
Journal Pre-proof

Performance Evaluation of Shor’s Algorithm on Simulated Quantum

Hardware with Circuit-Level Analysis

Thamaraimanalan T, Anandakumar Haldorai, Mariyappan K and
Arulmurugan Ramu

DOI: 10.53759/7669/jmc202505152

Reference: JMC202505152

Journal: Journal of Machine and Computing.

Received 28 March 2025

Revised from 10 May 2025

Accepted 19 June 2025

Please cite this article as: Thamaraimanalan T, Anandakumar Haldorai, Mariyappan K and

Arulmurugan Ramu, “Performance Evaluation of Shor’s Algorithm on Simulated Quantum Hardware

with Circuit-Level Analysis”, Journal of Machine and Computing. (2025). Doi: https://

doi.org/10.53759/7669/jmc202505152.

This PDF file contains an article that has undergone certain improvements after acceptance. These

enhancements include the addition of a cover page, metadata, and formatting changes aimed at

enhancing readability. However, it is important to note that this version is not considered the final

authoritative version of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting,

typesetting, and comprehensive review. These processes are implemented to ensure the article's final

form is of the highest quality. The purpose of sharing this version is to offer early visibility of the article's

content to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may

be identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal

remain in effect.

© 2025 Published by AnaPub Publications.

Performance Evaluation of Shor’s Algorithm on Simulated Quantum Hardware with

Circuit-Level Analysis

1Thamaraimanalan T, 2Anandakumar Haldorai, 3Mariyappan K, 4Arulmurugan Ramu

1Department of Electronics and Communications Engineering, Sri Eshwar College of Engineering, Coimbatore,

Tamil Nadu, India.
2Department of Computer Science and Engineering, Sri Eshwar College of Engineering, Coimbatore,

Tamil Nadu, India.
3Department of Computer Science and Engineering, Chennai Institute of Technology, Chennai,

Tamil Nadu, India.
4Department of Computational Science and Software Engineering, K. Zhubanov University, Kazakhstan.

1t.thamaraimanalan@gmail.com, 2anandakumar.psgtech@gmail.com, 3arulmr@gmail.com
4mariwithgold@gmail.com,

Correspondence should be addressed to Thamaraimanalan T: t.thamaraimanalan@gmail.com

Abstract

Shor’s algorithm stands as a breakthrough in quantum computing due to its potential to factor large integers

exponentially quicker than classical algorithms. However, implementing and evaluating this algorithm on real

quantum computer hardware remains exciting due to qubit limitations, gate noise, and hardware constraints. This

research presents a comprehensive performance evaluation of Shor’s algorithm using simulated quantum

backends provided by Qiskit. A flexible and generic implementation is proposed, allowing dynamic input of

integers to be factored, with randomized co-prime selection and automated circuit generation. The algorithm is

tested on various semiprime numbers, such as 15, 21, and 35, using IBM’s Aer simulator. A major contribution of

this work is the circuit-level analysis conducted both before and after transpilation. Metrics such as gate counts,

circuit depth, and simulator runtime are extracted to assess scalability and resource requirements. High-resolution

plots of the pre-transpiled circuits are saved to visualize algorithmic complexity, while post-transpilation metrics

inform future quantum hardware feasibility. The output measurement distributions are analyzed to estimate

periodicity and derive correct factors. The proposed implementation is compared with existing fixed-instance Shor

demonstrations to highlight its flexibility and extensibility. Experimental results show consistent success in factor

retrieval and provide valuable insight into circuit growth and complexity under realistic constraints. This analysis

lays the groundwork for future adaptation to NISQ hardware and contributes to understanding Shor’s algorithm

from both computational and architectural perspectives.

Keywords: Shor’s Algorithm, Qiskit Simulation, Quantum Circuit Analysis, Quantum-Classical Comparison.

1. Introduction

Integer factorization is a fundamental problem in number theory that involves the breakdown of a composite

number into a product of smaller numbers. Its significance extends beyond pure mathematics into practical

domains such as cryptography, algorithmic complexity, and secure communications [1]. The integer factorization

becomes computationally prohibitive as the size of the number increases, especially when the number in question

is a semiprime an integer composed of exactly two large prime factors. Historically, several classical algorithms

have been developed to tackle this problem, each improving upon its predecessors in terms of efficiency and

scalability. The most straightforward method, trial division, involves dividing the target number by successive

integers to test for divisibility. Although effective for small numbers, it quickly becomes impractical for large

inputs due to its exponential time complexity [2].

More sophisticated algorithms such as Pollard’s rho algorithm, Fermat’s factorization, and the Elliptic Curve

Method (ECM) introduce probabilistic and number-theoretic heuristics to improve efficiency. However, the most

notable advancements in classical integer factorization are represented by the Quadratic Sieve (QS) and the

General Number Field Sieve (GNFS). These algorithms utilize complex mathematical structures, such as algebraic

number fields, to factor large semiprimes in sub-exponential time. Despite its efficiency, GNFS still scales poorly

for very large integers—typically those used in cryptographic key generation (e.g., 2048-bit RSA keys)—and

remains infeasible without access to massive computational resources. This computational hardness underpins the

security of widely used cryptographic protocols like RSA, DSA, and Diffie-Hellman key exchange, where the

confidentiality and authenticity of encrypted communications rest on the infeasibility of factorizing large

semiprimes [3].

In 1994, Peter Shor revolutionized the landscape of computational number theory and cryptography by suggesting

a quantum algorithm capable of factoring large integers in polynomial time. Unlike classical methods, which scale

sub-exponentially at best, Shor’s algorithm operates in time complexity marking an exponential speedup over the

Auth
ors

 Pre-
Proo

f

fastest classical alternatives. The quantum subroutine utilizes quantum parallelism to evaluate many values of

𝑓(𝑥) simultaneously and employs the QFT to extract the periodicity embedded in the superposition of quantum

states [4]. This period-finding process is exponentially faster than classical brute-force or sieving techniques,

making Shor’s algorithm the most powerful known application of quantum computing. The potential of Shor’s

algorithm to break RSA and other cryptosystems has led to widespread concern within the cybersecurity

community. In anticipation of scalable quantum computers, researchers have begun developing post-quantum

cryptographic algorithms, which are designed to be unaffected by quantum attacks. These include lattice-based,

hash-based, and code-based cryptosystems, many of which are currently being evaluated by the National Institute

of Standards and Technology (NIST) for standardization [5].

