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Abstract 

Shor’s algorithm stands as a breakthrough in quantum computing due to its potential to factor large integers 

exponentially quicker than classical algorithms. However, implementing and evaluating this algorithm on real 

quantum computer hardware remains exciting due to qubit limitations, gate noise, and hardware constraints. This 

research presents a comprehensive performance evaluation of Shor’s algorithm using simulated quantum 

backends provided by Qiskit. A flexible and generic implementation is proposed, allowing dynamic input of 

integers to be factored, with randomized co-prime selection and automated circuit generation. The algorithm is 

tested on various semiprime numbers, such as 15, 21, and 35, using IBM’s Aer simulator. A major contribution of 

this work is the circuit-level analysis conducted both before and after transpilation. Metrics such as gate counts, 

circuit depth, and simulator runtime are extracted to assess scalability and resource requirements. High-resolution 

plots of the pre-transpiled circuits are saved to visualize algorithmic complexity, while post-transpilation metrics 

inform future quantum hardware feasibility. The output measurement distributions are analyzed to estimate 

periodicity and derive correct factors. The proposed implementation is compared with existing fixed-instance Shor 

demonstrations to highlight its flexibility and extensibility. Experimental results show consistent success in factor 

retrieval and provide valuable insight into circuit growth and complexity under realistic constraints. This analysis 

lays the groundwork for future adaptation to NISQ hardware and contributes to understanding Shor’s algorithm 

from both computational and architectural perspectives. 

Keywords: Shor’s Algorithm, Qiskit Simulation, Quantum Circuit Analysis, Quantum-Classical Comparison. 

1. Introduction 

Integer factorization is a fundamental problem in number theory that involves the breakdown of a composite 

number into a product of smaller numbers. Its significance extends beyond pure mathematics into practical 

domains such as cryptography, algorithmic complexity, and secure communications [1]. The integer factorization 

becomes computationally prohibitive as the size of the number increases, especially when the number in question 

is a semiprime an integer composed of exactly two large prime factors. Historically, several classical algorithms 

have been developed to tackle this problem, each improving upon its predecessors in terms of efficiency and 

scalability. The most straightforward method, trial division, involves dividing the target number by successive 

integers to test for divisibility. Although effective for small numbers, it quickly becomes impractical for large 

inputs due to its exponential time complexity [2]. 

More sophisticated algorithms such as Pollard’s rho algorithm, Fermat’s factorization, and the Elliptic Curve 

Method (ECM) introduce probabilistic and number-theoretic heuristics to improve efficiency. However, the most 

notable advancements in classical integer factorization are represented by the Quadratic Sieve (QS) and the 

General Number Field Sieve (GNFS). These algorithms utilize complex mathematical structures, such as algebraic 

number fields, to factor large semiprimes in sub-exponential time. Despite its efficiency, GNFS still scales poorly 

for very large integers—typically those used in cryptographic key generation (e.g., 2048-bit RSA keys)—and 

remains infeasible without access to massive computational resources. This computational hardness underpins the 

security of widely used cryptographic protocols like RSA, DSA, and Diffie-Hellman key exchange, where the 

confidentiality and authenticity of encrypted communications rest on the infeasibility of factorizing large 

semiprimes [3]. 

In 1994, Peter Shor revolutionized the landscape of computational number theory and cryptography by suggesting 

a quantum algorithm capable of factoring large integers in polynomial time. Unlike classical methods, which scale 

sub-exponentially at best, Shor’s algorithm operates in time complexity marking an exponential speedup over the 
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fastest classical alternatives. The quantum subroutine utilizes quantum parallelism to evaluate many values of 

𝑓(𝑥) simultaneously and employs the QFT to extract the periodicity embedded in the superposition of quantum 

states [4]. This period-finding process is exponentially faster than classical brute-force or sieving techniques, 

making Shor’s algorithm the most powerful known application of quantum computing. The potential of Shor’s 

algorithm to break RSA and other cryptosystems has led to widespread concern within the cybersecurity 

community. In anticipation of scalable quantum computers, researchers have begun developing post-quantum 

cryptographic algorithms, which are designed to be unaffected by quantum attacks. These include lattice-based, 

hash-based, and code-based cryptosystems, many of which are currently being evaluated by the National Institute 

of Standards and Technology (NIST) for standardization [5]. 

From a scientific perspective, Shor’s algorithm continues to serve as a benchmark for quantum computational 

advantage. Experimental demonstrations on simulated and real quantum hardware, such as those offered by IBM, 

Google, and Rigetti, have successfully factored small semiprimes like 15 and 21. These implementations not only 

validate the algorithm’s correctness but also provide crucial insights into circuit optimization, transpilation, noise 

modeling, and hybrid quantum-classical execution strategies. This research evaluates the performance and 

feasibility of Shor’s algorithm using simulated quantum circuits in Qiskit, focusing on semiprime numbers (N=15, 

21, and 35). By analyzing circuit depth, gate counts, and measurement distributions, we assess the algorithm’s 

efficiency and scalability under realistic quantum computing constraints [6]. 

Despite its theoretical significance and potential to revolutionize cryptography, Shor’s algorithm has several 

practical drawbacks that hinder its current applicability. The most critical limitation is the requirement for a fault-

tolerant quantum computer with a large number of qubits. To factor an n-bit number, the algorithm requires the 

order of O(n³) quantum gates and roughly 2n qubits, depending on the implementation. Current quantum hardware 

lacks the necessary qubit count and coherence times to run such a complex algorithm effectively, particularly for 

numbers of cryptographic importance (e.g., 2048-bit RSA keys). Additionally, Shor’s algorithm is highly sensitive 

to noise and decoherence, common in existing quantum systems [7, 8]. Even small errors in gate operations or 

qubit interactions can lead to incorrect results, requiring advanced quantum error correction schemes. 

