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Abstract

Shor’s algorithm stands as a breakthrough in quantum computing due to it
exponentially quicker than classical algorithms. However, implementing and € )
quantum computer hardware remains exciting due to qubit limitations, gate noise, 2Ngaardware constraints. This
research presents a comprehensive performance evaluation of Shor’s algorith

backends provided by Qiskit. A flexible and generic implementation is propj alloWhg dynamic input of
i@t generation. The algorithm is
simulator. A major contribution of
n. Metrics such as gate counts,
e requirements. High-resolution
ic CO ity, while post-transpilation metrics
ent distributions are analyzed to estimate

integers to be factored, with randomized co-prime selection and auto
tested on various semiprime numbers, such as 15, 21, and 35, using
this work is the circuit-level analysis conducted both before an
circuit depth, and simulator runtime are extracted to assess sca

lays the groundwork for future adaptation to NISQ ha
from both computational and architectural perspectives.

1. Introduction

Integer factorization is a funda:
number into a product Q

ic complexity, and secure communications [1]. The integer factorization
e as the size of the number increases, especially when the number in question

is problem, each improving upon its predecessors in terms of efficiency and
tforward method, trial division, involves dividing the target number by successive

) introduce probabilistic and number-theoretic heuristics to improve efficiency. However, the most
cements in classical integer factorization are represented by the Quadratic Sieve (QS) and the

ber tields, to factor large semiprimes in sub-exponential time. Despite its efficiency, GNFS still scales poorly
ry large integers—typically those used in cryptographic key generation (e.g., 2048-bit RSA keys)—and
remains infeasible without access to massive computational resources. This computational hardness underpins the
security of widely used cryptographic protocols like RSA, DSA, and Diffie-Hellman key exchange, where the
confidentiality and authenticity of encrypted communications rest on the infeasibility of factorizing large
semiprimes [3].

In 1994, Peter Shor revolutionized the landscape of computational number theory and cryptography by suggesting
a quantum algorithm capable of factoring large integers in polynomial time. Unlike classical methods, which scale
sub-exponentially at best, Shor’s algorithm operates in time complexity marking an exponential speedup over the



fastest classical alternatives. The quantum subroutine utilizes quantum parallelism to evaluate many values of
f(x) simultaneously and employs the QFT to extract the periodicity embedded in the superposition of quantum
states [4]. This period-finding process is exponentially faster than classical brute-force or sieving techniques,
making Shor’s algorithm the most powerful known application of quantum computing. The potential of Shor’s
algorithm to break RSA and other cryptosystems has led to widespread concern within the cybersecurity
community. In anticipation of scalable quantum computers, researchers have begun developing post-quantum
cryptographic algorithms, which are designed to be unaffected by quantum attacks. These include lattice-based,
hash-based, and code-based cryptosystems, many of which are currently being evaluated by the National Institute
of Standards and Technology (NIST) for standardization [5].

From a scientific perspective, Shor’s algorithm continues to serve as a benchmark for quantum computati
advantage. Experimental demonstrations on simulated and real quantum hardware, such as those offered by I
Google, and Rigetti, have successfully factored small semiprimes like 15 and 21. These implementatiog

modeling, and hybrid quantum-classical execution strategies. This research evaluates the
feasibility of Shor’s algorithm using simulated quantum circuits in Qiskit, focusing on semipri
21, and 35). By analyzing circuit depth, gate counts, and measurement distributiong ass
efficiency and scalability under realistic quantum computing constraints [6].

Despite its theoretical significance and potential to revolutionize cryptograp
practical drawbacks that hinder its current applicability. The most critical limitatio
tolerant quantum computer with a large number of qubits. To factor an n-bit numbe
order of O(n®) quantum gates and roughly 2n qubits, depending on the implementatj
lacks the necessary qubit count and coherence times to run such a complex alg m effectlvely, particularly for
numbers of cryptographic importance (e.g., 2048-bit RSA keys). Addi phor’s algorithm is highly sensitive
to noise and decoherence, common in existing quantum systems [7 nall errors in gate operations or

requirement for a fault-
s algorlthm requires the

qubit interactions can lead to incorrect results, requiring ) m error correction schemes.
Implementing such correction methods adds signi terms of required qubits and
computational resources. Another challenge lies in and post—processmg steps. Although quantum

required for preparing the input and verifying
the algorithm is tailored for integer factorization &
While its implications are profound for RSA, it is les
on lattices or hash functions [8].