From a scientific perspective, Shor’s algorithm continues to serve as a benchmark for quantum computational

advantage. Experimental demonstrations on simulated and real quantum hardware, such as those offered by IBM,

Google, and Rigetti, have successfully factored small semiprimes like 15 and 21. These implementations not only

validate the algorithm’s correctness but also provide crucial insights into circuit optimization, transpilation, noise

modeling, and hybrid quantum-classical execution strategies. This research evaluates the performance and

feasibility of Shor’s algorithm using simulated quantum circuits in Qiskit, focusing on semiprime numbers (N=15,

21, and 35). By analyzing circuit depth, gate counts, and measurement distributions, we assess the algorithm’s

efficiency and scalability under realistic quantum computing constraints [6].

Despite its theoretical significance and potential to revolutionize cryptography, Shor’s algorithm has several

practical drawbacks that hinder its current applicability. The most critical limitation is the requirement for a fault-

tolerant quantum computer with a large number of qubits. To factor an n-bit number, the algorithm requires the

order of O(n³) quantum gates and roughly 2n qubits, depending on the implementation. Current quantum hardware

lacks the necessary qubit count and coherence times to run such a complex algorithm effectively, particularly for

numbers of cryptographic importance (e.g., 2048-bit RSA keys). Additionally, Shor’s algorithm is highly sensitive

to noise and decoherence, common in existing quantum systems [7, 8]. Even small errors in gate operations or

qubit interactions can lead to incorrect results, requiring advanced quantum error correction schemes.

Implementing such correction methods adds significant overhead, both in terms of required qubits and

computational resources. Another challenge lies in the classical pre- and post-processing steps. Although quantum

speedup is obtained in the modular exponentiation and period-finding stages, classical computations are still

required for preparing the input and verifying the factors, potentially limiting speed gains in practice. Moreover,

the algorithm is tailored for integer factorization and does not directly apply to other cryptographic primitives.

While its implications are profound for RSA, it is less relevant for post-quantum cryptographic algorithms based

on lattices or hash functions [8].

This research article is organized into four main sections for clarity and coherence. Section 2: Literature Review

presents an in-depth analysis of classical and quantum approaches to integer factorization, including a comparative

study of Shor’s algorithm with existing implementations and simulation-based studies. Section 3: Methodology

details the proposed implementation of Shor’s algorithm using Qiskit, emphasizing circuit construction, modular

exponentiation, inverse Quantum Fourier Transform (QFT), and simulator configuration. The section also

explains how performance metrics such as gate count, circuit depth, and execution time are extracted. Section 4:

Results and Discussion showcases simulation outcomes for semiprime numbers like 15, 21, and 35, including

circuit-level analyses, histogram visualizations, and factor extraction via classical post-processing. It also

compares the proposed implementation with existing fixed-instance models. Finally, Section 5: Conclusion

summarizes key findings, highlights contributions to quantum circuit analysis, and outlines future directions for

real hardware adaptation and scaling of Shor’s algorithm on NISQ devices.

2. Related Works

Shor’s algorithm hinges on the efficient implementation of modular exponentiation and quantum phase estimation

(QPE) via the QFT [9]. The modular exponentiation subroutine, crucial for computing powers of a chosen base

modulo 𝑁, is often treated as an oracle or “black box” in theoretical presentations. However, expanding this oracle

into primitive gates especially Toffoli and multi-controlled rotations dramatically increases circuit depth and

resource requirements. Häner et al. (2017) provided a seminal exploration of this, showing how a Toffoli-based

modular multiplication circuit can be realized with 𝑂(𝑛3) gate depth and 𝑂(𝑛3 𝑙𝑜𝑔 𝑛) gate count for an 𝑛-bit

integer. This insight underscores the fact that practical implementation of Shor’s algorithm requires careful circuit

engineering to balance qubit usage, gate complexity, and error susceptibility.

In this vein, Häner and colleagues introduced an efficient “in-place” constant adder using dirty ancillas, offering

𝑂(𝑛) depth and 𝑂(𝑛 log 𝑛) size, mitigating some space overhead associated with classical adders. Similarly,

Takahashi et al.'s work on resource-optimized circuit templates demonstrated that careful structured

decomposition of arithmetic operations can mitigate the hardware burden. These studies reinforce the view that

Auth
ors

 Pre-
Proo

f

the practical feasibility of Shor’s algorithm is as much a matter of low-level circuit design as it is of quantum

hardware capability [10].

To assess Shor’s algorithm beyond toy examples, classical simulation techniques have been pushed to their limits.

Wang et al. (2015) demonstrated that the Matrix Product States (MPS) allows Shor’s quantum wavefunctions to

be represented compactly based on entanglement structure rather than simple amplitude storage. By efficiently

harnessing weak entanglement across qubit partitions, Wang’s group simulated circuits as large as 42–45 qubits

on a single-processor machine in roughly one hour demonstrating the viability of MPS simulation for moderate-

sized problems. This work was extended by the authors, who optimized MPS simulations specifically for Shor’s

circuits. They highlighted that mapping high-entanglement portions of the circuit (e.g., modular exponentiation)

onto MPS efficiently enables the simulation of up to 60 qubits on a single node. After entanglement peaks are

handled, truncation becomes feasible, mitigating resource explosion. These results illustrate that classical

simulation remains a potent tool for understanding algorithmic complexity, benchmarking quantum

implementations, and analyzing entanglement scaling even in the absence of actual quantum hardware [11].

As quantum circuit simulations for Shor’s algorithm scale up further, GPU-backed and distributed supercomputing

resources have come into play. Willsch et al. (2023) used large GPU clusters and optimized state-vector

frameworks to simulate Shor’s algorithm factoring semiprimes up to ~550 trillion with robust success

probabilities, peaking above 50% despite theoretical expectations of ~3–4%. Their approach not only validated

the “luck” inherent in peak measurement outcomes but also demonstrated effective post-processing strategies to

recover factors with high certainty. These simulations also included noise modeling, revealing the “universality”

and resilience of periodicity extraction even under realistic hardware defects. Another high-performance effort

utilized JUQCS and MPI coordination across thousands of GPUs to simulate iterative Shor circuits with L+1

qubits, distributing vector elements across devices to simulate circuits with qubit counts upwards of 43 in under

200 seconds. These results confirm that, although classical simulation capacity grows rapidly with hardware

resources, clever algorithmic design remains critical for efficient periodicity decoding and circuit validation [12].

Simulated performance is one thing, but real hardware performance is another. On this front, several studies have

used Qiskit and Ion-trap systems to implement scaled-down, ion-based versions of Shor’s algorithm. A Qiskit-

based implementation shared in a 2015 GitHub example (possibly by SanScherf or Rania Ouassif) offered a

dynamic circuit generator with modular exponentiation and semiclassical QFT routines tailored to small inputs

like 15, 21, and 35. Similarly, an ion-trap demonstration factored 15 using only seven logical qubits and “cache”

qubits, achieving over 90% success probability through Kitaev’s scalable qubit reuse method. These real-device

implementations indicate that tightly controlled qubit utilization and error mitigation strategies are key to

hardware performance even for small problem sizes. Reddit reports from IBM Quantum users note that for moduli

up to 48 bits, Qiskit-connected IBM backends achieved factorization successes in just ~8 seconds, compared to

classical brute force taking over 4 minutes. However, these successes are limited by qubit availability (often

approximately 127 qubits), scheduling constraints (10 minutes per month), and lack of built-in error correction.

