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Abstract

Mpox is a re-emerging zoonotic viral digg® ¥ acte attention of the whole world because of its
spreading transmission and clinical similarity wit Uiseases. M is highly important that this identification is
fast and accurate, even in remotely located areas or N e-limited settings. However, the conventional centralized
deep learning models exhibit severe limitations regarO%g@ data privacy, modality variation, and scalability across
varied clinical environments. To this end, this paper pNgents MetaFusion-FL, a new federated meta-learning
framework that combines cross-modali age analysis based on a hybrid Transformer-Capsule model with
Hierarchical Attention-Based Multimo i AMFM). The model can work on multi-source images as input,

namely smartphone images, dermo i d clinical images, which are processed locally at edge hospitals
without raw data transmission. eta-learning strategy guarantees quick personalization of models
and global generalization. W, ed on a wide dataset, MetaFusion-FL has a higher classification accuracy of
99.46%, precision of 99.580, reC 0%, and F1-score of 99.46% compared to other current models, including
ViT-RLXGBFL (99.12% T-FLBoost (98.78%). The framework is also resistant to image noise and is
consistent and stal ederg@d clients. Besides, SHAP and Grad-CAM++ explanations are used to ensure

interpretabi i t. MetaFusion-FL is therefore a leap in the development of Al-based, privacy-
preservipg, an i kin disease classification, particularly Mpox.

Keyword®: tion, Cross-Modality, Federated Learning, Meta-Learning, Capsule Network, Transformer,

st Africa, but recent outbreaks have occurred across the world, leading to questions of how quickly the disease
can be diagnosed and contained [1] [2]. The diagnosis Early and proper diagnosis plays an important role during the
management of an outbreak, decreases transmission, and provides proper clinical care. Although the traditional
diagnostic techniques like PCR (polymerase chain reaction) and ELISA (enzyme-linked immunosorbent assay) are
sensitive, they are time consuming, expensive, and need special laboratory conditions. The latter has spurred the desire
to use artificial intelligence, in particular deep learning models, to perform swift, non-invasive Mpox detection based
on images of skin lesions [3] [4].With regard to medical image classification, deep learning, namely convolutional
neural networks (CNNs) and transformer-based models, including ViT (Vision Transformer) and SwinTransformer




have shown promise. Such models in Mpox could be used to process high-resolution images of skin lesions and
differentiate between Mpox and other skin diseases that can exhibit similarly, including chickenpox or syphilis. The
benefit of such models will be the presence of pattern recognition and possible decision support in real-time, both in
the clinical and remote setting [5] [6]. In addition to that, the use of self-supervised learning and data augmentation
techniques helps to increase the resilience of the models despite the limited size of the annotated dataset, and in case
of an outbreak, when the speed of implementation is a priority, deep learning is an attractive suggestion [7] [8].

to the populations of the world. Second, Mpox skin lesions may resemble other skin diseases, and wi
trained model, false positive or negative outcome will be obtained [9] [10] [11]. Third, most mode

training and inference, which may not be possible in resource-limited settings wher?
[13]. There exists also the problem of algorithmic bias: models trained on one cohort g€in
on other skin colors, ages, or clinical contexts, threatening to increase healthcare#uities even more. Lastly, deep
eaning that a clinician would not
easily be able to answer why a prediction was made, which can inhib o the clinical workflow [14] [15].

couple of limitations and weaknesses need to be addre wtion, model interpretability, and fair
model deployment remain active areas of research tog hnologies can be used ethically and effectively
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Figure 1: Symptoms of Mpox

In order to mitigate these shortcomings, this paper proposes MetaFusion-FL, a cross-modality federated
meta-learning framework toward robust, accurate, and explainable Mpox detection. The model we propose brings
together a few novelties: (1) we use Hierarchical Attention-Based Multimodal Fusion (HAMFM) to fuse features
extracted from smartphone, dermoscopic, and clinical images; (2) we encode data using a hybrid Transformer-Capsule



encoder to capture both long-range dependencies and morphological hierarchies in lesions; and (3) we use the Reptile
federated meta-learning algorithm to guarantee fast adaptation and weight convergence across all clients without
requiring data sharing. By combing these elements in a federated setting, each healthcare institution can train a local
model locally, and contributes to a global model without sending sensitive patient information.

