Journal Pre-proof

Optimized Medical Data Transmission Using OFDM-VLC and
Reinforcement Learning in Remote Health Monitoring

Devikala S, Menaka D, Ashok kumar L and Ravichandran D
DOI: 10.53759/7669/jmc202505150
Reference: IMC202505150

Journal: Journal of Machine and Computing.

Received 02 February 2025
Revised from 29 April 2025
Accepted 19 June 2025

Please cite this article as: Devikala S, Menaka D, Ashok kumar L and Ravichandran D,
“Optimized Medical Data Transmission Using OFDM-VLC and Reinforcement Learning in

Remote Health Monitoring”, Journal of Machine and Computing. (2025). Doi: https://
doi.org/10.53759/7669/jmc202505150.

This PDF file contains an article that has undergone certain improvements after acceptance.
These enhancements include the addition of a cover page, metadata, and formatting changes
aimed at enhancing readability. However, it is important to note that this version is not considered

the final authoritative version of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as
copyediting, typesetting, and comprehensive review. These processes are implemented to ensure
the article's final form is of the highest quality. The purpose of sharing this version is to offer early

visibility of the article's content to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies
may be identified, which could impact the content. Additionally, all legal disclaimers applicable to

the journal remain in effect.

© 2025 Published by AnaPub Publications.

*@ AnaPub



Optimized Medical Data Transmission Using OFDM-VLC and

Reinforcement Learning in Remote Health Monitoring
!Devikala S, 2Menaka D*, *Ashok kumar L, “Ravichandran D

Professor, Department of EEE, SIMATS Engineering - Saveetha School of Engineering,
Thandalam
2Associate Professor, Department of ECE, Sri Venkateswara College of Engineering,
Sriperumbudur
$Associate Professor, Department of ECE, Panimalar Engineering College, Chennai
“Professor, Department of ECE, Kings Engineering College, Chennai

devisamiu@gmail.com, menaka@svce.ac.in, ashok2002ttd@gmail.com,
raviecev@gmail.com
*Corresponding Author: Menaka D

Abstract
In remote healthcare systems, the efficient, secure, and re ransmission of

biomedical signals such as ECG is critical. Traditional RF-based communicaWg often suffers from

interference, limited bandwidth, and security concerns. Visible Light C j

particularly when combined with Orthogonal Frequency Division ultiw

B t|c configurations, limited
adaptability, high energy consumption, and | -t timization. This work introduces a
i remote health monitoring. The

mobility), enabling energy-efficient and errorW@ailient data transfer. Using the MIT-BIH
Arrhythmia dataset, ECG signals ar rocessed, Agitized, modulated using adaptive QPSK or
16-QAM, and transmitted over a el. A Q-learning agent selects optimal actions in real
time to minimize BER and e maximizing throughput and SNR. MATLAB was
employed for system design erformance evaluation. Compared to static systems,
.078 to 0.015, improved SNR from 21.3 dB to 29.8 dB,
increased throughput to 22.4 kbps, and lowered latency from 14.6 ms to 9.0 ms.
Energy consumption pm 1.35 J/bit to 0.89 J/bit, and ECG reconstruction accuracy rose
from 85.3% to 96.79 ing@ration of reinforcement learning with VLC-OFDM significantly

incréase in chronic diseases and the necessity for ongoing monitoring of patients have
e evolution of remote health monitoring systems [1]. Conventional communication

re applications [2]. These include limited bandwidth, vulnerability to electromagnetic
erence, and possible security risks, especially where confidentiality and integrity of medical
information are paramount [3]. VLC, however, has emerged as an appealing alternative, with
benefits of high data rate, immunity to RF interference, and intrinsic security advantages [4]. Such
properties render VLC very versatile for hospital and home health care healthcare applications [5].
VLC system development has also been made feasible by the integration of Orthogonal Frequency
Division Multiplexing (OFDM), which facilitates improved spectral efficiency and multi-channel,
high-speed data transmission [6]. Even as such advantages are realized, VLC systems are very
sensitive to environmental scenarios such as variations in ambient light, device mobility, and signal
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loss, which have adverse effects on transmission performance [7]. Static system configurations are
typically unsuitable to such variability, leading to compromised quality of service, including high
bit error rates (BER), low signal-to-noise ratios (SNR), and high energy consumption [8].

To address such challenges, recent research has focused on the incorporation of machine
learning techniques into communication systems. Reinforcement learning (RL) more particularly,
Q-learning, is a viable option by enabling adaptive system modification with environmental
feedback [9]. Unlike traditional algorithms, Q-learning learns optimal policies via extensive
exploration of the environment without the necessity for pre-defined system models [10]. This
study puts forward a Q-learning-enhanced OFDM-VLC system for remote transfer of medical data
that can improve flexibility, reduce errors, and maximize energy efficiency under fluctuating
healthcare conditions.

1.1 Research Gap

Despite the advancements in VLC and Al-aided adaptive modulation for
transmission optimizing high-speed, real-time, and secure data transmissig

environments is still a challenge. Most of the existing research is devoig i
combining energy-efficient modulation, multi-channel transmission, af@e g i

learning for remote health monitoring [11], [12]. Privacy-preservation oFs and optimized
physical layer algorithms are also not well-explored [13]. Therefore, the requiNgent is to carry out
extensive research using OFDM-VLC with reinforcement learning tog@mha medical data
transmission efficiency, security, and flexibility in remote healt ito@fg systems.