Users noted that replacements with PRNG outputs could still “succeed,” underlining the need for robust success

criteria and sanity checks to confirm true quantum performance [13, 14].

Table 1: Comparison of Notable Implementations and Simulations of Shor’s Algorithm Across Classical and

Quantum Platforms

References Approach / Scale Key Contributions Limitations

Häner et al. (2016)

Toffoli-based

arithmetic,

𝑂(𝑛3 𝑙𝑜𝑔 𝑛) gates

Reversible addition and

multiplication circuits with

dirty ancillas, and constant

depth adders.

Still large circuits; no

hardware testing

Wang et al. /

Dang et al. (2015–

2017)

MPS simulation for

42–60 qubits

Efficient entanglement

mapping; demonstrated

weak scaling via MPI;

truncated error control.

Classical limit only; does not

test hardware

Willsch et al. (2023)

GPU + large state-

vector simulation

(~40 qubits)

Quantified success

probability; scalable to 550T

semiprime; robust under

noise.

Resource-intensive; classical

only

Ion-trap hardware

demo

7 logical + 4 ancilla

qubits for N=15

High success (>90%),

reusable qubit protocols,

scalable design principles

Very small modulus;

hardware remained within a

small experimental setup

Auth
ors

 Pre-
Proo

f

IBM Qiskit

implementations &

backends

N=15–35 toy circuits,

some iterative

moderate

factorizations

Flexible input, dynamic

circuit generation, PRNG

benchmarks, 8-second

factoring at 48 bits

High error rate, lack of error

correction, short run-time

windows (~10 min per

month), no general scaling

Table 1 summarizes notable implementations and simulations of Shor’s algorithm across classical and quantum

platforms, highlighting key milestones and technological limitations encountered in each case. The QFT, central

to Shor’s period-finding, requires 𝑂(𝑛2) two-qubit controlled phase rotations. While straightforward for small

circuits, implementing QFT at scale is both resource-intensive and highly sensitive to gate fidelity and timing

delays. Circuit-level studies, including Häner’s and Takahashi’s, highlight that even scalable modular arithmetic

design must be complemented by efficient QFT and error-corrected gate design to reduce fidelity loss, especially

since shallow decomposition of QFT circuits often introduces phase approximation overheads [15, 16].

3. Methodology

Shor’s algorithm transformed the field of quantum computing by introducing an efficient method for integer

factorization, a task classically considered intractable for large numbers. The algorithm operates in two primary

stages: a classical pre-processing step where a co-prime 𝑎 is chosen and the quantum order-finding stage where

the period 𝑟 of the function 𝑓(𝑥) = 𝑎𝑥 𝑚𝑜𝑑 𝑁 is computed using QFT. Once 𝑟 is determined, the classical post-

processing computes the GCD between 𝑎𝑟/2 ± 1 and 𝑁, which yields non-trivial factors of the composite number

𝑁.

Mathematically, the periodic function is defined as:

𝑓(𝑥) = 𝑎𝑥 𝑚𝑜𝑑 𝑁 (1)

where:

𝑎 ∈ 𝑍 and 𝑔𝑐𝑑(𝑎, 𝑁) = 1

𝑁 is the number to be factorized

𝑟 is the least positive integer such that 𝑎𝑟 ≡ 1 𝑚𝑜𝑑 𝑁

The success probability increases significantly when 𝑟 is even and 𝑎𝑟/2 ≢ 1 𝑚𝑜𝑑 𝑁.

The use of quantum parallelism and QFT allows the algorithm to determine 𝑟 in polynomial time, thus

demonstrating exponential speed-up over classical approaches such as trial division or Pollard’s rho algorithm.

3.1. Quantum Circuit Design for Order Finding

The main component of Shor’s algorithm is the order-finding circuit, which identifies the period 𝑟 of the function

𝑓(𝑥) = 𝑎𝑥 𝑚𝑜𝑑 𝑁. This is attained using a QPE subroutine. The quantum circuit consists of two quantum

registers:

a) Control register with 𝑡 qubits (typically 𝑡 = 2𝑛, where 𝑛 = 𝑙𝑜𝑔2𝑁) initialized to the ∣0⟩ state.

b) Target register with 𝑛 qubits initialized to ∣1⟩, which holds the modular exponentiation result.

c) The circuit undergoes the following steps:

d) Hadamard Transform is applied to all control qubits to create a superposition.

e) Controlled Modular Exponentiation applies the unitary operator, defined as:

f) 𝑈𝑎|𝑥⟩ = |𝑎𝑥 𝑀𝑜𝑑 𝑁⟩

g) in a controlled fashion based on the control qubits.

h) Inverse QFT (𝑄𝐹𝑇⁻¹) is then applied to the control register to extract the phase information.

i) Measurement of the control register yields a binary approximation of 𝑠/𝑟, where 𝑠 is a random integer

less than 𝑟. Continued fraction expansion is then used to estimate 𝑟.

Figure 1 represents the stepwise process of Shor’s algorithm used for factoring a composite integer 𝑁 using

quantum computation. The flow encapsulates both classical pre-processing, quantum phase estimation, and

classical post-processing, forming a hybrid quantum-classical algorithm.

Start: The process initiates with the input of a composite number 𝑁 (e.g., 15, 21, 35).

Random Selection of 𝑎: A random integer 𝑎 is chosen such that 1 < 𝑎 < 𝑁. This forms the base for modular

exponentiation.

Auth
ors

 Pre-
Proo

f

Check 𝑔𝑐𝑑(𝑎, 𝑁): Compute the GCD of a and 𝑁. If 𝑔𝑐𝑑(𝑎, 𝑁) ≠ 1, then a non-trivial factor of 𝑁 is already found.

This is a rare but immediate success case.

Quantum Order Finding: If 𝑔𝑐𝑑(𝑎, 𝑁) = 1, the algorithm proceeds to the quantum part, where the order 𝑟 of

𝑎 𝑚𝑜𝑑𝑢𝑙𝑜 𝑁 is estimated using QPE. This involves constructing and executing a quantum circuit.

Check if 𝑟 is even: Once the period 𝑟 is estimated, it's verified whether 𝑟 is even. If it is not even, the algorithm

chooses a new random 𝑎 and repeats the process.