1.1. Main Contribution of the Work

e Cross-Modality Image Fusion Architecture:Proposed a new architecture that integrates dermoscg®
smartphone, and clinical imaging modalities with hierarchical attention mechanisms, which can re
perform across image sources which are otherwise heterogeneous.

e Hierarchical Attention-Based Multimodal Fusion (HAMFM): Presented a new fusion bloc
wise, spatial, and modality-aware attention mechanisms to highlight the features of tha |
preserve the modality attributes.

e Hybrid Transformer-Capsule Feature Encoder: Proposed an encoder layer to4 ra nsfor plocks

to represent global context and capsule network to part-to-whole lesion g @ to the diagnosis
3 ving federated learning

more robust.
o Federated Meta-Learning in Reptile Optimization: Introduced a priva

procedure founded on the Reptile optimizer, allowing client-level personaliza%g without the centralization
of the data.

&)

modalities.
e Acrtifact-Robust Preprocessing Pipeline: Designed a s
wise, of CLAHE, adaptive thresholding, hybriaSilec

The rest of the paper is structured as fol|g
detection, federated learning on medical images, 8
current frameworks. Section 3 elaborates the propose
fusion pipeline, Transformer-Capsule encoding, hierar
Section 4 reports the experimental finding
Section 5 concludes the paper, summi
implementation, extension to multiplgd

the essential findings and providing the prospect of the real-world
dapting to changing clinical conditions.

2.Related Work

In a narrative revig assogetion of Mpox virus (MPXYV) infection and the diagnosing ability of saliva
was noted. The MPXV rqg t€ aid of endoplasmic reticulum, ribosomes as well as cytoplasmic proteins
of the host cell. Lesions or\gae oral nglicosa were frequent prior to skin rashes and the conventional diagnostic methods

ipidomics and metabolomics are OMICs technologies that enhanced the discovery of
nostic platforms were supported by proteomic variations in saliva and plasma through mass

and international travel and the pet trade were thought to have helped spread it [17]. MPXV fell into Central
est African clades. There was cross-protection in the small pox vaccination. The clinical manifestations were
fever, headache and skin vesicular lesions. The review highlighted united global responses to control future outbreaks.

Mpox infected more than 110 countries causing the fear of another pandemic. Diagnostic instruments were
still costly and time-consuming, so the effort was made to develop automated detection systems. One study proposed
a multi-class deep learning framework using transformer architectures to distinguish Mpox and other skin diseases




using lesion images [18]. The model used mechanisms like self-supervised learning and shifted window mechanisms.
It has been trained on Mpox Skin Lesion Dataset Version 2.0 (2024). Compared to other models, such as ViT, MAE,
DINO, and SwinTransformer, the latter demonstrated the best accuracy of 93.71%, which is almost 8% higher than
the rivals. The findings indicated high-accuracy classification that can be applied to low-resource healthcare settings.

A targeted review was used to investigate how Mpox had affected surgery three years after the outbreak.
PubMed and Scopus literature was reviewed with the help of keywords, including Mpox, Monkeypox, and Surgg
and ten studies were selected. The review discussed operative treatment of Mpox complications and infection cg
in operative practice. Although the impact of Mpox on surgical services was minimal, the early stages of the ou
were similar to those of COVID-19 [19]. Nonetheless, statistics were still scanty. The results hig
significance of surgeon participation in the diagnosis, increased infection precautions, and the awarenesgil
of Mpox with other sexually transmitted infections. Availability of reconstructive procedures wa:
alleviating related stigma.

The historical development, virology, epidemiology, diagnostics, and treg
detail. Originally, Mpox was a zoonotic disease in Africa, but it managed to adj
impact wider population groups. Genomic investigation supported the viral acd¥ )
invention and diagnostic specificity challenging. The epidemiology pattern changed to Sg@&xtent that the rural sporadic
cases were changed to extended outbreaks in urban populations among the high ri
detection and treatment progress, worldwide access was still insufficient. The rej ghted the importance of
effective surveillance mechanisms, collaboration on an international esearch as urgent measures to be
undertaken. It was concluded that strengthening global health infrastr ol play a central role in responding
to Mpox and other infectious threats.

