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Abstract   

In remote healthcare systems, the efficient, secure, and real-time transmission of 

biomedical signals such as ECG is critical. Traditional RF-based communication often suffers from 

interference, limited bandwidth, and security concerns. Visible Light Communication (VLC), 

particularly when combined with Orthogonal Frequency Division Multiplexing (OFDM), presents 

a promising alternative due to its high bandwidth, electromagnetic immunity, and inherent data 

security. However, VLC systems are highly sensitive to environmental dynamics like ambient light 

variation and patient movement, limiting their reliability. Previous research has explored AI-

assisted VLC systems and modulation schemes, yet many suffer from static configurations, limited 

adaptability, high energy consumption, and lack of real-time optimization. This work introduces a 

novel Q-learning-optimized OFDM-VLC system tailored for remote health monitoring. The 

system leverages reinforcement learning to dynamically adjust modulation schemes, transmission 

power, and encoding strategies in response to environmental conditions (e.g., SNR, ambient light, 

mobility), enabling energy-efficient and error-resilient data transfer. Using the MIT-BIH 

Arrhythmia dataset, ECG signals are preprocessed, digitized, modulated using adaptive QPSK or 

16-QAM, and transmitted over a VLC channel. A Q-learning agent selects optimal actions in real 

time to minimize BER and energy use while maximizing throughput and SNR. MATLAB was 

employed for system design, simulation, and performance evaluation. Compared to static systems, 

the proposed method reduced BER from 0.078 to 0.015, improved SNR from 21.3 dB to 29.8 dB, 

increased throughput from 16.7 kbps to 22.4 kbps, and lowered latency from 14.6 ms to 9.0 ms. 

Energy consumption dropped from 1.35 J/bit to 0.89 J/bit, and ECG reconstruction accuracy rose 

from 85.3% to 96.7%. The integration of reinforcement learning with VLC-OFDM significantly 

enhances the reliability, efficiency, and adaptability of real-time biomedical data transmission in 

remote health monitoring.  

Keywords: VLC, OFDM, Q-learning, Remote Health Monitoring, Reinforcement 

Learning 

1. Introduction 

The increase in chronic diseases and the necessity for ongoing monitoring of patients have 

accelerated the evolution of remote health monitoring systems [1].  Conventional communication 

technologies based predominantly on radio frequency technologies are severely constrained in 

healthcare applications [2]. These include limited bandwidth, vulnerability to electromagnetic 

interference, and possible security risks, especially where confidentiality and integrity of medical 

information are paramount [3]. VLC, however, has emerged as an appealing alternative, with 

benefits of high data rate, immunity to RF interference, and intrinsic security advantages [4]. Such 

properties render VLC very versatile for hospital and home health care healthcare applications [5]. 

VLC system development has also been made feasible by the integration of Orthogonal Frequency 

Division Multiplexing (OFDM), which facilitates improved spectral efficiency and multi-channel, 

high-speed data transmission [6]. Even as such advantages are realized, VLC systems are very 

sensitive to environmental scenarios such as variations in ambient light, device mobility, and signal 
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loss, which have adverse effects on transmission performance [7]. Static system configurations are 

typically unsuitable to such variability, leading to compromised quality of service, including high 

bit error rates (BER), low signal-to-noise ratios (SNR), and high energy consumption [8]. 

To address such challenges, recent research has focused on the incorporation of machine 

learning techniques into communication systems. Reinforcement learning (RL) more particularly, 

Q-learning, is a viable option by enabling adaptive system modification with environmental 

feedback [9]. Unlike traditional algorithms, Q-learning learns optimal policies via extensive 

exploration of the environment without the necessity for pre-defined system models [10]. This 

study puts forward a Q-learning-enhanced OFDM-VLC system for remote transfer of medical data 

that can improve flexibility, reduce errors, and maximize energy efficiency under fluctuating 

healthcare conditions. 

1.1 Research Gap 

Despite the advancements in VLC and AI-aided adaptive modulation for medical data 

transmission optimizing high-speed, real-time, and secure data transmission in dynamic health 

environments is still a challenge. Most of the existing research is devoid of end-to-end solutions 

combining energy-efficient modulation, multi-channel transmission, and efficient reinforcement 

learning for remote health monitoring [11], [12]. Privacy-preservation schemes and optimized 

physical layer algorithms are also not well-explored [13]. Therefore, the requirement is to carry out 

extensive research using OFDM-VLC with reinforcement learning to enhance medical data 

transmission efficiency, security, and flexibility in remote health monitoring systems. 

1.2  Research Motivation 

The motivation for this work arises from the growing need for secure, real-time, and 

dependable data transfer in medical remote monitoring systems. RF communication is not 

dependable in medical environments, while VLC offers a secure, interference-free solution. 

However, its performance is hindered by environmental dynamics. The incorporation of 

reinforcement learning offers an intelligent solution, where adaptive tuning of transmission 

parameters is enabled to optimize for high-quality, energy-efficient, and dependable transfer of 

medical data. 

1.3 Research Significance 

This research is of vital value in remote healthcare technology development with the 

combination of reinforcement learning and VLC-based OFDM. It addresses important issues of 

signal attenuation, energy inefficiency, and latency in real-time systems. With smart adjustment of 

communication parameters, the system enhances the efficiency and reliability of medical data 

transmission. This results in more secure, quicker, and more scalable medical IoT applications, 

which are of great value in real-time and efficient patient monitoring. 

1.4 Key Contribution 

• Designed a Visible Light Communication system using Orthogonal Frequency Division 

Multiplexing to support high-speed medical data transmission. 

• Applied a reinforcement learning (Q-learning) algorithm to dynamically optimize 

transmission parameters like power levels, subcarrier allocation, and modulation schemes. 

• Enabled real-time adaptation to changing conditions such as ambient light and device 

mobility, improving system reliability. 

• Achieved lower bit error rate, improved signal-to-noise ratio, reduced energy consumption, 

and better throughput compared to static systems. 

• Simulated the system using MATLAB and evaluated it using real biomedical datasets (e.g., 

MIT-BIH, MIMIC-IV) for practical health monitoring scenarios. 
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1.5 Rest of Section 

In Section 2 literature review is provided, section 3 proposed method working is given. In 

section 4 findings and analysis and section 5 conclusion and further studies. 