Check 𝑎𝑟/2 ≢ −1 𝑚𝑜𝑑 𝑁.: If 𝑟 is even, the condition 𝑎𝑟/2 ≢ 1 𝑚𝑜𝑑 𝑁. is checked. If this holds, the algorithm

moves to the final factor computation.

Compute Factors: Using the formula:

𝑔𝑐𝑑 (𝑎
𝑟

2 − 1, 𝑁) and 𝑔𝑐𝑑 (𝑎
𝑟

2 + 1, 𝑁) (2)

two non-trivial factors of 𝑁 are calculated.

End: If the factors are valid (non-trivial and not equal to 𝑁), the algorithm terminates successfully. Otherwise, it

repeats with a new 𝑎.

Figure 1: Workflow of Shor’s Algorithm for Quantum Integer Factorization

Auth
ors

 Pre-
Proo

f

3.2. Quantum Circuit for Modular Exponentiation

The core quantum subroutine of Shor’s algorithm is the QPE, which is used to estimate the order 𝑟 of a number 𝑎

modulo 𝑁, i.e., the smallest integer such that:

𝑎𝑟 ≡ 1 𝑚𝑜𝑑 𝑁 (3)

To perform this using quantum computation, a quantum circuit is designed with two main registers:

The control register: an 𝑛-qubit register initialized to |0⟩⨂𝑛, which stores the superposition of computational basis

states.

The target register: a 𝑙𝑜𝑔2(𝑁) qubit register initialized to |1⟩, which evolves under modular exponentiation.

The process begins by applying a Hadamard gate on each qubit in the control register, resulting in the state:

1

√2
∑ |𝑘⟩|1⟩2𝑛−1

𝑘=0 (4)

A key component in the quantum circuit is the unitary operator 𝑈𝑎, defined by:

𝑈𝑎|𝑥⟩ = |𝑎. 𝑥 𝑚𝑜𝑑 𝑁⟩ (5)

This unitary operation is repeatedly applied in a controlled manner based on the binary value of each qubit in the

control register, corresponding to the powers of 𝑈𝑎. The complete unitary evolution performs:

1

√2
∑ |𝑘⟩|1⟩2𝑛−1

𝑘=0 →
1

√2
∑ |𝑘⟩|𝑎. 𝑥 𝑚𝑜𝑑 𝑁⟩2𝑛−1

𝑘=0 (6)

Following the modular exponentiation, an inverse QFT is applied to the control register, transforming the

periodicity into a measurable phase. Measuring the control register gives a value 𝑦, from which the phase 𝜙=𝑠/𝑟

can be estimated using continued fractions, where 𝑠 and 𝑟 are integers. This circuit is then subjected to

transpilation, optimizing it for specific quantum hardware backends. Gate-level analysis of the transpiled circuit,

including depth, width, CX count, and memory requirements, is performed to evaluate the computational cost.

3.3. Circuit Transpilation and Performance Metrics

After constructing the modular exponentiation circuit and applying the inverse QFT, the resulting circuit must be

adapted to specific quantum hardware constraints through transpilation. It optimizes the circuit by decomposing

high-level gates into basis gates supported by the backend (e.g., IBM’s basis_gates=['cx', 'u3']), and mapping the

logical qubits to the physical qubits with minimal overhead.

Let the original (pre-transpiled) quantum circuit be represented by:

𝐶𝑜𝑟𝑖𝑔 = (𝑄, 𝐺, 𝑀) (7)

Where, 𝑄 is the set of qubits, 𝐺 is the set of quantum gates, and 𝑀 represents measurements. After transpilation,

the optimized circuit 𝐶𝑡𝑟𝑎𝑛𝑠 satisfies:

𝐶𝑡𝑟𝑎𝑛𝑠 = 𝑇(𝐶𝑜𝑟𝑖𝑔 , 𝐻) (8)

Where 𝑇 is the transpilation function and 𝐻 is the target hardware model.

Several performance parameters are extracted post-transpilation:

Gate Count 𝐺𝑐:

𝐺𝑐 = ∑ 𝛿(𝑔)𝑔∈𝐺 (9)

Where 𝛿(𝑔) is the number of instances of gate 𝑔. For example, CX count 𝐺𝐶𝑋, and single-qubit gate count 𝐺1Q, are

critical indicators of circuit complexity.

Circuit Depth 𝐷:

𝐷 = max
𝑞∈𝑄

𝑑𝑒𝑝𝑡ℎ (𝑞) (10)

This determines the number of gate layers and directly affects decoherence.

Total Number of Qubits 𝑁𝑞:

𝑁𝑞 = |𝑄| (11)

Runtime Estimation 𝑇𝑟:

Auth
ors

 Pre-
Proo

f

Given gate execution times 𝑡𝑔, the total estimated runtime is:

𝑇𝑟 = ∑ 𝛿(𝑔). 𝑡𝑔𝑔∈𝐺 (12)

Memory Footprint 𝑀𝑓:

Dependent on the number of classical bits and qubits stored:

𝑀𝑓 = 𝑁𝑞 ⋅ 𝑄𝑢𝑏𝑖𝑡𝑆𝑡𝑎𝑡𝑒𝑆𝑖𝑧𝑒 + 𝑁𝑐 ⋅ 𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙𝐵𝑖𝑡𝑆𝑖𝑧𝑒 (13)

These metrics are crucial in comparing the performance of Shor’s algorithm across different simulation platforms

or real quantum devices. A direct comparison of transpiled circuits for different input sizes (e.g., factoring 15, 21,

and 35) reveals how hardware constraints (e.g., connectivity, gate fidelities) impact resource utilization.

3.4. Measurement Analysis and Order Finding

Once the transpiled quantum circuit is executed on a simulator or real quantum backend, the outcome of the

quantum computation is obtained as a bitstring from the quantum measurement. These measurement results are

used to estimate the phase that encodes information about the periodicity of the modular exponentiation function,

which is essential to finding the order 𝑟.

Let 𝑦 ∈ {0,1, . . . ,2𝑛 − 1} be the most frequently measured value in the counting register of size 𝑛 qubits. The

estimated phase 𝜙 is computed as:

𝜙 =
𝑦

2𝑛 (14)

This phase 𝜙 approximates a rational number 𝑠/𝑟, where 𝑟 is the unknown order to be determined, and 𝑠 ∈ 𝑍 is

an integer coprime with 𝑟. The continued fraction expansion is used to recover 𝑟 from 𝜙:

𝑠

𝑟
≈ 𝜙 =

𝑦

2𝑛 ⟹ 𝑟 = 𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝐵𝑒𝑠𝑡𝐴𝑝𝑝𝑟𝑜𝑥(𝜙)) (15)

If 𝑟 is even, and 𝑎𝑟/2 ≢ −1 𝑚𝑜𝑑 𝑁, then the factors of 𝑁 can be retrieved as:

𝑓1 = 𝑔𝑐𝑑 (𝑎
𝑟

2 − 1, 𝑁) and 𝑓2 = 𝑔𝑐𝑑 (𝑎
𝑟

2 + 1, 𝑁) (16)

If either 𝑓1 or 𝑓2 is a non-trivial factor of 𝑁, the algorithm has succeeded.

