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Flow (OCF), is crucial for inforggad decisionWtaking. While Data Envelopment Analysis

(DEA) is commonly used @iorgggiency evaluation, it challenges computational

inefficiencies, data inte and a lack of transparency. This study proposes a
DEA + Blockchain
Detection (TD),

methogs. ' e Securities and Exchange Commission (SEC)-Financial

prob

that integrates DEA + BT to ensure data integrity, Tamper

parency through decentralized validation and cryptographic

St ata ScWnd the Kaggle Financial Data Set, the DEA + BT achieves higher
tr n ork Throughput (NT) (up to 1253 TPS), lower End-to-End Delay (EED)

as ms), and superior technical efficiency accuracy (95.2%). This work proved

security effectiveness with a 99.9% Consensus Rate (CR) and TD rates.
ompared to traditional methods, the model provides higher ranking consistency
(Spearman's correlation of 0.864 and 0.857). This DEA-BT proposes a robust, secure, and
transparent method for enterprise OCF ranking, addressing key limitations of DEA and

advancing financial performance evaluation methodologies.




Keywords: Network Security, Blockchain Technology, Operating Cash Flow, Data
Envelopment Analysis, Tampering Detection.
1. Introduction

In recent years, analyzing and evaluating enterprise financial performance have
become critical for stakeholders, including investors, management, and regulatory bodie

[1-3]. One of the key metrics in assessing financial health is Operating Cash Flow (&

which reflects a company’s ability to generate cash from its core business acti
The ranked list of OCF performance is vital to determining financial deciglbns,

Money invested, and developing approaches [5]. Computational il ecurity

risks, and opaqueness are problems with traditional methods.
The technique that can be implemented to evaluate the impac
A),

method of analysis [6]. Because it depends on the ra cgihted inputs to balanced

Units (DMUs) is referred to as Data Envelopment Ang

results, it can be applied to algorithms that are us r

examination of company performance 4
speed of the DEA, on the other han¥ S probléms, especially when it comes to
maintaining large data sets. For developing@operly informed choices regarding finances,

it is necessary to have results t e both acC¥rate and easily accessible [8]. New hybrid

approaches that combine D temporary innovations are currently being studied

by researchers. Severalqstanc these hybrid methods include DEA + BT and

e
cWl® used to enhance the confidence and openness of the outcomes
ent Administration (DEA). When BT and DEA are combined, it is

centralized securi In order to guarantee data integrity, transparency, and

availability throu sus Mechanisms (CM) and security using digital encryption,

e the validation and storage of efficiency rankings, which results in

e study recommends a process that combines DEA and BT, with the security of

work functions serving as the primary motivation for the approach. The technique aims
to improve the efficiency, security, and integrity of business OCF rankings. By applying
this model, data integrity is improved, transactions are accelerated, EED is reduced, and
the decentralized validation and encryption methods implemented by DEA + BT provide
protection [11].




The contributions of this work are threefold.

a) This research work combines DEA + BT distributed network technology to improve
OCF ranking accuracy.

b) This study also uses CM and TD detection to verify the DEA's findings.

c) This model is compared to traditional DEA, DEA with centralized security, an
Stochastic Frontier Analysis (SFA) with BT using real-world financial dataset
as the SEC Financial Statement Data Set and Kaggle Financial Data, which (¢ @
over 4,400 public sector companies.

The proposed DEA + BT outperforms existing methods in te
EED, security effectiveness, and technical efficiency accuracy?

Spearman correlation, improved data integrity, and optimized

indicating its probability for robust and transparent enterpglse mance evaluation.

@ e recommended system,
describing the proposed DEA + BT, is provided ig$ectid asets, BT setup, and DEA
d

configuration are provided in Sectio I es the experimental setup. The
analysis of the performance and res8 e experiments is addressed in Section 4.
Finally, the work is concluded, and future W@agarch directions are presented in Section 5.