 

2. Related Works 

Li et al. [14] proposed ADDETECTOR, an IoT device-based privacy-preserving Alzheimer's 

detection system with topic-based linguistic features, federated learning, and differential privacy 

in a three-layer framework. The system collects audio data from smart home IoT devices for 

enhancing detection with data confidentiality via an asynchronous privacy-preserving aggregation 

framework. The system was evaluated on 1010 trials with 81.9% accuracy and 0.7-second time 

overhead. The paper, however, presumes that attackers do not possess any access to IoT device 

data, which may limit practical security resilience. Future work includes exploring better features 

and experiments on larger datasets. Similarly, Salem et al., [13] suggested a secure scheme for 

Internet of Medical Things (IoMT) to respond against Man-in-the-Middle (MitM) attacks that can 

replay typical data in emergency situations. The technique employs signal strength-based keys and 

sends a small signature along with a message authentication code in order to maintain privacy and 

minimize energy consumption. Results indicate accurate detection of emergencies with a very low 

rate of false alarms at 3%. But the research does not consider jamming attacks or dynamic channel 

threats. Future research intends to investigate channel hopping with authentication keys as seeds 

for enhanced resilience. 

 

Kavitha et al. [15] investigated VLC for indoor transmission of medical data using LEDs, with 

the incorporation of Wireless Sensor Networks (WSNs) to collect patient data. They suggested a 

Cluster Nodes Reinforcement Scheme (CNRS) to improve routing efficiency and network lifetime. 

The scheme involves Binary Phase Shift Keying (BPSK) in conjunction with DC-biased Optical 

OFDM (DCO-OFDM) to analyze Bit Error Rate (BER) and End-to-End (ETE) delay. Outcomes 

showed enhanced VLC-based data transmission performance. The experiment is deficient in real-

time proof and does not cover external interference or scalability for larger deployments. Likewise, 

Hasan et al. [16] proposed a bandwidth- and energy-efficient multiple-access technique for infrared 

signal-based transmission of health data in frequency-division multiple access-based wireless 

sensor networks. They proposed a scheme that transmits only the real component of the complex 

signal, reducing computational complexity. Simulation revealed that asymmetric clipping reduces 

transmit power by approximately 35 mW to achieve a 10⁻³ bit error rate. The scheme enhanced 

interference robustness. User mobility and synchronization for large indoor areas were not 

considered, and they state these as future work directions. 

 

Rizi et al. [11] explored adaptive modulation in Visible Light Communication (VLC)-based 

Medical Body Sensor Networks (MBSNs) through machine learning. Supervised and 

reinforcement learning algorithms, i.e., Q-learning, were validated to manage signal fluctuation 

due to movement of patients. Enhanced spectral efficiency and real-time tuning were noted, 

particularly for photodetectors on the shoulder and wrist because of augmented DC gain. Some 

drawbacks are quantization dependency and no user mobility tracking. In the future, research can 

use neural networks to remove quantization and utilize advanced reinforcement learning to deliver 

higher data rates with minimum delay. Moreover, Xiang-Peng [17] suggested a high-speed Visible 

Light Communication (VLC) system to bypass RF communication drawbacks like interference and 

latency in the transmission of healthcare data. The system can transmit six channels of 10 Gbps 

each over 500 m of optical fiber and a VLC link of 200 cm using On-Off Keying (OOK) with 

hybrid Wavelength and Polarization Division Multiplexing. Results show successful data transfer 

with an acceptable BER of ≈10⁻³. However, the study lacks live testing and validation, suggesting 

that subsequent studies need to focus on actual testbeds for real-world high-speed VLC 

performance verification in clinical environments. 
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Niranga et al. [18] proposed NeoCommLight, a VLC-driven communication system for 

application in Neonatal Intensive Care Units (NICUs) to address RF limitations and spectrum 

scarcity. A functional prototype was implemented and tested under various scenarios including 

distance, angle, delay, and diffraction. Results showed up to 3 Mbps data rate at 5 cm and 800 Kbps 

at the maximum of 2 m. The system indicated stability under controlled environments. But it is 

plagued with short transmission range and degradation in performance due to non-ideal lighting or 

angles. Future improvements can be in range, data rate, and clinical robustness. Likewise, Antaki 

et al. [12] proposed a VLC-based AI system for Medical Body Sensor Networks (MBSNs) in 

hospitals utilizing ray tracing and machine learning for dynamic channel modeling. They employed 

an adaptive modulation scheme based on Q-learning and an LSTM estimator for path loss and 

delay spread. Simulations showed strong Symbol Error Rate (SER) control and efficient channel 

estimation with RMSE as low as 1.0652 dB. But higher system complexity and poor spectral 

efficiency were observed. The future includes improving quantization, neural network 

investigation, and utilizing high-level reinforcement learning to incorporate mobility-aware, high-

data-rate environments. 

 

Shi et al. [19] proposed two OFDM-based quadrature generalized MIMO schemes, TD-

QGSM and TD-QGSMP, to enhance receiver performance as well as spectral efficiency 

(SE) for band-limited VLC systems. By splitting constellation symbols into in-phase and 

quadrature components as well as spatial mapping of signals onto LEDs, 

the schemes achieve diversity and multiplexing gains. An illegal vector correction (IVC)-based 

orthogonal matching pursuit detection algorithm was proposed to reduce error propagation and 

noise amplification. Simulations offered SE improvement of at least 56.5% and 72.3% and bit 

error rate reduction by at least 62.5% compared to traditional detection methods. Similarly, Anitha  

 

Vijayalakshmi et al. [20] explored indoor lighting use by LEDs, highlighting their safety and 

environmental benefits over conventional lighting. They worked towards Visible Light 

Communication (VLC) using LED dimming by variable delta sigma modulation (vDSM) to offer 

hospital ambiance as well as patient data transmission. Performance was evaluated on Signal-to-

Noise Ratio (SNR). The study emphasized the integration of AI with VLC for patients' and 

healthcare monitoring in lighting-free environments. However, the study is hypothetical in nature 

lacking experimental data and suggests further studies on real implementation and optimization of 

AI-VLC systems. Table 1, presents a comparative overview of recent studies focused on VLC, 

wireless medical systems, and AI-based enhancements for secure and efficient data transmission 

in healthcare environments. 
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Table. 1: Summary of Related Works on VLC and AI-Enhanced Medical Data Transmission 

Author Proposed Method Results Limitations 

Li et al. [14] ADDETECTOR: Privacy-

preserving Alzheimer’s 

detection using IoT, federated 

learning, differential privacy 

81.9% accuracy, 0.7 s 

time overhead, privacy 

maintained 

No assumption of 

attacker injecting user 

network; limited dataset 

Salem et al., 

[13] 

MitM attack prevention 

framework using signal 

strength-based key and 

message authentication code 

High emergency 

detection accuracy, 

3% false alarm rate 

Did not address jamming 

or channel hopping 

Kavitha et al. 

[15] 

VLC medical data 

transmission using CNRS, 

BPSK with DCO-OFDM in 

WSN 

Improved routing 

efficiency, BER, and 

ETE delay 

No real-time validation; 

external interference not 

addressed 

Hasan et al. 