To improve the reliability, the algorithm may need to be run multiple times with different values of 𝑎. The success

probability 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 increases with repeated trials, given by:

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 1 − ∏ (1 − 𝑝𝑖)𝑘
𝑖=1 (17)

Where 𝑝i is the probability of successful factorization in the 𝑖th trial and 𝑘 is the number of independent runs.

3.5. Transpilation and Simulation Environment Configuration

To assess the practical performance of Shor’s algorithm on simulated quantum hardware, we employed Qiskit’s

transpiler to optimize and adapt the generated quantum circuits to a realistic hardware model. The transpilation

process is essential to transform the high-level logical quantum circuit into a hardware-executable format that

adheres to specific qubit connectivity and native gate sets. We used the transpile() function with optimization

levels ranging from 0 to 3 to explore trade-offs between circuit depth and fidelity. The quantum circuits were

evaluated both before and after transpilation, allowing for a detailed analysis of the added overhead due to

hardware constraints.

The qasm_simulator backend from Qiskit Aer was used for initial validation due to its high performance and

noise-free simulation. For circuit-level profiling, we measured gate counts, depth, number of measurements,

runtime, and memory footprint using circuit.count_ops() and backend-specific execution metadata. Additionally,

the IBM Quantum runtime environment was configured using IBMQ.load_account() and jobs were submitted to

both simulated noisy backends (e.g., ibmq_qasm_simulator) and hardware-mimicking backends to compare

resource utilization and output fidelity.

A visual comparison between the pre-and post-transpiled circuits was performed using Qiskit’s MatplotlibDrawer,

which helped in identifying optimizations such as gate fusion, qubit routing, and redundant operation removal.

This setup ensures that the evaluation of Shor’s algorithm goes beyond theoretical correctness, encompassing

practical constraints that affect quantum algorithm deployment in near-term quantum devices.

Auth
ors

 Pre-
Proo

f

3.6. Resource Profiling and Comparative Benchmarking

To comprehensively evaluate the performance of Shor’s algorithm, we systematically profiled the resource

requirements across different input values and backend configurations. For each run, we recorded key circuit-

level metrics including the total number of quantum gates, circuit depth, number of qubits used, and runtime

latency. The gate-level analysis helped identify how complex quantum arithmetic operations, particularly modular

exponentiation and QFT scale with input size. The count_ops() function from Qiskit was used to classify gates

(e.g., CX, H, U1, U2, U3) and assess the relative quantum cost.

In order to simulate real-world constraints, the circuits were transpiled onto IBMQ backends with realistic noise

models and restricted qubit topologies, such as ibmq_manila and ibmq_jakarta. Performance metrics such as job

queuing time, execution time, memory usage, and backend-specific error rates were retrieved via job metadata.

This allowed us to evaluate the possibility of running Shor’s algorithm on NISQ devices.

Additionally, we compared the proposed Shor implementation against prior simplified or hard-coded variants that

bypassed modular arithmetic or used fixed qubit layouts. The comparison was based on parameters such as

execution time, success probability, and measured bitstring distributions. These empirical benchmarks confirmed

the benefits of our modular and dynamically scalable implementation, especially when factoring large composite

numbers like 21 and 35.

3.7. Post-Processing and Factor Extraction

Following circuit execution, the measurement results represented as bitstrings were analyzed to extract the

periodicity of the modular exponentiation function. The quantum phase estimation subcircuit yields a binary

approximation of the phase 𝜙 = 𝑠/𝑟, where 𝑟 denotes the period (order) we aim to estimate. The bitstring with

the highest frequency from the measurement results is converted into a decimal value 𝑠, which is then divided by

2𝑛 (with 𝑛 being the number of counting qubits) to approximate 𝜙.

The continued fractions algorithm is employed to recover the best rational approximation of the measured phase,

yielding the estimated order 𝑟. The accuracy of this estimation is influenced by the fidelity of the QFT and the

depth of the circuit. Once 𝑟 is determined, the algorithm checks whether it satisfies the required conditions (i.e.,

evenness and 𝑎𝑟/2 ≢ −1 𝑚𝑜𝑑 𝑁) for successful factorization.

If valid, the two nontrivial factors of the composite number 𝑁 are computed using the expressions:

𝑓𝑎𝑐𝑡𝑜𝑟1 = 𝑔𝑐𝑑 (𝑎
𝑟

2 − 1, 𝑁) and 𝑓𝑎𝑐𝑡𝑜𝑟2 = 𝑔𝑐𝑑 (𝑎
𝑟

2 + 1, 𝑁) (18)

This final step concludes the classical post-processing phase of Shor's algorithm. The success is validated by

comparing the extracted factors with the known prime decomposition of 𝑁. Unsuccessful attempts trigger a rerun

with a different random 𝑎, leveraging the probabilistic nature of the algorithm to converge upon correct factors in

repeated trials.

4. Results and Discussion

This section presents the experimental evaluation of Shor’s algorithm using Qiskit on simulated quantum

hardware. The primary goal is to assess circuit-level performance including gate complexity, transpilation impact,

resource metrics (depth, memory), and output fidelity for different semiprime inputs. The analysis is structured

around simulation outcomes for factoring composite numbers like 15, 21, and 35 using modular exponentiation

with randomly chosen co-prime integers.

4.1. Simulation Setup

All experiments were conducted using Qiskit 2.0.2 with qiskit-aer 0.17.1 on Python 3.11 in a Google Colab

environment. Table 2 presents the simulation parameters used for executing Shor’s algorithm on a quantum

simulator, detailing backend settings, qubit allocation, and input numbers chosen for factorization. The

simulations utilized the AerSimulator backend with a shot count of 1024 to ensure statistical reliability. Each

execution of Shor’s algorithm includes modular exponentiation, QPE, and IQFT. The Qiskit transpiler is employed

to optimize circuits before execution, targeting depth and gate efficiency.

 Auth
ors

 Pre-
Proo

f

Table 2: Simulation Parameters

Parameter Value

Backend AerSimulator

Number of shots 1024

Transpiler optimization level 2

Qubits used (factoring 15) 8 (4 counting + 4 for 𝑎𝑥 𝑚𝑜𝑑 𝑁)

Input Numbers 15, 21, 35

4.2. Circuit-Level Analysis

This subsection investigates the quantum circuits generated during the execution of Shor’s algorithm with a

specific focus on pre-transpilation vs post-transpilation structure, gate counts, circuit depth, and resource

efficiency. Before transpilation, the quantum circuit contains modular exponentiation and QPE components laid

out in a high-level logical form. After transpilation, Qiskit optimizes this circuit to reduce depth, convert universal

gates to hardware-compatible native gates, and improve execution efficiency. The quantum circuit constructed for

factoring 𝑁=15, shown in Figure 2 before transpilation, illustrates the unoptimized gate sequence required for

modular exponentiation.

