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Abstract 

In gas–liquid systems, the precise estimation of bubble diameter plays a critical role in analyzing mass 

transfer, interfacial area, and flow dynamics. We have suggested a machine-centric IoT-integrated computing 

paradigm called BubbleGLS, which can estimate bubble diameter in real-time leveraging multimodal sensor data 

and hybrid machine learning. The overall system connects pressure, acoustic, flow and optical sensors that are 

located above the cylindrical reactor. These sensors record dynamic parameters which are denoised and normalised 

by means of wavelet filtering and Z-score normalisation. Bubble area, circularity, rise velocity, and acoustic 

signatures are used as feature extraction and combined through DempsterShafer Theory which provides noise 

resistance. The learning engine consists of Inception network of spatial features based on an image and XGBoost of 

structured physical parameters. The model is deployed onto fog and edge devices, and it provides real-time lower 

than 30 milliseconds latency inference. The validation of 10 different flow regimes reveals that the level of the mean 

absolute error (MAE) output by BubbleGLS does not exceed 0.25 mm, whereas its R2 score is higher than 0.97, thus 

being superior to CNN-LSTM, MobileNet, and Random Forest. It is also resilient as it can remain steady in the 

accuracy in different noise levels that are up to 45dB. To be used in the smart industrial space where fast response 

and low cloud reliance are the key factors, BubbleGLS has been optimized. Its modular design and the aspect of this 

design being machine-specific allows it to be implemented on an otherwise distributed fluidic system with much 

little calibration to fit its recalibration. All in all, the system reveals a powerful potential in the future third-

generation fluid monitoring system, promising a high performance, low-latency, and intelligent character of bubble 

diameter estimation in a full-scale gas and liquid scenario. 

Keywords: Bubble diameter estimation, gas–liquid systems, machine learning, edge computing, IoT sensors, 

Dempster–Shafer theory, fog analytics, Inception network. 
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1. Introduction 

Gasliquid multiphasic flows have been the focus of a wide variety of chemical, biological, and industrial 

processes, including bioreactors and bubble column reactors, nuclear cooling and petrochemical extraction. Bubble 

diameter is one of the parameters that are essential in determining flow characteristics such as interfacial area, mass 

and heat transfer coefficient and chemical reaction kinetics [1] [2] [3]. Accurate and prompt measure of bubble 

diameter is hence important in order to maximize efficiency, as well as energy savings, besides ensuring safety of 

operations. Real-time determination of bubble sizes however is a technical challenge, as gasliquid interactions are 

highly dynamic as well as non-linear. Intrusive probes, high-speed video analysis and wire-mesh sensors are all 

methods of traditional bubble measurements [4] [5]. Although high-speed cameras deliver high-resolution tracking, 

they are computationally demanding and experience loss of frames at high flow rates. Probes such as hot-film 

anemometers are intrusive causing disturbance to flow and inaccurate readings are obtained. Wire-mesh sensors, 

which are quite durable, are costly and cannot easily be calibrated to various fluids and geometries [6]. The 

traditional techniques cannot enable continuous regular involvement in the real-time applications even in the 

dynamically varying environment since they are subjected to these above limitations [7] [8]. 

Usage of machine learning (ML) and the Internet of Things (IoT)-driven systems can become another 

alternative to realize non-invasive, massively scalable, and intelligent monitoring. Both the Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs), specifically the Long Short-Term Memory (LSTM) 

models have been known to promise in the analysis of fluid flows [9] [10]. CNNs can be used to extract spatial 

information in optical images and LSTM can be used to model the dependency over time in the sensor data. 

Nevertheless, these deep learning models are resource-demanding and can hardly be executed in edge or fog 

computing environment because of their scale and high inference latency. With resource-constrained embedded 

vision tasks, like object detection and classification, lightweight architectures like MobileNet have been tried [11] 

[12]. With the estimation of bubble diameter particularly within complex and turbulent flow conditions, MobileNet 

models are not accurate enough. On the same wavelength, the reasonable interpretability and speed of ensemble 

models such as Random Forest does not apply due to inferior learning of highly non-linear, coupled features, which 

prevail in fluid dynamics [13] [14]. Figure 1 illustration shows how multimodal IoT sensors integrated with a 

machine learning model. 

 

Figure 1. IoT-Based Estimation of Bubble Diameter in Gas–Liquid Systems Auth
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One major disadvantage of a variety of existing ML-based methods is the use of a single modality of the 

data, e.g., visual data input or data on time series on sensors. A prediction accuracy can be considerably increased 

with a combination of sensor modalities: pressure fluctuations, acoustic signal, flow rate, and optical data.In the case 

of gasliquid systems dynamic multimodal fusion is not sufficiently explored [15]. In addition, a large number of the 

models use cloud based inference which adds cloud network delay and issues with privacy. Rich Media Content 

This paper presents BubbleGLS: a Machine-Centric Computing Model that estimates the diameter of bubbles in 

real-time with a multimodal IoT sensor system and a hybrid ML architecture. BubbleGLS incorporates Inception 

Networks to exert multiscale spatial features on optical frames and the XGBoost to research in structured data of 

non-guide sensors. These complimentary models are joined together with a late fusion prediction method. In 

situations of poor or noisy input data consistency, BubbleGLS uses DempsterShafer Theory, which is a strategy of 

belief-based data fusion, which makes it more robust. This is done by doing all computation at the fog layer, thus 

enabling low-latency inference without depending on the centralized cloud systems. 