[16] 

Frequency-division multiple 

access with real-part signal 

transmission and asymmetric 

clipping for IR VLC 

35mW power saving 

for BER of 10⁻³; 

robustness to 

interference 

Lack of multi-AP 

synchronization; mobility 

not studied 

Rizi et al. [11] Adaptive modulation in VLC-

based Medical Body Sensor 

Networks using supervised 

and reinforcement learning 

Spectral efficiency 

improved; Q-learning 

enables real-time 

adaptation 

Relies on quantization; 

lacks mobility tracking 

Xiang-Peng 

[17] 

High-speed VLC with OOK, 

WDM and PDM for multi-

channel medical data 

transmission 

Successful 6×10 Gbps 

data transmission over 

500 m fiber + 200 cm 

VLC; BER ≈10⁻³ 

No real-time testbed 

implementation 

Niranga et al. 

[18] 

NeoCommLight VLC system 

for NICU; prototype and 

performance under varying 

conditions 

Max 3 Mbps at 5 cm; 

800 Kbps up to 2 m; 

analyzed delay, angle, 

diffraction impacts 

Limited range and data 

rate; performance drops 

under non-ideal 

conditions 

Antaki et al. 

[12] 

AI-driven VLC for MBSNs 

using ray tracing, Q-learning 

adaptive modulation, LSTM 

channel estimation 

Accurate SER control 

and channel 

estimation; RMSE as 

low as ~1 dB 

Added complexity; 

suboptimal spectral 

efficiency; future work 

on neural networks and 

RL models 

Shi et al. [19] OFDM-based TD-QGSM and 

TD-QGSMP MIMO schemes 

with IVC-OMP detection for 

VLC 

SE improved by 

56.5%–72.3%; BER 

reduced by 62.5% 

Complexity of detection; 

no real-world testing 

Anitha 

Vijayalakshmi 

et al. [20] 

VLC with LED dimming via 

vDSM in hospitals; AI 

integration for safe patient 

monitoring 

Comfortable lighting; 

SNR evaluated; AI 

supports healthcare in 

radiation-free VLC 

environments 

lacks experimental 

validation; integration 

challenges 

 

3. Proposed Q-Learning Optimized OFDM-VLC Architecture for Real-Time Data 

Transmission 

Using VLC, OFDM and RL, the approach aims to make ECG signal transmission reliable 

and save on energy. System architecture contains five basic layers: Data Acquisition, Encoding & 

Modulation, VLC Transmission, Intelligent Adaptation (RL Controller) and Receiver & Decoding. 

Number sequences called binary streams are formed from digital ECG information in real time. 

After cutting the data in bits, these are modulated using QPSK in good conditions and 16-QAM 

when channel conditions are poor. OFDM is chosen and then a Cyclic Prefix is included to prevent 
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symbols from interfering with each other. The signal is sent through a VLC channel and unexpected 

changes in the room’s light and noise might occur. The agent keeps track of SNR and BER as they 

change and then selects the most suitable modulation scheme (action) and updates its Q-table. 

When the signal gets to the receiver, the CP is removed, it is processed by FFT and it is 

demodulated using the picked demodulation scheme. The ECG waveform is built again using the 

binary code. In real time, the data rates, signal-to-noise ratio, delays and the energy usage in the 

system are used to improve learning and make sure it remains efficient. Using this dynamic strategy 

improves the security and accuracy of medical information, also reducing delays and extending 

how long the device functions between charges in remote health monitoring. Fig. 1 displays 

proposed methodology architecture. 

 
Fig. 1 Proposed Framework 

3.1 Data Collection 

 Data for this work was gathered from a preprocessed edition of the MIT-BIH Arrhythmia 

Database. This set has 48 ECG recordings from 47 unique individuals, including two that are the 

same patient at different times (201 and 202). All ECG data is presented in CSV files and depicts 

heart activity for 30 minutes at a time. The signals used were obtained with two EMG channel pairs 

for every recording, and the sample rate of 360 Hz provided 360 pieces of data per second. Time-

domain analysis of the signal is supported by the inclusion of elapsed time, which is reported for 

each file in milliseconds. 

 

3.2 Data Preprocessing 

 To ensure data integrity, OFDM-VLC encoding compatibility, and machine learning-based 

adaptation through reinforcement learning, a multi-stage preprocessing has been carried out as 

follows: 

3.2.1 Noise Filtering 

Raw ECG signals usually have different types of noise, like baseline shifts, power line 

noise, and muscle activity interference. To clean these up, a 4th-order Butterworth band pass filter 

is used. Let x(t) is the original ECG signal and y(t) is the filtered version. The filter is described in 

the frequency domain with its transfer function: 

𝐻(𝑠) =
1

√1+(
𝑠

𝜔𝑐
)

2𝑛
         (1) 

In Eqn. (1) 𝑠 is the complex frequency variable,𝜔𝑐 is the cutoff angular frequency, 𝑛 is the 

filter order (here, n=4). For discrete signals, the filter is implemented using forward–backward 

filtering with the Butterworth coefficients (𝑏𝑖, 𝑎𝑖) determined from the desired passband: 

𝑦[𝑛] = ∑ 𝑏𝑖
𝑁
𝑖=0 . 𝑥[𝑛 − 𝑖] − ∑ 𝑎𝑗

𝑀
𝑗=1 . 𝑦[𝑛 − 𝑗]       (2) 

In Eqn. (2) 𝑁, 𝑀 are the filter orders, 𝑏𝑗, 𝑎𝑗 are the filter coefficients computed from 𝑓𝐿 =

0.5 𝐻𝑧 and 𝑓𝐻 = 40 𝐻𝑧, Sampling frequency 𝑓𝑠 = 360𝐻𝑧. This preserves the QRS complex 

frequency range (5– 15 𝐻𝑧) while eliminating low- and high-frequency noise. 
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3.2.2 Normalization 

To ensure consistent amplitude scaling and support energy-efficient modulation, the ECG 

signal is normalized to the range [0, 1]. Let 𝑥[𝑛] be the filtered ECG signal and 𝑥𝑛𝑜𝑟𝑚[𝑛] the 

normalized output.  𝑥𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑛𝑥[𝑛], 𝑥𝑚𝑖𝑛 = 𝑚𝑎𝑥𝑛𝑥[𝑛]. This step ensures the dynamic range of 

the signal fits within the modulation constraints of VLC hardware (typically 0–1 for LED intensity 

levels). 

 

3.2.3 Segmentation 

To simulate real-time ECG monitoring, it break the normalized ECG signal into separate 

chunks for OFDM encoding. Given the sampling rate 𝑓𝑠 = 360 𝐻𝑧 and a window duration 𝑇 =
5𝑠𝑒𝑐𝑜𝑛𝑑𝑠, the number of samples per window 𝑁𝑤. Let the full ECG signal be 𝑥𝑛𝑜𝑟𝑚[𝑛]  of length 

N. Then, the signal is divided into 𝑘 = ⌊
𝑁

𝑁𝑤
⌋ segments:  

 

3.2.4 Digitization 

Every ECG segment gets turned into a binary format so it can be used in the OFDM-VLC 

system. An 8-bit quantizer takes the amplitude values between [0, 1] and converts them into whole 

numbers from [0,255] is 𝑥𝑞[𝑛] = ⌊255. 𝑥𝑘[𝑛]⌋. Then, each value 𝑥𝑞[𝑛] ∈ {0,1, . . . ,255} is 

converted into an 8-bit binary representation as shown in Eqn. (3). 