3. Methodology

The suggested methodology, MetaFusio
at detecting Mpox across imaging modalities, su
images. The system starts by standardized preprocess
noise filtering to bring uniformity in the quality of inp
Hierarchical Attention-Based Multimod ion (HAMFM) module. A hybrid Transformer-Capsule Network
encodes these features, along with glob ationships and fine-grained lesion architectures. With the help of
the Reptile meta-learning algorith
exchanging raw data. A final precy
classification results.

3.1 Dataset Compilation, lity Integration

erse set of skin lesion images related to Monkeypox (Mpox) is one of the initial
flaFusion-FL. The dataset is deliberately built across varied image acquisition
ne photography, dermoscopic images, and clinical imaging systems, to facilitate
d diagnostic performance. Such modalities are highly diverse in resolution, lighting
jagnostic details, thus has made available a heterogeneous dataset, reflecting real-world
ealthcare scenarios. Such multi-source images are important to integrate in order to construct

ly gathered image data that are all manually curated and verified by trained dermatologists regarding
the labeling of the lesions. The images are labeled with metadata indicating the source modality,
location, lighting quality and severity score. In order to reach the modalities alignment, a harmonization
is used in several steps. Normalization of color space is done through perceptual color models (e.g. CIELAB)
in order to reduce chromatic difference caused by the use of different imaging devices. This procedure will make the
features of color (lesion pigmentation and adjacent skin tones) comparable between sources. Additional domain
adaptation is then performed through histogram matching as well as adversarial domain alignment to minimize the
impact of modality-induced bias on feature representation.




L = 116f (Y%) —16(1)
@' =500 - (f (%) —f(%)) @)
b* = 200 - (f (%) —f (;ﬂ)) 3)

Where X,Y, Z are tristimulus values in CIE color space, X,,,Y,, Z,, are reference white valug

space.After normalizing and harmonizing images, metadata-based indexing takes effect. A modal
on each image, necessary to train the fusion model to learn the context and source of eagaagput

found to be particularly
L establishes a foundation
d and modality-aligned

important to supervised contrastive learning at the attention based fusion step. MetaFu
of federated generalization and multimodal learning by constructing a large agno
dataset.Figure 2 illustrates the proposed MetaFusion-FL architecture. )
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Figure 2: MetaFusion-FL Architecture
3.2 Pre S nd StaNgtardization

mpl the datasets, a powerful preprocessing and standardization protocol is used to make the inputs
ent as far as the diagnostics are concerned. There is a wide variety of imaging modalities and
Kions, making preprocessing modality-aware and adaptive to the quality and granularity of the visual
ending on the type of images. To this purpose, every image is processed with a dashboard-specific
pipeline, but using a global scheme of input normalization.The initial important improvement procedure

ized areas of the image, it enables the clearer viewing of boundaries of the lesion as well as skin textures,
without excessively enhancing noise. The method is especially useful in dermoscopic and smartphone images in which
lighting inhomogeneities and shadows hide fine-grained structure of the lesions. Applied selectively to the luminance
component (converted to a suitable color space, e.g. YCbCr or Lab*) CLAHE is used to preserve chromatic
information, so that contrast enhancement does not introduce artifacts that can be diagnostically misleading.




H. (i) = min(H (i), ClipLimit) (4)

Where H (i) is the histogram bin count for gray level i, ClipLimit is the upper limit for histogram bin height
and H.(i) is the clipped histogram value at intensity level i.Adaptive Thresholding is a preprocessing step that is
segmentation oriented. This technique allows the reliable separation of the foreground and background, having
different lighting conditions in each situation, by calculating pixel-wise thresholds using local neighborhood statistics.
Adaptive Thresholding can create segmentation, which is used to simplify subsequent localization of lesions in imgg
by making lesion areas more visible and reducing background noise a critical procedure in training attention
and capsule networks. Also, the Adaptive Thresholding can be used to automatically crop region-of-interest (O