The system is also tested under ten different gasliquid flow regimes, such as bubbly, slug, churn, annular 

and oscillatory flows, and its performance proves to be uniform under all the regimes. The model also performs 

better in vital values including the lowest possible MAE of 0.25 mm and the R 2 scores of more than 0.97 surpassing 

all of its benchmark models. It is also accurate when tested in conditions of simulated noise which implies that it can 

be readily applied into the environment. BubbleGLS handles the existing deficiencies of precision, multimodal data 

combination, scale-out of deployment and lag within bubble calculations systems. The suggested framework is 

based on machine learning and the development of computing to create an efficient and rapid strong framework 

which can be used in intelligent industrial flow systems. 

1.1. Main Contribution of the Work 

• Machine-based hybrid learning model (a combination of Inception and XGBoost) of the real-time bubble 

diameter estimation. 

• Information fusion of multimodal sensor streams in IoT (optical, acoustic, pressure, flow) with the utilization 

of DempsterShafer data fusion. 

• Implementation of edge and fog computing to allow low latency, real-time inference and scalability to 

industrial systems. 

• Strong preprocessing system that uses a wavelet denoising and normalization to enhance the quality of data 

involving heterogeneous sensors. 

• Seamless system generalization to cover ten individual gasliquid flow regimes and confirms its robustness 

and robustness to noise. 

Section 2 provides a detailed survey of related work on bubble estimation using traditional and AI-driven 

methods. Section 3 explains the proposed BubbleGLS methodology, including sensor deployment, preprocessing, 

feature extraction, and the hybrid learning framework. Section 4 presents experimental results and analysis across 

multiple evaluation metrics. Finally, Section 5 concludes the study and outlines future directions. 

2.Related Work 

The work exposes the characteristics, the bubble size and the influence of the main operating parameters in 

column flotation on the gas dispersion. At concentration of frothier of 120 ppm, which is the critical coalescence 

concentration (CCC) the bubble size was found to have a minimum value of 0.62 mm and the forty obeyed a 

unimodal distribution rather than to a bimodal one[16]. Bubble size was significantly affected by velocity of the gas 

and wash water in which at 1.08 cm/s the bubble holdup reached the highest of 27%. The velocity of bubble rise and 

the size of bubble rose linearly, whereas the bubble surface area flux reduced linearly. There was a good correlation 

(R2 0.86) between measured and estimated sizes (average 0.64 mm, E.23M leaves2664TBD 13% error). 

Enhancement of situations enhanced flotation. 

The paper reports experimental and computational results of a gas liquid stirred tank with the purpose of 

offering original information about bubble size distribution, and contributing towards predictive modeling necessary 

in an attempt to design chemical and biochemical gas liquid reactors. Critical parameters which contributes to mass 
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removal and overall fermentation performance including bubble size distribution, gassed power use, and the 

presence of gas cavities are examined[17]. Advancement of Two-Fluid and Population Balance models in order to 

make correct predictions of gas liquid mixing is also presented. Findings indicate that bubble size prediction in the 

impeller region should be predicted accurately to provide a successful prediction of hydrodynamic modeling within 

aerated stirred tanks. 

There is wide application in water and wastewater plants of bubble aeration and its main disadvantage is a 

low gas utilization and high energy requirement. An attempt at finding a solution to this challenge is discussed in 

this study through micro-nanobubbles (MNBs) that have a large surface area and gas-liquid mass transfer capacity. 

They created a dynamic model that comprised of mass transfer with force balance (buoyancy, gravity, drag, Basset, 

and virtual mass forces) to simulate rising velocity of MNB and size changing[18]. Findings indicate the best MNBs 

shrink and explode at the water surface guaranteeing complete gas dissolution, and possible free radical generation. 

Microbubble behavior was well modeled (R 2 > 0.85), nanobubble validation is not yet validated empirically. 

Ozonation requires or is supported by the efficient gas liquid mixing; this also applies to ozone advanced 

oxidation processes. The paper is looking into a static-mixer-based plug-flow reactor as seen in the HiPOxTM 

system, which uses Computational Fluid Dynamics to model bubble behaviors and mixing patterns[19]. Observation 

of systems with and without the use of the mixers reveals that the mixers enhance mixing mostly as opposed to the 

dispersing of the gas. The six-element reactor showed the best performance based on the indices of relative standard 

deviation (RSD) and bubble diameter; the former had an RSD of 0.793 and a bubble diameter of 1.384mm, and 

37.6% of the eight-element configuration in terms of energy usage. These observations justify the application of the 

static mixers in the gas liquid systems. 

The pH changes at the interface, as well as bubble behavior during the water electrolysis process have a 

fundamental role in cell overvoltage and of energy efficiency. In contrast to the previous works that aimed to study 

the behavior of individual bubbles, the work studies more than 8,000 bubbles per experiment with the help of highly 

accurate image processing and edge detection, which allows the application of robust statistical analysis. The 

essentially results were the production of H 2 and O 2 bubbles at acidic and alkaline media with the main factors 

such as pH, type of gases, and current density measured by a 2 3 dimensional factorial design[20]. Interfacial pH 

was simulated in finite element computer models under matching conditions and confirmed experimental results as 

well as the importance of pH change on bubble distribution and cell voltage. The multination solution provides 

effective information regarding optimization of electrochemical systems. 