𝑥𝑏[𝑛] = 𝑏𝑖𝑛(𝑥𝑞[𝑛])          (3) 

This results in a binary matrix of size [1800,8] per segment, which is flattened to form the 

input bitstream for OFDM symbol mapping. 

 

3.2.5 Binary Conversion 

With the signals having been filtered, normalized and segmented, along with being 

digitized from the MIT-BIH Arrhythmia Database, the process then moves to changing them from 

analog to binary form. As a result of this step, the data can be formatted using schemes such as 

Quadrature Amplitude Modulation (QAM) for Orthogonal Frequency Division Multiplexing and 

sent via VLC. Binary conversion aims to change the preprocessed and digitized ECG values into a 

digital stream listed as 𝑏[𝑛] which is ready for digital modulation. Let the analyzed ECG segment 

take the form of a plain, real-valued time series with fixed scale and zero value. The real-valued 

signal 𝑥[𝑛] ∈ [−1, +1] is uniformly quantized into 𝐿 discrete levels: 

𝑄(𝑥[𝑛]) = 𝑟𝑜𝑢𝑛𝑑 (
𝑥[𝑛]−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
. (2𝐵 − 1)      (4) 

In Eqn. (4) B is the number of bits per sample (e.g., 8 or 10 bits) and 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 are the 

minimum and maximum of normalized ECG segment (typically -1 and +1). 𝑄(𝑥[𝑛]) ∈
{0,1, . . . , 2𝐵 − 1}: quantized integer value. Each quantized value is converted to a binary 

representation of fixed bit length 𝐵. The binary values are flattened into a 1D bitstream for 

transmission. 

𝑏[𝑚] = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑞𝑏[0], 𝑞𝑏[1], … … … 𝑞𝑏[𝑁 − 1]),          𝑚 = 0,1, … … … 𝑁. 𝐵 − 1    (5) 

 In Eqn. (5) 𝑏[𝑚]𝜖{0,1} refers as a bit at position 𝑚 in the complete binary sequence. The 

binary representation during this phase makes sure that ECGs, among other bodily measurements, 

are suitable for the latest types of communication technology. Converting the analog signal into 

bits allows remote health monitoring to be flexible, use less bandwidth and resist loss of 

information. 

 

3.3 Orthogonal Frequency Division Multiplexing 

A good communication system will ensure that ECG signals are properly sent by giving 

priority to fast data transfer, noise resistance and efficient use of the frequencies it can access. 

Visible Light Communication (VLC) is proposed in this study to use Orthogonal Frequency 

Division Multiplexing (OFDM) as its main modulation technique. Bit transmission over many 

parallel channels makes OFDM more efficient in the use of the radio spectrum. Because OFDM 

has a cyclic prefix, it provides dependable results when distracting noise and nearby symbols make 

other systems less effective in a crowded medical environment. OFDM supports the fast and secure 

transmission of medical data related to ECG, SPO2, and blood pressure in real-time. Methods such 
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as DC-biased Optical OFDM (DCO-OFDM) allow VLC to work by making sure the LED signal 

matches its modulation standards. This research is significant because it applies OFDM to sending 

medical data which is not a common focus for VLC. Q-learning is used in the study to adjust 

OFDM settings in real time, data is encoded in OFDM for biomedical purposes and reinforcement 

learning methods reduce the error rate, power required and data delay during communication. Let 

the binary data stream after digitization and binary conversion be: 𝑏[𝑚]𝜖{0,1}, 𝑚 = 0,1, … . . , 𝑀 −
1.       

3.3.1 Serial-to-Parallel Conversion 

The binary output of the medical signal (e.g., ECG) is separated into symbols in batches 

𝑏[𝑚]𝜖{0,1} of 𝑀 bits each. First, long serial data is divided into parallel channels which supports 

sending more data at once for higher data throughput. Every symbol contains 𝑙𝑜𝑔2(𝑀)  number of 

binary bits. Also, for 16-QAM modulation (with 𝑀 = 16), every symbol consists of 4 bits. 𝑠𝑘 =
𝑏 ⌊𝑚: 𝑚 + 𝑙𝑜𝑔2(𝑀) − 1⌋; 𝑠𝑘  refers to the symbol corresponding to the 𝑘𝑡ℎ subcarrier, 𝑀 means 

Modulation order (e.g., 16, 64), 𝑏[𝑚] is the binary data stream and 𝑙𝑜𝑔2(𝑀) refers as bits per 

symbol. 

 

3.3.2 M-QAM Modulation 

The complex number 𝑋𝑘 is created from the 𝑠𝑘 by using M-QAM (Quadrature Amplitude 

Modulation). Changes digital data into waveforms that look like analog modulation which can be 

combined in the frequency domain using different subcarriers. 

𝑋𝑘 = 𝑓𝑄𝐴𝑀(𝑠𝑘)         (6) 

In Eqn. (6) 𝑋𝑘 refers complex-valued signal representing amplitude and phase. 𝑓𝑄𝐴𝑀 means 

modulation function converting binary symbol into constellation point. 𝑠𝑘  are the symbol at 𝑘𝑡ℎ 

subcarrier. The 16-QAM system uses a constellation with 16 points and each point represents a 

certain 4-bit grouping such as 1010 or 1100 which is mapped to a certain (I,Q) coordinate in the 

complex plane. 

 

3.3.3 IFFT – OFDM Signal Generation in Time Domain 

The time domain signal is calculated by applying the IFFT to the modulated 𝑋𝑘 which 

exists in the frequency domain. Manages all the subcarriers, each with a QAM-modulated symbol, 

to produce a single composite waveform. This allows the subcarriers to be separate so different 

data streams won’t overlap. 

 

3.3.4 Cyclic Prefix Addition 

A cyclic prefix (CP) is added to every OFDM symbol to address Inter-Symbol Interference 

(ISI) induced by multipath delays and maintain the subcarriers orthogonal. Therefore, L samples 

at the end of the time-domain OFDM symbol are moved to the start prior to transmission. 

Mathematical models represent this as 𝑥𝑐𝑝[𝑛] = 𝑥[𝑛 + 𝑁 − 𝐿] for 𝑛 = −𝐿, . . . , −1where N is the 

subcarrier number. An OFDM symbol is then succeeded by a cyclic prefix. 𝑥′[𝑛] =
[𝑥𝑐𝑝[𝑛], 𝑥[0], 𝑥[1], . . . , 𝑥[𝑁 − 1]]. Usually, the cyclic prefix length 𝐿 is set to a proportion of N, 

e.g., 𝐿 =  𝑁/8. Since medical environments experience multipath propagation, the cyclic prefix 

enhances transmission's immunity by enabling the receiver to remove the first, corrupted portion 

of each received symbol. 