Implementing such correction methods adds significant overhead, both in terms of required qubits and 

computational resources. Another challenge lies in the classical pre- and post-processing steps. Although quantum 

speedup is obtained in the modular exponentiation and period-finding stages, classical computations are still 

required for preparing the input and verifying the factors, potentially limiting speed gains in practice. Moreover, 

the algorithm is tailored for integer factorization and does not directly apply to other cryptographic primitives. 

While its implications are profound for RSA, it is less relevant for post-quantum cryptographic algorithms based 

on lattices or hash functions [8]. 

This research article is organized into four main sections for clarity and coherence. Section 2: Literature Review 

presents an in-depth analysis of classical and quantum approaches to integer factorization, including a comparative 

study of Shor’s algorithm with existing implementations and simulation-based studies. Section 3: Methodology 

details the proposed implementation of Shor’s algorithm using Qiskit, emphasizing circuit construction, modular 

exponentiation, inverse Quantum Fourier Transform (QFT), and simulator configuration. The section also 

explains how performance metrics such as gate count, circuit depth, and execution time are extracted. Section 4: 

Results and Discussion showcases simulation outcomes for semiprime numbers like 15, 21, and 35, including 

circuit-level analyses, histogram visualizations, and factor extraction via classical post-processing. It also 

compares the proposed implementation with existing fixed-instance models. Finally, Section 5: Conclusion 

summarizes key findings, highlights contributions to quantum circuit analysis, and outlines future directions for 

real hardware adaptation and scaling of Shor’s algorithm on NISQ devices. 

2. Related Works 

Shor’s algorithm hinges on the efficient implementation of modular exponentiation and quantum phase estimation 

(QPE) via the QFT [9]. The modular exponentiation subroutine, crucial for computing powers of a chosen base 

modulo 𝑁, is often treated as an oracle or “black box” in theoretical presentations. However, expanding this oracle 

into primitive gates especially Toffoli and multi-controlled rotations dramatically increases circuit depth and 

resource requirements. Häner et al. (2017) provided a seminal exploration of this, showing how a Toffoli-based 

modular multiplication circuit can be realized with 𝑂(𝑛3) gate depth and 𝑂(𝑛3 𝑙𝑜𝑔 𝑛) gate count for an 𝑛-bit 

integer. This insight underscores the fact that practical implementation of Shor’s algorithm requires careful circuit 

engineering to balance qubit usage, gate complexity, and error susceptibility. 

In this vein, Häner and colleagues introduced an efficient “in-place” constant adder using dirty ancillas, offering 

𝑂(𝑛) depth and 𝑂(𝑛 log 𝑛) size, mitigating some space overhead associated with classical adders. Similarly, 

Takahashi et al.'s work on resource-optimized circuit templates demonstrated that careful structured 

decomposition of arithmetic operations can mitigate the hardware burden. These studies reinforce the view that 
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the practical feasibility of Shor’s algorithm is as much a matter of low-level circuit design as it is of quantum 

hardware capability [10]. 

To assess Shor’s algorithm beyond toy examples, classical simulation techniques have been pushed to their limits. 

Wang et al. (2015) demonstrated that the Matrix Product States (MPS) allows Shor’s quantum wavefunctions to 

be represented compactly based on entanglement structure rather than simple amplitude storage. By efficiently 

harnessing weak entanglement across qubit partitions, Wang’s group simulated circuits as large as 42–45 qubits 

on a single-processor machine in roughly one hour demonstrating the viability of MPS simulation for moderate-

sized problems. This work was extended by the authors, who optimized MPS simulations specifically for Shor’s 

circuits. They highlighted that mapping high-entanglement portions of the circuit (e.g., modular exponentiation) 

onto MPS efficiently enables the simulation of up to 60 qubits on a single node. After entanglement peaks are 

handled, truncation becomes feasible, mitigating resource explosion. These results illustrate that classical 

simulation remains a potent tool for understanding algorithmic complexity, benchmarking quantum 

implementations, and analyzing entanglement scaling even in the absence of actual quantum hardware [11]. 

As quantum circuit simulations for Shor’s algorithm scale up further, GPU-backed and distributed supercomputing 

resources have come into play. Willsch et al. (2023) used large GPU clusters and optimized state-vector 

frameworks to simulate Shor’s algorithm factoring semiprimes up to ~550 trillion with robust success 

probabilities, peaking above 50% despite theoretical expectations of ~3–4%. Their approach not only validated 

the “luck” inherent in peak measurement outcomes but also demonstrated effective post-processing strategies to 

recover factors with high certainty. These simulations also included noise modeling, revealing the “universality” 

and resilience of periodicity extraction even under realistic hardware defects. Another high-performance effort 

utilized JUQCS and MPI coordination across thousands of GPUs to simulate iterative Shor circuits with L+1 

qubits, distributing vector elements across devices to simulate circuits with qubit counts upwards of 43 in under 

200 seconds. These results confirm that, although classical simulation capacity grows rapidly with hardware 

resources, clever algorithmic design remains critical for efficient periodicity decoding and circuit validation [12]. 

Simulated performance is one thing, but real hardware performance is another. On this front, several studies have 

used Qiskit and Ion-trap systems to implement scaled-down, ion-based versions of Shor’s algorithm. A Qiskit-

based implementation shared in a 2015 GitHub example (possibly by SanScherf or Rania Ouassif) offered a 

dynamic circuit generator with modular exponentiation and semiclassical QFT routines tailored to small inputs 

like 15, 21, and 35. Similarly, an ion-trap demonstration factored 15 using only seven logical qubits and “cache” 

qubits, achieving over 90% success probability through Kitaev’s scalable qubit reuse method. These real-device 

implementations indicate that tightly controlled qubit utilization and error mitigation strategies are key to 

hardware performance even for small problem sizes. Reddit reports from IBM Quantum users note that for moduli 

up to 48 bits, Qiskit-connected IBM backends achieved factorization successes in just ~8 seconds, compared to 

classical brute force taking over 4 minutes. However, these successes are limited by qubit availability (often 

approximately 127 qubits), scheduling constraints (10 minutes per month), and lack of built-in error correction. 