2. Methodology
2.1 Overview of the Propg T Model

The following is the summary for the rest of the

The proposed DI + BT gagffiprove transparency, data integrity, and security in

enterprise  OCF gure 1). Traditional methods are criticized for data

manipulation, la iability, and insecure storage [12]. By combining DEA's
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Figure 1: The proposed DEA + BT Model



The DMU uses the DEA to evaluate the efficiency of multiple enterprises. The
DEA employs a linear programming method to consider multiple inputs and outputs,
including operating expenses, capital costs, and working capital. The efficiency score is
determined by solving an optimization problem that maximizes the weighted sum of
outputs to the weighted sum of inputs [13].

This score is denoted as E; for the j-th enterprise, is expressed as Eq. (1).

Yr=1 uTYrj)

m ]
it ViXij

E; = max(
Subject to the constraint that the efficiency score of any other en i Q@oresented
by 'E,’, does not exceed 1, i.e., Eq. (2).
Yr=1 UrYrk
< = v,
S oo 1, vk =1,2,..,n (2)
Where, ,

e x;;=> The i-th input for enterprise

e j,yj=> The r-th output for enterpg
The enterprises are ranked based I eir efficiency scores, with higher scores

cy.
The DEA phase generatesgTICi scores and rankings, which are securely recorded

e j,while u, and v; d> The wg ed tON@itputs and inputs.

indicating superior performance in OCF effi®

on a blockchain (BT) usj@@#a¥®CentMized, tamper-proof ledger: cryptographic hashing

and CM-secure BT nput-output data, information called metadata, and the

hC encryption and SHA-256 hashing are two examples of the cryptographic

MoQRJs mented by the model's BT module to secure data and prevent tampering. To

reve egal activity and data tampering, consensus methods such as Practical Byzantine
olerance (PBFT) and Proof of Work (PoW) validate and verify DEA results [15].

The DEA + BT integration is reduced by systematic data flow. The DEA module

determines efficiency scores from Business financial data and presents them into

transactions for validation. Smart contracts in the BT automate DEA result verification,

reducing human error and improving system efficiency [16]. This improves system

efficiency. The proposed model improves business OCF ranking with DEA + BT security




and transparency. It ensures accurate, verifiable, and unmanipulated economic tests,
thereby enhancing the credibility of the ranking process and providing users with a reliable
tool for informed decision-making [17].
2.2. DEA for OCF Ranking

The proposed model evaluates companies by OCF performance using the DEA, a non
parametric linear programming method. This method, which can manage multiple jagats

@

in ks each

and outputs without a practical relationship, is appropriate for financial e

evaluations in businesses with distinct scenarios and resource constraints [

I. Input-Output Model for Ranking Enterprises: The
tputs (Financial
utputs. The DEA

measures an enterprise's input-to-output efficieggy to ggfers in'the dataset. Each

organization as a DMU based on inputs (Resource

Gains). Table 1 provides typical OCF efficiency inputs a

business's efficiency score indicates how eff @maximizes outputs while

minimizing inputs.

Table 1: Paramgl p nd Outputs

Class Variable Description

OPEX Operating Expenses
Inputs CAPEX Capital Expenditure
Worki apit Working Capital Management
Net Operating Cash Inflow
Outputs Revenue Growth

Profitability Ratio

i.  Mathematicd ion of DEA: The competence score of an enterprise, signified
a -
IeNQW T he D®A employed here is the input-oriented Charnes, Cooper, and Rhodes
& assumes Constant Returns-to-Scale (CRS) [19]. The efficiency score is
e

as the ratio of the weighted sum of outputs to the weighted sum of inputs, Eq.

nd Eq. (4).
- Zf‘:l UrYrj
= Max (=), ©)
subject to:

L Wk < gyl = 1,2,..,n X

m
it ViXik

Where:

erprise (DMU 'j"), it is computed by solving an optimization




e y,;~> The r-th output for enterprise 'j'.
e x;;=>The i-th input for enterprise j'.
e u,~> The weight assigned to output 'r’".