 

3.3.5 Real-Signal Conversion for VLC Transmission 

In Visible Light Communication, all information must be positive since LED intensity is 

always non-negative. Hermitian Symmetry: The frequency-domain signal is made conjugate 

symmetric to guarantee the output of the IFFT is real-valued (without imaginary parts). 𝑋𝑘 =
𝑋𝑁−𝐾

∗ : This guarantees that the time-domain output 𝑥[𝑛] ∈ 𝑅, which is essential for intensity 

modulation in VLC. DC Biasing for Unipolarity in the IFFT output may still contain negative 

amplitudes. It Makes OFDM signal compatible with LED hardware for VLC transmission, 

preserving waveform fidelity while avoiding signal clipping. Since LEDs only emit light for 

positive voltages, a DC bias 𝛽 is added.  

𝑥′′[𝑛] = 𝑥′[𝑛] + 𝛽       (7) 
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In Eqn. (7) β: DC bias voltage (e.g., 1.2 V to 2.0 V), 𝑥′′[𝑛] means final VLC-transmittable 

OFDM signal. This change guarantees real-valued signal (following Hermitian symmetry) and 

Non-negative amplitude (following DC biasing). OFDM offers a strong, high-speed modulation 

scheme necessary for safe VLC-based remote healthcare monitoring. Its combination with Q-

learning enables real-time adjustment of subcarrier number, power distribution, and QAM order 

according to environmental feedback. The whole pipeline converts biosignals such as ECG into 

energy-saving, error-tolerant, real-time transmissible signals via light. 

 

3.4 Visible Light Communication 

With VLC, data is transmitted wirelessly using visible light (400–700 nm) emitted by 

LEDs. It increases or decreases light to represent data which is then caught by a photodiode or 

image sensor. An LED array is responsible for sending the ultrasonic waves. The LED light 

intensity is changed by OFDM-generated signal  𝑥′′[𝑛], after Hermitian symmetry and a DC bias 

are applied. 

𝐼𝐿𝐸𝐷(𝑡) = 𝐴. 𝑥′′[𝑛]      (8) 

In Eqn. (8) 𝐼𝐿𝐸𝐷(𝑡) means instantaneous light intensity and 𝐴 amplification factor. The 

light signals move through an indoor VLC setup, either directly in a straight line or by bouncing 

off surfaces, creating a wireless connection. 𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥′′(𝑡) + 𝑛(𝑡) where, ℎ(𝑡): VLC 

impulse response, 𝑥′′(𝑡): transmitted OFDM-VLC signal, 𝑛(𝑡): additive white Gaussian noise 

(AWGN) or shot noise. This study uses a Visible Light Communication (VLC) system with OFDM 

modulation to transmit ECG signals in real-time. To make a Hermitian-symmetric signal 

compatible with optical devices, it is DC-biased and modulates an LED for output. Photodiode 

detects light and after CP removal, FFT and QAM demodulation, recovers the ECG data. VLC is 

selected because it provides security, high data transfer speeds and is not affected by 

electromagnetic interference, so it is a secure, economical and highly-effective option for sending 

biomedical data in hospital settings. 

 

3.5 Reinforcement Learning Optimization Layer 

Since ECG data is sent in frequently moving and uncertain conditions, the typical work of 

static networks isn’t suitable. This issue was solved by using Q-Learning, a model-free 

reinforcement learning (RL) method, to optimize transmission parameters in real time. The purpose 

is to achieve a lower Bit Error Rate, a higher Signal-to-Noise Ratio, less delay and better energy 

efficiency which are important for fast and efficient remote healthcare in hospital settings. In this 

system, the environment refers to the VLC transmitting signals digitized from an ECG over an 

OFDM-based optical link. It includes a learning agent (VLC transmission controller), an 

environment (comprising light conditions and movement of the patient in the room), states 

(variables like brightness, motion and SNR), actions (power, modulation types and subcarrier 

settings) and a reward function (responding to BER, energy used and transmission rate). Changes 

in the environment as well as patient activity can disturb the channels which reduces how clearly 

messages are transferred. Medical devices are typically powered by small or limited batteries which 

means energy must be used wisely. Using Q-learning, controllers can choose the right strategy on 

the fly by learning from their surroundings, not requiring a set channel description. This method 

guarantees optimum performance of the system, sustained quality of data receive and reliable 

delivery of critical biomedical information in many healthcare situations. Q-learning is a model-

free, value-based RL algorithm, which tries to learn an optimal policy for selecting actions. It 

approximates the action-value function 𝑄(𝑠, 𝑎),  defined as the expected cumulative reward for 

taking action in state 𝑠 and thereafter following the optimal policy. Q-value update rule is presented 

in Eqn. (9). 

Q(s𝑡, a𝑡) ⟵ Q(s𝑡, a𝑡) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎′

𝑄(𝑠𝑡+1 , 𝑎′) − 𝑄(s𝑡, a𝑡)]    (9) 

Where s𝑡 means current state, a𝑡 means action taken, 𝑟𝑡 means immediate reward, 𝛼: 

Learning rate (0 < α ≤ 1), 𝛾: Discount factor (0 ≤ γ ≤ 1) and max
𝑎′

𝑄(𝑠𝑡+1 , 𝑎′) are the estimated 

future reward from next state. In the suggested VLC-OFDM system, the agent (VLC controller) 

deals with changes from ambient light, background noise and patient movements. The RL agent 
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wants to achieve the best transmission quality with the least energy use and the greatest possible 

data rate. The state space is created using information about ambient light, channel SNR and 

mobility in the form of tuples for easy interpretation of channel conditions. An accurate model of 

the state helps the Q-learning agent choose the right actions for transmitting information, leading 

to more reliable and effective communication. State Definition is given Eqn. (10). Each state 𝑠 ∈ 𝑆 

is defined as a triplet combining three key environmental observations: 

𝑠 = (𝐿𝑎𝑚𝑏𝑖𝑒𝑛𝑡 , 𝑆𝑁𝑅, 𝑀𝑝𝑎𝑡𝑖𝑒𝑛𝑡)        (10) 

Visible Light Communication systems are affected by the surrounding light, the Signal-to-

Noise Ratio and how mobile the patient is. Different amounts of ambient luminosity are called low 

(below 100 lux), medium (100 to 500 lux) and high (above 500 lux). They affect how 

photodetectors perform. Channel SNR which measures how reliable a signal is, is divided into low 

(below 15 dB), medium (ranging from 15 to 25 dB) and high (above 25 dB). Whether patients 

remain static or move about in their bedframe can block or allow a clear sightline. Due to these 

factors, there are 18 unique environmental states and each one is identified by a pair of values (e.g., 

(Medium, High, Low)). Based on how the environment changes, the Q-learning agent updates the 

transmission process via actions that improve communication performance. Action Representation 

is given in Eqn. (16). Each action 𝑎 ∈ 𝐴 is a vector defined as: 𝑎 = (𝑃𝑡𝑥, 𝑀𝑠𝑐ℎ𝑒𝑚𝑒)  where 

𝑃𝑡𝑥𝜖{𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ} means transmit power level and 𝑀𝑠𝑐ℎ𝑒𝑚𝑒 ∈ {QPSK, 16 − QAM}  
Modulation scheme. While the number of subcarriers is constant at 64 in this implementation (for 

simplicity in initial modeling), future development could make it a variable parameter to enhance 

spectral efficiency flexibility. Fig. 2 shows the working of Q-learning in the proposed study. 