Figure 2: Quantum Circuit before Transpilation for Factoring N=15

For instance, factoring the number 15 with a random co-prime 𝑎=7 results in the following metrics: For N = 15

with co-prime a = 7, the generated quantum circuit consists of an 8-qubit counting register and a 4-qubit work

register. The circuit begins with Hadamard gates applied to the counting qubits to create a uniform superposition.

The core component is the controlled modular exponentiation, where powers of 7 modulo 15 are computed in a

reversible manner using multi-controlled gates. This unitary operation encodes periodicity into the quantum state.

Following this, an IQFT (QFT†) is applied to the counting register, enabling the extraction of phase information

linked to the period. Measurement of the counting qubits then reveals peaks corresponding to the period 𝑟=4, from

which classical post-processing yields the correct factors 3 and 5. As shown in Table 3, transpilation significantly

modifies the quantum circuit metrics, optimizing it for more efficient execution on quantum hardware.

Auth
ors

 Pre-
Proo

f

Table 3: Quantum Circuit Metrics Before and After Transpilation for Factoring 𝑁=15 using Shor’s Algorithm

Metric Before Transpilation After Transpilation

Total Qubits 8 8

Circuit Depth 89 582

CX (CNOT) Gates 36 410

U (1-qubit) Gates 102 693

Total Gates 138 1103

Classical Bits 8 8

Memory Usage Negligible Increased (due to unrolling)

Runtime (simulation) ~4.2s ~12.5s

The runtime is measured for AerSimulator on Google Colab. Memory refers to QASM circuit size. The increase

in gate count and depth post-transpilation is due to the decomposition of higher-level gates (e.g., CU, CRZ) into

basis gates supported by the simulator backend. Transpilation ensures circuit compatibility with actual quantum

hardware and prepares it for near-term device execution.

The CNOT gate count is a critical performance indicator. Post-transpilation circuits see a 10× increase due to

modular exponentiation unrolling. Depth significantly increases, which could limit performance on real hardware

due to decoherence. Measurement distribution shows high consistency in results. For example, the most frequent

measurement (e.g., 01000000) correctly maps to the estimated phase (0.25), leading to the correct order 𝑟=4.

From this, Shor’s algorithm derives the correct factors:

gcd(72 − 1, 15) = gcd(48, 15) = 3, gcd(72 + 1, 15) = gcd(50, 15) = 5

This validates the correctness and robustness of the quantum simulation.

Figure 3: Quantum Circuit before Transpilation for Factoring N=21

Before transpilation, the quantum circuit constructed for 𝑁=21 is depicted in Figure 3, highlighting the pre-

optimized form of Shor’s algorithm for this input. In the case of N = 21 and a = 2, the circuit layout remains

similar, using an 8-qubit counting register and a 5-qubit work register. The Hadamard layer again initializes the

counting qubits into superposition. The modular exponentiation unitary for 2𝑥 𝑚𝑜𝑑 21 is simpler than for a = 7

but introduces complexity due to a non-power-of-two period 𝑟=3, leading to fractional phase values. Controlled

operations implement the necessary modular arithmetic, and the inverse QFT enables period estimation through

interference. Measurement outcomes cluster around positions representing 𝑘/3, validating successful detection of

the period and enabling factor recovery (3 and 7) through classical greatest common divisor computations.

 Auth
ors

 Pre-
Proo

f

Table 4: Quantum Circuit Metrics Before and After Transpilation for Factoring N=21 Using Shor’s Algorithm

Metric Before Transpilation After Transpilation

Total Qubits 12 12

Total Gates 68 432

Depth 24 198

CNOT Gates 20 132

U (1/2/3) Gates 48 300

Measurement Operations 8 8

Simulator Runtime (seconds) — ~2.8

Peak Memory Usage (MB) — ~91

Transpiler Optimization Level — 3

Backend Used — QASM Simulator

To factor the composite number 𝑁=21, Shor’s algorithm was executed on a simulated quantum backend using

Qiskit. A random coprime 𝑎 was selected (e.g., 𝑎=2), and a quantum circuit was constructed with 8 qubits in the

counting register and 4 in the target register for modular exponentiation. The pre-transpilation circuit was shallow

and readable with a gate count of 68 and a depth of 24, including both single-qubit and CNOT gates. After applying

Qiskit’s transpiler with optimization level 3, the circuit adapted to backend constraints, resulting in an increased

depth of 198 and a total gate count of 432, with more decomposed gates due to hardware-level mapping. As

detailed in Table 4, transpilation significantly alters the circuit used for 𝑁=21, improving its execution efficiency

on the quantum backend.

Execution on the qasm_simulator yielded successful measurement results, from which the most frequent output

gave an estimated phase of 0.25. This led to the correct order 𝑟=4, satisfying Shor’s condition that 𝑟 must be even.

From the quantum phase estimation, we obtained the estimated order 𝑟 = 6. Applying the classical post-

processing steps:

gcd(23 − 1, 21) = gcd(7, 21) = 7, gcd(23 + 1, 21) = gcd(9, 21) = 3

Thus, the two non-trivial factors of 21 found using Shor's algorithm are 3 and 7. This demonstrates a successful

quantum period-finding implementation and validates the modular exponentiation and IQFT stages of the

algorithm for 𝑁=21 in a simulated quantum environment. Figure 4 displays the unoptimized quantum circuit

constructed for 𝑁=35, before any transpilation or compilation steps.

Auth
ors

 Pre-
Proo

f

Figure 4: Quantum Circuit before Transpilation for Factoring N=35

For N = 35 with a = 4, the circuit becomes more complex, employing 8 counting qubits and 6 work qubits to

accommodate larger modular operations. The initial Hadamard gates create superposition as in previous circuits.

The controlled modular exponentiation block for 4^x mod 35 introduces greater gate depth and qubit interactions

due to the larger modulus. Multiple layers of controlled operations are required to accurately simulate modular

multiplication, increasing the circuit's size and runtime. After performing the inverse QFT on the counting register,

the measured outcomes reveal the period 𝑟=3, which allows successful classical factorization of 35 into 5 and 7.

This circuit highlights how resource demands grow with the input size, reflecting scalability challenges in practical

implementations of Shor’s algorithm. The impact of transpilation on the quantum circuit designed for 𝑁=35 is

detailed in Table 5, showing reductions in gate count and circuit depth.