Cs not directly apply to other cryptographic primitives.
cvant for post-quantum cryptographic algorithms based

This research article is organized into ain sections for clarity and coherence. Section 2: Literature Review
presents an in- depth analys1s of cla551 m approaches to integer factorization, including a comparative
ations and simulation-based studies. Section 3: Methodology
details the proposed implemen orithm using Qiskit, emphasizing circuit construction, modular
exponentiation, inverse urier Transform (QFT), and simulator configuration. The section also
explains how performang
Results and Discussio
circuit-level analyses,

imulation outcomes for semiprime numbers like 15, 21, and 35, including
risualizations, and factor extraction via classical post-processing. It also

ges on the efficient implementation of modular exponentiation and quantum phase estimation
[9]. The modular exponentiation subroutine, crucial for computing powers of a chosen base
ften treated as an oracle or “black box” in theoretical presentations. However, expanding this oracle
ve gates especially Toffoli and multi-controlled rotations dramatically increases circuit depth and
urce requirements. Héner et al. (2017) provided a seminal exploration of this, showing how a Toffoli-based
ar multiplication circuit can be realized with 0(n®) gate depth and 0(n? log n) gate count for an n-bit
integer. This insight underscores the fact that practical implementation of Shor’s algorithm requires careful circuit
engineering to balance qubit usage, gate complexity, and error susceptibility.

In this vein, Héner and colleagues introduced an efficient “in-place” constant adder using dirty ancillas, offering
O(n) depth and O(n log n) size, mitigating some space overhead associated with classical adders. Similarly,
Takahashi et al.'s work on resource-optimized circuit templates demonstrated that careful structured
decomposition of arithmetic operations can mitigate the hardware burden. These studies reinforce the view that



the practical feasibility of Shor’s algorithm is as much a matter of low-level circuit design as it is of quantum
hardware capability [10].

To assess Shor’s algorithm beyond toy examples, classical simulation techniques have been pushed to their limits.
Wang et al. (2015) demonstrated that the Matrix Product States (MPS) allows Shor’s quantum wavefunctions to
be represented compactly based on entanglement structure rather than simple amplitude storage. By efficiently
harnessing weak entanglement across qubit partitions, Wang’s group simulated circuits as large as 42—45 qubits
on a single-processor machine in roughly one hour demonstrating the viability of MPS simulation for moderate-
sized problems. This work was extended by the authors, who optimized MPS simulations specifically for Shor’s
circuits. They highlighted that mapping high-entanglement portions of the circuit (e.g., modular exponentiatig,
onto MPS efficiently enables the simulation of up to 60 qubits on a single node. After entanglement peaks
handled, truncation becomes feasible, mitigating resource explosion. These results illustrate that class
simulation remains a potent tool for understanding algorithmic complexity, benchmarking
implementations, and analyzing entanglement scaling even in the absence of actual quantum hardwg

aling the “universality”
igh-performance effort

recover factors with high certainty. These simulations also included noise modeli
and resilience of periodicity extraction even under realistic hardware defects. Anot®
utilized JUQCS and MPI coordination across thousands of GPUs to simulate itggetive
qubits, distributing vector elements across devices to simulate circuits with qu%mts upwards of 43 in under
200 seconds. These results confirm that, although classical simulajg ity grows rapidly with hardware

Simulated performance is one thing, but real hardware perfo
used Qiskit and Ion-trap systems to implement scalg versions of Shor’s algorithm. A Qiskit-
by SanScherf or Rania Ouassif) offered a
ical QFT routines tailored to small inputs
Ictored 15 using only seven logical qubits and “cache”
itaev’s scalable qubit reuse method. These real-device

tilization and error mitigation strategies are key to

ever, these successes are limited by qubit availability (often
(10 minutes per month), and lack of built-in error correction.

entations and Simulations of Shor’s Algorithm Across Classical and
Quantum Platforms

bach / Scale Key Contributions Limitations

Reversible addition and
multiplication circuits with
dirty ancillas, and constant

depth adders.