 

 
Fig. 2 Q-Learning Architecture 
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The action space of the VLC system is characterized by two key parameters: transmit 

power level (𝑃𝑡𝑥) and modulation scheme 𝑀𝑠𝑐ℎ𝑒𝑚𝑒. Transmit power is quantized into three 

modes—Low, Medium, and High—each providing a compromise between energy efficiency and 

signal robustness. Low power saves energy but can elevate the BER, whereas High power provides 

good signal quality with increased energy expenditure. Medium power is a balanced default for 

steady state. Modulation scheme impacts data rate and BER, with QPSK (2 bits/symbol) being 

stronger in noisy or mobile channels, and 16-QAM (4 bits/symbol) having greater rate but needing 

a cleaner channel. With three power levels and two modulation schemes, the overall action space 

is six distinct actions. For example, action 𝑎1 = (𝐿𝑜𝑤, 𝑄𝑃𝑆𝐾)  would be appropriate in bad channel 

conditions and action 𝑎6 = (𝐻𝑖𝑔ℎ, 16 − 𝑄𝐴𝑀)  for maximum performance in high-quality 

channels. The reward function in the VLC-Q-learning system checks actions by trying to reduce 

the bit error rate and energy use while boosting throughput, helping the agent find the best ways to 

transmit. 

𝑅(𝑠, 𝑎) = α ⋅ (SNR) − β ⋅ (BER) − γ ⋅ (Energy) − δ ⋅ (Latency)   (11) 

In Eqn. (11) 𝛼, 𝛽, 𝛾, 𝛿 are weighting constants. 𝑤1, 𝑤2, 𝑤3 refers as user-defined weights to 

prioritize objectives, 𝐵𝐸𝑅 means Bit Error Rate, measured post-demodulation, 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∶
 Bits/sec, determined by modulation and channel quality and 𝐸𝑛𝑒𝑟𝑔𝑦_𝑐𝑜𝑠𝑡: Derived from the LED 

power usage and 𝑃𝑡𝑥. A multi-objective reward function that looks at BER (Bit Error Rate), 

throughput and energy cost is built into the proposed VLC system. BER describes how well 

messages are sent and a higher BER means decreased rewards; including (1 − 𝐵𝐸𝑅) in the system 

rewards accuracy. For a given bit error rate (BER), the throughput of a UMTS signal is  

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑅𝑠 ⋅ 𝑙𝑜𝑔 2(𝑀) ⋅ (1 − 𝐵𝐸𝑅). Energy cost is set up as 𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑠𝑡 = α ⋅ 𝑃𝑡𝑥, with 

α being related to the hardware, so that more efficient power use is promoted. The entire system’s 

objectives decide the final weights (𝑤1, 𝑤2, 𝑤3): battery-friendly apps look for low-energy 

consumption (higher w_3), while critical data systems stress reliability and speed (higher 𝑤1 and 

𝑤2). Making sure the operation is well balanced, typical values for the weights are: 𝑤1 = 0.4, 𝑤2 =
0.4, 𝑤3 = 0.2. With this method, VLC parameters can be fine-tuned in real-time for reliable, fast 

and efficient data transfer, helping mobile or wearable healthcare devices the most. Optimize the 

VLC transmission policy 𝜋(𝑠)is denoted in Eqn. (12). 

𝜋∗(𝑠) = 𝑎𝑟𝑔 max
𝑎

𝑄(𝑠, 𝑎)        (12) 

Observe current state 𝑠, choose action 𝑎, perform action, observe reward 𝑅, and create new 

state 𝑠′, update 𝑄(𝑠, 𝑎) and repeat. 

 

3.5.1 Receiver and Decoding Layer 

It is the Receiver and Decoding Layer that ensures reliable ECG signal recovery after 

transmission over the VLC channel. In the beginning, cyclic prefix (CP) removal is used to control 

the inter-symbol interference that comes from many paths for the radio waves. When CP length is 

𝐿𝑐𝑝, the actual OFDM symbol is found in 𝑌𝑡𝑜𝑡𝑎𝑙[ 𝐿𝑐𝑝: 𝑁 + 𝐿𝑐𝑝], , where N is the number of 

subcarriers. Then, a Fast Fourier Transform is used to change the signal from its time representation 

to the frequency domain, where the modulated symbols on each subcarrier can be recovered. The 

system uses action-adaptive demodulation which adjusts between QPSK and 16-QAM according 

to the reinforcement learning agent’s recommendations to maintain both data rate and error 

resistance. Demodulated information lines are converted into binary by mapping, turned into 

integers, undergo digital filtering and then are reformed into ECG waveforms for medical use. 

Specific metrics such as the BER, SNR, and time required and overall power consumption are 

checked. BER looks at how reliable data is transmitted, SNR shows how clear the signal is, latency 

ensures that data updates are up-to-date and monitors energy to check if the network runs 

efficiently. With this setup, ECG data can be transferred safely, promptly and with little energy 

from VLC-based systems. When Q-learning comes together, Q-value changes (𝛥𝑄  <  𝜀), are 

smaller than ε, usually 𝜀  =  10⁻⁴ and the BER and throughput stop changing. Should no significant 

changes happen during several episodes, early stopping will be applied. Recording up to 2000 

episodes allows the system to run more efficiently. When performance stays at a high level and 

rewards are received regularly, it means that learning is finished. The system meets these criteria 
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to work well in changing environments, give low error rates, save energy and deliver optimal 

throughput in remote health care. Algorithm 1 shows the proposed methods working. 