e v;~> The weight assigned to input 'i’.

e s> The number of outputs.

e m~—> The number of inputs.
e n-> The number of enterprises (DMU).
The weights u,., v; are determined through the optimization prg , imizethe
4 a y SC

other enterprise 'k’ does not exceed 1, maintaining the relative effi

efficiency score for each enterprise. The constraint ensures that of any

evaluation [20].

ii.  Dual Formulation for Computational Efficiency: The abovgd¥acgmal program can
be converted into a linear programming problem (D %acilitate computation.
The input-oriented CCR dual model for DMU jg ed @ Eq. (5).
Ming; (5)

Subject to, Eq. (6)
Z;(lzl Akxik < ijij, i = 1,2, e, m

ZLL:l Akyrk = yrj; r= 1,2, ey S (6)
A =0, Vk=12,..,n

Where:

6;-> The efficien$g@score u'j.

peer enterprises that form the reference set for DMU 'j'.

yjency Scores and Ranking: Once the DEA is solved for each enterprise, the
Iting efficiency scores are used to rank them. Enterprises with higher efficiency
scores are ranked higher, reflecting their superior ability to generate OCS relative to
their resource expenditure. For example, an efficiency score of 1 indicates that an
enterprise is operating efficiently, whereas a score of 0.85 proposes that the enterprise

is operating at 85% efficiency and has room for improvement.



The DEA results provide valuable insights for financial analysts, enterprise managers,
and investors by identifying which enterprises perform efficiently and which require
strategic interventions to enhance their OCF performance. This ranking process forms the

basis for secure recording and verification in the subsequent BT phase of the proposed

framework, ensuring that efficiency evaluations are transparent, immutable, and resista

to manipulation.

Block

+Tt: TransactionSe
+TST: Timestamp

H(H(Bt-1) ; Hash
+computeHash()

Transaction

+1IDj: String
+Ej: Float

+Dj: Dataset
+Sigj: Si

SecurityMechanism

+consensusType: String

dateTransaction() +encryption: String

recordOnBlockchain()

+verifyConsensus()

+encryptData()

Figure 2: BT class diagram
-3 BT Design
The proposed BT (Figure 2) ensures the security, integrity, and transparency of
DEA-generated OCF rankings by leveraging a decentralized and robust network security

model. The model is designed around a network of nodes as N = {nl,nz, ...,np}, where



each node 'n;" maintains a complete copy of the BT ledger. Distributed design enhances
resilience by ensuring multiple redundant data copies across the network, with each node
validating transactions and maintaining consensus, thereby reducing the risks associated
with centralized storage systems.

A block B; In the BT, it is defined as Eq. (7).

By = {H(B¢-1),T;, TS;}

Where:

e H(B;_,)~> The cryptographic hash of the previous block Bt.1 mu

and continuity in the BT.

e T,~> The set of transactions recorded in the current block:

e TS, The timestamp when the block was created.

Each transaction th records the DEA results for an s/and can be expressed
as Eq. (8).
T/ = {ID}, E;, D;, Sig;, TS, } (8)
Where:

e ID;-> The unique identifier for rise 'j'.

e [E;-> The DEA efficiency score for e rise 'j', computed as Eq. (9).

_ Zr 1 ur)’r]
E; = max m 1vx” 6 9)
Subject to Eqg. (10).
Zr 1 UrYrk
<
Zl 1 ViXik L V‘
Wher

aset used for the DEA computation for enterprise 'j' includes both

(10)

ut aN® output data.
ig ;= The digital signature is generated by the enterprise’s private key to guarantee
Its authenticity.

e TS, The timestamp of the transaction.

The BT uses a cryptographic hash function H (e.g., SHA-256) to secure the contents
of each block. The hash of a block 'B,” is computed as Eq. (11)
H(B,) = SHA — 256(H(B,_)IT.ITS,), (11)
Where,



e || Concatenation.