1.2 Research Motivation

The motivation for this work arises from the ing r secure, real-time, and

dependable data transfer in medical remot Rl stems. RF communication is not
dependable in medical environments, w '

fers ecure, interference-free solution.
However, its performance is hindered mental “dynamics. The incorporation of
reinforcement learning offers an intelligent

lon, where adaptive tuning of transmission
parameters is enabled to optimize for high-qua energy-efficient, and dependable transfer of
medical data.

1.3 Research Significance

This research is of vi ote healthcare technology development with the
combination of reinforcemen i VLC-based OFDM. It addresses important issues of
signal attenuation, ene i , and latency in real-time systems. With smart adjustment of
communication paraiie em enhances the efficiency and reliability of medical data
re secure, quicker, and more scalable medical 10T applications,

Visible Light Communication system using Orthogonal Frequency Division
to support high-speed medical data transmission.

a reinforcement learning (Q-learning) algorithm to dynamically optimize
mission parameters like power levels, subcarrier allocation, and modulation schemes.
abled real-time adaptation to changing conditions such as ambient light and device
obility, improving system reliability.

Achieved lower bit error rate, improved signal-to-noise ratio, reduced energy consumption,
and better throughput compared to static systems.

Simulated the system using MATLAB and evaluated it using real biomedical datasets (e.g.,
MIT-BIH, MIMIC-IV) for practical health monitoring scenarios.



1.5 Rest of Section

In Section 2 literature review is provided, section 3 proposed method working is given. In
section 4 findings and analysis and section 5 conclusion and further studies.

2. Related Works

Li et al. [14] proposed ADDETECTOR, an loT device-based privacy-preserving Alzheimer's
detection system with topic-based linguistic features, federated learning, and differential privacy
in a three-layer framework. The system collects audio data from smart home loT devices for
enhancing detection with data confidentiality via an asynchronous privacy-preserving aggregation
framework. The system was evaluated on 1010 trials with 81.9% accuracy and 0.7-second time

replay typical data in emergency situations. The technique employs signal
sends a small signature along with a message authentication code in ordg
minimize energy consumption. Results indicate accurate detection of enS
rate of false alarms at 3%. But the research does not consider jamming atta
threats. Future research intends to investigate channel hopping with au@ 5

dynamic channel
N keys as seeds
for enhanced resilience.

Kavitha et al. [15] investigated VLC for indoor transmissi
the incorporation of Wireless Sensor Networks (WSNs)
Cluster Nodes Relnforcement Scheme (CNRS) to mpr

igal data using LEDs, with
dt data. They suggested a

Hasan et al. [16] proposed a bandwidth- and energ icient multiple-access technigue for mfrared
signal-based transmission of health i y-division multiple access-based wireless
sensor networks. They proposed a e that transmits only the real component of the complex
signal, reducing computational mulation revealed that asymmetric clipping reduces

d synchronization for large indoor areas were not
ture work directions.

interference robustness. Us
considered, and they stz

ients. Enhanced spectral efficiency and real-time tuning were noted,
todetectors on the shoulder and wrist because of augmented DC gain. Some
ization dependency and no user mobility tracking. In the future, research can
s to remove quantization and utilize advanced reinforcement learning to deliver
tes with minimum delay. Moreover, Xiang-Peng [17] suggested a high-speed Visible

the transmission of healthcare data. The system can transmit six channels of 10 Gbps
over 500 m of optical fiber and a VLC link of 200 cm using On-Off Keying (OOK) with
hybrid Wavelength and Polarization Division Multiplexing. Results show successful data transfer
with an acceptable BER of =107*. However, the study lacks live testing and validation, suggesting
that subsequent studies need to focus on actual testbeds for real-world high-speed VLC
performance verification in clinical environments.



Niranga et al. [18] proposed NeoCommLight, a VLC-driven communication system for
application in Neonatal Intensive Care Units (NICUs) to address RF limitations and spectrum
scarcity. A functional prototype was implemented and tested under various scenarios including
distance, angle, delay, and diffraction. Results showed up to 3 Mbps data rate at 5 cm and 800 Kbps
at the maximum of 2 m. The system indicated stability under controlled environments. But it is
plagued with short transmission range and degradation in performance due to non-ideal lighting or
angles. Future improvements can be in range, data rate, and clinical robustness. Likewise, Antaki
et al. [12] proposed a VLC-based Al system for Medical Body Sensor Networks (MBSNS) in
hospitals utilizing ray tracing and machine learning for dynamic channel modeling. They employed
an adaptive modulation scheme based on Q-learning and an LSTM estimator for path loss and
delay spread. Simulations showed strong Symbol Error Rate (SER) control and efficient change

efficiency were observed. The future includes improving quantization, neural
investigation, and utilizing high-level reinforcement learning to incorporate mobility-
data-rate environments.

