Journal Pre-proof

Precious Metal Prices Forecasting Using Optimally Configured Hybrid Deep |
Learning Approach Jour) S——
. Machine and.Comp'uti
?an 01, Issue’01, .;an ““:2‘02_'1

Jumana Waleed, Taha Mohammed Hasan, Ala'a Jalal Abdullah and
Ahmed Alkhayyat

DOI: 10.53759/7669/jmc202505143
Reference: JMC202505143

Journal: Journal of Machine and Computing.

Received 01 March 2025
Revised from 04 April 2025
Accepted 17 June 2025

Please cite this article as: Jumana Waleed, Taha Mohammed Hasan, Ala'a Jalal Abdullah and Ahmed
Alkhayyat, “Precious Metal Prices Forecasting Using Optimally Configured Hybrid Deep Learning Approach”,
Journal of Machine and Computing. (2025). Doi: https:// doi.org/10.53759/7669/jmc202505143.

This PDF file contains an article that has undergone certain improvements after acceptance. These
enhancements include the addition of a cover page, metadata, and formatting changes aimed at enhancing
readability. However, it is important to note that this version is not considered the final authoritative version of

the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting,
typesetting, and comprehensive review. These processes are implemented to ensure the article's final form is
of the highest quality. The purpose of sharing this version is to offer early visibility of the article's content to

readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may be
identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal remain in

effect.

© 2025 Published by AnaPub Publications.

@ AnaPub



Precious Metal Prices Forecasting Using Optimally
Configured Hybrid Deep Learning Approach

1 Jumana Waleed, 2 Taha Mohammed Hasan, ® Ala'a Jalal Abdullah, * Ahmed Alkhayyat
123 Department of Computer Science, College of Science, University of Diyala, Diyala, Iraq
4 Department of Computer Technical Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq
Yjumanawaleed@uodiyala.edu.iq, %dr.tanamh@uodiyala.edu.iq, alaajalal@uodiyala.edu.iq,
4 ahmedalkhayyat85@gmail.com

Abstract - Precious metals price forecasting represents an intricate task owing to their elevated volatility and
economic variations Conventional time series forecasting approaches frequently attempt to account for the nan-

learning approaches, particularly One Dimensional Convolutional Neural Networks (1D-CNN) g Memory (LSTM),
and the combination of 1D-CNN and LSTM, for precious metals prices forecasting. By drawig i i ique capabilities
imi ethodology in

traded at the Multi Commodity Exchange (MCX), and the attained accuracy exhibits the hybrid appI%gh’s superiority over standalone
architectures. Using the gold dataset as an example of a precious metal, the proposed hybrid ults for the Absolute Error
(MAE), Root Mean Squared Error (RMSE), and quuared were 0.0182, 0. 1500 a pectively. The outcomes indicate that

g ance the capabilities of prediction in the
financial market.

Keywords - Precious Metal Prices, 1D-CNN, LSTM, HyperbagaeOnpti tion ogy, Hybrid Forecasting Approach, Multi

TION

elevated economic values. Precious metals prices represent
a leading indicator of inflation, which can express the pUNgse of monetary policy for the economy as a whole. Precious
metals serve as vital hedging instruments in the financial ma particularly as safe-haven assets to mitigate risks during
financial crises. Additionally, precious metal essential raw’materials in contemporary advanced technologies, and the
i uences the operations of relevant enterprises [1]. Accurate price
erations, financial risk management, and economic policy making.
fluenced by various factors (such as global geopolitical landscape,
oil prices), and the price series exhibit the traits of instability, non-
ly forecasting metal prices represent a difficult task [2] [3].

g been a key focus of the scholarly community, with models continuously
e past years, academics relied on econometric approaches (such as vector error
Bgressive integrated moving average, and generalized autoregressive conditional
. es of precious metals (such as gold, silver, platinum, palladium, and rhodium) [2].
etric approaches perform well under linear assumptions, they struggle to capture more
critical no i eries data [4]. With advancements in computing technology, machine learning approaches
re distinguished in forecasting metal prices. Nevertheless, these models face many drawbacks

economic policy, dollar exchange r
linearity, and extreme noise, h .