Users noted that replacements with PRNG outputs could still “succeed,” underlining the need for robust success 

criteria and sanity checks to confirm true quantum performance [13, 14]. 

Table 1: Comparison of Notable Implementations and Simulations of Shor’s Algorithm Across Classical and 

Quantum Platforms 

References Approach / Scale Key Contributions Limitations 

Häner et al. (2016) 

Toffoli-based 

arithmetic, 

𝑂(𝑛3 𝑙𝑜𝑔 𝑛) gates 

Reversible addition and 

multiplication circuits with 

dirty ancillas, and constant 

depth adders. 

Still large circuits; no 

hardware testing 

Wang et al. / 

Dang et al. (2015–

2017) 

MPS simulation for 

42–60 qubits 

Efficient entanglement 

mapping; demonstrated 

weak scaling via MPI; 

truncated error control. 

Classical limit only; does not 

test hardware 

Willsch et al. (2023) 

GPU + large state-

vector simulation 

(~40 qubits) 

Quantified success 

probability; scalable to 550T 

semiprime; robust under 

noise. 

Resource-intensive; classical 

only 

Ion-trap hardware 

demo 

7 logical + 4 ancilla 

qubits for N=15 

High success (>90%), 

reusable qubit protocols, 

scalable design principles 

Very small modulus; 

hardware remained within a 

small experimental setup 
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IBM Qiskit 

implementations & 

backends 

N=15–35 toy circuits, 

some iterative 

moderate 

factorizations 

Flexible input, dynamic 

circuit generation, PRNG 

benchmarks, 8-second 

factoring at 48 bits 

High error rate, lack of error 

correction, short run-time 

windows (~10 min per 

month), no general scaling 

Table 1 summarizes notable implementations and simulations of Shor’s algorithm across classical and quantum 

platforms, highlighting key milestones and technological limitations encountered in each case. The QFT, central 

to Shor’s period-finding, requires 𝑂(𝑛2) two-qubit controlled phase rotations. While straightforward for small 

circuits, implementing QFT at scale is both resource-intensive and highly sensitive to gate fidelity and timing 

delays. Circuit-level studies, including Häner’s and Takahashi’s, highlight that even scalable modular arithmetic 

design must be complemented by efficient QFT and error-corrected gate design to reduce fidelity loss, especially 

since shallow decomposition of QFT circuits often introduces phase approximation overheads [15, 16]. 

3. Methodology 

Shor’s algorithm transformed the field of quantum computing by introducing an efficient method for integer 

factorization, a task classically considered intractable for large numbers. The algorithm operates in two primary 

stages: a classical pre-processing step where a co-prime 𝑎 is chosen and the quantum order-finding stage where 

the period 𝑟 of the function 𝑓(𝑥)  =  𝑎𝑥  𝑚𝑜𝑑 𝑁 is computed using QFT. Once 𝑟 is determined, the classical post-

processing computes the GCD between 𝑎𝑟/2 ± 1 and 𝑁, which yields non-trivial factors of the composite number 

𝑁. 

Mathematically, the periodic function is defined as: 

𝑓(𝑥)  =  𝑎𝑥 𝑚𝑜𝑑 𝑁      (1) 

where: 

𝑎 ∈  𝑍 and 𝑔𝑐𝑑(𝑎, 𝑁)  =  1 

𝑁 is the number to be factorized 

𝑟 is the least positive integer such that 𝑎𝑟  ≡ 1 𝑚𝑜𝑑 𝑁 

The success probability increases significantly when 𝑟 is even and 𝑎𝑟/2 ≢ 1 𝑚𝑜𝑑 𝑁. 

The use of quantum parallelism and QFT allows the algorithm to determine 𝑟 in polynomial time, thus 

demonstrating exponential speed-up over classical approaches such as trial division or Pollard’s rho algorithm. 

3.1. Quantum Circuit Design for Order Finding 

The main component of Shor’s algorithm is the order-finding circuit, which identifies the period 𝑟 of the function 

𝑓(𝑥)  =  𝑎𝑥 𝑚𝑜𝑑 𝑁. This is attained using a QPE subroutine. The quantum circuit consists of two quantum 

registers: 

a) Control register with 𝑡 qubits (typically 𝑡 =  2𝑛, where 𝑛 =  𝑙𝑜𝑔2𝑁) initialized to the ∣0⟩ state. 

b) Target register with 𝑛 qubits initialized to ∣1⟩, which holds the modular exponentiation result. 

c) The circuit undergoes the following steps: 

d) Hadamard Transform is applied to all control qubits to create a superposition. 

e) Controlled Modular Exponentiation applies the unitary operator, defined as: 

f) 𝑈𝑎|𝑥⟩ = |𝑎𝑥  𝑀𝑜𝑑 𝑁⟩ 

g) in a controlled fashion based on the control qubits. 

h) Inverse QFT (𝑄𝐹𝑇⁻¹) is then applied to the control register to extract the phase information.  

i) Measurement of the control register yields a binary approximation of 𝑠/𝑟, where 𝑠 is a random integer 

less than 𝑟. Continued fraction expansion is then used to estimate 𝑟. 

Figure 1 represents the stepwise process of Shor’s algorithm used for factoring a composite integer 𝑁 using 

quantum computation. The flow encapsulates both classical pre-processing, quantum phase estimation, and 

classical post-processing, forming a hybrid quantum-classical algorithm. 

Start: The process initiates with the input of a composite number 𝑁 (e.g., 15, 21, 35). 

Random Selection of 𝑎: A random integer 𝑎 is chosen such that 1 < 𝑎 < 𝑁. This forms the base for modular 

exponentiation. 
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Check 𝑔𝑐𝑑(𝑎, 𝑁): Compute the GCD of a and 𝑁. If 𝑔𝑐𝑑(𝑎, 𝑁) ≠ 1, then a non-trivial factor of 𝑁 is already found. 