Efficient entanglement

mapping; demonstrated

weak scaling via MPI;
truncated error control.
Quantified success

Toffoli-based
arithmetic,
0(n3 log n) gates

Still large circuits; no
hardware testing

Classical limit only; does not
test hardware

MPS simulation for
42-60 qubits

GPU + large state-

Willsch et al. (2023)

vector simulation
(~40 qubits)

probability; scalable to 550T
semiprime; robust under
noise.

Resource-intensive; classical
only

lon-trap hardware
demo

7 logical + 4 ancilla
qubits for N=15

High success (>90%),
reusable qubit protocols,
scalable design principles

Very small modulus;
hardware remained within a
small experimental setup




IBM Qiskit N=15-35 toy circuits, Flexible input, dynamic High error rate, lack of error
. . some iterative circuit generation, PRNG correction, short run-time
implementations & . .
backends moderate benchmarks, 8-second windows (~10 min per
factorizations factoring at 48 bits month), no general scaling

Table 1 summarizes notable implementations and simulations of Shor’s algorithm across classical and quantum
platforms, highlighting key milestones and technological limitations encountered in each case. The QFT, central
to Shor’s period-finding, requires 0(n?) two-qubit controlled phase rotations. While straightforward for small
circuits, implementing QFT at scale is both resource-intensive and highly sensitive to gate fidelity and timing
delays. Circuit-level studies, including Héner’s and Takahashi’s, highlight that even scalable modular arithmejg
design must be complemented by efficient QFT and error-corrected gate design to reduce fidelity loss, especi
since shallow decomposition of QFT circuits often introduces phase approximation overheads [15, 16].

3. Methodology

Shor’s algorithm transformed the ﬁeld of quantum computing by introducing an efficient my

the period r of the function f(x) = a*mod Nis computed using QFT. Once r ig

processing computes the GCD between a”/? + 1 and N, which yields non-trivig
N.

Mathematically, the periodic function is defined as:

f(x) = a*mod N , €))

where:
a € Zand gcd(a,N) =

N is the number to be factorized

7 is the least positive integer such that a” = 1
The success probability increases significantly enand a”/? £ 1 mod N.

The use of quantum parallelism and QFT allows
demonstrating exponential speed-up over classical appr

algorithm to determine r in polynomial time, thus
es such as trial division or Pollard’s rho algorithm.

3.1. Quantum Circuit Design for Ordg@Findin

The main component of Shor’s alggli ¢ (@er-finding circuit, which identifies the period r of the function
f(x) = a*mod N. This is atgllled usin E subroutine. The quantum circuit consists of two quantum
registers:

a) Control registcy itN@pically t = 2n, where n = log,N) initialized to the |0) state.
b) s initialized to [1), which holds the modular exponentiation result.
¢ following steps:

m is applied to all control qubits to create a superposition.

g 1 ontrolled fashion based on the control qubits.
erse QFT (QFT™") is then applied to the control register to extract the phase information.

Measurement of the control register yields a binary approximation of s/r, where s is a random integer
less than r. Continued fraction expansion is then used to estimate 7.

Figure 1 represents the stepwise process of Shor’s algorithm used for factoring a composite integer N using
quantum computation. The flow encapsulates both classical pre-processing, quantum phase estimation, and
classical post-processing, forming a hybrid quantum-classical algorithm.

Start: The process initiates with the input of a composite number N (e.g., 15, 21, 35).

Random Selection of a: A random integer a is chosen such that 1 < a < N. This forms the base for modular
exponentiation.



Check gcd(a, N): Compute the GCD of a and N. If gcd(a, N) # 1, then a non-trivial factor of N is already found.
This is a rare but immediate success case.

Quantum Order Finding: If gcd(a, N) = 1, the algorithm proceeds to the quantum part, where the order r of
a modulo N is estimated using QPE. This involves constructing and executing a quantum circuit.