Forecasting precious mg
developing as research prodge
correction, vector au

roaches surpassed in extracting essential features utilizing various types of data [9] [10] [11], and recent
the use of hybrid mechanisms have further improved forecasting accuracy beyond basic approaches.
hybrid deep learning approaches, the main concept is to handle the deficiencies of individual approaches and
nergistic impact in metals price forecasting, which has recently become the mainstream scheme [6].

Among the diverse deep learning approaches, one-dimensional convolutional neural networks (1D-CNN) and long
hort-term memory (LSTM) are the dominant approaches to financial time series forecasting, including metal price
orecasting. 1D-CNN is superlative for sequential data (such as time series signals) because it deals with one-dimensional
data. It uses convolution filters applied across the data to extract local patterns effectively. LSTM represents a kind of
recurrent neural network constructed to deal with sequential data of long-term dependencies. It conquers the issue of
vanishing gradient present in conventional recurrent networks by inserting effective gating mechanisms [12].




Accurate precious metals price forecasting would significantly support account managers, investors, and metal
institutions in producing sound market decisions and evaluations, whereas further progress in accurately forecasting such
metals prices is challenging owing to their oscillatory and non-linearity characteristics. This work provides the following
essential contributions to forecasting the precious metal prices:

1. Developing an optimized hybrid deep learning approach by combining 1D-CNN and LSTM with Hyperban
optimization methodology, using 1D-CNN to extract essential features, LSTM to capture temporal dependenci
in time series data, and hyper-parameter optimization to improve approach performance. This approach
particularly proposed for precious metals price forecasting, which can outperform standalone approaches.

2. Providing a systematic comparison of the forecasting accuracy of the proposed hybrid approach wity
individual approaches, and offering an in-depth analysis of the merits and restrictions of each approac
metal price forecasting, particularly, precious gold and silver metals, and basic copper metal.

3. Utilizing the Multi Commaodity Exchange (MCX), a real-world dataset, to highlight the applicajli
learning approaches and their performance in forecasting precious metals prices. Since the M
inherent volatility and market-driven patterns, it offers a suitable and challenging environ
testing.

4. Conducting extensive experiments based on several assessment metrics (like Meag Abs ’

Mean Squared Error (RMSE), Median Absolute Error (Median-AE), and Detg . icient (Rsquared))
to rigorously evaluate and compare the performance of the approaches.

5. The outcomes provide practical insights for financial analysts and investd
approach can improve forecasting accuracy and provide a competitive advanta

The remainder of the paper organization includes the following; an abbreviated desC’ggion of the relevant systems is
provided in the second section. The proposed system's general framework and con?o R explained in detail in the

third section. Experimental datasets, forecasting assessment metrics, experimental ts, and comparison analysis with

relevant systems are exhibited in the fourth section. Conclusions and some yections are drawn in the final section.

Il.
Precious metals, as unique commaodities, have a disting he global economy. In recent decades, increasing
literature has concentrated on improving the accurg price forecasts relying on machine and deep
learning approaches, providing valuable insights ) rmulation, investment strategies, and mining
production planning [13].
Alameer et al. [14] presented a hybrid system for S price forecasting with several optimization algorithms for
training a multilayer perceptron neural network. This syste
ranging from September 2013 to August The trained” neural network with the Whale optimization technique
surpassed other systems and revealed a si duction in MSE and RMSE and the highest generalization abilities,
however, this hybrid system might nee ional resources in contrast to simpler systems.
i al price forecasting. This system combined an Extreme Learning

Machine (ELM) with a Marine Pre
series is fed into this combingidemi composed into modes using filter-based empirical mode decomposition with

the Investing website) are
incorporation of the ogiizeX

ging from the second of January, 2013 to the end of January, 2020. The
superior pre-processing improved the attained accuracies, however, this requires

st time steps for a dataset acquired from Quandl public repository (recorded since 1970). In
ic Algorithm was incorporated to improve system hyper-parameters (like feature selection, learning and
nts of layers, batch size, epochs, etc.). This system surpassed other baseline systems for next-day
ough the error naturally increases with longer horizons, the system performed consistently over the two-,
seven-day horizons, and showed inconsequential accuracy falls at specific points. However, genetic algorithm-
sed hyper-parameter search added more training time and complexity.