patches to compute efficiently.
1
Ty =5 Y. 1) =) O
(L,)EN(x,y)
U aroUuN pix i

of pixels in neighborhood, 1(i, j) is the intensity at neighbor (i, j) and C is the cdgant to jii#e-tune tMWsholding.All
images are resized to 224 224 pixels (using bilinear interpolation) to ensure consi iUt dimensions throughout
the neural architecture. This standardization makes them compatible with backbo eature extractors such as
Transformers and Capsule Networks and maintains spatial hierarchies. Since resizjgy c2%@ distortion, aspect ratio
preservation and border padding techniques are applied selectively to assur: ttk&)es of lesions are not distorted.

Further, pixel intensities are Z-score normalized to achieve zero-mean ce distribution across input batches,
which expedites model convergence and minimizes effects of imagi Stefies.

)

Where T (x, y) is the threshold at pixel (x, y), N(x, y) is the local neighbor! s the number

Inorm (x’ y

Where I(x, y) is the pixel intensity at (x
Lnorm (x,v) is the normalized intensity.A hybrid me¥ Bussian filtering method is used to suppress the remaining
modality-specific artifacts. This algorithm has the spe and scanner noise reducing properties of median filtering,
edge-preserving qualities of Gaussian blurring. This higuality preprocessing allows recovering high-quality

features even using low-resolution or low, ity sources, and all modalities are fairly represented at training time.

3.3 Hierarchical Attention-Based ion (HAMFM)

ework lies the Hierarchical Attention-Based Multimodal Fusion
for learning a rich, unified representation from the modality-diverse input
images. Unlike traditio based fusion approaches, HAMFM employs a multi-level attention
mechanism to preserve pecific information while aligning semantically relevant features across
modalities. The fusj i with modality-specific branches, where input images from each modality are
passed thro i wolutional encoders to extract modality-specific features. These initial encoders are
i ing unique spatial characteristics of each imaging technique. Channel-wise attention is

At the heart of the Met
Module (HAMFM), which iggs

a. = o (W, - 8(W, - GAP(E.))) (7)

Where F, is the feature map for channel ¢, GAP is the Global Average Pooling, W;, W, are learnable weight
matrices, ¢ is the ReLU activation, o is the sigmoid function, and «.. is the attention weight for channel c.After intra-
modality emphasis, the outputs from all modality branches are passed to a central fusion module containing Modality-
Aware Attention Blocks (MAAB). These blocks perform cross-attention operations wherein the query, key, and value
components are derived from different modalities. This cross-attentional design enables the model to identify and




align semantically consistent lesion features across image types, effectively learning a modality-invariant feature
space. Positional encodings are preserved to maintain spatial integrity during attention operations, especially important
in aligning lesions across fields of view and angles.

T

. QK
Attention(Q,K,V) = softmax

Jar

Where Q, K,V are Query, Key and Value matrices, d, are dimension of key vectors, and softma
normalized for attention weights.Along with the channel and modality attention, the spatial attention is appl
emphasize lesion-centric areas. The feature maps are average over channel and then applied through cg i
layer and sigmoid activation to produce a spatial attention map. This map is applied to enhancement
and the biting of irrelevant background information such as hair, reflections or the surrounding tis
maps are combined with the modality-fused feature maps in a multiplicative manner, the re
weighted representation which is modality-rich and lesion-focused.

)V(B)

My=o0 (Conv(Angool(F)) + Conv(MaxPool(

Where F is the input feature map, AvgPool, MaxPool are channel-wise poolin§@onv is the 2D convolution
layer, M, is spatial attention mask and ¢ is the Sigmoid activation.The ultimate result ghthc W@MFM is a concatenated
3D feature tensor which is the input to downstream feature encoding. This ep&tation captures discriminative
information of every modality but removes the redundancy and noisg egration of attention with channels,
modalities, and spatial positions makes the HAMFM provide MetaFusi i e ability to deal with complicated