Check if r is even: Once the period r is estimated, it's verified whether r is even. If it is not even, the algorithm
chooses a new random a and repeats the process.

Check a’/? # —1mod N.: If r is even, the condition a”™/? % 1 mod N. is checked. If this holds, the algorithm
moves to the final factor computation.

Compute Factors: Using the formula:
gcd (ai -1, N) and gcd (ai +1, N)
two non-trivial factors of N are calculated.

End: If the factors are valid (non-trivial and not equal to N), the algorithm terminat s . Oth , it

repeats with a new a.
Start: Input N

[Choose random 'a' less than N] ,

Check GCD of 'a' and 'N,

GCD not equal to 1 GCD equal to 1

itialize quantum registers

v

ply Hadamard gates to
control register

v

Apply controlled modular
exponentiation

K :
Apply inverse QF T
v

Measure control register

v

Post-process: continued
fractions to find 'r'

v

Check if 'r' is even and 'a’ and
' by 2 not equal to -1 mod N
Yes No

[ Return GCD as a factor ]

Compute GCD of 'a power (r/2)
plus or minus 1 and N'

v

Return of nontrivial factors

[ Check another 'a' and repeat ]

Figure 1: Workflow of Shor’s Algorithm for Quantum Integer Factorization



3.2. Quantum Circuit for Modular Exponentiation

The core quantum subroutine of Shor’s algorithm is the QPE, which is used to estimate the order r of a number a
modulo N, i.e., the smallest integer such that:

a” =1mod N 3)
To perform this using quantum computation, a quantum circuit is designed with two main registers:

The control register: an n-qubit register initialized to |0)®™, which stores the superposition of computational basis
states.

The target register: a log, (N) qubit register initialized to |1), which evolves under modular exponentiation.

The process begins by applying a Hadamard gate on each qubit in the control register, resulting in the
1
V2
A key component in the quantum circuit is the unitary operator U,, defined by:

Uglx) = |a.x mod N)

i=o )1

&)

¢ of each¥ubit in the
S:

This unitary operation is repeatedly applied in a controlled manner based on th§
control register, corresponding to the powers of U,. The complete unitary evoluti8

SIS - =3RSk a. x mod 1v>' (6)

rol register, transforming the
e y, from which the phase ¢=s/r

can be estimated using continued fractions, where s and r gge
transpilation, optimizing it for specific quantum hardware bac S. § g@-nalysis of the transpiled circuit,
including depth, width, CX count, and memory requijg RS, rform>®® evaluate the computational cost.

Bpplying the inverse QFT, the resulting circuit must be
h transpilation. It optimizes the circuit by decomposing
(e.g., IBM’s basis_gates=['cx', 'u3']), and mapping the

ig = (Q,G,M) (7)

antum gates, and M represents measurements. After transpilation,

Where, Q is the set of qubits, G 1
the optimized circuit Cy, €Sy

Cirans = T(Corig' H) (®
n and H is the target hardware model.

eters are extracted post-transpilation:

G, = ZgEGa(g) ©)

D = maxdepth (q) (10)
qeqQ

This determines the number of gate layers and directly affects decoherence.

Total Number of Qubits Ng:

Ny =10l (11)

Runtime Estimation T+r:



Given gate execution times tg, the total estimated runtime is:
Ty = Ygec 6(9)-tg (12)
Memory Footprint My:
Dependent on the number of classical bits and qubits stored:
My = N, - QubitStateSize + N, - ClassicalBitSize (13)

These metrics are crucial in comparing the performance of Shor’s algorithm across different simulation platformsg
or real quantum devices. A direct comparison of transpiled circuits for different input sizes (e.g., factoring 15,
and 35) reveals how hardware constraints (e.g., connectivity, gate fidelities) impact resource utilization.

3.4. Measurement Analysis and Order Finding

Once the transpiled quantum circuit is executed on a simulator or real quantum backend, the ou
quantum computation is obtained as a bitstring from the quantum measurement. These measu
used to estimate the phase that encodes information about the periodicity of the modular exp
which is essential to finding the order r.