This hash serves as the block's unique identifier, ensuring that any data modification
results in a different hash, thereby preserving data integrity. POW, or Practical Byzantine
Fault Tolerance (PBFT), is implemented as a consensus mechanism to add only valid
blocks to the BT in the proposed framework. In PoW, nodes solve a computational puzzl
by finding a nonce Nonce; such that Eq. (12).

H(B; Il Noncet ) < Target
Where,
o The Target is a predefined difficulty threshold.

PBFT utilizes voting rounds to achieve consensus, makin gy-efficient and
suitable for efficient financial validation. Smart Contracts (SC) imp BT automation

/

and security. SC = Eq. (13).

SC: { If valid (th ) then record th on BT } Q (13)
To reduce human intrusion and errglisk Qe SC tes DEA result validation

to meet predefined measures before reg th . Data transmission is secured by

asymmetric encryption using Public agFostructure (PKI) from BT. Each enterprise

uses a private key KjPriV to sign the tr@action, and other network users use the
corresponding public key KjP“ o verify it, Eq. (14).
Sig; = Sign (K]PriV,th), rify ’@ /. Sig;) (14)

This mechagismgeenNQes that only authorized entities can submit DEA results, and

N and a permanent state.

2.4 Quteg"®on Mechanism

e DEA + BT idea secures and provides business OCF rankings. Data integrity,
ansparency, and tamper-proofing are ensured. DEA efficiency scores are verified by
BT nodes and securely recorded on the BT. BT results cannot be altered due to its
decentralized and immutable nature. The business name, efficiency result, input-output
data, timestamps, and digital signature for authenticity are in DEA transactions. A

transaction for enterprise j can be represented as Eq. (15).




Where,

e ID;-> The unique identifier for enterprise ;.

e [E;=> The DEA efficiency score for enterprise j.

e x;;=> The set of inputs, such as operating costs
e y,;=> The outputs, such as net cash inflow or revenue growth.
e TS;-> The timestamp indicates when the transaction was created.

e Sig;—>The digital signature, ensuring authenticity, comput (
Sig; = Sign (K™, T;). (16)
The signature is generated using the enterprise's private ke PV and can be
verified using the corresponding public key ij“b with 'aﬁm function, Eq. (17).

Verify (ijlm, T;, Sigj) (17)

The BT broadcasts a transactj h erified by nodes through digital

signatures and data integrity. If succe ansaction is considered valid and grouped
with other verified transactions to form a k, referred to as ‘Bt’. Each block contains a
set of transactions, timestamps previous bYock hash, as shown in Eqg. 18.

B = {H(Bt—1)’ Ty, TSt}

Where,
e H(B;_1)™> TQ ic hash of the previous block is used to link the new block
e

(18)

to the BT.

T nt block is generated using the SHA-256 hashing function, Eq.
(1
) QQHA® 256 (H (B )T TS,) (19)

0 ensure the validity of new blocks, the BT deploys a consensus mechanism, such

or Practical Byzantine Fault Tolerance (PBFT). In PoW, nodes solve a
putational challenge by finding a nonce Nonce , that satisfies the condition, Eq. (20).

H(B; Il Nonce ;) < Target. (20)
PBFT involves consensus-building by voting, validating blocks if the majority

agrees, adding them to BT, and updating ledger copies among nodes. Each node in the BT

decentralized system maintains a similar record of DEA results, ensuring tamper-proof



results. Data exchanged between the DEA module and BT nodes is encrypted using TLS.
This integration mechanism provides a robust, secure, and transparent enterprise OCF
ranking solution that ensures confidential, secure, and interception-free data transmission,
boosting financial evaluation trust and accountability.
3. Experimental Setup
3.1 Enterprise Data

The research study utilizes the SEC Financial Statement Data Sets and

Financial Data, comprising more than 4,400 publicly held companies_to r

business strategies, this data provides opers@Qnal and financial insights. After maintaining

and normalizing the datasets, are aligied with financial periods to ensure data
consistency and quality. Tg.e the DEA and OCF rankings accurately reflect the
business's true financial 4gults, t eps are essential.