Huang et al. [17] presented a hybrid system for forecasting the price of various non-ferrous metals such as gold,
opper, aluminium, and zinc. In this system, the initial forecasting for each metal was implemented using the Prophet
pproach, and the differences between forecasted and actual values (non-linear residual sequences) were also extracted.
These residual sequences were then decomposed using an enhanced complementary ensemble empirical mode to be
broken into intrinsic mode functions (multiple simpler sub-sequences) to decrease complexity and address aliasing and
noise issues in the data. After that, every decomposed sub-sequence was forecasted by implementing multi-approaches like
non-linear auto-regressive network, back propagation neural network, ELMAN neural network, LSTM, and ARIMA, and



the optimal predictions resulted from all sub-sequences were combined to constitute the last residual forecasting.
Eventually, this last forecasting was added to the initial forecasting to attain the final forecasted values for non-ferrous
metal prices. In this system, daily closing prices for gold and copper (obtained from the Investing website) were used,
ranging from 2013 to 2015, and daily closing prices for aluminium and zinc (obtained from the London Metal Exchange
(LME) dataset), ranging from 2008 to 2015 and 2011, respectively. This hybrid system achieved the highest performanc
across all datasets used compared to the individual approaches, however, it could be computationally expensive.

Zhou and Xu [18] presented a multi-stage hybrid learning scheme for accurately forecasting the prices of platinu
palladium, and silver using data decomposition, optimized relevance vector machine, and error correction. In the first stag
of this scheme, the input price series data is decomposed using complementary ensemble empirical mode, and {ag

However, it required more computational resources for optimization and multiple deco
Banerjee et al. [19] explored the responses of eight commodity futures (Gold, si

LSTM, and Gated Recurrent Units (GRU) were implemented on the daily closing pri8 eight commodities traded in
the MCX and the National Commodity Exchange (from the first of January, 2020, to d of May, 2021) and news
sentiment indices from the RavenPack database. Among the implemented approaches gjdiNg@aional LSTM outperformed
the others by achieving the lowest values for MAE and RMSE, especially in f ecas?me precious gold and silver metal

, and this dataset is dependent on
comprehensive market and historical data that might not apprehe nomic shifts. This dataset was first

normalized and then analyzed to choose the ten most correlated

coefficient method. After that, split into a training sg 996 to November 2015) and a testing set (from
December 2015 to July, 2022). Initially, the price g sted by implementing deep extreme learning,
extreme Gradient Boosting, and LSTM approaches e Sparrow search optimization algorithm was
utilized to choose the optimal hyper-parameters for proaches The deep extreme Iearnlng exceeded the other

correlated factors to present an ensemble approach to forec
significantly enhanced the forecasting accur d exceeded e other individual approaches with an Rsquared value of
0.959. However, this combination of app iacreased the computational complexity. Regardless of high achieved
accuracy, the ensemble approach, like parency in decision-making operations.

ing-based prediction system incorporating LSTM, GRU, recurrent,
, ed via temporal fusion transformers and attention mechanisms to
s and enhance prediction performance. In this system, futures prices of silver

and multilayer perceptron neural n
acquire ultimate interval-valucgssms
(from the first of January,
November, 2023) were obtd e LME dataset. The proposed system achieved IRMSE values of 0.17496 and
62.51197 for silver a i espectively, demonstrating error reduction and hence strong predictive accuracy.

ings determined in the previously mentioned related works are the limited ability of
xtract essential features, dependency on intensive preprocessing stages that work on making

ecomposition or autonomous optimization techniques to address the inherent restrictions of the
networks, resulting in hybrid approaches that are expensive and computationally complex. In addition,
like multilayer perceptron neural networks and ELM, lacked strength in finding temporal dependencies
patterns inherent in metal price data. Moreover, most previously related works depend on manual tuning,
ineffective and time-consuming. In our proposed architecture, the combination of 1D-CNN and LSTM addresses
rtcomings by effectively capturing local price fluctuations and the characteristics of long-term sequential
dependencies, and utilizing the hyperband optimization methodology avoids manual tuning and prevents overfitting and
nderfitting through finding the best hyper-parameters. As a result, this simplifies the model structure, reduces
omputational complexity, improves interpretability, and enhances prediction accuracy, accordingly overcoming the major
shortcomings mentioned in previous works. Table 1 summarizes the main techniques and datasets used, target metals, and
the highest obtained results of the related works.