Let y € {0,1,...,2n — 1} be the most frequently measured value in the countg
estimated phase ¢ is computed as:

Y registey

¢=0 (14)
This phase ¢ approximates a rational number s/r, where r is the unknown ord, be delermined, and s € Z is
an integer coprime with 7. The continued fraction expansion is used from ¢:
E ~¢ = zln = r = Denominator ox(I®) (15)
If  is even, and a’/? # —1 mod N, then the factorsg etriev
fi=gcd (ag -1, ycd (a 1,N) (16)

If either f; or f, is a non-trivial factor of N, the alg P has succeeded.

To improve the reliability, the algorithm may need to boQ@ multiple times with different values of a. The success

probability Py, c.ss increases with repeat ials, given bY

1 -p) (17)

Where pj is the probability of s igion in the i*" trial and k is the number of independent runs.

transpiler to optimize a generated quantum circuits to a realistic hardware model. The transpilation
process is essentj
1vity and native gate sets. We used the transpile() function with optimization
to explore trade-offs between circuit depth and fidelity. The quantum circuits were

emory footprint using circuit.count_ops() and backend-specific execution metadata. Additionally,
antum runtime environment was configured using IBMQ.load_account() and jobs were submitted to
ulated noisy backends (e.g., ibmq _gasm_simulator) and hardware-mimicking backends to compare
ce utilization and output fidelity.

A visual comparison between the pre-and post-transpiled circuits was performed using Qiskit’s MatplotlibDrawer,
which helped in identifying optimizations such as gate fusion, qubit routing, and redundant operation removal.
This setup ensures that the evaluation of Shor’s algorithm goes beyond theoretical correctness, encompassing
practical constraints that affect quantum algorithm deployment in near-term quantum devices.



3.6. Resource Profiling and Comparative Benchmarking

To comprehensively evaluate the performance of Shor’s algorithm, we systematically profiled the resource
requirements across different input values and backend configurations. For each run, we recorded key circuit-
level metrics including the total number of quantum gates, circuit depth, number of qubits used, and runtime
latency. The gate-level analysis helped identify how complex quantum arithmetic operations, particularly modular
exponentiation and QFT scale with input size. The count ops() function from Qiskit was used to classify gates
(e.g., CX, H, Ul, U2, U3) and assess the relative quantum cost.

In order to simulate real-world constraints, the circuits were transpiled onto IBMQ backends with realistic nois
models and restricted qubit topologies, such as ibmq_manila and ibmg_jakarta. Performance metrics such as
queuing time, execution time, memory usage, and backend-specific error rates were retrieved via job metad
This allowed us to evaluate the possibility of running Shor’s algorithm on NISQ devices.

Additionally, we compared the proposed Shor implementation against prior simplified or hard-coded
bypassed modular arithmetic or used fixed qubit layouts. The comparison was based on pa
execution time, success probability, and measured bitstring distributions. These empirical be ark
the benefits of our modular and dynamically scalable implementation, especially w J8) rge co
numbers like 21 and 35.

3.7. Post-Processing and Factor Extraction

Following circuit execution, the measurement results represented as bitstrings
periodicity of the modular exponentiation function. The quantum phase estimatign
approximation of the phase ¢ = s/r, where r denotes the period (order) we a? e. The bitstring with
the highest frequency from the measurement results is converted into |Walue s, which is then divided by
2™ (with n being the number of counting qubits) to approximate ¢.

The continued fractions algorithm is employed to recover the bg#ra appgkimation of the measured phase,
yielding the estimated order r. The accuracy of this ggdgnati infl y the fidelity of the QFT and the
depth of the circuit. Once 7 is determined, the algg kck cther it satisfies the required conditions (i.e.,
evenness and a”/? # —1 mod N) for successf]

If valid, the two nontrivial factors of the composi r N are computed using the expressions:

factor; = gecd (ai -1, ad factor, = gcd (ai +1, N) (18)
This final step concludes the classica processing phase of Shor's algorithm. The success is validated by
comparing the extracted factors with i k ime decomposition of N. Unsuccessful attempts trigger a rerun
with a different random a, levera obabj¥stic nature of the algorithm to converge upon correct factors in

repeated trials.