This is a rare but immediate success case. 

Quantum Order Finding: If 𝑔𝑐𝑑(𝑎, 𝑁) = 1, the algorithm proceeds to the quantum part, where the order 𝑟 of 

𝑎 𝑚𝑜𝑑𝑢𝑙𝑜 𝑁 is estimated using QPE. This involves constructing and executing a quantum circuit. 

Check if 𝑟 is even: Once the period 𝑟 is estimated, it's verified whether 𝑟 is even. If it is not even, the algorithm 

chooses a new random 𝑎 and repeats the process. 

Check 𝑎𝑟/2 ≢ −1 𝑚𝑜𝑑 𝑁.: If 𝑟 is even, the condition 𝑎𝑟/2 ≢ 1 𝑚𝑜𝑑 𝑁. is checked. If this holds, the algorithm 

moves to the final factor computation. 

Compute Factors: Using the formula: 

𝑔𝑐𝑑 (𝑎
𝑟

2 − 1, 𝑁) and 𝑔𝑐𝑑 (𝑎
𝑟

2 + 1, 𝑁)      (2) 

two non-trivial factors of 𝑁 are calculated. 

End: If the factors are valid (non-trivial and not equal to 𝑁), the algorithm terminates successfully. Otherwise, it 

repeats with a new 𝑎. 

 

Figure 1: Workflow of Shor’s Algorithm for Quantum Integer Factorization 
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3.2. Quantum Circuit for Modular Exponentiation 

The core quantum subroutine of Shor’s algorithm is the QPE, which is used to estimate the order 𝑟 of a number 𝑎 

modulo 𝑁, i.e., the smallest integer such that: 

𝑎𝑟 ≡ 1 𝑚𝑜𝑑 𝑁       (3) 

To perform this using quantum computation, a quantum circuit is designed with two main registers: 

The control register: an 𝑛-qubit register initialized to |0⟩⨂𝑛, which stores the superposition of computational basis 

states. 

The target register: a 𝑙𝑜𝑔2(𝑁) qubit register initialized to |1⟩, which evolves under modular exponentiation. 

The process begins by applying a Hadamard gate on each qubit in the control register, resulting in the state: 

1

√2
∑ |𝑘⟩|1⟩2𝑛−1

𝑘=0        (4) 

A key component in the quantum circuit is the unitary operator 𝑈𝑎, defined by: 

𝑈𝑎|𝑥⟩ = |𝑎. 𝑥 𝑚𝑜𝑑 𝑁⟩      (5) 

This unitary operation is repeatedly applied in a controlled manner based on the binary value of each qubit in the 

control register, corresponding to the powers of 𝑈𝑎. The complete unitary evolution performs: 

1

√2
∑ |𝑘⟩|1⟩2𝑛−1

𝑘=0  →  
1

√2
∑ |𝑘⟩|𝑎. 𝑥 𝑚𝑜𝑑 𝑁⟩2𝑛−1

𝑘=0      (6) 

Following the modular exponentiation, an inverse QFT is applied to the control register, transforming the 

periodicity into a measurable phase. Measuring the control register gives a value 𝑦, from which the phase 𝜙=𝑠/𝑟 

can be estimated using continued fractions, where 𝑠 and 𝑟 are integers. This circuit is then subjected to 

transpilation, optimizing it for specific quantum hardware backends. Gate-level analysis of the transpiled circuit, 

including depth, width, CX count, and memory requirements, is performed to evaluate the computational cost. 

3.3. Circuit Transpilation and Performance Metrics 

After constructing the modular exponentiation circuit and applying the inverse QFT, the resulting circuit must be 

adapted to specific quantum hardware constraints through transpilation. It optimizes the circuit by decomposing 

high-level gates into basis gates supported by the backend (e.g., IBM’s basis_gates=['cx', 'u3']), and mapping the 

logical qubits to the physical qubits with minimal overhead. 

Let the original (pre-transpiled) quantum circuit be represented by: 

𝐶𝑜𝑟𝑖𝑔 = (𝑄, 𝐺, 𝑀)      (7) 

Where, 𝑄 is the set of qubits, 𝐺 is the set of quantum gates, and 𝑀 represents measurements. After transpilation, 

the optimized circuit 𝐶𝑡𝑟𝑎𝑛𝑠 satisfies: 

𝐶𝑡𝑟𝑎𝑛𝑠 = 𝑇(𝐶𝑜𝑟𝑖𝑔 , 𝐻)      (8) 

Where 𝑇 is the transpilation function and 𝐻 is the target hardware model. 

Several performance parameters are extracted post-transpilation: 

Gate Count 𝐺𝑐: 

𝐺𝑐 = ∑ 𝛿(𝑔)𝑔∈𝐺        (9) 

Where 𝛿(𝑔) is the number of instances of gate 𝑔. For example, CX count 𝐺𝐶𝑋, and single-qubit gate count 𝐺1Q, are 

critical indicators of circuit complexity. 

Circuit Depth 𝐷: 

𝐷 = max
𝑞∈𝑄

𝑑𝑒𝑝𝑡ℎ (𝑞)      (10) 

This determines the number of gate layers and directly affects decoherence. 

Total Number of Qubits 𝑁𝑞: 

𝑁𝑞 = |𝑄|      (11) 

Runtime Estimation 𝑇𝑟: 
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Given gate execution times 𝑡𝑔, the total estimated runtime is: 

𝑇𝑟 = ∑ 𝛿(𝑔). 𝑡𝑔𝑔∈𝐺       (12) 

Memory Footprint 𝑀𝑓: 

Dependent on the number of classical bits and qubits stored: 

𝑀𝑓 = 𝑁𝑞 ⋅ 𝑄𝑢𝑏𝑖𝑡𝑆𝑡𝑎𝑡𝑒𝑆𝑖𝑧𝑒 + 𝑁𝑐 ⋅ 𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙𝐵𝑖𝑡𝑆𝑖𝑧𝑒     (13) 

These metrics are crucial in comparing the performance of Shor’s algorithm across different simulation platforms 

or real quantum devices. A direct comparison of transpiled circuits for different input sizes (e.g., factoring 15, 21, 

and 35) reveals how hardware constraints (e.g., connectivity, gate fidelities) impact resource utilization. 