Shi et al. [19] proposed two OFDM-based quadrature generali
QGSM and TD-QGSMP, to enhance receiver performance as we
(SE) for band-limited VLC systems. By splitting constellation symbo to in-phase and

quadrature components as well as spatial mapping of signals 0 LEDs,
the schemes achieve diversity and multiplexing gains. An illegalyect n (IVC)-based
orthogonal matching pursuit detection algorithm was propos ce error propagation and
noise amplification. Simulations offered SE improvement of 5% and 72.3% and bit

error rate reduction by at least 62.5% compared to traditi ionggkethods. Similarly, Anitha

Vijayalakshmi et al. [20] explored indo | EDs, highlighting their safety and
environmental benefits over conventior . orked towards Visible Light
Communication (VLC) using LED dimming Bble delta sigma modulation (vDSM) to offer
hospital ambiance as well as patient data transI"gs
Noise Ratio (SNR). The study emphasized the Wgggration of Al with VLC for patients' and
healthcare monitoring in lighting-fr ironments. "However, the study is hypothetical in nature
lacking experimental data and sug r studies on real implementation and optimization of
Al-VLC systems. Table 1, pr ative overview of recent studies focused on VLC,
wireless medical systems, a I-bas ncements for secure and efficient data transmission
in healthcare environments.

N
v




Table. 1: Summary of Related Works on VLC and Al-Enhanced Medical Data Transmission

Results

Limitations

81.9% accuracy, 0.7 s
time overhead, privacy
maintained

No assumption of
attacker injecting user
network; limited dataset

High emergency
detection accuracy,
3% false alarm rate

Did not address jamming
or channel hopping

Improved routing
efficiency, BER, and
ETE delay

No real-time valig

@

35mW power saving
for BER of 1073;
robustness to
interference

Spectral efficiency
improved; Q-lgg

enables rea W

Wn quantization;
lacks mobility tracking

No real-time testbed
implementation

ed delay, anglé,
diffraction impacts

Limited range and data
rate; performance drops
under non-ideal
conditions

Accurate SER control
and channel
estimation; RMSE as
low as ~1 dB

Added complexity;
suboptimal spectral
efficiency; future work
on neural networks and
RL models

SE improved by
56.5%-72.3%; BER
reduced by 62.5%

Complexity of detection;
no real-world testing

Author Proposed Method
Li et al. [14] ADDETECTOR: Privacy-
preserving Alzheimer’s
detection using 10T, federated
learning, differential privacy
Salem et al., MitM attack prevention
[13] framework using signal
strength-based key and
message authentication code
Kavitha et al. VLC medical data
[15] transmission using CNRS,
BPSK with DCO-OFDM in
WSN
Hasan et al. Frequency-division multiple
[16] access with real-part signal
transmission and asymmetric
clipping for IR VLC
Rizi etal. [11] | Adaptive modulation in VLC-
based Medical Body Sensor
Networks using supervised
and reinforcement learning
Xiang-Peng High-speed VLC with OOK,
[17] WDM and PDM for multi-
channel medical data
transmission
Niranga et al. | NeoCommLight VLC system
[18] for NICU; prototype and
performance under v,
Antaki et al.
[12]
Shietal.[19] | OFD D-QGSM and
MO schemes
wit -OMP detection for
VLC
with LED dimming via
DSM in hospitals; Al
integration for safe patient
monitoring

Comfortable lighting;
SNR evaluated; Al
supports healthcare in
radiation-free VLC
environments

lacks experimental
validation; integration
challenges

Transmission

roposed Q-Learning Optimized OFDM-VLC Architecture for Real-Time Data

Using VLC, OFDM and RL, the approach aims to make ECG signal transmission reliable
and save on energy. System architecture contains five basic layers: Data Acquisition, Encoding &
Modulation, VLC Transmission, Intelligent Adaptation (RL Controller) and Receiver & Decoding.
Number sequences called binary streams are formed from digital ECG information in real time.
After cutting the data in bits, these are modulated using QPSK in good conditions and 16-QAM
when channel conditions are poor. OFDM is chosen and then a Cyclic Prefix is included to prevent




symbols from interfering with each other. The signal is sent through a VLC channel and unexpected
changes in the room’s light and noise might occur. The agent keeps track of SNR and BER as they
change and then selects the most suitable modulation scheme (action) and updates its Q-table.
When the signal gets to the receiver, the CP is removed, it is processed by FFT and it is
demodulated using the picked demodulation scheme. The ECG waveform is built again using the
binary code. In real time, the data rates, signal-to-noise ratio, delays and the energy usage in the
system are used to improve learning and make sure it remains efficient. Using this dynamic strategy
improves the security and accuracy of medical information, also reducing delays and extending
how long the device functions between charges in remote health monitoring. Fig. 1 displays
proposed methodology architecture.

Noise Filtering
L - e | OFDM Modulation

* Map signals to bits :
Normalizationand | g |* Modulate (16QAM) | 4 N
Segmentation = Apply IFFT &
Cyclic Prefix

Data Collection Data Pre-Processing

Model

Evaluation

Fig. 1 Prg

3.1 Data Collection
Data for this work was gathered fro
Database. This set has 48 ECG recordings from
same patient at different times (201 and 202). All B data is presented in CSV files and depicts
heart activity for 30 minutes at a ti e signals used were obtained with two EMG channel pairs
for every recording, and the sampi@ra 0 Hz provided 360 pieces of data per second. Time-
domain analysis of the signal @?u ed bl the inclusion of elapsed time, which is reported for
each file in milliseconds.

nique individuals, including two that are the

3.2 Data Preprocessi
To ensure dat
adaptatiop thr
follows:
3.2.1 hoi

OFDM-VLC encoding compatibility, and machine learning-based
t learning, a multi-stage preprocessing has been carried out as

tivity interference. To clean these up, a 4th-order Butterworth band pass filter
the original ECG signal and y(t) is the filtered version. The filter is described in

1

1+(wic)2n

In Egn. (1) s is the complex frequency variable,w, is the cutoff angular frequency, n is the

filter order (here, n=4). For discrete signals, the filter is implemented using forward—backward
filtering with the Butterworth coefficients (b;, a;) determined from the desired passband:

yinl =Zob; . x[n - il = XL  a;.y[n —J] (2)

In Eqn. (2) N, M are the filter orders, bj, a; are the filter coefficients computed from fL =

0.5Hz and fH = 40 Hz, Sampling frequency fs = 360Hz. This preserves the QRS complex
frequency range (5- 15 Hz) while eliminating low- and high-frequency noise.