Table 1. Comparison of deep learning-based metal price prediction approaches



Author(s),

Deep Learning and Techniques Used

Dataset Used

Target Metals

Obtained Results

Recurrent variation auto-encoder method

prices (acquired from

Gold, silver,

Ref. (Year)
Alameer et . - Optimized the accuracy of
al., [14] Mali:(til I\%/ﬁ;lgegcgﬁzggtrsﬁiz::ﬂﬁfﬁoerk Monthl;(;;gld price Gold prediction (the results specifics
(2019) P q were not detailed)
Gold and copper price o
. . . Optimized the accuracy of
Duetal., [15] ELM with a Marine predator datasets (acquired Gold and Copper predpiction (exact metricsywere
(2021) optimization technique from the Investing not demonstrated)
website)
Elberawi and Global commodity Achieved MAE of 15

[17] (2022)

optimization error correction utilizing
ARIMA, LSTM, etc.

from LME dataset)

zinc

B<e(|2z:1(;,2[11)6] and LSTM with Genetic algorithm Quandl public iridium, and gas RMSE of .20'8 forthe n
repository)
Hybrid system of Prophet model,
. The hi
improved complementary ensemble - . Gold, copper,
Huang et al., . . Metal prices (obtained - were
empirical mode, and multi-model aluminum, and

Zhou and Xu,
[18] (2023)

A multi-stage hybrid scheme of
complementary ensemble empirical
mode, another decomposition with
permutation entropy, and optimized
predictor of relevance vector machine

Precious metals price
data (acquired from
NYMEX)

palladium, a
silver

.0714; RMSE of 4.6599,
24.8232, and 0.0884 for
atinum, palladium, and silver

prices, respectively.

Banerjee et

Eight commodities
traded in the MCX and

Bidirectional LSTM
outperformed alternatives with

[21] (2025)

Two-stage ensemble learning system

Silver and copper

5‘('50[2149)] LSTM, Bidirectional LSTM, and GRU the National MAE of 0.0057 and RMSE of
Commodity Exc e 0.0072 for gold metal prices
Ensemble approach
Lietal., [20] Optimized deep extreme learning, outperformed single approaches
(2024) extreme Gradient Boosting, and LSTM with MAE of 253.033 and
RMSE of 385.005
Achieved IRMSE of 0.17496 for
Yang et al.

silver prices, and IRMSE of
62.51197 for copper prices

In this section, the precious and basic
approaches (1D-CNN, LSTM, hybig
hyper-parameter optimization metho
in the proposed architecture. )
many steps, and time-series
Eventually, the optimally

S

POSED ARCHITECTURE
lasets with the main preprocessing steps and several deep learning
STM, and the overall proposed optimal hybrid framework using

e described in detail. Fig 1 depicts a detailed description of each stage
ure, the closing prices of the input metal datasets are first preprocessed over

performance

Datasets

Datasets w om the first of January, 2014, to the end of August, 2024, for two precious metal prices of Gold,
Silver, a | price of copper traded at MCX India, and downloaded through the Kaggle data science

recasting approaches utilized the closing daily prices (which reflect the final traded price of each

the correlation matrices depicted in Fig 2, the closing price feature is chosen since it demonstrates a
with other significant features. The shapes of the closing prices for the metals datasets are demonstrated in
descriptive statistics for the selected price features are depicted in Table 2. It's worth noting that these
tces have fluctuated irregularly, particularly since 2020, and lack an obvious pattern, making it difficult for any
ingle forecasting approach to extract complicated features.
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Fig 2. Correlation matrices for (a) Gold, (b) Silver, and (c) Copper metal prices in the MCX datasets



Gold Prices Over Time (Original)
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Fig 3. Al qmginal closing prices for gold, silver, and copper closing prices

able tline of descriptive statistics for gold, silver, and copper closing prices
Precio nt Mean std. Min 25% 50% 75% Max
S 60