3. Methodology 

The innovation of the work is a combination of edge intelligence, machine-centric design, and hybrid deep 

learning to address the issue of real-time bubble diameter estimation. BubbleGLS integrates both the spatial and the 

temporal, unlike current techniques, which focus on one or the other, because BubbleGLS uses an Inception 

XGBoost ensemble. Moreover, it provides adaptive fog-based processing to make fast accurate deployment and to 

serve to scale. Due to the usage of DempsterShafer Theory to manage uncertainties in the different kinds of sensor 

modalities, the system stands out among previous works, providing a robust solution despite noisy conditions in 

industrial applications. Figure 2 shows the architecture of proposed model. 
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Figure 2. Architecture of Proposed Model 

3.1 Sensor Deployment and Data Acquisition 

The first and most important step towards achieving a truly machine-based computing framework on how 

to correctly estimate bubble diameter in gas-liquid systems is the accurate deployment of intelligent IoT-based 

sensor nodes. The sensor nodes are placed strategically in the cylindrical observation chamber and the vertical 

column reactor and hide various vertical and radial locations to record spatiotemporal change of bubbles dynamics. 

Each of the nodes is supplied with multimodal sensors: pressure transducers to measure the hydrostatic variation, 

thermocouples to conduct temperature profiling in real time, ultrasonic flow meters to measure velocity, acoustic 

sensors to identify fmc of bubble formation and high speed optical cameras to observe it visually. The grid used is a 

sensor covering 1.2 m vertical range and 0.5 m radial range that provides complete volumetric monitoring of rising 

bubbles as they advance, and in their contact with the surrounding fluid. These sensor modules are configured on 

machines to work synchronously and they are dynamically addressable by utilizing a lightweight protocol MQTT 

that is optimized to transmit with a low latency in the constrained wireless networks. The system enables fallback 

(CoAP over UDP to lose links tolerance) in very transient operating conditions.The sensors send the time-coded 

packets into aggregation into an edge computing gateway in the format of binary or JSON. The frequency of 

acquisition can be set to suit the fluid flow regime, 200 Hz in case of rapid slug flow, and 20 Hz in case of steady-

state bubbly flows. The data sampling rate is also further optimized by using a machine learning basis adaptive 

sampling module at the sensor node by monitoring the entropy change in the environment. Edge-aware firmware at 

every sensor node embeds the smartness to perform computing at the data source, which is an essential requirement 

in an IoT-augmented computation system. 

3.2 Signal Preprocessing and Noise Filtering 

Raw sensor readings obtained in the gasliquid testing apparatus are usually mixed with noise, vibrations 

contributed by the environment and mechanical vibrations. A powerful computing model is endowed into 
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downstream machine learning tasks by performing a rigorous signal preprocessing pipeline. The structure of this 

pipeline is made in a modular computing architecture, with signal cleaning, temporal alignment, and statistical 

normalization as starting points. Acoustic and flow signals are denoised in the wavelet basis, (usually Daubechies or 

Coiflet families) to remove high-frequency noise and retain sharp transitions characteristic of bubble events. The 

pressure and flow sensors are then bandpass filtered with a range of 0.2 Hz to 50 Hz which allows isolation of 

meaningful dynamic fluctuations. RGB values of the high-speed optical image images that were stored as RGB-

sequences are converted into grayscale and then the imaging is equalized using a histogram. 

𝐻(𝑓) =
𝑓

√(𝑓2 − 𝑓0
2)2 + (𝑓 ⋅ Δ𝑓)2

(1) 

 Where 𝐻(𝑓) is the transfer function at frequency𝑓, 𝑓0 is the center frequency of the passband, and Δ𝑓 is the 

bandwidth.Standardization is performed in modalities applying Z-score to transform raw sensor outputs into 

dimensionless measures everywhere. This is specifically crucial to assure scale resiliency and numerical wellbeing 

when applying machine learning models during training. To calculate the consistency between distributed nodes, the 

Docker deploys the preprocessing algorithms evenly among all edge gateways. Besides, Network Time Protocol 

(NTP) time stamps are used to ensure synchronization of all the time serial information and it is subsequently 

resampled as a spline interpolation to acquire a uniform temporal tagging. All signals delivered to the model as a 

result of this machine-centric preprocessing represent actual, artifact-free physical behavior and are in the correct 

form they may be read by the computer. 

𝑧 =
𝑥 − 𝜇

𝜎
(2) 

Where 𝑧 is the normalized value, 𝑥 is the original value, 𝜇 is the mean of the feature and 𝜎 is the standard 

deviation.  

𝐸𝑤 =∑∑|𝑊(𝑗, 𝑘)|2
𝑁

𝑘=1

𝑀

𝑗=1

(3) 

 Where 𝐸𝑤 is the total wavelet energy, 𝑊(𝑗, 𝑘) is the wavelet coefficient at level 𝑗, index 𝑘 and 𝑀,𝑁 are 

wavelet levels and time indicates. 

3.3 Feature Extraction from Multimodal Sensor Data 

After the sensor signals are cleaned and normalized the next stage of the BubbleGLS computing pipeline is 

the feature extraction stage, which is critical in capturing the physical behavior in machine-understandable features. 