H(s) = )



3.2.2 Normalization

To ensure consistent amplitude scaling and support energy-efficient modulation, the ECG
signal is normalized to the range [0, 1]. Let x[n] be the filtered ECG signal and x,,,,-,[1] the
normalized output. x,,;, = min,x[n], Xy, = max,x[n]. This step ensures the dynamic range of
the signal fits within the modulation constraints of VLC hardware (typically 0-1 for LED intensity
levels).

3.2.3 Segmentation

To simulate real-time ECG monitoring, it break the normalized ECG signal into separate
chunks for OFDM encoding. Given the sampling rate f; = 360 Hz and a window duration T =

5seconds, the number of samples per window N,,. Let the full ECG signal be x,,,,,[1] Of l€
N. Then, the signal is divided into k = lNiJ segments:

3.2.4 Digitization

Every ECG segment gets turned into a binary format so it can be @) -VLC
system. An 8-bit quantizer takes the amplitude values between [0, 1] ang em intS@yhole
numbers from [0,255] is x4[n] = |255.x,[n]]. Then, each value 0,1,...,255} is
converted into an 8-bit binary representation as shown in Eqgn. (3).

xp[n] = bin(xq[n]) ©)

This results in a binary matrix of size [1800,8] per segmegt whig1s flatt€ned to form the
input bitstream for OFDM symbol mapping.

3.2.5 Binary Conversion

With the signals having been filtered
digitized from the MIT-BIH Arrhythmia Datg
analog to binary form. As a result of this
Quadrature Amplitude Modulation (QAM) 18
sent via VLC. Binary conversion aims to changg preprocessed and digitized ECG values into a
digital stream listed as b[n] which is ready for dig odulation. Let the analyzed ECG segment
take the form of a plain, real-valueggslpe series witl fixed scale and zero value. The real-valued
signal x[n] € [—1, +1] is uniform{f quggdemed into L discrete levels:

[ i e CAEEY (4)

Xmax~Xmin
In Eqgn. (4) B is the Ng@ber o per sample (e.g., 8 or 10 bits) and x,in, Xmax are the
minimum and maxirg alized ECG segment (typically -1 and +1). Q(x[n]) €
{0,1,...,28 -1} ¢q eg®r value. Each quantized value is converted to a binary
representation of fix®

Jth B. The binary values are flattened into a 1D bitstream for

d an ented, along with being
ro then moves to changing them from
a can formatted using schemes such as
gonal Frequency Division Multiplexing and

[0], qp[1], -.e oo .. qp[N — 1)), m=0,1,...... N.B—-1 (5)
€{0,1} refers as a bit at position m in the complete binary sequence. The
during this phase makes sure that ECGs, among other bodily measurements,

ogonal Frequency Division Multiplexing

A good communication system will ensure that ECG signals are properly sent by giving
priority to fast data transfer, noise resistance and efficient use of the frequencies it can access.
Visible Light Communication (VLC) is proposed in this study to use Orthogonal Frequency
Division Multiplexing (OFDM) as its main modulation technique. Bit transmission over many
parallel channels makes OFDM more efficient in the use of the radio spectrum. Because OFDM
has a cyclic prefix, it provides dependable results when distracting noise and nearby symbols make
other systems less effective in a crowded medical environment. OFDM supports the fast and secure
transmission of medical data related to ECG, SPO2, and blood pressure in real-time. Methods such



as DC-biased Optical OFDM (DCO-OFDM) allow VLC to work by making sure the LED signal
matches its modulation standards. This research is significant because it applies OFDM to sending
medical data which is not a common focus for VLC. Q-learning is used in the study to adjust
OFDM settings in real time, data is encoded in OFDM for biomedical purposes and reinforcement
learning methods reduce the error rate, power required and data delay during communication. Let
the binary data stream after digitization and binary conversion be: b[m]e{0,1},m = 0,1, .....,M —
1.
3.3.1 Serial-to-Parallel Conversion

The binary output of the medical signal (e.g., ECG) is separated into symbols in batches
b[m]e{0,1} of M bits each. First, long serial data is divided into parallel channels which supports
sending more data at once for higher data throughput. Every symbol contains log, (M) numb
binary bits. Also, for 16-QAM modulation (with M = 16), every symbol consists of 4 bit
b |m:m+ log,(M) — 1]; s, refers to the symbol corresponding to the kth subcarrier
Modulation order (e.g., 16, 64), b[m] is the binary data stream and log, (M) refef b
symbol.

3.3.2 M-QAM Modulation

The complex number X, is created from the s, by using M-QA ature Amplitude
Modulation). Changes digital data into waveforms that look like analog mo ion which can be
combined in the frequency domain using different subcarriers.