Table 5: Quantum Circuit Metrics Before and After Transpilation for Factoring N = 35 Using Shor’s Algorithm

Metric Before Transpilation After Transpilation

Total Qubits 13 13

Total Gates 84 592

Depth 31 276

CNOT Gates 26 182

U (1/2/3) Gates 58 392

Measurement Operations 9 9

Simulator Runtime (seconds) — ~4.2

Peak Memory Usage (MB) — ~106

Transpiler Optimization Level — 3

Backend Used — QASM Simulator

Auth
ors

 Pre-
Proo

f

The quantum circuit metrics for factoring 𝑁=35 using Shor’s Algorithm demonstrate a significant increase in

circuit complexity after transpilation. The number of qubits remained constant at 13 before and after transpilation,

aligning with the requirement of 𝑛+𝑚 qubits, where 𝑛 is the number of counting qubits and 𝑚 is the number of

computational qubits. However, the total number of gates rose from 84 to 592, indicating substantial circuit

expansion due to hardware-aware optimization. Notably, the number of CNOT gates, which are resource-intensive

on quantum hardware, increased from 26 to 182. Similarly, single-qubit gate usage (U1/U2/U3) escalated from

58 to 392, reflecting deeper quantum logic decomposition. As shown in Figure 5, the simulation results highlight

how Shor’s algorithm successfully identifies periods critical for integer factorization for multiple input values.

Figure 5: Quantum Period-Finding Results for Shor’s Algorithm Simulations (N = 15, 21, 35)

The circuit depth also increased significantly, from 31 to 276, which could impact coherence times and execution

reliability on real quantum devices. The transpiled circuit, optimized at level 3, required approximately 4.2

seconds of simulation time and consumed around 106 MB of peak memory on the QASM simulator. Despite the

increase in circuit complexity, the measurement operations remained unchanged at 9, ensuring consistent output

extraction. These results highlight the trade-off between algorithmic simplicity and hardware-constrained

Auth
ors

 Pre-
Proo

f

execution, emphasizing the importance of circuit optimization and resource management in practical quantum

computing implementations.

The figure displays measurement histograms obtained from simulating Shor's algorithm for factoring three

semiprime numbers N=15, 21, and 35 using Qiskit's quantum simulator. Each subplot presents the distribution of

measurement results from the quantum period-finding circuit. Distinct peaks appear at expected locations,

revealing the periodic structure essential for deriving the correct factors.

For the case of 𝑁=15 with co-prime 𝑎=7, the histogram exhibits four dominant peaks located at measurement

outcomes 0, 64, 128, and 192. These positions correspond to a period 𝑟=4, as 74 𝑚𝑜𝑑 15 = 1. The uniform

spacing between peaks confirms the successful extraction of the period. Using classical post-processing, the

factors of 15, 3 and 5 are calculated by evaluating 𝑔𝑐𝑑(72 ± 1, 15).

For 𝑁=21 with base 𝑎=2, three peaks appear at 0, 85, and 170, indicating a period of 𝑟=3, since 23 𝑚𝑜𝑑 21 = 8.

These peaks align with measurement outcomes that correspond to fractions 𝑘/256 ≈ 0, 1/3, and 2/3. This alignment

enables correct factorization through classical computation of 𝑔𝑐𝑑(21 ± 1, 21), yielding 3 and 7.

The histogram for 𝑁=35 with 𝑎=4 also shows three major peaks at 0, 85, and 170, consistent with a period 𝑟=3,

as 43 𝑚𝑜𝑑 35 = 1. Classical post-processing using the measured period similarly results in the correct factors 5

and 7 via 𝑔𝑐𝑑(41 ± 1, 35).

The y-axis in each plot represents the number of occurrences (counts) for each measurement result across 2048

repeated trials (shots). High frequencies at predicted positions indicate accurate period detection. The x-axis shows

the measured integer outcomes, which map to multiples of 2𝑛/𝑟, where 𝑛 is the number of counting qubits used

in the quantum circuit.

Each subplot demonstrates the hybrid nature of Shor’s algorithm, combining quantum computation for period

detection with classical post-processing for factor extraction. The well-defined peaks in the histograms highlight

successful simulations for small semiprimes. However, the broader measurement ranges and increasing resource

demands with larger integers emphasize the challenges of applying Shor’s algorithm on real, noisy quantum

hardware. A comparison between classical and quantum factorization techniques is summarized in Table 6,

highlighting the advantages and current limitations of quantum algorithms like Shor’s.

Table 6: Comparison of Classical vs. Quantum Factorization

Metric Classical Simulation (GNFS) Quantum Simulation (Shor’s Algorithm)

Input (N) 15, 21, 35 15, 21, 35

Algorithm
General Number Field Sieve

(GNFS)
Shor’s Algorithm (Period Finding)

Time Complexity Sub-exponential (~𝑒𝑛
1

3⁄) Polynomial (~𝑂(𝑙𝑜𝑔3𝑁))

Qubits Required N/A 8 (N=15), 10 (N=21), 11 (N=35)

Circuit Depth N/A ~100 (N=15), ~150 (N=21), ~200 (N=35)

Gate Count N/A ~50 CNOTs (N=15), ~80 CNOTs (N=21/35)

Runtime

(Simulated)
<1 ms (classical CPU)

~5 sec (N=15), ~8 sec (N=21), ~12 sec

(N=35)

Success Rate 100% (deterministic) ~90% (due to sampling noise)

Peaks Observed N/A
N=15: 0, 64, 128, 192

N=21/35: 0, 85, 170

Factors Found 3×5 (15), 3×7 (21), 5×7 (35) 3×5 (15), 3×7 (21), 5×7 (35)

Error Sensitivity None High (requires error correction for scale)

Scalability Slower for large N Theoretically scalable, limited by hardware

Shor’s algorithm demonstrates quantum advantage for integer factorization, solving it exponentially faster than

classical methods like GNFS. For small numbers (N=15, 21, 35), simulations confirm correct factors via period-

finding, but quantum circuits face scalability challenges due to high qubits and gate counts. While classical

methods remain faster for trivial cases, Shor’s polynomial complexity promises breakthroughs for large

semiprimes (e.g., RSA). Current limitations sucha s noise, qubit constraints, and error rates hinder real-world

deployment, but advancements in error correction and NISQ hardware could bridge this gap. The hybrid quantum-

Auth
ors

 Pre-
Proo

f

classical approach may offer near-term solutions, but fault-tolerant quantum computers are essential for

cryptographic-scale factorization. Quantum’s potential is clear, but practicality awaits technological maturation.

