sensor feed ade possible. Besides, the use of
reinforcement Iearnlng loops would allow the closed Ioop controjigkit ubb size modified wide depending on
pow! versatile BubbleGLS introduces a
accuracy, speed, and scalability combined. It
systems can be designed with Al, edge
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