3.2 BT Network n

Enterprise ings data are stored and verified securely using the proposed

e

°s data integrity, transparency, and security against tampering.

ey faCWrs, selecting suitable elements, and implementing security measures
steps in the setup procedure to ensure the system's reliability. Only
ers can validate transactions and maintain the transaction register on the BT,
network that requires permission. It's suitable for trust- and confidentiality-
sitive applications related to finances. Ten to twenty nodes make up the network. Some
nodes, known as "full nodes," are responsible for maintaining the entire blockchain and
participating in the validation process. Other nodes, referred to as "light nodes," store a

subset of the blockchain and rely on full nodes for verification.




The BT uses PBFT for consensus, which is ideal for permissioned BT due to its
low End-to-End Delay (EED) and high Network Throughput (NT). It can process up to
1,000 Transactions Per Second (TPS). Nodes vote on transaction validity, ensuring only

legitimate transactions are added, reducing malicious activities, and improving network

reliability.

The BT uses an immutable chain model with each block containing tran

efficiency. TLS encrypts data transmissio

from unauthorized access and tial cyber

Prometheus and Grafana ] ode performance, transaction rates, and system
health. Regular updatesqg@sure y and efficiency. This BT network configuration

g or storing and validating DEA-generated OCF rankings,

Table 2: BT Configuration Parameters
ame Description Value / Range
. The protocol used to achieve agreement
Con us Mechanism PBFT, PoW
on the BT.
The maximum size of data that a block
Block Size 1 MB
can hold.
) The time interval for creating new
Block Time 10 Seconds
blocks.

Transaction The number of transactions the network

offers a transpare

—+

enhancing the intd erprise financial evaluations.

1,000 TPS
Throughput can process per second.




The total number of nodes in the BT

Number of Nodes 10 to 20 nodes
network.
Cryptographic The algorithm is used to generate
P g. P g J SHA-256
Hashing unique hashes for blocks.
Digital Signature The method used for signing and ECDSA (Elliptic Curve Digital
Algorithm verifying transactions. Signature Algorithm)
Network Type The type of BT deployment. Permissioned

Smart Contract The programming language used to )
. Go, JavaScgit
Language write SC.

The database is used to store the BT
Ledger Database at
state.

) The protocol is used for secure
Encryption Protocol o
communication between nodes.

The time taken by nodes to validate a
block.
The proportion of faulty nodg

Block Validation Time 2 to 5 seconds

Fault Tolerance Up to 33% (for PBFT)

Monitoring Tools Prometheus, Grafana

4. Results and Analysis
4.1 DEA Effectiveness

The experimental r he superior performance of the proposed DEA +
BT in terms of Technic ficie curacy (TEA) (Figure 3) and Ranking Consistency

rehensive datasets. Analysis of the TEA reveals that the




Technical Efficiency Accuracy (%)

SEC Dataset 94,7 95.2
Kaggle Dataset 87.8 88.1
LT ) 83.2 82.7
80
9 60
>
v
o
=)
3
< 401
201
0 Traditional DEA with SFA with Proposed
DEA Centralized Blockchain DEA-
Security Blockchain

Figure 3: Analysis of TEA ,

Ranking Consistency (Spearman’ on)
SEC Dataset 0.864 0.857
Kaggle Dataset
0.8 0.783 0.775
0.751 0.748 58

=
;0 0:6.
©
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o
w
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©
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0.2