40133.79 13227.64 24597 28959 32314.5 50379.5 74367

er Pric 2759 51137.16 14921.93 33170 38689.5 44281 64875 96162

es 2758 521.61 165.51 291.9 402.46 445 709.53 936.5

Regarding the gold dataset, closing prices include 2,760 data points, averaging approximately 40,134, which is very
close to the average opening price, signifying price stability at market opening. The range (from low to high) is between
4,451 and 74,731, and the standard deviation is greater than 13,200, signifying high price fluctuations. And in the silver
dataset, the closing prices include 2,759 data points and average around 51,137, which is very close to the average opening
price, indicating that the markets open at the previous closing price. The range (from low to high) is between 32,600 and
96,000, and the standard deviation is larger than 14,900, signifying high price fluctuations. While the copper dataset
includes 2,758 records, averaging approximately 521.6 points, which is too close to the opening prices. Prices fluctuate
significantly, with a standard deviation of approximately 165, indicating moderate volatility.



Missing Data Imputation

Handling missing values is a key part of data preprocessing for these metal price datasets. Because the datasets are
relatively well-behaved (i.e., they do not contain extreme or highly skewed values), calculating the arithmetic mean
represents the optimal and most efficient process for processing these datasets. The mean imputation replaces the missing
values with the mean of the closing price column. This preprocessing stage helps enhance the quality of the dataset an
prepare it for the approach training.

Interquartile Range (IQR) Detector
It is common to notice extreme values when dealing with closing prices. These are caused by data entry errors, aj
market fluctuations (especially during wars), or abnormal trading circumstances. These extreme values signi
impact descriptive statistics and the accuracy of predictive modeling. Therefore, implementing an outlier det
closing prices will guarantee that the metal datasets remain representative and accurate.

The mterquartlle range (IQR) represents the most accurate and typlcal outlier detector for finangg

is then obtalned by subtracting these quartiles (IQR=Q3-Q1). After that, the upper and lower outl bd
and Ly,,,4) are established using the following formulas:

Uband = Q3 —hx IQR
Lband = Ql —hX IQR (2)

Where h denotes a practical threshold selected empirically (equal to 1.5) to discrimiﬁte een typical variation and

extreme anomaly. The closing prices above Uy ,,4 and below L,,,,, are detected as rs, al® replaced with the median
value, which is a central value of the sorted metal closing prices and is favi Y0 its strength against outliers.

Data Normalization
Closing metal prices have been observed to be hlghly vayig
applied can assign disproportionate significance to
magnitudes, which may lead to biased or inaccuratg

alization, the deep learning approach
to the influence of large differences in price
, another preprocessing technique (called data
ax scaling to transform the closing prices data into a
S are within the same scale to be comparable. This scaling
e more stable and faster convergence throughout training.

P—Pminimum (3)

Pmaximum ~Pminimum

for handling sequential or time-series data by passing a convolutional filter over it to obtain local
| architecture encompasses various layers.
input layer, which consists of a series of data points arranged as a one-dimensional vector for each time

cond is a convolution layer which works on applying learnable filters or weight matrices £ over the input series
for producing essential local feature maps F. This operation can be given as follows:

F@) =2V Sivjo1 L 4)

e Where F(i) denotes the produced feature map at i position, s;,;_, denotes the elements of input sequence, and
L; denotes the weigh at j™ position in the filter.
e The third is a layer of activation called Rectified Linear Unit (ReLU), which provides nonlinearity.



e The maximum pooling layer, which decreases dimensionality and reserve the most appropriate features.
For metal prices forecasting, 1D-CNN approach works on extracting local patterns over a specified window (30 days)
of closing price sequence data, which is advantageous in perceiving irregularities and short-term trends.