ches which are then flattened and embedded into a high-dimensional

space. The spatial information that is logdu tening is captured by the addition of positional encodings. These
embedded patches then go through -attention layers, where each patch attends to all the others, and
relationships across the entire lesi nd nei g tissue are learned. This feature is essential when detecting Mpox
as some of the lesions appeapyith effects, radiating patterns, or clusters, which need to be understood in the

context of areas beyond tl

zy = E - x} + p'(10)

ybrid encoder to study the compositional structure of lesions. The capsules in contrast to the
capsulate the existence of the features and their spatial orientation. Capsule layers can deduce
terns such as lesion shape, convexity, regularity of boundaries and texture gradients within a capsule
to dynamic routing mechanisms. Such characteristics are frequently connected with the severity of
tage of progression, or differentiation of the disease.

2
_ ||S]|| Sj

j = 2"
[ (1]

(1D

Where s; is the input vector to capsule j, v; is the output vector of capsule j and ||-|| is the vector norm.




Sj = ZC” . uj|i, uj” = M/Uul(12)

L
Where u; is the output of lower-level capsule i, W;; is the weight matrix between capsule i and j, @i;); is the
predicted output, ¢;; is the routing coefficient, and s; is the weighted input to capsule j.Integration is done by taking
the output of the last Transformer layer as an input to a capsule layer. The output of this layer is vector capsules with
the amplitude of each capsule vector representing the likelihood of presence of a lesion and the orientation cary
morphological information. Such dual-encoding paradigm achieves a huge boost in diagnostic powel
interpretability. Further, the capsule network provides invariance to affine transformations and occlusions
frequently occur in real-world medical images.This Transformer-Capsule hybrid network designs a syng#
encoding pipeline that combines abstract contextual awareness with concrete structural analysis, whic
main intelligence of MetaFusion-FL lesion understanding.

3.5 Federated Meta-Learning Strategy

U, MetaF@®ion-FL uses
g to centralize the data.
patients but with stringent

Since medical data is highly sensitive, and healthcare systems are highl
a Federated Meta-Learning approach to learn its model on several institutions with®
Such a solution would help diagnostic models to take advantage of a large populatio
privacy assurances.In this case, each participating healthcare center, also called a clignt, W@os a local variant of the
MetaFusion-FL model on their own subset of multimodal lesion data. Such data iffer IN modalities availability,
sample diversity, and label quality, which is a high level of heterogeneit to allow generalization of the model
under such diverse conditions, the Reptile Algorithm is used as the in ing technique. Reptile consists of
first-order optimization which estimates the capability of the m novel tasks with just a couple of
gradient steps. Within the federated setting, every clicgiss r-loop updates to its local data and
transmits the updated parameters (rather than the dajg

ac | server.
6)(14)

Where 8 is the current model parameters, 6 he adapted local parameters, and € is the meta learning
rate. The global model is then updated at the server with F&gdeta-Aggregation, which averages the weights of all the
clients but considers both data size and th itude of the update. Such aggregation will be fair and prevent skewing
tional federated averaging, the approach introduces meta-gradient

K

Ny
0.= ) “Lok (15)

k=1

meters from client k, n;, is the sample size of client k,n = Y'n, is the total samples and
I.Secure Aggregation protocols are also applied to further ensure privacy, where Model
fore being sent to the server, and the server learns no information specific to any client. Such

The last step is done after the global model is trained and locally adjusted, which is the lesion classification
and prediction. The hybrid Transformer-Capsule encoder output is fed to an XGBoost classifier that is minimally
fitted to the fused feature space. The specific model is XGBoost, which is a gradient-boosted decision tree model due
to its robustness, interpretability, and high-dimensional correlated features (as typically found in multimodal
representations).




L® = Z ! (}’i:yi(t_l) + ft(xi)) + Q(ft) (16)

Where [ is the loss function, y; is the true label, 37l.(t_1) is the previous prediction, f; is the tree added in

iteration t, and Q is the regularization term.Every feature to the classifier is multiplied by an attention-derived modality
weight, and thus modality-relevant features are not overwhelmed by more influential but less informative modalitie
The classifier yields one of three labels: Mpox, Other Rash Conditions, or Uncertain. The Uncertain class giveg
model the freedom not to make a forced prediction when the input features are below a confidence threshold or
there is an overlap in features between Mpox and clinically similar illnesses such as measles or chickegpo
importance of features mapping and attention-based explanation assist in complementing the final
decision, and thus, the rationale of the model is explainable to clinicians. Their explanations are espefie
the setting of telemedicine, when remote experts can evaluate the prediction of the Al along with
helping to make more assertive diagnostic decisions.