The method utilizes sister knowledge in fluid dynamics as well as statistical computational methods of establishing 

valuable descriptors on each sensor feed. Based on the acoustic and flow signals, bubble emission frequency, root 

mean square (RMS) amplitude, power spectral density (PSD) and signal entropy are determined. Signals in pressure 

and temperature are also time-frequency processed with Short-Time Fourier Transform (STFT) and continuous 

wavelets to detect the transient events indicative of bubble build up or bubble collapse. 

𝐸𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 =
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

(4) 

Where 𝐸𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐  is the acoustic energy, 𝑥𝑖 is the acoustic pressure amplitude at sample 𝑖 and 𝑁 is the total 

number of acoustic samples.The high-speed video analysis is used to provide the information of void fraction and 

interfacial area concentration. The Sobel filter is applied to every frame of the video to enhance the edges and then 

canny edge detector is also run over the video to find the contours. Based on these contours, the values of such 

parameters as area, eccentricity and roundness are calculated, which are related to the depth and width of the single 

bubbles. Texture descriptors (e.g., Gabor filters, Local Binary Patterns), and morphological characteristics are then 

also added to this feature space. The feature vectors in multi modal format (CSV or HDF5) are stored and given as 
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input to the learning module. Out comes a high dimension, feature matrix that describes the complex interactions of 

the gasliquid system, computing optimized. 

𝛼 =
𝑉𝑔

𝑉𝑔 + 𝑉𝑙
(5) 

Where 𝛼 is the void fraction, 𝑉𝑔 is the volume of gas phase and 𝑉𝑙 is the volume of liquid phase. 

3.4 Bubble Contour Detection and Segmentation 

The recognition of the separate bubbles in the fluid medium becomes the visual mainstay of the 

BubbleGLS system. The technique takes optimal advantage of current developments in computer vision and deep 

learning to utilize U-Net, an effective convolutional neural network (CNN), to execute pixel-level segmentation of 

bubble outlines within high-resolution grayscale video frames. The processed video stream is divided into 256 256 

patches and labeled with the help of a semi-automatic labeling tool based on GrabCut and watershed algorithm. The 

U-Net model that is trained on these labeled datasets produces a binary segmentation mask that defines the spatial 

extent of each bubble. Morphological operations like erosion and dilation are then used to post process the output 

masks and remove noise and merge broken contours. 

𝑑𝑒𝑞 = √
4𝐴

𝜋
(6) 

Where 𝑑𝑒𝑞  is the equivalent diameter of bubble and 𝐴is the area of segmentation bubble contour. Each 

segmented bubble is analyzed geometrically with descriptors including the major and minor axis of each bubble, 

equivalent diameter, where the centroid is located and circularization. Such descriptors are coded in machine format 

as numerical arrays, and so can be readily used in regression models. The BubbleGLS system leverages this 

innovation by uniting computerized visual data with machine-centric statistical modeling, turning very complicated 

visual information into discrete and measurable analytics, which are needed to determine the diameter. 

𝐶 =
4𝜋𝐴

𝑃2
(7) 

Where 𝐶 is the circularity, 𝐴 is the area of bubble, and 𝑃 is the perimeter of the bubble contour. 

3.5 IoT Edge Integration with Fog Analytics 

An intelligent edge-fog computing layer is provided in the architecture of BubbleGLS to minimize the 

system latency and achieve near-real-time processing. In this case, every cluster of the sensors is connected to a 

Raspberry Pi 4 or Jetson Nano edge unit which locally analyzes its data feed. These means have these edge nodes 

connected to a centralized fog server in the plant network, which has the ability to orchestrate assignments, utilize 

new models, and gather analytics knowledge. Local computing is done on each edge node, and consists of a 

lightweight version of MobileNet, a small convolutional neural network, specialized to embedded and mobile 

systems. The model is subject to training to evaluate the rates at which bubbles may be estimated, mean diameter 

and temporal variation profile based on the incoming set of feature vectors. In case of anomaly or unexpected 

pattern being detected (e.g. sudden change in count rate or skew in diameters), the node raises an alert, which is 

broadcasted across the MQTT to the dashboard. Such a tier computing paradigm makes sure that the interpretation 

of data is done at or nearest position to the source of the data. The system due to combination of light machine 

learning models, edge nodes, and the co-ordination of operation of such at fog based controllers, offers low-latency 

high-accuracy inferencing and therefore fills the gap between sensor level information collection and cloud level 

analytics. 

3.6 Machine-Centric Bubble Diameter Estimation Model 

A hybrid learning engine optimized to estimate a desired diameter is at the center of the BubbleGLS 

computing framework. This engine unifies the rich features extraction ability of Inception networks, with the 
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structured gradient boosting of XGBoost, producing a very expressive and accurate machine-focused model. 

Inception module operates on the spatial feature maps constructed using the optical images that capture various-

scale textures and bubble-shape pattern characteristics. In the meantime, the tabular data c6onsisting of acoustic and 

pressure features as well as derived geometric features is used to train XGBoost. Depending on the training scenario, 

there is an ensemble voting scheme, or stacked regression meta-model that combines the outputs of both models. 