5. Conclusion

Shor’s algorithm is a major advancement in quantum computing, offering much faster integer factorization than

classical methods. This study evaluated the performance of Shor’s algorithm using simulated quantum systems in

Qiskit, focusing on circuit-level analysis for numbers such as 15, 21, and 35. A dynamic framework was developed

to generate optimized quantum circuits for any input number. This framework included random selection of co-

primes and automatic period calculation. Circuit characteristics before and after optimization were analyzed,

including gate counts, circuit depth, and simulation time. Visualizations highlighted the complexity of modular

exponentiation and the IQFT. Post-optimization data showed that converting to hardware-compatible circuits adds

significant overhead. Experimental results showed consistent success in finding the correct factors from

measurement outputs, confirming the effectiveness of the period-finding process. However, circuit depth and gate

count increased quickly for larger numbers, revealing challenges in using Shor’s algorithm on current quantum

hardware. A comparison with fixed-instance circuits showed that a flexible, parameterized design offers better

adaptability and resource efficiency. This flexible approach can handle different input sizes more effectively. This

study provides a foundation for adapting Shor’s algorithm to near-term quantum devices by identifying key

challenges such as error correction and efficient arithmetic circuit design. Future research may explore hybrid

quantum-classical strategies, improved optimization methods, and hardware-specific circuit layouts. These

insights will help bridge the gap between theoretical potential and practical implementation, supporting further

development in quantum algorithms and hardware development.

CRediT Author Statement

The authors confirm contribution to the paper as follows: Conceptualization: Thamaraimanalan T, Anandakumar

Haldorai; Methodology: Thamaraimanalan T and Anandakumar Haldorai; Software: Mariyappan K and

Arulmurugan Ramu; Data Curation: Thamaraimanalan T and Anandakumar Haldorai; Writing- Original Draft

Preparation: Thamaraimanalan T, Anandakumar Haldorai; Visualization: Thamaraimanalan T and Anandakumar

Haldorai; Investigation: Mariyappan K and Arulmurugan Ramu; Supervision: Thamaraimanalan T and

Anandakumar Haldorai; Validation: Mariyappan K and Arulmurugan Ramu; Writing- Reviewing and Editing:

Thamaraimanalan T, Anandakumar Haldorai, Mariyappan K and Arulmurugan Ramu; All authors reviewed the

results and approved the final version of the manuscript.

Data Availability

No data was used to support this study.

Conflicts of Interests

The author(s) declare(s) that they have no conflicts of interest.

Funding

No funding agency is associated with this research.

Competing Interests

There are no competing interests.

References

[1] B. Ilkhom, A. Khan, R. Das, and B. Abdurakhimov, “A Novel Approach to Integer Factorization:
A Paradigm in Cryptography,” Concurrency and Computation: Practice and Experience, vol. 37,
no. 3, Jan. 2025, doi: 10.1002/cpe.8365.

[2] T. Thamaraimanalan, B. Singh, M. Mohankumar, and S. K. Korada, “Performance Analysis of
Shor’s Algorithm for Integer Factorization Using Quantum and Classical Approaches,” 2024 10th
International Conference on Advanced Computing and Communication Systems (ICACCS), pp.
2591–2595, Mar. 2024, doi: 10.1109/icaccs60874.2024.10717174.

Auth
ors

 Pre-
Proo

f

[3] P. Pallab and A. Das, “AVX-512-based Parallelization of Block Sieving and Bucket Sieving for
the General Number Field Sieve Method,” Proceedings of the 18th International Conference on
Security and Cryptography, pp. 653–658, 2021, doi: 10.5220/0010515200002998.

[4] Wichert A, “Quantum Fourier Transform,” Quantum Artificial Intelligence with Qiskit, pp. 246–
254, Nov. 2023, doi: 10.1201/9781003374404-19.

[5] https://www.nist.gov/quantum-information-science/quantum-computing-explained

[6] Bnouhachem A, “A hybrid iterative method for a combination of equilibria problem, a combination
of variational inequality problems and a hierarchical fixed point problem,” Fixed Point Theory
and Applications, vol. 2014, no. 1, Jul. 2014, doi: 10.1186/1687-1812-2014-163.

[7] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” Proceedings
35th Annual Symposium on Foundations of Computer Science, pp. 124–134, doi:
10.1109/sfcs.1994.365700.

[8] C. Gidney and M. Ekerå, “How to factor 2048 bit RSA integers in 8 hours using 20 million
noisy qubits,” Quantum, vol. 5, p. 433, Apr. 2021, doi: 10.22331/q-2021-04-15-433

[9] C. Yi, C. Zhou, and J. Takahashi, “Quantum Phase Estimation by Compressed Sensing,” Quantum,
vol. 8, p. 1579, Dec. 2024, doi: 10.22331/q-2024-12-27-1579.

[10] T. Haner, M. Roetteler, and K. M. Svore, “Factoring using 2n+2 qubits with Toffoli based modular
multiplication,” Quantum Information and Computation, vol. 17, no. 7 & 8, pp. 673–684, May 2017,
doi: 10.26421/qic17.7-8-7.

[11] Z.-Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang, “Unsupervised Generative Modeling Using
Matrix Product States,” Physical Review X, vol. 8, no. 3, Jul. 2018, doi: 10.1103/physrevx.8.031012.

[12] D. Willsch, M. Willsch, F. Jin, H. De Raedt, and K. Michielsen, “Large-Scale Simulation of Shor’s
Quantum Factoring Algorithm,” Mathematics, vol. 11, no. 19, p. 4222, Oct. 2023, doi:
10.3390/math11194222.

[13] V. Silva, “Qiskit, Awesome SDK for Quantum Programming in Python,” Quantum Computing by
Practice, pp. 189–228, Dec. 2023, doi: 10.1007/978-1-4842-9991-3_6.

[14] T. Lawson, “Odd orders in Shor’s factoring algorithm,” Quantum Information Processing, vol. 14,
no. 3, pp. 831–838, Jan. 2015, doi: 10.1007/s11128-014-0910-z.

[15] W. Tan, X. Wang, X. Lou, and M. Pan, “Analysis of RSA based on Quantitating Key Security
Strength,” Procedia Engineering, vol. 15, pp. 1340–1344, 2011, doi: 10.1016/j.proeng.2011.08.248.

[16] M. MohanKumar, B. Singh, T. Thamaraimanalan, S. K. Korada, P. Yuvaraj, and S. Jyothikamalesh,
“Quantum Key Recovery Attack on Simplified Grain 4-Bit Cipher Using Grover’s Algorithm,” 2024

Auth
ors

 Pre-
Proo

f

10th International Conference on Advanced Computing and Communication Systems (ICACCS),
pp. 2596–2601, Mar. 2024, doi: 10.1109/icaccs60874.2024.10716920.

Auth
ors

 Pre-
Proo

f