0.0 DEA with SFA with Proposed

Centralized Blockchain DEA-
Security Blockchain

igure 4: Analysis of RC (Spearman's Correlation)
he @QQEA with the Centralized Security Model (CSM) shows moderate
er the traditional method, achieving accuracy rates of 87.8% and 88.1%,
that enhanced security measures contribute to improved accuracy. However, the
ith BT proves slightly lower accuracy (83.2% and 82.7%), signifying that the
chastic approach, despite BT integration, may not be as practical for OCF ranking as the
proposed deterministic DEA.
In terms of RC, measured using Spearman's Correlation coefficient, the proposed
model exhibits superior performance with correlation values of 0.864 and 0.857 for the

respective datasets. This represents a significant improvement over the traditional DEA



(0.751 and 0.748) and the CSM (0.783 and 0.775). The higher correlation coefficients
indicate more substantial rank agreement and a more reliable assessment of enterprise
performance. Notably, the SFA with BT shows the lowest ranking consistency (0.728 and
0.715), further supporting the superiority of the DEA for this application.

The proposed hypothesis is robust because the results remain similar across bot

datasets; however, they display distinct features and encompass different periods. Ra

from an extensive range of financial contexts, including the SEC and Kaggle, ind

the proposed approach is robust and reliable. Additionally, there is mini arioy
pen on the

i (0
for DEA + BT

e ranking process

metrics across datasets, demonstrating that the model's efficacy
specific datasets used. According to the research, the recomm®
enhances consistency, accuracy, and efficiency in ratings by makind
more secure and transparent. This is because a more reliable &8s for enterprise OCF
ranking developed when DEA's analytical skills an ure data handling were

combined.

4.2. BT Performance

The proposed DEA + BT 1|
Traditional DEA, DEA with CSM, and S
+ Kaggle financial data from r 4,400 p

improvements in transacti{ eduction, and security effectiveness.

&
O
e

d agairist alternative models, including
astic Frontier Analysis with BT, using SEC

lic companies. Results show significant
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Figure 5: Transaction Speed (TPS-Trang
Figure 5 shows TPS and EED for each mo cr
92Qor Kaggle. However, the EED for
of 25% ms for the SEC and 260 ms for

aditional DEA can handle a moderate volume

Kaggle. These results indicate that while
of transactions, its higher EED ligijts real-timg

The DEA with CSM @lo t improvements, with an average TPS of 980 for
the SEC and 967 for th ak TPS values of 1212 and 1150. EED is reduced
to 208 and 218
mechanisms, tho

processing efficiency.

time on

FA
50 he SEC and 1020 for the Kaggle, with peak TPS reaching 1300 and 1251,
ED is significantly reduced to 187 and 190 ms. The integration of BT helps

BT performs better than the previous models, achieving an average

ze the security processes, improving NT and reducing EED by ensuring faster
nsensus and validation times.

The Proposed DEA + BT outperforms all other models, achieving the highest
average TPS of 1253 for the SEC and 1207 for the Kaggle. The peak TPS values reach
1500 and 1450. The EED is the lowest among all models, recorded at 120 ms for the SEC

and 125 ms for the Kaggle. These improvements stem from the decentralized nature of BT,




optimized CM, and the efficiency of the DEA in processing financial data. The reduced
EED ensures real-time validation and recording of DEA results, making the system highly

efficient for large-scale enterprise evaluations.

SEC Dataset - Tampering Detection (%) SEC Dataset - Failed Transaction Rate (%) SEC Dataset - Average TPS
100 25 100

Val
Value
Vall

O raditional _DEA with SFA with Proposed 0.0 faditional  DEA with SFA with Proposed
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Security Blockchain Security Blockchain
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3 E: E]
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0 raditional _ DEA with SFA with Proposed 0.0 —Faditional Proposed SFA with Proposed
DEA Centralized  Blockchain DEA. DEA Blockchain DEA-
Security Blockch ch Blockchain
a
Figure 6 ffectiveness

Figure 6 highlights the security tiveness of each model, focusing on metrics

such as Consensus Rate (CR), pering D®&ction (TD), and Failed Transaction Rate
(FTR). The Traditional DEA [c sensus mechanism and achieves a TD rate of only
72.5% for the SEC and 7&¥% for ggle. The FTR is relatively high at 2.5% and 2.8%,

reflecting data integsg urity vulnerabilities.

demonstrations improved TD rates to 85.3% for the SEC and

ntegration enhances data integrity by ensuring that all transactions are verified and
recorded transparently.