𝑀𝐴𝐸 =
1

𝑛
∑||𝑑𝑖 − �̂�𝑖||

𝑚

𝑖=1

(8) 

Where 𝑀𝐴𝐸 is the Mean Absolute Error, 𝑑𝑖 is the true bubble diameter, �̂�𝑖 is the predicted bubble diameter 

and 𝑛 is the number of observations.The Bayesian Optimization of Gaussian Processes is applied to optimize 

hyperparameters in the prediction of the diameter of bubbles with a goal to minimize mean absolute error (MAE) 

and root mean square error (RMSE) values. The trained model will be on a GPU-enabled server and then exported 

in ONNX to be available to either fog or cloud layers. The effectiveness of the computing power of the hybrid 

design in explaining complex physical behavior is also evident through the accuracy metrics which routinely 

surpassed R 2 of 0.95 at a variety of flow regimes. 

�̂� = 𝑤1 ⋅ �̂�𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 +𝑤1 ⋅ �̂�𝑋𝐺𝐵𝑜𝑜𝑠𝑡(9) 

Where �̂� is the final predicted diameter, �̂�𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 , �̂�𝑋𝐺𝐵𝑜𝑜𝑠𝑡 are the predictions from respective models and 

𝑤1, 𝑤2 are model weights (where 𝑤1 +𝑤2 = 1. 

3.7 Data Fusion and Model Synchronization 

Data fusion is essential in a heterogeneous sensor environment that helps in conveying some coherency and 

resilience in model outputs. BubbleGLS framework incorporates the DempsterShafer Theory (DST) of evidence, 

which incorporates the probabilistic data of probabilistic data of various modalities. DST allows pooling of multiple 

sources of belief (e.g. acoustic estimates and visual observations) to provide a composite belief in bubble size. 

𝑚12(𝐴) =
1

1 − 𝐾
∑ 𝑚1(𝐵)

𝐵∩𝐶=𝐴

⋅ 𝑚2(𝐶)(10) 

Where 𝑚12(𝐴) is combined belief mass for even 𝐴,𝑚1(𝐵),𝑚2(𝐶) are belief mass from source 1 and 2are𝐾 

is the conflict coefficient. The timestamp alignment of all the sensor feeds is used to accomplish time-synchronized 

fusion. A central data fusion module calculates confidence based averages or does conflict resolution when the 

sensors disagreed. The fusion is not only used to increase accuracy but also achieve system robustness to noisy or 

failed sensors. A synchronized fused prediction of bubble diameter is then obtained on the machine learning pipeline 

and reflects true spatiotemporal bubble dynamics of the physical system. 

3.8 Cloud Integration and Visualization Dashboard 

The top-level of the BubbleGLS framework entails a cloud-oriented computing platform specialized in 

long-term data storage, model handling, and analytics used by the user. The uploaded data are batch processed and 

prediction logs are uploaded to the cloud platforms like AWS IoT Core or Microsoft Azure IoT Hub depending on 

the infrastructure of deployment. These systems are coupled with NoSQL stores and object storage repositories to 

store historic records and use longitudinal analysis. The live distributions of bubble diameters, statistical grades 

(mean, variance, skewness) and anomaly flags are displayed using a visualization dashboard based on Grafana. 

Time sliders, flow regime pickers, real-time alerts that shoot up at the edge nodes can be interacted with by the 

users. These computing dashboards give the operators, researchers and engineers the ability to take data-driven 

decisions, modify process parameters or trouble-shoot anomalies in the gasliquid system with the minimum turn-

around time. 

3.9. Novelty of the Work 
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The novelty comes from the overall, machine-focused implementation of the IoT-sensing, hybrid deep 

learning, fog-edge computing integration into the task of providing real-time estimates of the bubble diameter: the 

task that is typically limited in its performance by the hardware and signal complications. BubbleGLS is a 

multimodal sensor fusion network, which unlike the predecessors, relies exclusively on visual or time based 

features, and combines multimodal (optical, acoustic, flow and pressure) information based on Dempster Shafer 

Theory which makes it more resistant to noise and uncertainty. The hybrid model which is the combination of 

Inception networks and XGBoost can exploit both spatial and structured information at the same time which is an 

uncommon mixture within fluid analytics. Moreover, the model can be written on light fog nodes and has low 

latency (<30 ms) without the use of the cloud. It enables full deployment and is applicable over a wide range of flow 

regimes with optimisation towards edge-devices, thus making it competitive to real-time industrial applications. The 

versatile and scalable mode makes BubbleGLS a unique solution compared to the current products, as far as setting 

a new paradigm in intelligent fluid monitoring by combining the power of AI, IoT, and the power of edge 

computing. 

Algorithm: BubbleGLS – Machine-Centric Bubble Diameter Estimation 

Input:Multimodal sensor data streams:𝑥𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 , 𝑥𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 , 𝑥𝑓𝑙𝑜𝑤 , 𝐼𝑡 (optical image at time 𝑡) 

    Sensor node coordinates and timestamps 

Output:Estimated bubble diameter �̂�for each observed bubble at time 𝑡 

Signal Acquisition and Preprocessing 

 Acquire sensor streams from deployed IoT nodes across the gas–liquid chamber. 