3.4. Measurement Analysis and Order Finding 

Once the transpiled quantum circuit is executed on a simulator or real quantum backend, the outcome of the 

quantum computation is obtained as a bitstring from the quantum measurement. These measurement results are 

used to estimate the phase that encodes information about the periodicity of the modular exponentiation function, 

which is essential to finding the order 𝑟. 

Let 𝑦 ∈ {0,1, . . . ,2𝑛 − 1} be the most frequently measured value in the counting register of size 𝑛 qubits. The 

estimated phase 𝜙 is computed as: 

𝜙 =
𝑦

2𝑛        (14) 

This phase 𝜙 approximates a rational number 𝑠/𝑟, where 𝑟 is the unknown order to be determined, and 𝑠 ∈ 𝑍 is 

an integer coprime with 𝑟. The continued fraction expansion is used to recover 𝑟 from 𝜙: 

𝑠

𝑟
≈ 𝜙 =

𝑦

2𝑛  ⟹ 𝑟 = 𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝐵𝑒𝑠𝑡𝐴𝑝𝑝𝑟𝑜𝑥(𝜙))    (15) 

If 𝑟 is even, and 𝑎𝑟/2 ≢ −1 𝑚𝑜𝑑 𝑁, then the factors of 𝑁 can be retrieved as: 

𝑓1 = 𝑔𝑐𝑑 (𝑎
𝑟

2 − 1, 𝑁) and 𝑓2 = 𝑔𝑐𝑑 (𝑎
𝑟

2 + 1, 𝑁)     (16) 

If either 𝑓1 or 𝑓2 is a non-trivial factor of 𝑁, the algorithm has succeeded. 

To improve the reliability, the algorithm may need to be run multiple times with different values of 𝑎. The success 

probability 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠  increases with repeated trials, given by: 

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 1 − ∏ (1 − 𝑝𝑖)𝑘
𝑖=1       (17) 

Where 𝑝i is the probability of successful factorization in the 𝑖th trial and 𝑘 is the number of independent runs. 

3.5. Transpilation and Simulation Environment Configuration 

To assess the practical performance of Shor’s algorithm on simulated quantum hardware, we employed Qiskit’s 

transpiler to optimize and adapt the generated quantum circuits to a realistic hardware model. The transpilation 

process is essential to transform the high-level logical quantum circuit into a hardware-executable format that 

adheres to specific qubit connectivity and native gate sets. We used the transpile() function with optimization 

levels ranging from 0 to 3 to explore trade-offs between circuit depth and fidelity. The quantum circuits were 

evaluated both before and after transpilation, allowing for a detailed analysis of the added overhead due to 

hardware constraints. 

The qasm_simulator backend from Qiskit Aer was used for initial validation due to its high performance and 

noise-free simulation. For circuit-level profiling, we measured gate counts, depth, number of measurements, 

runtime, and memory footprint using circuit.count_ops() and backend-specific execution metadata. Additionally, 

the IBM Quantum runtime environment was configured using IBMQ.load_account() and jobs were submitted to 

both simulated noisy backends (e.g., ibmq_qasm_simulator) and hardware-mimicking backends to compare 

resource utilization and output fidelity. 

A visual comparison between the pre-and post-transpiled circuits was performed using Qiskit’s MatplotlibDrawer, 

which helped in identifying optimizations such as gate fusion, qubit routing, and redundant operation removal. 

This setup ensures that the evaluation of Shor’s algorithm goes beyond theoretical correctness, encompassing 

practical constraints that affect quantum algorithm deployment in near-term quantum devices. 
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3.6. Resource Profiling and Comparative Benchmarking 

To comprehensively evaluate the performance of Shor’s algorithm, we systematically profiled the resource 

requirements across different input values and backend configurations. For each run, we recorded key circuit-

level metrics including the total number of quantum gates, circuit depth, number of qubits used, and runtime 

latency. The gate-level analysis helped identify how complex quantum arithmetic operations, particularly modular 

exponentiation and QFT scale with input size. The count_ops() function from Qiskit was used to classify gates 

(e.g., CX, H, U1, U2, U3) and assess the relative quantum cost. 

In order to simulate real-world constraints, the circuits were transpiled onto IBMQ backends with realistic noise 

models and restricted qubit topologies, such as ibmq_manila and ibmq_jakarta. Performance metrics such as job 

queuing time, execution time, memory usage, and backend-specific error rates were retrieved via job metadata. 

This allowed us to evaluate the possibility of running Shor’s algorithm on NISQ devices. 

Additionally, we compared the proposed Shor implementation against prior simplified or hard-coded variants that 

bypassed modular arithmetic or used fixed qubit layouts. The comparison was based on parameters such as 

execution time, success probability, and measured bitstring distributions. These empirical benchmarks confirmed 

the benefits of our modular and dynamically scalable implementation, especially when factoring large composite 

numbers like 21 and 35. 

3.7. Post-Processing and Factor Extraction 

Following circuit execution, the measurement results represented as bitstrings were analyzed to extract the 

periodicity of the modular exponentiation function. The quantum phase estimation subcircuit yields a binary 

approximation of the phase 𝜙 = 𝑠/𝑟, where 𝑟 denotes the period (order) we aim to estimate. The bitstring with 

the highest frequency from the measurement results is converted into a decimal value 𝑠, which is then divided by 

2𝑛 (with 𝑛 being the number of counting qubits) to approximate 𝜙. 