Xk = foam(Sk) (6)

In Eqgn. (6) X}, refers complex-valued signal representi e and phase. fy 4y Means
modulation function converting binary symbol into constgida int}e; are the symbol at kth
subcarrier. The 16-QAM system uses a constellation Wil 16 each point represents a

certain 4-bit grouping such as 1010 or 1100
complex plane.

d to a certain (1,Q) coordinate in the

3.3.3 IFFT — OFDM Signal Generation in omain

The time domain signal is calculated b lying the IFFT to the modulated X, which
exists in the frequency domain. Manages all the suoSgpriers, each with a QAM-modulated symbol,
to produce a single composite wa . This allows the subcarriers to be separate so different

data streams won’t overlap.

3.3.4 Cyclic Prefix Additio
A cyclic prefix Ll d to every OFDM symbol to address Inter-Symbol Interference

(1S1) induced by mul maintain the subcarriers orthogonal. Therefore, L samples

at the end of the ti OFDM symbol are moved to the start prior to transmission.

Mathemagical his as x.,[n] = x[n+ N — L] forn = —L,..., —1where N is the

N — 1]]. Usually, the cyclic prefix length L is set to a proportion of N,
hce medical environments experience multipath propagation, the cyclic prefix

-Signal Conversion for VLC Transmission

n Visible Light Communication, all information must be positive since LED intensity is
S non-negative. Hermitian Symmetry: The frequency-domain signal is made conjugate
symmetric to guarantee the output of the IFFT is real-valued (without imaginary parts). X, =
Xpy_g: This guarantees that the time-domain output x[n] € R, which is essential for intensity
modulation in VLC. DC Biasing for Unipolarity in the IFFT output may still contain negative
amplitudes. It Makes OFDM signal compatible with LED hardware for VLC transmission,
preserving waveform fidelity while avoiding signal clipping. Since LEDs only emit light for
positive voltages, a DC bias 8 is added.

x"[n] =x'[n] + B (7)



In Eqn. (7) B: DC bias voltage (e.g., 1.2 V to 2.0 V), x"'[n] means final VLC-transmittable
OFDM signal. This change guarantees real-valued signal (following Hermitian symmetry) and
Non-negative amplitude (following DC biasing). OFDM offers a strong, high-speed modulation
scheme necessary for safe VLC-based remote healthcare monitoring. Its combination with Q-
learning enables real-time adjustment of subcarrier number, power distribution, and QAM order
according to environmental feedback. The whole pipeline converts biosignals such as ECG into
energy-saving, error-tolerant, real-time transmissible signals via light.

3.4 Visible Light Communication

With VLC, data is transmitted wirelessly using visible light (400—700 nm) emitted by
LEDs. It increases or decreases light to represent data which is then caught by a photodiod
image sensor. An LED array is responsible for sending the ultrasonic waves. The LE
intensity is changed by OFDM-generated signal x'’[n], after Hermitian symmetry and
are applied.

Lgp(t) = A.x"[n]

In Eqn. (8) I.zp(t) means instantaneous light intensity and A
light signals move through an indoor VLC setup, either directly in a st4gQ
off surfaces, creating a wireless connection. y(t) = h(t) *x"'(t) +n
impulse response, x"'(t): transmitted OFDM-VLC signal, n(t): additive
(AWGN) or shot noise. This study uses a Visible Light Communication (V
modulation to transmit ECG signals in real-time. To makeg
compatible with optical devices, it is DC-biased and modulaj
detects light and after CP removal, FFT and QAM demodylat
selected because it provides security, high data trageier
electromagnetic interference, so it is a secure, €
biomedical data in hospital settings.

n r. The
ol by bOWcing

re, h(t): VLC
"o Gaussian noise
) Sy with OFDM
ian-symmetric signal
D for output. Photodiode
s the ECG data. VLC is
End is not affected by
ffective option for sending

3.5 Reinforcement Learning Optimization

Since ECG data is sent in frequently m and uncertain conditions, the typical work of
static networks isn’t suitable. This issue was W@ved by using Q-Learning, a model-free
reinforcement learning (RL) metho timize transmission parameters in real time. The purpose
is to achieve a lower Bit Error Ra i Signal-to-Noise Ratio, less delay and better energy
efficiency which are importan icient remote healthcare in hospital settings. In this
system, the environment refqalto the transmitting signals digitized from an ECG over an
OFDM-based optical ligk cludes a learning agent (VLC transmission controller), an
environment (comprigf itions and movement of the patient in the room), states
(variables like brigh{ge ofpn and SNR), actions (power, modulation types and subcarrier
settings) and a r @¥responding to BER, energy used and transmission rate). Changes
i cPDatient activity can disturb the channels which reduces how clearly
Medical devices are typically powered by small or limited batteries which

=

ased RL algorithm, which tries to learn an optimal policy for selecting actions. It

tes the action-value function Q(s,a), defined as the expected cumulative reward for

action in state s and thereafter following the optimal policy. Q-value update rule is presented
in Egn. (9).