4. Results and Discusg

ental evaluation of Shor’s algorithm using Qiskit on simulated quantum
ess circuit-level performance including gate complexity, transpilation impact,

re conducted using Qiskit 2.0.2 with giskit-aer 0.17.1 on Python 3.11 in a Google Colab
. Table 2 presents the simulation parameters used for executing Shor’s algorithm on a quantum
ailing backend settings, qubit allocation, and input numbers chosen for factorization. The
utilized the AerSimulator backend with a shot count of 1024 to ensure statistical reliability. Each
ution of Shor’s algorithm includes modular exponentiation, QPE, and IQFT. The Qiskit transpiler is employed
to Wumize circuits before execution, targeting depth and gate efficiency.



Table 2: Simulation Parameters

Parameter Value
Backend AerSimulator
Number of shots 1024
Transpiler optimization level 2

Qubits used (factoring 15) | 8 (4 counting + 4 for a* mod N)
Input Numbers 15,21, 35

4.2. Circuit-Level Analysis

This subsection investigates the quantum circuits generated during the execution of Shor’s algo
specific focus on pre-transpilation vs post-transpilation structure, gate counts, circuit dep

factoring N=15, shown in Figure 2 before transpilation, illustrates the unopti
modular exponentiation.
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Figure 2: Quantum Circuit before Transpilation for Factoring N=15

stance, factoring the number 15 with a random co-prime a=7 results in the following metrics: For N = 15
with co-prime a = 7, the generated quantum circuit consists of an 8-qubit counting register and a 4-qubit work
register. The circuit begins with Hadamard gates applied to the counting qubits to create a uniform superposition.
The core component is the controlled modular exponentiation, where powers of 7 modulo 15 are computed in a
reversible manner using multi-controlled gates. This unitary operation encodes periodicity into the quantum state.
Following this, an IQFT (QFT+) is applied to the counting register, enabling the extraction of phase information
linked to the period. Measurement of the counting qubits then reveals peaks corresponding to the period r=4, from
which classical post-processing yields the correct factors 3 and 5. As shown in Table 3, transpilation significantly
modifies the quantum circuit metrics, optimizing it for more efficient execution on quantum hardware.



Table 3: Quantum Circuit Metrics Before and After Transpilation for Factoring N=15 using Shor’s Algorithm

Metric Before Transpilation After Transpilation
Total Qubits 8 8
Circuit Depth 89 582
CX (CNOT) Gates 36 410
U (1-qubit) Gates 102 693
Total Gates 138 1103
Classical Bits 8 8
Memory Usage Negligible Increased (due to u
Runtime (simulation) ~4.2s

The runtime is measured for AerSimulator on Google Colab. Memory refers to Q
in gate count and depth post-transpilation is due to the decomposition of higher
basis gates supported by the simulator backend. Transpilation ensures circuit d
hardware and prepares it for near-term device execution.

The CNOT gate count is a critical performance indicator. Post-transpilation circuits\@e a 10x increase due to
modular exponentiation unrolling. Depth significantly increases, which could limjgerfoNg@nce on real hardware
due to decoherence. Measurement distribution shows high consistency jgsss or example, the most frequent
ding to the correct order r=4.

—_

From this, Shor’s algorithm derives the correct factors:

gcd(72 — 1,15) = gcd(48,15) =

it counting register and a 5-qubit work register. The Hadamard layer again initializes the
superposition. The modular exponentiation unitary for 2* mod 21 is simpler than for a =7

lement the necessary modular arithmetic, and the inverse QFT enables period estimation through
. Measurement outcomes cluster around positions representing k/3, validating successful detection of
eriod and enabling factor recovery (3 and 7) through classical greatest common divisor computations.