 𝑧 =
𝑥−𝜇

𝜎
         // Z-score normalization on numerical sensor data 

 𝐻(𝑓) =
𝑓

√(𝑓2−𝑓0
2)
2
+(𝑓⋅Δ𝑓)2

    // Bandpass filtering to flow and acoustic signals 

Feature Extraction 

 𝐸𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 =
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1      // Compute acoustic energy 

 𝛼 =
𝑉𝑔

𝑉𝑔+𝑉𝑙
        // Compute void fraction from volume readings 

 𝐸𝑤 = ∑ ∑ |𝑊(𝑗, 𝑘)|2𝑁
𝑘=1

𝑀
𝑗=1     // Extract wavelet energy from pressure signal 

 Convert image 𝐼𝑡to grayscale and apply Sobel/Canny filtering. 

Bubble Segmentation and Geometric Analysis 

 Use U-Net to segment bubble regions from 𝐼𝑡 

 For each bubble region: 

  𝑑𝑒𝑞 = √
4𝐴

𝜋
      // Equivalent diameter 

  𝐶 =
4𝜋𝐴

𝑃2
        // Circularity 

Edge-Fog Based Inference (Real-Time) 

 Send extracted features to fog node ML engine. 
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 Run MobileNet or lightweight model to compute quick estimate �̂�𝑓𝑜𝑔 

Cloud-Based Hybrid Estimation 

 At cloud, run Inception and XGBoost on complete feature set. 

 �̂� = 𝑤1 ⋅ �̂�𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 +𝑤1 ⋅ �̂�𝑋𝐺𝐵𝑜𝑜𝑠𝑡   // Compute ensemble prediction 

Sensor Fusion and Consistency Check 

 Fuse redundant predictions using Dempster–Shafer theory: 

  𝑚12(𝐴) =
1

1−𝐾
∑ 𝑚1(𝐵)𝐵∩𝐶=𝐴 ⋅ 𝑚2(𝐶) 

Return:Final predicted bubble diameter �̂�for all detected bubbles at timestamp 𝑡. 

End Algorithm 

4. Results and Discussions 

BubbleGLS working principle is based on the convergence of real-time sensing, smart data processing, and 

machine-based computing to determine bubble diameter accurately in gasliquid systems. The system itself starts by 

the application of multimodal sensors based on the employed Internet of Things and deployed in strategic locations 

throughout the chamber filled with fluids. These sensors monitor the real-time various distributions of 

heterogeneous data types, like pressure change, temperature variation, acoustic transmission, and high-speed optical 

image of gas bubble moving upward with influence of the dynamics of liquid media. All the sensor nodes are 

synchronized and connected wirelessly using low latency MQTT or CoAP communication protocols but data 

transmission is real-time and energy efficient. The information is preprocessed on raw signal after learning through 

the following steps: denoising, normalization, and feature enhancement. These procedures are imminent to process 

the input data rigorously to compute modeling. The model is deep centered with a hybrid deep learning engine of 

Inception networks (to recognize spatial patterns) and XGBoost (to regress features underlying the structure) and the 

training is performed such that the correlations that occurred between physical measurements and bubble geometries 

estimate the sizes of the bubbles. 

One innovation of BubbleGLS is the adoption of fog edge computing - the machine learning model is 

exactly executed on the edge device (e.g., Jetson Nano) with low latency and low bandwidth utilization. The 

combination of multimodal sensors with the DempsterShafer Theory enhances the reliability of predictions where 

the underlying conditions are noisy or uncertain. The last result that contains a real-time bubble size distribution, 

counts, and anomalies goes to a cloud-based dashboard is visualized and used to make decisions. This machine-

oriented cycle of sensing, processing, learning, and feed-back renders BubbleGLS an effective structure of real-time 

scaling analysis of gasliquid system. Figure 3 illustrates the performance metrics of fog and edge computing across 

system components. 
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Figure 3. Fog and Edge Computing Performance Metrics 

Table 1: Bubble Diameter Prediction Accuracy (Mean Absolute Error in mm) 

Flow Regime BubbleGLS CNN-LSTM MobileNet Random Forest 

Bubbly 0.25 0.41 0.48 0.59 

Slug 0.32 0.53 0.58 0.68 

Churn 0.4 0.67 0.71 0.79 

Annular 0.38 0.6 0.63 0.74 

Transitional 0.34 0.56 0.6 0.69 

Turbulent Bubbly 0.29 0.49 0.53 0.62 

Coalescing Slug 0.36 0.61 0.65 0.76 

Dispersed Bubble 0.31 0.52 0.58 0.67 

Stratified 0.28 0.48 0.54 0.63 

Oscillatory 0.3 0.51 0.55 0.65 

 

The values obtained in Table 1 and Figure 4 depict the Mean Absolute Error (MAE) data on estimating the 

bubble diameter over ten various gasliquid flow regimes. The offered BubbleGLS model shows better performance 

in all the test conditions with the minimal MAE reaching 0.25 mm in the bubbly condition and 0.40 mm in churn 

condition. This is related to the exact apprehending of the two forms of the model, stable and turbulent regimes. The 

other models such as CNN-LSTM, MobileNet, and Random Forest have a relatively elevated error especially in the 

circumstances of complex stream patterns like churn and coalescing slug. 
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Figure 4. Bubble Diameter Prediction Accuracy (MAE) 

CNN-LSTM off-peak error is recorded as maximum at 0.67 mm which is far much better than BubbleGLS. 

These findings confirm the robustness of the hybrid InceptionXGBoost framework employed in BubbleGLS that is 

able to integrate spatial perception and structured regression successfully. In general, Table 1 demonstrates that the 

model is reliable and accurate to be used in the real-time scenario under different conditions in the industrial setting. 