Q(stap) «— Qspar) + a [Tt +y n}f}X Q(s¢41,a') — Q(St:at)] )

Where s; means current state, a, means action taken, r, means immediate reward, a:

Learning rate (0 < o < 1), y: Discount factor (0 <y < 1) and max Q(s4+1,a’) are the estimated

a

future reward from next state. In the suggested VLC-OFDM system, the agent (VLC controller)
deals with changes from ambient light, background noise and patient movements. The RL agent




wants to achieve the best transmission quality with the least energy use and the greatest possible
data rate. The state space is created using information about ambient light, channel SNR and
mobility in the form of tuples for easy interpretation of channel conditions. An accurate model of
the state helps the Q-learning agent choose the right actions for transmitting information, leading
to more reliable and effective communication. State Definition is given Eqgn. (10). Each state s € S
is defined as a triplet combining three key environmental observations:
s = (Lambient: SNR, Mpatient) (10)
Visible Light Communication systems are affected by the surrounding light, the Signal-to-
Noise Ratio and how mobile the patient is. Different amounts of ambient luminosity are called low
(below 100 lux), medium (100 to 500 lux) and high (above 500 lux). They affect how
photodetectors perform. Channel SNR which measures how reliable a signal is, is divided intQdsi

P;,e{low, medium, high} means transmit power level and Mg peme
Modulation scheme. While the number of subcarriers is constant at 64 in thi
simplicity in initial modeling), future development could make it a variab 3
spectral efficiency flexibility. Fig. 2 shows the working of Q-lea n&roposed study.

Affects VL C channel

' Sdect Action
& g, Modulation, Power)

'

Execute Action
(T ranzmait via VLO)

l

New State
After Action

Compute Rewand
(bazed on BER, SNK,
Latency)

Update Q-Tablke /
Q5 A)— Q-

learning Rule

Fig. 2 Q-Learning Architecture




The action space of the VLC system is characterized by two key parameters: transmit
power level (P.,)and modulation scheme Mg peme. Transmit power is quantized into three
modes—Low, Medium, and High—each providing a compromise between energy efficiency and
signal robustness. Low power saves energy but can elevate the BER, whereas High power provides
good signal quality with increased energy expenditure. Medium power is a balanced default for
steady state. Modulation scheme impacts data rate and BER, with QPSK (2 bits/symbol) being
stronger in noisy or mobile channels, and 16-QAM (4 bits/symbol) having greater rate but needing
a cleaner channel. With three power levels and two modulation schemes, the overall action space
is six distinct actions. For example, action a; = (Low, QPSK) would be appropriate in bad channel
conditions and action ag = (High,16 — QAM) for maximum performance in high-quality
channels. The reward function in the VLC-Q-learning system checks actions by trying to re
the bit error rate and energy use while boosting throughput, helping the agent find the best
transmit.

R(s,a) = a-(SNR) — B - (BER) —y - (Energy) — 6 - (La

In Eqgn. (11) a, B, v, 6 are weighting constants. wy, w,, ws refers as ugg in
prioritize objectives, BER means Bit Error Rate, measured post-demogd® put :
Bits/sec, determined by modulation and channel quality and Energy_cd
power usage and P:.. A multi-objective reward function that looks at
throughput and energy cost is built into the proposed VLC system. BER
messages are sent and a higher BER means decreased rewards; including

Bit Error Rate),
Ascribes how well

rewards accuracy. For a given bit error rate (BER), the thigaghp MTS signal is
Throughput = R - log ,(M) - (1 — BER). Energy cost is sg ergycost = o Pry, With
a being related to the hardware, so that more efficient pow, pted. The entire system’s
objectives decide the final weights (wq,w,,w3): ba pbs look for low-energy
consumption (higher w_3), while critical data y and speed (higher w; and
w,). Making sure the operation is well balan or the weights are: w; = 0.4,w, =

0.4, w3 = 0.2. With this method, VLC pa ned in real-time for reliable, fast
and efficient data transfer, helping mobile o Dle healthcare devices the most. Optimize the
VLC transmission policy r(s)is denoted in Egn? .

n*(s) = arg Q(s,a) (12)

a
Observe current state s, chgff8e action a, perform action, observe reward R, and create new
state s’, update Q(s, a) and repggt.

3.5.1 Receiver and Decodin er

transmission over the,
the inter-symbol inte

¥ the beginning, cyclic prefix (CP) removal is used to control
comes from many paths for the radio waves. When CP length is
is found in Ytotal[ Lcp: N + Lcp], , where N is the number of

where the modulated symbols on each subcarrier can be recovered. The
adaptive demodulation which adjusts between QPSK and 16-QAM according
t learning agent’s recommendations to maintain both data rate and error
dulated information lines are converted into binary by mapping, turned into
ergo digital filtering and then are reformed into ECG waveforms for medical use.

. BER looks at how reliable data is transmitted, SNR shows how clear the signal is, latency
es that data updates are up-to-date and monitors energy to check if the network runs
efficiently. With this setup, ECG data can be transferred safely, promptly and with little energy
from VLC-based systems. When Q-learning comes together, Q-value changes (4Q < ¢), are
smaller than ¢, usually ¢ = 10~*and the BER and throughput stop changing. Should no significant
changes happen during several episodes, early stopping will be applied. Recording up to 2000
episodes allows the system to run more efficiently. When performance stays at a high level and
rewards are received regularly, it means that learning is finished. The system meets these criteria



to work well in changing environments, give low error rates, save energy and deliver optimal
throughput in remote health care. Algorithm 1 shows the proposed methods working.
Algorithm 1. Proposed Q-learning based OFDM-VLC

Input

Initialize VLC System Parameters: Power Level € {Low, Medium, High},
Modulation Scheme € {QPSK, 16-QAM},
Subcarrier Count = 64 (fixed)

Q-learning Parameters: a (learning rate), y (discount factor), € (exploration rate)

Reward Weights: wl (BER), w2 (Throughput), w3 (Energy Cost)
Start
Step 1. Data Acquisition Layer

ECG data = acquire real-time ECG ()