The continued fractions algorithm is employed to recover the best rational approximation of the measured phase, 

yielding the estimated order 𝑟. The accuracy of this estimation is influenced by the fidelity of the QFT and the 

depth of the circuit. Once 𝑟 is determined, the algorithm checks whether it satisfies the required conditions (i.e., 

evenness and 𝑎𝑟/2 ≢ −1 𝑚𝑜𝑑 𝑁) for successful factorization. 

If valid, the two nontrivial factors of the composite number 𝑁 are computed using the expressions: 

𝑓𝑎𝑐𝑡𝑜𝑟1 = 𝑔𝑐𝑑 (𝑎
𝑟

2 − 1, 𝑁) and 𝑓𝑎𝑐𝑡𝑜𝑟2 = 𝑔𝑐𝑑 (𝑎
𝑟

2 + 1, 𝑁)    (18) 

This final step concludes the classical post-processing phase of Shor's algorithm. The success is validated by 

comparing the extracted factors with the known prime decomposition of 𝑁. Unsuccessful attempts trigger a rerun 

with a different random 𝑎, leveraging the probabilistic nature of the algorithm to converge upon correct factors in 

repeated trials. 

4. Results and Discussion 

This section presents the experimental evaluation of Shor’s algorithm using Qiskit on simulated quantum 

hardware. The primary goal is to assess circuit-level performance including gate complexity, transpilation impact, 

resource metrics (depth, memory), and output fidelity for different semiprime inputs. The analysis is structured 

around simulation outcomes for factoring composite numbers like 15, 21, and 35 using modular exponentiation 

with randomly chosen co-prime integers. 

4.1. Simulation Setup 

All experiments were conducted using Qiskit 2.0.2 with qiskit-aer 0.17.1 on Python 3.11 in a Google Colab 

environment. Table 2 presents the simulation parameters used for executing Shor’s algorithm on a quantum 

simulator, detailing backend settings, qubit allocation, and input numbers chosen for factorization. The 

simulations utilized the AerSimulator backend with a shot count of 1024 to ensure statistical reliability. Each 

execution of Shor’s algorithm includes modular exponentiation, QPE, and IQFT. The Qiskit transpiler is employed 

to optimize circuits before execution, targeting depth and gate efficiency. 
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Table 2: Simulation Parameters 

Parameter Value 

Backend AerSimulator 

Number of shots 1024 

Transpiler optimization level 2 

Qubits used (factoring 15) 8 (4 counting + 4 for 𝑎𝑥 𝑚𝑜𝑑 𝑁) 

Input Numbers 15, 21, 35 

4.2. Circuit-Level Analysis 

This subsection investigates the quantum circuits generated during the execution of Shor’s algorithm with a 

specific focus on pre-transpilation vs post-transpilation structure, gate counts, circuit depth, and resource 

efficiency. Before transpilation, the quantum circuit contains modular exponentiation and QPE components laid 

out in a high-level logical form. After transpilation, Qiskit optimizes this circuit to reduce depth, convert universal 

gates to hardware-compatible native gates, and improve execution efficiency. The quantum circuit constructed for 

factoring 𝑁=15, shown in Figure 2 before transpilation, illustrates the unoptimized gate sequence required for 

modular exponentiation.  

 

Figure 2: Quantum Circuit before Transpilation for Factoring N=15 

For instance, factoring the number 15 with a random co-prime 𝑎=7 results in the following metrics: For N = 15 

with co-prime a = 7, the generated quantum circuit consists of an 8-qubit counting register and a 4-qubit work 

register. The circuit begins with Hadamard gates applied to the counting qubits to create a uniform superposition. 

The core component is the controlled modular exponentiation, where powers of 7 modulo 15 are computed in a 

reversible manner using multi-controlled gates. This unitary operation encodes periodicity into the quantum state. 

Following this, an IQFT (QFT†) is applied to the counting register, enabling the extraction of phase information 

linked to the period. Measurement of the counting qubits then reveals peaks corresponding to the period 𝑟=4, from 

which classical post-processing yields the correct factors 3 and 5. As shown in Table 3, transpilation significantly 

modifies the quantum circuit metrics, optimizing it for more efficient execution on quantum hardware. 
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Table 3: Quantum Circuit Metrics Before and After Transpilation for Factoring 𝑁=15 using Shor’s Algorithm 

Metric Before Transpilation After Transpilation 

Total Qubits 8 8 

Circuit Depth 89 582 

CX (CNOT) Gates 36 410 

U (1-qubit) Gates 102 693 

Total Gates 138 1103 

Classical Bits 8 8 

Memory Usage Negligible Increased (due to unrolling) 

Runtime (simulation) ~4.2s ~12.5s 

The runtime is measured for AerSimulator on Google Colab. Memory refers to QASM circuit size. The increase 

in gate count and depth post-transpilation is due to the decomposition of higher-level gates (e.g., CU, CRZ) into 

basis gates supported by the simulator backend. Transpilation ensures circuit compatibility with actual quantum 

hardware and prepares it for near-term device execution. 

The CNOT gate count is a critical performance indicator. Post-transpilation circuits see a 10× increase due to 

modular exponentiation unrolling. Depth significantly increases, which could limit performance on real hardware 

due to decoherence. Measurement distribution shows high consistency in results. For example, the most frequent 

measurement (e.g., 01000000) correctly maps to the estimated phase (0.25), leading to the correct order 𝑟=4. 

From this, Shor’s algorithm derives the correct factors: 

gcd(72 − 1, 15) = gcd(48, 15) = 3, gcd(72 + 1, 15) = gcd(50, 15) = 5 

This validates the correctness and robustness of the quantum simulation. 