Table 2: R² Score Comparison 

Flow Regime BubbleGLS CNN-LSTM MobileNet Random Forest 

Bubbly 0.972 0.908 0.882 0.841 

Slug 0.961 0.889 0.861 0.82 

Churn 0.949 0.862 0.832 0.798 

Annular 0.951 0.874 0.846 0.805 

Transitional 0.957 0.883 0.85 0.812 

Turbulent Bubbly 0.967 0.896 0.87 0.829 

Coalescing Slug 0.953 0.87 0.841 0.799 

Dispersed Bubble 0.96 0.891 0.86 0.825 

Stratified 0.965 0.894 0.865 0.828 

Oscillatory 0.962 0.89 0.862 0.824 

 

Table 2 and Figure 5 demonstrates the R 2 scores which measure the fidelity of the model and accuracy of 

correlating the prediction with accurate bubble diameters. R 2 values obtained by BubbleGLS above 0.95 indicate an 

excellent fit and almost all ranges of flows. In a bubble and stratified flow, it produces 0.972 and 0.965 respectively, 

which confirms that it is quite confident in the results of its prediction. Comparatively, both CNN-LSTM and 

MobileNet are also behind, but the values of R 2 often range between 0.83 and 0.89 with the Random Forest lagging 

behind by mostly reaching below 0.83.  Auth
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Figure 5. R2 Score Comparison 

Such mismatches indicate that standard or superficial machine learning approaches are unsuccessful in 

learning nonlinearity dynamics of gas liquid interfaces efficiently. The powerful aspect extraction of Inception and 

unstructured learning of XGBoost provide the BubbleGLS with the conclusive advantage in retaining accuracy at 

varied data patterns. Table 2, therefore, supports the strength of the model and its overall ability to be generalized to 

bubble detection situations which are complex in nature. 

Table 3: Inference Time per Frame (in milliseconds) 

Flow Regime BubbleGLS CNN-LSTM MobileNet Random Forest 

Bubbly 27.4 38.5 22.1 18.7 

Slug 28.1 39.2 23 19.1 

Churn 29.6 41 24.3 20 

Annular 28.8 40.6 23.5 19.5 

Transitional 27.9 39.7 23.2 19 

Turbulent Bubbly 28 38.9 22.8 18.9 

Coalescing Slug 29 40.8 24 19.8 

Dispersed Bubble 28.3 39.3 23.3 19.3 

Stratified 27.7 38.6 22.6 18.8 

Oscillatory 28.2 39.5 23.1 19.2 

 

Table 3 and Figure 6 provides the comparison of the inference time of each model under various flow 

conditions. The operational needs to be real-time when it comes to gasliquid systems, and the BubbleGLS operates 

relatively well with an average speed of 28 milliseconds per frame. Although this is more than MobileNet and 

Random Forest (that fluctuate between 18 till 24 ms), it is much less than CNN-LSTM, which almost reaches 41 ms 

when there is churn flow. It is amazing who balanced BubbleGLS, it can perform in near real time without hurting 
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the quality of its predictions. This makes it among the most appropriate when it comes to edge and fog applications 

where speed is as important as precision.  

 

Figure 6. Inference Time per Frame (in milliseconds) 

In addition, BubbleGLS exhibits a stability of its inference. Computational efficient nature is a key feature 

towards machine centric industry computation. This model is not only precise but responsive as presented in Table 3 

and this is a vital requirement in the employment of this type of model in systems requiring time-sensitive 

monitoring programmes. 

Table 4: Model Size (MB) 

Model Size (MB) 

BubbleGLS 46.3 

CNN-LSTM 82.5 

MobileNet 25.4 

Random Forest 17.6 

XGBoost 31.2 

ResNet50 98.7 

SVM 14.2 

LightGBM 22.9 

Decision Tree 11.5 

KNN 12.4 

 

Table 4 and Figure 7 represents a comparison of the sizes of the models in megabytes with a reflection to 

their deployment viability and storage feasibility. With a size of 46.3 MB, BubbleGLS remains of an appropriate 

large scale, not too complex, nor too deployable, in particular on edge machines, such as Jetson Nano or Raspberry 

Pi. It is also much smaller than CNN-LSTM and ResNet50 (82.5 MB and 98.7 MB, respectively), and it is not as 

suitable to embedded and real-time infrastructures. Although MobileNet and Random Forest are less substantial, 

their accuracy is a far cry compared to the others as depicted in the tables above.  
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Figure 7. Model Size Distribution (MB) 

The size efficiency in BubbleGLS is the result of optimized techniques in achieving architecture fusion and 

pruning that achieve learning capacity without make the memory requirements bloated. Moreover, smaller models 

such as SVM and KNN are compact yet are inefficient in terms of computation during the process of inference. 

Table 4 accordingly proves the claim that BubbleGLS remains lightweight but with prediction power thus sticks to 

the objective of the machine-centric and IoT-compatible computing system. 