Binary stream = digitize (ECG data)
Step 2. Observe Environment

statist < observe channel_state (BER, SNR, mobility, 4 c@ons)
Step 3. Action Selection using Reinforcement Learning

IF random () <e:

action_t «— select_random_acti XIS@ation
ELSE:
action_t «— argmax (Q (state t, A // Exploitation

Step 4. Encoding & Modulation Layer

modulated symbols =m inary_stream, modulation_scheme)

I =receive_VLC ()
@ CP =remove_cyclic_prefix (received_signal)
freq@®gnal = FFT (signal_no_CP)

odulated_bits = demodulate (freq_signal, modulation_scheme)

reconstructed_ECG = reconstruct_ECG (demodulated_bits)
ep 7. Performance Metrics Calculation

BER = compute_BER (binary_stream, demodulated_bits)

SNR = compute_SNR (received_signal)

Latency = compute_latency ()

Energy = compute_energy (power_level)




Step 8. Reward Calculation
R(s,a) = a- (SNR) — - (BER) —y - (Energy) — & - (Latency)
Step 9. RL Agent: Update Q-values
state_t_plus_1 = observe_next_state ()
Q (state_t, action t) = Q (state t, action t) + n * [reward t + A * max a' Q
(state_t_plus_1, @) - Q(state_t, action_t)]
Step 10. Output and Feedback
display (reconstructed_ECG)
log_metrics (BER, SNR, latency, energy)
End
Output

Learned dynamic VLC-OFDM configuration policy for Q edical "data
transmission

4. Results and Discussion

This section presents performance evaluation of the pr
the existing ones. Metrics include BER, SNR, latency,
results demonstrate that reinforcement learning ogtimi
to be more reliable, data-rate efficient, and poy i der dynamic channel conditions.

LOE framework against
energy efficiency. The

Table 2. Parameters

Parameter Value
Modulation Schemes QPSK, 16-QAM
Subcarrier Count 64
VLC Transmitter Power Levg (35 mW), Medium (65 mW), High (90 mW)
Ambient Light Levela Low, Medium, High
Channel SNR 9B (Low), 15-25 dB (Medium), >25 dB (High)
Patient Mobili Static, Mobile
Q-learning
0.1
0.9
1 — 0.01 (decayed)
500
Lambertian + AWGN
<0.05
lation Tool MATLAB

e 2 lists the key simulation parameters considered for performance evaluation of the
-VLC system for remote health monitoring. The system transmits the MIT-BIH
hmia dataset over a VLC channel with adaptive modulation schemes (QPSK, 16-QAM)
fixéd 64 subcarriers. The Q-learning agent selects power levels and modulation depending on
ambient light, SNR, and patient mobility. Channel conditions are taken into account using
Lambertian patterns with AWGN noise. Reinforcement learning parameters are tuned for
convergence within 500 episodes. MATLAB tools are used for simulation and verification of
system performance, with BER<0.05 as the objective.



4.1 ECG Signal Analysis

This section analyzes the ECG signals to be transmitted with regard to their quality and
integrity before and after denoising. Visual comparisons depict how the preprocessing mechanisms
are successful in suppressing noise, providing cleaner signals appropriate for modulation and
transmission over the VLC channel with less distortion.

Simulated ECG Signal
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Fig. 3 Simulated ECG Signal
Fig. 3 displays a sample ECG signal over time, the elegis ity of the heart. It has

periodic heartbeats with
Bignal processing system

time on the x-axis and signal amplitude on the y-axis. The w,

testing.
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g. 4 ECG Signal Before and After Denoising
tes the effectiveness of signal denoising in the proposed OFDM-VLC

is the signal after filtering out the noise. This verifies that the system can
ality, which is vital in precise medical data transmission.

ing Performance

his section analyzes the training dynamics and decision-making behavior of the
rcement learning agent. Q-learning convergence plots illustrate the agent's capacity for
transmission parameter optimization across episodes, whereas the Q-table heatmap illustrates state-
action mappings. These outcomes verify the effectiveness of Q-learning in improving
communication reliability and efficiency



Episode Reward for Q-Learning Agent

—e— Episode Reward
== Average Reward
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Fig. 5 Q-Learning Convergence
Fig. 5 shows the episode reward performance of the Q-learning
OFDM-VLC system to send medical information. Blue denotes single-e
denotes the trend of the average reward, which describes learning progress.
gets more stable higher rewards, which describes the effective optlvlo
parameters.
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Fig. 6 Heatmap of Q-values

6 represents Q-value heatmap of state-action pairs qualitatively depicts the learning
he Q-learning algorithm in the novel VLC system. Every cell indicates the expected
murtive reward for a particular state-action pair. Larger Q-values (in lighter colors) suggest
rewarding actions in respective states, directing optimal choices to improve throughput,
minimize BER, and save energy.