Table 4: Quantum Circuit Metrics Before and After Transpilation for Factoring N=21 Using Shor’s Algorithm

Metric Before Transpilation After Transpilation
Total Qubits 12 12
Total Gates 68 432
Depth 24 198
CNOT Gates 20 132
U (1/2/3) Gates 48 300
Measurement Operations 8 8
Simulator Runtime (seconds) — ~2.8
Peak Memory Usage (MB) —
Transpiler Optimization Level —
Backend Used —

To factor the composite number N=21, Shor’s algorithm was executed on a si antum backend using
Qiskit. A random coprime a was selected (e.g., a=2), and a quantum circuit was corg@acted with 8 qubits in the
counting register and 4 in the target register for modular exponentiation. The pre-trgasp@on circuit was shallow
and readable with a gate count of 68 and a depth of 24, including both single-qub@ CNOMT gates. After applying

g ynStraints, resulting in an increased
g@ to hardware-level mapping. As
proving its execution efficiency

depth of 198 and a total gate count of 432, with more decompose
detailed in Table 4, transpilation significantly alters the circuit ‘
on the quantum backend.

Execution on the gasm_simulator yielded successf
gave an estimated phase of 0.25. This led to theg
From the quantum phase estimation, we obta'
processing steps:

em esults, from which the most frequent output
=4, ing Shor’s condition that r must be even.

quantum period-finding implementa
algorithm for N=21 in a simulat
constructed for N=35, before a anspil

N
v

idates the modular exponentiation and IQFT stages of the
ronment. Figure 4 displays the unoptimized quantum circuit
compilation steps.
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accommodate larger modular operations. The initial HaS{@ard gates create superposition as in previous circuits.
The controlled modular exponentiation for 4"x mod 35 introduces greater gate depth and qubit interactions
due to the larger modulus. Multlple 1 trolled operations are required to accurately simulate modular
multiplication, increasing the circ ime. After performing the inverse QFT on the counting register,
the measured outcomes reveal t eriod r=3, ch allows successful classical factorization of 35 into 5 and 7.
This circuit highlights how resouNg@gemar ow with the input size, reflecting scalability challenges in practical
implementations of Shor’ he impact of transpilation on the quantum circuit designed for N=35 is
detailed in Table 5, sho gate count and circuit depth.

Table 5: Quantum Circ

efore and After Transpilation for Factoring N = 35 Using Shor’s Algorithm

Before Transpilation After Transpilation
13 13
84 592
31 276
26 182
58 392
Measurement Operations 9 9
Simulator Runtime (seconds) — ~4.2
Peak Memory Usage (MB) — ~106
Transpiler Optimization Level — 3
Backend Used — QASM Simulator




The quantum circuit metrics for factoring N=35 using Shor’s Algorithm demonstrate a significant increase in
circuit complexity after transpilation. The number of qubits remained constant at 13 before and after transpilation,
aligning with the requirement of n+m qubits, where n is the number of counting qubits and m is the number of
computational qubits. However, the total number of gates rose from 84 to 592, indicating substantial circuit
expansion due to hardware-aware optimization. Notably, the number of CNOT gates, which are resource-intensive
on quantum hardware, increased from 26 to 182. Similarly, single-qubit gate usage (U1/U2/U3) escalated from
58 to 392, reflecting deeper quantum logic decomposition. As shown in Figure 5, the simulation results highlight
how Shor’s algorithm successfully identifies periods critical for integer factorization for multiple input values.
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Figure 5: Quantum Period-Finding Results for Shor’s Algorithm Simulations (N = 15, 21, 35)

The circuit depth also increased significantly, from 31 to 276, which could impact coherence times and execution
reliability on real quantum devices. The transpiled circuit, optimized at level 3, required approximately 4.2
seconds of simulation time and consumed around 106 MB of peak memory on the QASM simulator. Despite the
increase in circuit complexity, the measurement operations remained unchanged at 9, ensuring consistent output
extraction. These results highlight the trade-off between algorithmic simplicity and hardware-constrained



execution, emphasizing the importance of circuit optimization and resource management in practical quantum
computing implementations.

The figure displays measurement histograms obtained from simulating Shor's algorithm for factoring three
semiprime numbers N=15, 21, and 35 using Qiskit's quantum simulator. Each subplot presents the distribution of
measurement results from the quantum period-finding circuit. Distinct peaks appear at expected locations,
revealing the periodic structure essential for deriving the correct factors.