Table 5: MAE under Different Noise Levels (in dB) 

Noise Level (dB) BubbleGLS CNN-LSTM MobileNet Random Forest 

0 0.27 0.45 0.51 0.63 

5 0.29 0.48 0.54 0.67 

10 0.31 0.53 0.59 0.7 

15 0.35 0.57 0.62 0.75 

20 0.37 0.6 0.66 0.79 

25 0.41 0.65 0.7 0.83 

30 0.44 0.69 0.74 0.87 

35 0.48 0.72 0.78 0.9 

40 0.51 0.75 0.81 0.94 

45 0.55 0.79 0.85 0.97 
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Table 5 and Figure 8 investigates the robustness of every model at growing noise levels, which replace a 

real situation degradation of signals. BubbleGLS performs better than various other models, and MAE rises 

modestly, by 0.27 to 0.55 mm (0 to 45 dB). Conversely, CNN-LSTM, MobileNet and Random Forest surge in error 

with noise, peak at 0.97 mm of noise in the case of Random Forest at 45 dB of noise.  

 

Figure 8. MAE under Different Noise Levels 

These results highlight the noise resistant nature of the BubbleGLS design that comprises edge-level 

filtering, wavelet based denoising and robust multimodal fusion. This is essential in the practical application in 

industry plants where interferences are acoustic, thermal and also electrical. Table 5 confirms that, BubbleGLS is 

not only high-performance model in good circumstances, but also reliable, fault-tolerant model that can be applied 

in real world industrial conditions that need constant and consistent bubble inspection. 

4.1. Discussion 

 Experimental comparison of BubbleGLS on 10 gasliquid flow regimes shows its obvious advantages 

compared to other models. In the results of the MAE, we can see the proposed model constantly showing scores as 

low as 0.25 mm, compared to the 0.41 mm of CNN-LSTM, 0.48 mm of MobileNet, and 0.59 mm of Random Forest. 

This indicates that BubbleGLS is able to capture the fluid dynamics of complex systems, and in particular, non-

linear parts of the fluid dynamics, such as churn or slug flow. This advantage is also confirmed by the comparisons 

of the R 2 scores where the BubbleGLS scores an average of 0.97 and more in various regimes which is an excellent 

correlation in truly predicting and actually observing bubble sizes. This predictive fidelity is attributed to the 

collaborative learning ability of the multi-scale feature extraction of Inception and structured regression of XGBoost 

in modeling the dynamic natural geometry and flow-induced variation of gas bubbles. 

Another very important measure is latency, particularly in real-time industrial systems. BubbleGLS asserts 

an inference time of less than 30 milliseconds which makes it capable of real-time processing when used in high-

frequency systems. By contrast, CNN-LSTM has latency exceeding 38 ms, which may become a bottleneck to 

responsive systems. MobileNet produces slightly better latency (~22 ms), but worse accuracy and thus is not such a 

well-rounded method as BubbleGLS. BubbleGLS is very robust in noisy surroundings. When signal-to-noise ratios 

are negatively affected, the MAE changes by a small amount (0.27 mm to 0.55 mm) but other models are impacted 

significantly. The ability to achieve such robustness rests on the model data fusion approach based on 

DempsterShafer Theory, that is able to merge sensor inputs very well, and at the same time discount the effect of 

unreliable sources. Its model architecture of 46.3 MB allows compatibility with edge and embedded systems and its 
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modular deployment allows decentralized processing of data by fog layers. This also increases the scalability but 

also decreases the burden proposed to cloud resources thereby increasing the responsiveness and efficiency of the 

system. All these results support the efficacy of BubbleGLS in achieving the right balance of accuracy, latency, and 

robustness along with deployability, which are important benchmarks in contemporary setting of industrial IoT 

applications encompassing fluid systems. 

5. Conclusion and Future Work  

 In our study we have introduced a new machine-centric, IoT-coupled bubble diameter estimation 

framework in gas-liquid systems in real-time BubbleGLS. It uses a hybrid type architecture based on Inception 

networks to extract the spatial features with structured regression implemented via the XGBoost framework. An 

effective preprocessing pipeline, and methods of multimodal sensor fusion through DempsterShafer Theory, 

improve the accuracy and robustness even further. BubbleGLS is executed on fog-based edge devices and offers 

low-latency and high-frequency inference that are of use in industrial real-time monitoring. The experimental 

analysis on a variety of ten different flow regimes revealed that the model is more effective. Even in ideal 

circumstances, it was noted that BubbleGLS recorded a mean absolute error (MAE) of 0.25 mm and R2 values 

greater than 0.97 at all settings, a factor that easily places it ahead of state-of-the-art competitors like CNN-LSTM, 

MobileNet, and Random Forest. The system also demonstrated aspect of robustness when used in noisy condition, 

hence it can be implemented in practical use in dynamic industrial space. Many useful extensions are possible with 

the framework. The model could be extended to be able to track bubbles in 3D, along a volumetric shape, either 

through stereo vision or a depth frame generated in LiDAR. By integrating into digital twin systems, predictive 

simulation of the flow dynamics on the basis of real-time sensor feedback may be made possible. Besides, the use of 

reinforcement learning loops would allow the closed-loop control with the bubble size modified wide depending on 

the flow rate adjustment or pressure levels variability. Finally, the powerful and versatile BubbleGLS introduces a 

new standard to analyze gasliquid systems; it excels when it comes to accuracy, speed, and scalability combined. It 

is a pattern of how subsequent generations of intelligent monitoring systems can be designed with AI, edge 

computing, and IoT intersecting to enable the process to be optimized. 
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