 

Figure 3: Quantum Circuit before Transpilation for Factoring N=21 

Before transpilation, the quantum circuit constructed for 𝑁=21 is depicted in Figure 3, highlighting the pre-

optimized form of Shor’s algorithm for this input. In the case of N = 21 and a = 2, the circuit layout remains 

similar, using an 8-qubit counting register and a 5-qubit work register. The Hadamard layer again initializes the 

counting qubits into superposition. The modular exponentiation unitary for 2𝑥 𝑚𝑜𝑑 21 is simpler than for a = 7 

but introduces complexity due to a non-power-of-two period 𝑟=3, leading to fractional phase values. Controlled 

operations implement the necessary modular arithmetic, and the inverse QFT enables period estimation through 

interference. Measurement outcomes cluster around positions representing 𝑘/3, validating successful detection of 

the period and enabling factor recovery (3 and 7) through classical greatest common divisor computations. 
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Table 4: Quantum Circuit Metrics Before and After Transpilation for Factoring N=21 Using Shor’s Algorithm 

Metric Before Transpilation After Transpilation 

Total Qubits 12 12 

Total Gates 68 432 

Depth 24 198 

CNOT Gates 20 132 

U (1/2/3) Gates 48 300 

Measurement Operations 8 8 

Simulator Runtime (seconds) — ~2.8 

Peak Memory Usage (MB) — ~91 

Transpiler Optimization Level — 3 

Backend Used — QASM Simulator 

To factor the composite number 𝑁=21, Shor’s algorithm was executed on a simulated quantum backend using 

Qiskit. A random coprime 𝑎 was selected (e.g., 𝑎=2), and a quantum circuit was constructed with 8 qubits in the 

counting register and 4 in the target register for modular exponentiation. The pre-transpilation circuit was shallow 

and readable with a gate count of 68 and a depth of 24, including both single-qubit and CNOT gates. After applying 

Qiskit’s transpiler with optimization level 3, the circuit adapted to backend constraints, resulting in an increased 

depth of 198 and a total gate count of 432, with more decomposed gates due to hardware-level mapping. As 

detailed in Table 4, transpilation significantly alters the circuit used for 𝑁=21, improving its execution efficiency 

on the quantum backend. 

Execution on the qasm_simulator yielded successful measurement results, from which the most frequent output 

gave an estimated phase of 0.25. This led to the correct order 𝑟=4, satisfying Shor’s condition that 𝑟 must be even.  

From the quantum phase estimation, we obtained the estimated order 𝑟 = 6. Applying the classical post-

processing steps: 

gcd(23 − 1, 21) = gcd(7, 21) = 7, gcd(23 + 1, 21) = gcd(9, 21) = 3 

Thus, the two non-trivial factors of 21 found using Shor's algorithm are 3 and 7. This demonstrates a successful 

quantum period-finding implementation and validates the modular exponentiation and IQFT stages of the 

algorithm for 𝑁=21 in a simulated quantum environment. Figure 4 displays the unoptimized quantum circuit 

constructed for 𝑁=35, before any transpilation or compilation steps. 
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Figure 4: Quantum Circuit before Transpilation for Factoring N=35 

For N = 35 with a = 4, the circuit becomes more complex, employing 8 counting qubits and 6 work qubits to 

accommodate larger modular operations. The initial Hadamard gates create superposition as in previous circuits. 

The controlled modular exponentiation block for 4^x mod 35 introduces greater gate depth and qubit interactions 

due to the larger modulus. Multiple layers of controlled operations are required to accurately simulate modular 

multiplication, increasing the circuit's size and runtime. After performing the inverse QFT on the counting register, 

the measured outcomes reveal the period 𝑟=3, which allows successful classical factorization of 35 into 5 and 7. 

This circuit highlights how resource demands grow with the input size, reflecting scalability challenges in practical 

implementations of Shor’s algorithm. The impact of transpilation on the quantum circuit designed for 𝑁=35 is 

detailed in Table 5, showing reductions in gate count and circuit depth. 

Table 5: Quantum Circuit Metrics Before and After Transpilation for Factoring N = 35 Using Shor’s Algorithm 

Metric Before Transpilation After Transpilation 

Total Qubits 13 13 

Total Gates 84 592 

Depth 31 276 

CNOT Gates 26 182 

U (1/2/3) Gates 58 392 

Measurement Operations 9 9 

Simulator Runtime (seconds) — ~4.2 

Peak Memory Usage (MB) — ~106 

Transpiler Optimization Level — 3 

Backend Used — QASM Simulator 
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The quantum circuit metrics for factoring 𝑁=35 using Shor’s Algorithm demonstrate a significant increase in 

circuit complexity after transpilation. The number of qubits remained constant at 13 before and after transpilation, 

aligning with the requirement of 𝑛+𝑚 qubits, where 𝑛 is the number of counting qubits and 𝑚 is the number of 

computational qubits. However, the total number of gates rose from 84 to 592, indicating substantial circuit 

expansion due to hardware-aware optimization. Notably, the number of CNOT gates, which are resource-intensive 

on quantum hardware, increased from 26 to 182. Similarly, single-qubit gate usage (U1/U2/U3) escalated from 

58 to 392, reflecting deeper quantum logic decomposition. As shown in Figure 5, the simulation results highlight 

how Shor’s algorithm successfully identifies periods critical for integer factorization for multiple input values. 

 

 

 

Figure 5: Quantum Period-Finding Results for Shor’s Algorithm Simulations (N = 15, 21, 35) 

The circuit depth also increased significantly, from 31 to 276, which could impact coherence times and execution 

reliability on real quantum devices. The transpiled circuit, optimized at level 3, required approximately 4.2 

seconds of simulation time and consumed around 106 MB of peak memory on the QASM simulator. Despite the 

increase in circuit complexity, the measurement operations remained unchanged at 9, ensuring consistent output 

extraction. These results highlight the trade-off between algorithmic simplicity and hardware-constrained 
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execution, emphasizing the importance of circuit optimization and resource management in practical quantum 

computing implementations. 

The figure displays measurement histograms obtained from simulating Shor's algorithm for factoring three 

semiprime numbers N=15, 21, and 35 using Qiskit's quantum simulator. Each subplot presents the distribution of 

measurement results from the quantum period-finding circuit. Distinct peaks appear at expected locations, 

revealing the periodic structure essential for deriving the correct factors. 