LSTM Approach
LSTM approach represents a variation of Recurrent Neural Networks (RNNs) formed for time-series data modeling.
units can learn and recall (long-term) dependencies, solving the vanishing gradient issue that plagues conventional RNN
[22] [23]. The unit of LSTM can be formed from: a forget gate, which is responsible for determining which information
should be ignored from the cell state; an input gate, which is responsible for updating the cell state with the ge

information; and an output gate, which specifies the subsequent hidden state. Every unit accepts the former,
state d,,_,, the former cell state £,,_,, and the present input x,,, and calculates the subsequent hidden state d,, ¥
subsequent cell state #,,. Generally, for each step of time n, the LSTM can carry out the succeeding activitig

e The first activity involves determining information to throw out from the cell state using the forgy gate
exploits a sigmoid layer to produce an output f,,, ranging between one and zero for everg@hu cell
state £,,_;.

fa = sigmoid(My - [dy,_1, X, ] + B (5)

Where M, and B, denote the matrix of weights and bias for the forget gate, respecti

e In the second activity, the input gate works on updating the cell state with the
layers: a sigmoid layer to determine which values should be updated, and a hyp&ic tag¥ent layer (tanh) to create

in goal of the sigmoid function is to

make the model differentiable, while the tanh function aims to dist € @@edients due to its central zero (range
from negative one to one), which alleviates the issue of vanishi . llows cell information to flow for a

longer period.

i, = Si : ; (6)

[dp_1, X, ] + Bp) (7)

Where i,, denotes the output of this gate, and M;, M,
gate, respectively.

;, B, denote the matrices of weights and biases for the input

e The third activity involves updating th ate ¥, via incorporating forget and input gates.
=fo fpog tine z)n (8)
e In the last activity, the hidden st 1S controlled using the output gate, and it is given to the subsequent unit of
LSTM and the output la te e output depends on the output of this gate o,, and the updated cell state ¢,,.
0, = sigmoid(M, - [dp_1, %3] + B,) ©)
d, = o, *tanh(¥,) (10)

Where d B Q@apote the matrix of weights and bias for the output gate, respectively.

proach represents an expansion of the original LSTM approach [24], which comprises multiple
LSTM stacked on each other. Owing to its higher depth and complexity contrasted with the single
isticated approach allows us to capture higher-level temporal patterns within the input data, providing
y in modeling complicated sequential data and achieving more accurate predictions. In this stacked
the output of one LSTM layer is used as the input for the succeeding LSTM layer. Considering the mth layer
ere w@ use, m=1, 2, 3), the input to the mth LSTM layer is d”! from the former layer (or input sequence for the 1st
layer), and the output of the mth LSTM layer is dJ;*, which will be approved as input to the subsequent layer.

ybrid Forecasting Approach

The proposed hybrid approach incorporates 1D-CNN and LSTM layers. In this approach, the 1D-CNN layer assist in
extracting essential features from input metal prices, and the LSTM layer seize temporal dependencies in time series data.
Then, there are two dense layers that reduce the dimensions of the extracted features and produce the final prediction.



e The first 1D-convolution layer encompasses (32, 64, or 128) filters (of size 3) applied over the input data to learn or
obtain (32, 64, or 128) various feature maps. And to make the network learn more complicated patterns, the activation
function ReLU is applied.

e Maximum Pooling is added to decrease the data dimensionality via downsampling, decreasing the cost of
computations and complexity of the approach. This process preserves the principal features via choosing t
maximum value within the window (of size 2).

e The Batch Normalization layer is utilized for speeding up and stabilizing training via normalizing activations in th,
previous layer throughout the batch.

e LSTM layer is utilized to model long-term sequential data dependencies. This layer is capable of learni
previous information and maintaining a memory of previous states, which is beneficial for time series predi
contains (64, 128, 192, or 256) neurons (units) and produces the entire sequence of outputs.

e A dropout layer is utilized after the LSTM layer with a dropping (between 0.3 and 0.5) to decreag
randomly selecting between 3% and 5% of the layer's output units to be zero throughout training wi
data shape and having any parameters, making the approach more generalizable and robust.

o Dense Layers (fully connected layers) conduct the last output transformation, rel
extracted via the previous 1D-convolutions and LSTM layers. The first dense layg
is utilized to decrease the data dimensionality gradually and ReLU is then utili
by a dropout layer with a dropping (between 0.1 and 0.4) to attain further reg
utilized to output a single value for time series forecasting.