The proposed DEA + BT achieves near-perfect security performance. The SEC and
Kaggle have a high CR of 99.9% and 99.9% for TD. This performance is attributed to a

decentralized validation process, robust cryptographic methods, and the immutability of




the BT ledger. The low FTR indicates high reliability in recording and verifying DEA
results.
4.3 Integration Efficiency

The proposed DEA + BT's integration efficiency is assessed by comparing System

Response Times (SRT) and data integrity metrics with other models, including Tradition
DEA, DEA with CSM, and SFA with BT, using two datasets: the SEC Financial Stajgsas
Data Set and Kaggle Financial Data, showing significant improvements in SRT,

overhead, and data integrity.
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st . y
S an k time (8.3 Sec). Both models have high processing overheads (858
a S). se results indicate inefficiencies in handling large datasets, resulting in
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Figure 7: Analysis of SRT
SRT for each model across two datasets. Traditional DEA has

sing and higher EED.

e DEA with CSM shows moderate improvements over the Traditional DEA. The

age SRT for the SEC is 3.3 Sec, with a peak time of 6.1 Sec. For the Kaggle, the average
response time is 4.6 Sec, with a peak time of 7.2 Sec. Due to improved security measures,
the processing overhead is reduced to 721 and 635 ms. However, the centralized
architecture still introduces bottlenecks, affecting scalability and real-time performance.



The SFA with BT performs better, achieving an average SRT of 2.8 Sec and a peak
time of 4.2 Sec for the SEC. The Kaggle shows an average SRT of 5.8 Sec and a peak time
of 6.8 Sec. Processing overhead is reduced to 586 and 683 ms. The integration of BT

enhances processing efficiency by decentralizing validation, though the stochastic nature

of SFA introduces variability in processing times.

The Proposed DEA + BT achieves the best performance among all models.

SEC, the average response time is just 1.7 Sec, with a peak time of 2.8 Sec and a
overhead of 320 ms. The Kaggle shows an average SRT of 1.5 Sec, a peak tig¥ of

and a processing overhead of 412 ms. These results reflec cie of the
> lower SRT and

ding, making the

decentralized BT combined with the streamlined DEA computat

reduced processing overhead enable faster data validation and reS

system highly efficient for large-scale enterprise evaluatigg
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Figure 8: Data Integrity
Figure 8 evaluates data integrity using three key metrics: Verification Rate (VR),
Data Consistency (DC), and Error Detection Rate (EDR). The Traditional DEA shows the



weakest performance, with VVRs of 77.8% for the SEC and 74.8% for Kaggle. DC is 81.2%
and 81.9%, respectively, while EDR is relatively low at 69.4% and 77.5%. These figures
highlight the vulnerabilities of traditional systems in maintaining data integrity.

The DEA with CSM improves upon Traditional DEA, achieving VR of 81.2% for
the SEC and 83.7% for the Kaggle. DC is enhanced to 89.6% and 87.9%, while ED

increases to 83.6% and 85.8%. The centralized security measures help detect errorggs

effectively, though the lack of decentralization poses risks of single points of fail

The SFA with BT demonstrates further improvements, with VR of g 9%
SEC and 93.9% for the Kaggle. DC reaches 91.2% and 90.6%,
and 93.2%. The BT integration enhances the integrity and co

ensuring that all transactions are validated and recorded transparently$

The Proposed DEA + BT achieves the highest dgig inte@ty metrics. The VR is

0 and 96.9%, while error

low error rates indicate minimal discreparS@s during data processing.
4.4. Resource Efficiency

The resource efficie oposed DEA + BT is evaluated by comparing its
computational overhead ure 9 torage optimization (Figure 10) with those of other
with CSM, and SFA with BT. The analysis utilizes the

pta Set and Kaggle Financial Data, which includes over 4,400

models: Traditiong
SEC Financial St
publi

esults prove how the proposed DEA + BT efficiently utilizes

co yngRSource®and optimizes storage requirements.