Algorithm 1. Proposed Q-learning based OFDM-VLC  

Input 

    Initialize VLC System Parameters: Power Level ∈ {Low, Medium, High},  

                           Modulation Scheme ∈ {QPSK, 16-QAM},  

                           Subcarrier Count = 64 (fixed) 

    Q-learning Parameters: α (learning rate), γ (discount factor), ε (exploration rate) 

    Reward Weights: w1 (BER), w2 (Throughput), w3 (Energy Cost) 

Start 

   Step 1. Data Acquisition Layer 

     ECG data = acquire real-time ECG () 

     Binary stream = digitize (ECG data) 

   Step 2. Observe Environment 

    statist ← observe_channel_state (BER, SNR, mobility, light conditions) 

   Step 3. Action Selection using Reinforcement Learning 

     IF random () < ε: 

                    action_t ← select_random_action ()     // Exploration 

     ELSE: 

                  action_t ← argmax (Q (state_t, A))       // Exploitation  

   Step 4. Encoding & Modulation Layer 

     modulated_symbols = modulate (binary_stream, modulation_scheme) 

     ofdm_signal = OFDM_modulate (modulated_symbols, subcarrier_count) 

     ofdm_signal_with_CP = add_cyclic_prefix (ofdm_signal) 

    Step 5. VLC Transmission Layer 

     transmit_signal_VLC (ofdm_signal_with_CP, power_level) 

    Step 6. Receiver & Decoding Layer 

     received_signal = receive_VLC () 

     signal_no_CP = remove_cyclic_prefix (received_signal) 

     freq_signal = FFT (signal_no_CP) 

     demodulated_bits = demodulate (freq_signal, modulation_scheme) 

     reconstructed_ECG = reconstruct_ECG (demodulated_bits) 

   Step 7. Performance Metrics Calculation 

     BER = compute_BER (binary_stream, demodulated_bits) 

     SNR = compute_SNR (received_signal) 

     Latency = compute_latency () 

     Energy = compute_energy (power_level) 
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   Step 8. Reward Calculation 

     𝑅(𝑠, 𝑎) = α ⋅ (SNR) − β ⋅ (BER) − γ ⋅ (Energy) − δ ⋅ (Latency)    

   Step 9. RL Agent: Update Q-values 

     state_t_plus_1 = observe_next_state () 

     Q (state_t, action_t) = Q (state_t, action_t) + η * [reward_t + λ * max_a' Q 

(state_t_plus_1, a') - Q(state_t, action_t)] 

   Step 10. Output and Feedback 

     display (reconstructed_ECG) 

     log_metrics (BER, SNR, latency, energy) 

End 

Output 

Learned dynamic VLC-OFDM configuration policy for real-time medical data 

transmission 

 

4. Results and Discussion 

This section presents performance evaluation of the proposed Q-VLOE framework against 

the existing ones. Metrics include BER, SNR, latency, throughput, and energy efficiency. The 

results demonstrate that reinforcement learning optimizes VLC-OFDM-based ECG transmission 

to be more reliable, data-rate efficient, and power-efficient under dynamic channel conditions. 

 

Table 2. Simulation Parameters 

Parameter Value 

Modulation Schemes QPSK, 16-QAM 

Subcarrier Count 64 

VLC Transmitter Power Levels Low (35 mW), Medium (65 mW), High (90 mW) 

Ambient Light Levels Low, Medium, High 

Channel SNR <15 dB (Low), 15–25 dB (Medium), >25 dB (High) 

Patient Mobility Static, Mobile 

Learning Algorithm Q-learning 

Learning Rate (α) 0.1 

Discount Factor (γ) 0.9 

Exploration Rate (ε) 1 → 0.01 (decayed) 

Episodes 500 

VLC Channel Model Lambertian + AWGN 

BER Target <0.05 

Simulation Tool MATLAB 

 

Table 2 lists the key simulation parameters considered for performance evaluation of the 

RL-OFDM-VLC system for remote health monitoring. The system transmits the MIT-BIH 

Arrhythmia dataset over a VLC channel with adaptive modulation schemes (QPSK, 16-QAM) 

fixed 64 subcarriers. The Q-learning agent selects power levels and modulation depending on 

ambient light, SNR, and patient mobility. Channel conditions are taken into account using 

Lambertian patterns with AWGN noise. Reinforcement learning parameters are tuned for 

convergence within 500 episodes. MATLAB tools are used for simulation and verification of 

system performance, with BER<0.05 as the objective. 
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4.1 ECG Signal Analysis 

This section analyzes the ECG signals to be transmitted with regard to their quality and 

integrity before and after denoising. Visual comparisons depict how the preprocessing mechanisms 

are successful in suppressing noise, providing cleaner signals appropriate for modulation and 

transmission over the VLC channel with less distortion. 

 
Fig. 3 Simulated ECG Signal 

Fig. 3 displays a sample ECG signal over time, the electrical activity of the heart. It has 

time on the x-axis and signal amplitude on the y-axis. The waveform is periodic heartbeats with 

added noise, common in real-time medical data transmission and ideal for signal processing system 

testing. 

 
Fig. 4 ECG Signal Before and After Denoising 

Fig. 4 demonstrates the effectiveness of signal denoising in the proposed OFDM-VLC 

system for remote health monitoring. The blue line is the raw ECG signal contaminated with noise, 

and the orange line is the signal after filtering out the noise. This verifies that the system can 

improve signal quality, which is vital in precise medical data transmission. 

 

4.2 Q-Learning Performance 

This section analyzes the training dynamics and decision-making behavior of the 

reinforcement learning agent. Q-learning convergence plots illustrate the agent's capacity for 

transmission parameter optimization across episodes, whereas the Q-table heatmap illustrates state-

action mappings. These outcomes verify the effectiveness of Q-learning in improving 
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Fig. 5 Q-Learning Convergence 

Fig. 5 shows the episode reward performance of the Q-learning agent used in the proposed 

OFDM-VLC system to send medical information. Blue denotes single-episode rewards, and red 

denotes the trend of the average reward, which describes learning progress. With time, the agent 

gets more stable higher rewards, which describes the effective optimization of transmission 

parameters. 

 
Fig. 6 Heatmap of Q-values 

Fig. 6 represents Q-value heatmap of state-action pairs qualitatively depicts the learning 

results of the Q-learning algorithm in the novel VLC system. Every cell indicates the expected 

cumulative reward for a particular state-action pair. Larger Q-values (in lighter colors) suggest 

more rewarding actions in respective states, directing optimal choices to improve throughput, 

minimize BER, and save energy. 

 

4.3 Performance Evaluation 

 This section provides important communication performance metrics, such as BER, 

throughput, and latency. Comparative analysis with current methods identifies the proposed 

OFDM-VLC + Q-Learning as superior in terms of having lower BER under noise, greater 

throughput, and lower latency under different transmission distances—proving efficient for real-
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time biomedical applications. BER shows how reliable a transmission is, and SNR expresses how 

strong the signal is compared to the background noise. Latency is just the delay between sending 

and receiving data, which is really important for things that need to happen in real time. Throughput 

refers to how much data gets successfully sent, which points to how well the system is working 

and how effectively it uses the available bandwidth. Mostly, higher numbers usually mean clearer 

signals.  