Hyperband Optimization Methodology (

The presence of multiple hyper-parameters can significantly impact an ap predictive performance, so determining
the approach's parameters is a critical process in its training. There are g@lamental methodologies for deciding
hyper-parameters, such as grid search, random search, optimizatio so on. In particular, the Hyperband

optimization methodology is more efficient for tuning deepgaarni hich the training process is expensive
and the hyper-parameter space is vast. This methodolog 3 om search through configuring hyper-parameters
and a strategy of early-stopping to assign more reso aches (called successive halving)

e  The hyperband optimization methodology attemp¥ ultiple combinations to reach the optimal hyper-parameter

filters in the 1D-CNN layer, (64, 128, 192, 256) uni(Sgm the LSTM layer, (32, 64, 96, 128) units in dense layer,
(between 0.3 and 0.5, and between 0.1 0.4) rates of™ropouts, and (0.0001, 0.001, 0.01) rate of learning, and
ithin a budget.

r "R" should be specified, and the total budget "B" should also be
resources "R,,..", (here we utilize maximum 30 epochs), and the

e  The maximum brackets "B,,,," a
computed, which depends on B, and m
formulas are as follows:

=

Brax = llogR(Rmax)J (11)

B = (Bnax + 1) * Rpnax (12)

initial epochs (resources) to a substantial count of configurations. Then, it discards

on underachieving configurations."When no improvement in validation loss is achieved over
ing will be stopped early. In each bracket i, Hyperband activates successive halving, as follows:

(13)

c =[5
Rmax b+1

Rpin = Rggx (14)

Where C denotes initial count of configurations, and R,,,;,, denotes minimum resource assigned per configuration, R is

assigned to 3. For i =0,1,...,b, every round trains C; = [C R™ ] configurations, each for R,i,i = Ry - RE

resources.

e Once the optimization process is complete, the optimal approach (based on the minimal validation loss) is chosen and
can be utilized for future forecasts.




The Hyperband methodology was utilized to optimize the accuracy of forecasting metal prices using standalone and
hybrid approaches. This optimization methodology effectively searches the hyper-parameter space to obtain the optimal
configuration for these approaches, improving performance with lower computational cost.

IV. EXPERIMENTAL ANALYSIS
In order to depict the efficiency of the proposed optimized forecasting architecture, several approaches were applie(8
These approaches involve standalone 1D-CNN, stacked LSTM, and a hybrid 1D-CNN and LSTM.

Evaluation Measures
The evaluation measures like MAE, RMSE, Median — AE, and Rgqyqreq are employed in this proposed archite
determine the most appropriate approach. Lower values for these metrics (except Rsqyqreq), denote ba

performance [25].
MAE 1is used as a regression measure to find the average absolute errors (differences) be

forecasted ‘F’ price values of precious metals. The formula for this metric is given as follows:

2

1
MAE = 131_,14; - F (15)

Where [ denotes the series length.
RMSE is more interpretable than MAE in penalizing larger errors, in other words,
minimize large errors. The formula of this metric is given as follows:

beneficial when required to

(16)

olute errors (differences) between the

17

Rgquarea 18 Used to measure how well forecasts agres actual data. The formula for this metric is given as follows:

. (Ai_Fi)2 (18)

Rsquarea = Y (A;-A)2

Where 4 denotes the mean of actual pri ious metals.

Results and Comparison
To evaluate the proposed archy
conducted to verify the foreqp

ensive comparison between optimally configured deep learning approaches is
e of these approaches.

Jous hyper-parameters are considered for optimization utilizing the hyperband
its, Dense Units, Dropouts, Learning Rate, and Epochs). Table 3 demonstrates the

3. Optimal hyper-parameters for the approaches by hyperband methodology

Filters LSTM Dense 1st 2nd Learning No. of
Units Units Dropout Dropout Rate Epochs
128 - - 0.3 - 0.001 30
128, 64,
- and 32 - 0.4 0.4 0.001 30
Hybrid Approach 64 256 128 0.3 0.2 0.001 30

which in turn affects the accuracy of the forecasting results, as depicted in Tables 4, 5, and 6.