?\\‘»



Computational Overhead - SEC Dataset
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The Traditional shows tha@lowest CPU and Memory Usage (MU), with 47.3%
mory for the SEC and 42.8% CPU usage and 1.1 GB for

GB for the SEC. ET increased to 4.2 and 4.0 seconds on Kaggle. The added
curif®rocesses generate higher RC and slower ET than Traditional DEA.

The SFA with BT increases CPU usage to 58.5% and MU to 1.8 GB for the SEC,
with ET of 4.1 Sec. For the Kaggle, CPU usage reaches 56.2%, and MU is 1.7 GB, with
ET of 4.5 Sec. While BT integration improves security, the stochastic nature of SFA
contributes to higher RC and slightly longer ET.



The Proposed DEA + BT shows the highest CPU and MU due to BT’s decentralized
processing and cryptographic operations. For the SEC, CPU usage is 63.4%, and MU is
2.1 GB, with the fastest ET of 3.2 Sec. For the Kaggle, CPU usage is 61.8%, MU is 2.0
GB, and ET is 4.1 Sec. The efficiency gains from BT’s optimized CM offset the increased
RC, resulting in faster ET despite higher RC.

Storage Optimization - SEC Dataset
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Figure 10: Storage Optimization

he itional DEA has the most minor storage requirements, with 2.5 GB for the
B for the Kaggle. However, it proposes no compression and shows a high
undancy Rate (DRR) of 25.5% and 24.8%. This redundancy indicates
lencies in data storage.

The DEA with CSM increases storage size to 3.2 GB and 2.9 GB, with a
compression ratio of 1.2:1 and a reduced DRR of 22.3% and 21.5%. The added security

layers contribute to higher storage needs but slightly improve data redundancy.




The SFA with BT requires significantly more storage, with 4.8 GB for the SEC and
4.5 GB for the Kaggle. The compression ratio improves to 1.5:1, and DRR is reduced to
15.8% and 15.2%. BT's distributed ledger and cryptographic validation increase MU
demand but enhance data integrity.

The Proposed DEA + BT has the highest storage requirements, with 5.2 GB for th
SEC and 4.9 GB for the Kaggle. However, it achieves the best compression ratio g1
and the lowest DRR of 12.4% and 11.8%. This improvement is attributed to BT’s @

k to enhance the

storage mechanisms, including transaction compression, deduplication, andg¥cen

validation, which optimize storage without compromising data i

5. Conclusion and Future Work

The objective of the present study was to develop a novel ne
openness, security, and accuracy of business OCF rankings by bining DEA and BT,
driven by network security. There are three dimensions nventional DEA models

are lacking: computational efficiency, data integri ghal transparency. The use

e implementation of cryptographic
he propdsed model achieved better results
FA with BT when evaluated on the SEC

inancial Data, which encompassed over

than standard DEA, DEA with CSM, al
Financial Statement Data Set he Kaggl
4,400 public companies. It se(@u ystem with a 99.9% CR and TD, reduced EED to

verified by the m¢ @
is integration provides an improved approach that is secure,

enter Nk
tra nd rolest.
can achieved that future work will be focused on improving scalability,
n

optiNging e operational efficiency of BT, and applying Deep Learning (DL) in order to

tion to 1253 TPS. Better technical efficiency accuracy
higher RC (Spearman's value of 0.864) were additionally

)lve some of the problems with the previous methods of doing

rogP the accuracy of ranking further.
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