For the case of 𝑁=15 with co-prime 𝑎=7, the histogram exhibits four dominant peaks located at measurement 

outcomes 0, 64, 128, and 192. These positions correspond to a period 𝑟=4, as 74 𝑚𝑜𝑑 15 = 1. The uniform 

spacing between peaks confirms the successful extraction of the period. Using classical post-processing, the 

factors of 15, 3 and 5 are calculated by evaluating 𝑔𝑐𝑑(72 ± 1, 15). 

For 𝑁=21 with base 𝑎=2, three peaks appear at 0, 85, and 170, indicating a period of 𝑟=3, since 23 𝑚𝑜𝑑 21 = 8. 

These peaks align with measurement outcomes that correspond to fractions 𝑘/256 ≈ 0, 1/3, and 2/3. This alignment 

enables correct factorization through classical computation of 𝑔𝑐𝑑(21 ± 1, 21), yielding 3 and 7. 

The histogram for 𝑁=35 with 𝑎=4 also shows three major peaks at 0, 85, and 170, consistent with a period 𝑟=3, 

as 43 𝑚𝑜𝑑 35 = 1. Classical post-processing using the measured period similarly results in the correct factors 5 

and 7 via 𝑔𝑐𝑑(41 ± 1, 35). 

The y-axis in each plot represents the number of occurrences (counts) for each measurement result across 2048 

repeated trials (shots). High frequencies at predicted positions indicate accurate period detection. The x-axis shows 

the measured integer outcomes, which map to multiples of 2𝑛/𝑟, where 𝑛 is the number of counting qubits used 

in the quantum circuit. 

Each subplot demonstrates the hybrid nature of Shor’s algorithm, combining quantum computation for period 

detection with classical post-processing for factor extraction. The well-defined peaks in the histograms highlight 

successful simulations for small semiprimes. However, the broader measurement ranges and increasing resource 

demands with larger integers emphasize the challenges of applying Shor’s algorithm on real, noisy quantum 

hardware. A comparison between classical and quantum factorization techniques is summarized in Table 6, 

highlighting the advantages and current limitations of quantum algorithms like Shor’s. 

Table 6: Comparison of Classical vs. Quantum Factorization 

Metric Classical Simulation (GNFS) Quantum Simulation (Shor’s Algorithm) 

Input (N) 15, 21, 35 15, 21, 35 

Algorithm 
General Number Field Sieve 

(GNFS) 
Shor’s Algorithm (Period Finding) 

Time Complexity Sub-exponential (~𝑒𝑛
1

3⁄ ) Polynomial (~𝑂(𝑙𝑜𝑔3𝑁)) 

Qubits Required N/A 8 (N=15), 10 (N=21), 11 (N=35) 

Circuit Depth N/A ~100 (N=15), ~150 (N=21), ~200 (N=35) 

Gate Count N/A ~50 CNOTs (N=15), ~80 CNOTs (N=21/35) 

Runtime 

(Simulated) 
<1 ms (classical CPU) 

~5 sec (N=15), ~8 sec (N=21), ~12 sec 

(N=35) 

Success Rate 100% (deterministic) ~90% (due to sampling noise) 

Peaks Observed N/A 
N=15: 0, 64, 128, 192 

N=21/35: 0, 85, 170 

Factors Found 3×5 (15), 3×7 (21), 5×7 (35) 3×5 (15), 3×7 (21), 5×7 (35) 

Error Sensitivity None High (requires error correction for scale) 

Scalability Slower for large N Theoretically scalable, limited by hardware 

Shor’s algorithm demonstrates quantum advantage for integer factorization, solving it exponentially faster than 

classical methods like GNFS. For small numbers (N=15, 21, 35), simulations confirm correct factors via period-

finding, but quantum circuits face scalability challenges due to high qubits and gate counts. While classical 

methods remain faster for trivial cases, Shor’s polynomial complexity promises breakthroughs for large 

semiprimes (e.g., RSA). Current limitations sucha s noise, qubit constraints, and error rates hinder real-world 

deployment, but advancements in error correction and NISQ hardware could bridge this gap. The hybrid quantum-
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classical approach may offer near-term solutions, but fault-tolerant quantum computers are essential for 

cryptographic-scale factorization. Quantum’s potential is clear, but practicality awaits technological maturation. 

5. Conclusion 

Shor’s algorithm is a major advancement in quantum computing, offering much faster integer factorization than 

classical methods. This study evaluated the performance of Shor’s algorithm using simulated quantum systems in 

Qiskit, focusing on circuit-level analysis for numbers such as 15, 21, and 35. A dynamic framework was developed 

to generate optimized quantum circuits for any input number. This framework included random selection of co-

primes and automatic period calculation. Circuit characteristics before and after optimization were analyzed, 

including gate counts, circuit depth, and simulation time. Visualizations highlighted the complexity of modular 

exponentiation and the IQFT. Post-optimization data showed that converting to hardware-compatible circuits adds 

significant overhead. Experimental results showed consistent success in finding the correct factors from 

measurement outputs, confirming the effectiveness of the period-finding process. However, circuit depth and gate 

count increased quickly for larger numbers, revealing challenges in using Shor’s algorithm on current quantum 

hardware. A comparison with fixed-instance circuits showed that a flexible, parameterized design offers better 

adaptability and resource efficiency. This flexible approach can handle different input sizes more effectively. This 

study provides a foundation for adapting Shor’s algorithm to near-term quantum devices by identifying key 

challenges such as error correction and efficient arithmetic circuit design. Future research may explore hybrid 

quantum-classical strategies, improved optimization methods, and hardware-specific circuit layouts. These 

insights will help bridge the gap between theoretical potential and practical implementation, supporting further 

development in quantum algorithms and hardware development. 
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