Table 3. Performance Comparison – Static vs RL-Optimized OFDM-VLC System 

Metric Static VLC RL-Optimized VLC  

Bit Error Rate  0.078 0.015 

Signal-to-Noise Ratio  21.3 dB 29.8 dB 

Throughput 16.7 kbps 22.4 kbps 

Latency 14.6 ms 9.0 ms 

Energy Consumption 1.35 J/bit 0.89 J/bit 

ECG Reconstruction Accuracy 85.3% 96.7% 

 

The comparison between Static VLC and the proposed OFDM-VLC + Q-Learning shows 

that Q-VLOE mitigates BER and latency in great measure, while the SNR, throughput, and ECG 

reconstruction accuracy are considerably improved is shown in Table 3. Energy consumption is 

also considerably lowered, meaning that the efficiency is better. Proposed OFDM-VLC + Q-

Learning dominates in the domain of reliability, speed, energy performance, in real-time ECG 

transmission. 

 

Table 4. Performance Comparison Latency Vs Throughput 

Method Throughput Latency 

PSO [21] 15.8 16.8 

FL-SDUAN 

[22] 
17.5 14.9 

OFDM-

Greedy 

Algorithm 

[23] 

18.3 12.7 

OFDM-UWA 

[24] 
19.1 11.5 

Proposed 

OFDM-VLC 

+ Q-Learning 

22.4 10.2 

 

 

Table 4 shows the throughput and latency for different methods, including the new OFDM-

VLC with Q-Learning. The new method delivers the best performance, hitting 22.4 Mbps for 

throughput and just 10.2 ms for latency. It does a much better job than the older PSO, FL-SDUAN, 

and OFDM-based methods in terms of efficiency and speed. 
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Fig. 7 BER Vs SNR 

 

Fig. 7 Bit Error Rate performance against different transmission techniques and Signal-to-

Noise Ratio. The new OFDM-VLC with Q-learning (black line) is revealed to have the least BER, 

leaving the conventional QPSK, static OFDM, and other optimized schemes such as GA and PSO 

far behind. This validates that Q-learning greatly improves transmission reliability, particularly in 

environments with noise, which is very significant in precise medical data transmission for remote 

health monitoring systems. 

 
Fig. 8 Throughput Comparison 
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Fig. 8 shows a throughput comparison between different optimization techniques for 

medical data transmission. The highest throughput of 22.4 Mbps is achieved by the proposed 

OFDM-VLC using Q-learning, followed by PSO, FL-SDUAN, OFDM-Greedy, and OFDM-

UWA. This clearly indicates the strength of Q-learning in achieving maximum data rate, which is 

very important for efficient transmission of high-volume real-time medical data in remote health 

monitoring applications. 

 
Fig. 9 Latency Vs Transmission Distance 

 

Fig. 9 reveals how latency and transmission distance interrelate within the OFDM-VLC 

system for remote healthcare monitoring. As the transmission distance varies from 1 to 30 meters, 

latency increases in a non-linear fashion, reflecting higher transmission delays at longer distances. 

This indicates the value of adaptive parameter adjustment such as by Q-learning to preserve low 

latency and achieve real-time performance under changing healthcare environments. 

 

4.4 ECG Reconstruction Accuracy 

This section considers the fidelity of reconstructed ECG signals following transmission. 

Visualization compares the original ECG, noisy static VLC reconstruction, and improved RL-VLC 

reconstruction. Results demonstrate considerable improvement in quality using reinforcement 

learning, preserving clinical signal integrity and establishing the efficacy of the proposed system 

for accurate remote health monitoring. 
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Fig. 10 ECG Reconstruction – Before vs After 

 

Fig 10 compares the reconstruction of ECG signal in three situations: the original 

waveform (a), reconstruction by static VLC (b), and clear ECG using RL-VLC (c). The static VLC 

result is clearly noisy and distorted, but the RL-VLC strategy significantly improves clarity and 

nearly replicates the original. This proves the power of reinforcement learning in preserving signal 

integrity in wireless biomedical transmission over visible light communication. 

 

4.5 Discussion 

The proposed system performing OFDM-VLC with Q-Learning boosts performance 

across important communication and signal reconstruction factors more than other available 

methods. In BER versus SNR analysis, it is apparent that the proposed system can perform better 

than QPSK, OFDM without RL and optimization-based GA and PSO. The model's throughput was 

measured at 22.4 Mbps which exceeds all other approaches and its latency is kept at 10.2 ms, 

ensuring that it is well suited for quick clinical needs. ECG analysis also shows that the RL-VLC-

based signal is less noisy and better reconstructed than the signal obtained with static VLC, keeping 

its waveform intact. With each episode, the Q-Learning convergence plot proves that learning is 

stable and rewards keep increasing and the Q-table heatmap shows effective learning of state-action 

values. Unlike regular systems, the proposed method improves efficiency and adds the ability to 

adapt, supplying a stable way to send wireless health data. Yet, there are some difficulties, like 

extra time and memory required for fast updates in changing situations and requiring suitable 

hardware for widespread use. Potentially, future improvements could involve simpler versions of 

Q-Learning or approaches that mix existing strategies to be more efficient and flexible within 

multiple clinical and remote health settings. 

 

5. Conclusion and Future Scope  

The proposed work suggests a new, efficient, and intelligent method that uses OFDM-

based VLC with Q-learning to guarantee reliable real-time delivery of biomedical data, mainly 

ECG signals. Using reinforcement learning in the VLC-OFDM channel, the suggested approach 

changes transmission parameters based on changing surroundings, which leads to marked 

improvements in how signals are sent and received. Results from various experiments indicate that 
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the new approach performs better than PSO, FL-SDUAN, and greedy-based OFDM in metrics like 

BER, throughput, and latency. Especially, it delivers a BER below a certain level at high SNR, 

reaches a peak transfer rate of 22.4 megabits per second, and achieves a latency of 10.2 

milliseconds, proving it is well-suited for medical jobs that need quick response. The ECG signal's 

reconstruction from noise shows high performance, as seen in the original and reconstructed 

signals' similarities. The graphs and heatmap also indicate that the environment is learned well and 

the right decisions are made, proving that the intelligent system does its work effectively. 

 

Still, some problems persist; for example, the system is not always fast enough in very 

dynamic or changing circumstances. Because of these difficulties, lightweight adaptive methods or 

hardware acceleration are needed for real-world use in devices like monitors for health checks. To 

improve the framework in the future, one can add hybrid approaches like Deep Q-Networks, 

combine different types of biosignals (for example, EEG and EMG), and introduce blockchain-

dependent authentication to protect privacy. Using devices and simulators in the loop or testing 

directly with prototype systems can make the transition between modeling and practical use 

smoother. Essentially, the research makes a strong case for effective, adaptable, and efficient 

biomedical communication systems in advanced healthcare and telemedicine systems. 
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