4.3 Performance Evaluation

This section provides important communication performance metrics, such as BER,
throughput, and latency. Comparative analysis with current methods identifies the proposed
OFDM-VLC + Q-Learning as superior in terms of having lower BER under noise, greater
throughput, and lower latency under different transmission distances—proving efficient for real-



time biomedical applications. BER shows how reliable a transmission is, and SNR expresses how
strong the signal is compared to the background noise. Latency is just the delay between sending
and receiving data, which is really important for things that need to happen in real time. Throughput
refers to how much data gets successfully sent, which points to how well the system is working
and how effectively it uses the available bandwidth. Mostly, higher numbers usually mean clearer

signals.
Table 3. Performance Comparison — Static vs RL-Optimized OFDM-VLC System
Metric Static VLC | RL-Optimized VLC

Bit Error Rate 0.078 0.015

Signal-to-Noise Ratio 21.3dB 29.8 dB
Throughput 16.7 kbps 22.4 Kbps

Latency 14.6 ms 9.0 ms
Energy Consumption 1.35 J/bit 0.89 J/bit

ECG Reconstruction Accuracy 85.3% 96.7%

The comparison between Static VLC and the proposed OFDM-
that Q-VLOE mitigates BER and latency in great measure, while the
reconstruction accuracy are considerably improved is shown in Table 3.8
also considerably lowered, meaning that the efficiency is better. Propose(NQEDM-VLC + Q-
Learning dominates in the domain of reliability, speed, energy perforve, eal-time ECG
transmission.

Method
PSO [21]
FL-SDUAN
[22]
OFDM-
Greedy
Algorithm
[23]

OFDM.

191 115

P sed

C 22.4 10.2
armg

roughput and latency for different methods, including the new OFDM-
W he new method delivers the best performance, hitting 22.4 Mbps for
10.2 ms for latency. It does a much better job than the older PSO, FL-SDUAN,
ethods in terms of efficiency and speed.



BER Performance Comparison
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OFDM (Mo RL)

OFDM-GA
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Proposed (OFDM-VLC + Q-Learning)
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Fig. 7 Bit Error Rate performance a erent transmission techniques and Signal-to-
Noise Ratio. The new OFDM-VLC with Q-lea (black line) is revealed to have the least BER,
leaving the conventional QPSK, static OFDM, an er optimized schemes such as GA and PSO
far behind. This validates that Q-leagy greatly improves transmission reliability, particularly in
environments with noise, which is fifry sigsficant in precise medical data transmission for remote

health monitoring systems.
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Fig. 8 Throughput Comparison



Fig. 8 shows a throughput comparison between different optimization techniques for
medical data transmission. The highest throughput of 22.4 Mbps is achieved by the proposed
OFDM-VLC using Q-learning, followed by PSO, FL-SDUAN, OFDM-Greedy, and OFDM-
UWA. This clearly indicates the strength of Q-learning in achieving maximum data rate, which is

very important for efficient transmission of high-volume real-time medical data in remote health
monitoring applications.

Latency vs. Transmission Distance
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Fig. 9 reveals how latency and tra stanc®@pterrelate within the OFDM-VLC
system for remote healthcare monitoring. A mission distance varies from 1 to 30 meters,

4.4 ECG Reconstruction Acc

This section consid e fideljt reconstructed ECG signals following transmission.
Visualization compares the or | ECGThoisy static VLC reconstruction, and improved RL-VLC
S considerable improvement in quality using reinforcement

al Mtegrity and establishing the efficacy of the proposed system
oring.



(a) Original ECG waveform
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(b) Reconstructed ECG via Static VLC (noisy)
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(c) Reconstructed ECG via RL-VLC (clear)
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Fig. 10 ECG Reconstrygh fore

b sigrme@pin three situations: the original
ear ECG using RL-VLC (c). The static VLC
result is clearly noisy and distorted, but the R C strategy significantly improves clarity and
nearly replicates the original. This proves the po af reinforcement learning in preserving signal
integrity in wireless biomedical tranggassion over vidIble light communication.

ptimization-based GA and PSO. The model's throughput was
exceeds all other approaches and its latency is kept at 10.2 ms,

each episode, the Q-Learning convergence plot proves that learning is
gep increasing and the Q-table heatmap shows effective learning of state-action

a stable way to send wireless health data. Yet, there are some difficulties, like
d memory required for fast updates in changing situations and requiring suitable
or widespread use. Potentially, future improvements could involve simpler versions of
Ing or approaches that mix existing strategies to be more efficient and flexible within
ple clinical and remote health settings.

5. Conclusion and Future Scope

The proposed work suggests a new, efficient, and intelligent method that uses OFDM-
based VLC with Q-learning to guarantee reliable real-time delivery of biomedical data, mainly
ECG signals. Using reinforcement learning in the VLC-OFDM channel, the suggested approach
changes transmission parameters based on changing surroundings, which leads to marked
improvements in how signals are sent and received. Results from various experiments indicate that



the new approach performs better than PSO, FL-SDUAN, and greedy-based OFDM in metrics like
BER, throughput, and latency. Especially, it delivers a BER below a certain level at high SNR,
reaches a peak transfer rate of 22.4 megabits per second, and achieves a latency of 10.2
milliseconds, proving it is well-suited for medical jobs that need quick response. The ECG signal's
reconstruction from noise shows high performance, as seen in the original and reconstructed
signals' similarities. The graphs and heatmap also indicate that the environment is learned well and
the right decisions are made, proving that the intelligent system does its work effectively.

Still, some problems persist; for example, the system is not always fast enough in very
dynamic or changing circumstances. Because of these difficulties, lightweight adaptive methods or
hardware acceleration are needed for real-world use in devices like monitors for health checks Zo
improve the framework in the future, one can add hybrid approaches like Deep Q-Netg®
combine different types of biosignals (for example, EEG and EMG), and introduce blgc
dependent authentication to protect privacy. Using devices and simulators in the lo

smoother. Essentially, the research makes a strong case for effective, 2
biomedical communication systems in advanced healthcare and telemeg
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