The choice of the above hyper-parameters directly influences the capability of approaches to learn and fit the data,




Table 4. Forecasting results of the optimally configured approaches for gold prices

Approaches MAE RMSE Median — AE Rsquared
1D-CNN 0.0456 0.1547 0.0414 0.7821
Stacked LSTM 0.0244 0.14207 0.0169 0.9144
Hybrid Approach 0.0182 0.1500 0.0164 0.9616

Table 5. Forecasting results of the optimally configured approaches for silver prices

Approaches MAE RMSE Median — AE

1D-CNN 0.0388 0.1410 0.0253

Stacked LSTM 0.0194 0.1579 0.0124

Hybrid Approach 0.0159 0.1719 0,

Table 6. Forecasting results of the optimally configured approaches for copper prices

Approaches MAE RMSE Mediand@AE Rquared
1D-CNN 0.0158 0.1268 .0093 0.9375
Stacked LSTM 0.0186 0.1257 62 0.9436
Hybrid Approach 0.0107 0.0096 0.9816

As depicted in previous Tables, the optimally hybrid approach provides superior results among all the

approaches with the highest Rq,.4req Values, reaching 0. , 0.9682, and 0.9816, accompanied by minimal MAE values,
reaching 0.0182, 0.0159, and 0.0107, RMSE values, reac 0.1500, 0.1719, and 0.1358, and Median — AE values,
reaching 0.0164, 0.0121, and 0.0096 for golggglilver, and coppeT price data, respectively. This indicates that the variability
of data is effectively captured by the opti il approach, which is well-generalized and likely to perform similarly
with other precious metal prices.
For the optimized single appr
margin. Additionally, stacked LST

d LSTM results outperformed the 1D-CNN approach by a large
e somewhat close to those of the optimized hybrid approach, with
d 0.9436, MAE values, reaching 0.0244, 0.0194, and 0.0186, RMSE values,
edian — AE values, reaching 0.0169, 0.0124, and 0.0162 for gold, silver, and
ver, the standalone 1D-CNN approach provided reasonable performance by
m features in the metal price data.

predicted values for each optimized approach on the testing data. It is noticeable that the

copper price data, regpecti
exploiting its «@lity,

the diagonal, indicating that the predicted values are very close to the actual values. In the other
pspersion is minimal, indicating that the hybrid model is capable of providing accurate and consistent
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To visualize how well the optimized hybrid approach’s predictions match the actual data, all
depicted in Fig 6. This comparison confirmed that the optimized hybrid approach has mjni

Fig 5. Scatter plots of the actual and predicted (a-c) Gold, (d-f) Silver, and (g-i) Copper price g

prediction stability, and high curve-fitting accuracy.

Fig 7 and Fig 8 depict the performance assessment results of all optimized apprg
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Fig 6. Visualization comparison of the predicted values against the actual prices using the optimal hybrid approach
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Based on the previous compariso@ cludgethat the single-prediction approaches exhibit a notable weakness in
making accurate predictions for h\gcompl equences. On the contrary, the hybrid approach could mutually

compensate for the weaknessg
methodology proved to be hi

ingle-prediction approach. Furthermore, the utilization of the Hyperband
tYg@ptuning hyper-parameters in all approaches.

>

V. CONCLUSION
Accurate fgrecas i ies, like precious metal prices, represents a significant challenge due to the fluctuating and

rt-term fluctuations. Therefore, the proposed architecture works on optimizing and comparing
s deep learning approaches for price metal forecasting, utilizing an effective optimization
e hyper-parameters and enhance the performance of these approaches. Applying the hyperband
odology to 1D-CNN, stacked LSTM, and hybrid 1D CNN and LSTM approaches showed that the

ectively capturing short-term features, and the stacked LSTM was adept at modeling long-term
ies, combining the two approaches in a hybrid architecture exploited their abilities, making it more suitable for
recasting metal prices. Moreover, the hyper-parameter methodology enabled effective exploration of the hyper-
parameter space, resulting in optimal performance.

In future work, the architecture could be expanded to handle further features such as sentiment data and external
ncidents, enabling approaches to obtain additional factors affecting the time series and enhancing the accuracy of their
predictions. Additionally, we will concentrate on real-time forecasts rather than batch forecasts, so that the approaches can
continuously update their predictions as new data appears. It is particularly beneficial for applying to the global
commaodities markets, where prices change rapidly.
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