For the case of N=15 with co-prime a=7, the histogram exhibits four dominant peaks located at measurement
outcomes 0, 64, 128, and 192. These positions correspond to a period r=4, as 7* mod 15 = 1. The unifo
spacing between peaks confirms the successful extraction of the period. Using classical post-processing,
factors of 15, 3 and 5 are calculated by evaluating gcd (72 + 1, 15).

For N=21 with base a=2, three peaks appear at 0, 85, and 170, indicating a period of r=3, since 23 mg
These peaks align with measurement outcomes that correspond to fractions k/256 ~ 0, 1/3, and 2/3. Tif
enables correct factorization through classical computation of gcd (2! + 1,21), yielding 3 and

The histogram for N=35 with a=4 also shows three major peaks at 0, 85, and 170, c
as 43 mod 35 = 1. Classical post-processing using the measured period similarl
and 7 via gcd (4 + 1, 35).

asten h a pc 3,
the ect factors 5

ent result across 2048
ection. The x-axis shows
counting qubits used

The y-axis in each plot represents the number of occurrences (counts) for each
repeated trials (shots). High frequencies at predicted positions indicate accurate perio
the measured integer outcomes, which map to multiples of 2™ /r, where n is the nb
in the quantum circuit. }‘

detection with classical post-processing for factor extraction. The,w@li-dg caks in the histograms highlight
successful simulations for small semiprimes. However, the brg . ranges and increasing resource
demands with larger integers emphasize the challengas algorithm on real, noisy quantum
hardware. A comparison between classical and g tion techniques is summarized in Table 6,
highlighting the advantages and current limitatig ms like Shor’s.

Table 6: Comparison o @e sl vs. Quantum Factorization

Metric Classical Simulation (G Quantum Simulation (Shor’s Algorithm)
Input (N) ,35 15,21, 35
Algorithm Generalgu d Sieve Shor’s Algorithm (Period Finding)

Time Complexity (~en1/3) Polynomial (~0(log®N))

Qubits Required 8 (N=15), 10 (N=21), 11 (N=35)
Circuit Depth N/A ~100 (N=15), ~150 (N=21), ~200 (N=35)
N/A ~50 CNOTs (N=15), ~80 CNOTs (N=21/35)
. ~5 sec (N=15), ~8 sec (N=21), ~12 sec
<1 ms (classical CPU) (N=35)
100% (deterministic) ~90% (due to sampling noise)
N=15:0, 64, 128, 192
A N=21/35: 0, 85, 170
Fact ound 3x5(15), 3x7 (21), 5x7 (35) 3x5 (15), 3x7 (21), 5x7 (35)
ensitivity None High (requires error correction for scale)
Scalability Slower for large N Theoretically scalable, limited by hardware

Shor’s algorithm demonstrates quantum advantage for integer factorization, solving it exponentially faster than
classical methods like GNFS. For small numbers (N=15, 21, 35), simulations confirm correct factors via period-
finding, but quantum circuits face scalability challenges due to high qubits and gate counts. While classical
methods remain faster for trivial cases, Shor’s polynomial complexity promises breakthroughs for large
semiprimes (e.g., RSA). Current limitations sucha s noise, qubit constraints, and error rates hinder real-world
deployment, but advancements in error correction and NISQ hardware could bridge this gap. The hybrid quantum-



classical approach may offer near-term solutions, but fault-tolerant quantum computers are essential for
cryptographic-scale factorization. Quantum’s potential is clear, but practicality awaits technological maturation.

5. Conclusion

Shor’s algorithm is a major advancement in quantum computing, offering much faster integer factorization than
classical methods. This study evaluated the performance of Shor’s algorithm using simulated quantum systems in
Qiskit, focusing on circuit-level analysis for numbers such as 15, 21, and 35. A dynamic framework was developed
to generate optimized quantum circuits for any input number. This framework included random selection of co-
primes and automatic period calculation. Circuit characteristics before and after optimization were analyze
including gate counts, circuit depth, and simulation time. Visualizations highlighted the complexity of mod
exponentiation and the IQFT. Post-optimization data showed that converting to hardware-compatible circuits
significant overhead. Experimental results showed consistent success in finding the correct factges fr

insights will help bridge the gap between theoretical potential and practical impl¥
development in quantum algorithms and hardware development.
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