Algorithm: MetaFusion-FL for Robust Cross-Modality Mpox Detection

Input: D, = {(xf, y¥, mf)}* : Local dataset at client k

y¥ € {Mpox, Others}, m¥is modality label (e.g., dermoscopic, clinical, smagon

K: Number of clients (healthcare institutions)
T: Total federated training rounds.
6: Global model parameters initialized randomly
Output:Final global model 8*capable of robust, pri in ox detection across modalities.

Convert each RGB image to CIELAB color space 0:

Data Harmonization and Preprocessing

L= 116f(%) —16,a* = 500 - i) —f(l

Yn
H.(i) = min(H (i), ClipLimit) /I Clip the histogram
T(x,y) = %Z(i,j)e,v(x,y) 1G] /1 Adaptive Thresholding for segmentation
Lorm (X, y) = % /I Normalize images using Z-score normalization
1,y)=(1-a) ¥, +a(l—>b)l,,+(1—a)bly Il Resize all images
AMFM)
FC))) /I Apply Channel-wise Attention per modality
softmax (%Z) %4 /I Perform Modality Cross-Attention Fusion

weight all modality-specific representations into unified tensor Fyseq

Feature Encoding

zt=E- x{, + pt // Patch Embedding via Vision Transformer

Capsule Routing for Morphology Encoding



2
sl sy

j 7" /I Squash function
wlsl|” sl

sj = XiCij - Wi, ) = Wiy // Routing
Local Training and Meta-Learning at Each Client
For each clientk € {1, ...,K}
Perform local training using SGD on fused encoder:
Update local weights 6,
Meta-Learning Update using Reptile Algorithm

6<0+¢e@—0)
Federated Aggregation (FedMeta-Averaging)

Aggregate client updates using sample-weighted FedAvg:

_vK Mkpk
9::— k=179t

Classification and Explainable Decision
Final feature vector is passed to XGBoost classifier ,

1O =3, (yi'j;i(t_l) + ft(xi)) +Q(f,) /I Loss

Gain(]') _ 1[ Gt GR (GL+GR)2]
T 2lH+A ' HR+A  Hp+Hg+A

ature § interpretability

Return:Final global model 6*capable of robust pox CN@afication across distributed clients.

End Algorithm

3.7. Novelty of the Work

The proposed MetaFusion-FL f, ork is novel because it is, to the best of our knowledge, the first to
simultaneously combine cross-modalj o, federated meta-learning, and morphology-aware feature
representation in the context of Mp , WIlEh has received little attention in the literature. As opposed to the
traditional approaches based on s i\

r in"practical teledermatology applications. The second important innovation is
k used as feature encoder. The architecture is the first to achieve a long-range
combined with the part-whole modeling of structure capsule networks.

achieves state-of-the-art results compared to purely CNN or transformer-based
privacy and scalability, the use of the model in a federated meta-learning scheme reduces
f the existing medical Al systems: data centralization and personalization. The model followed
m in a federated scenario quickly adapts to the client-specific data distribution without travelling

Boost, making irrelevant modality-specific noise irrelevant to the predictions. This translates to a very
lexible and explainable system that can be implemented both in urban hospitals and remote clinics. Therefore,
MetaFusion-FL is novel not only in terms of its architecture but the comprehensive synergy of multi-source data
integration, privacy-preserving learning, and clinically informed feature encoding, which makes it a paradigm-shift
towards intelligent Mpox diagnosis.

4. Results and Discussions




The implementation processor MetaFusion-FL framework was determined through a high-performance
computing system with an NVIDIA RTX A6000 GPU (48 GB VRAM), 256 GB of RAM, and an Intel Xeon Gold
6338 processor on Ubuntu 22.04 LTS working setup. Python 3.10 was used to code the experimental pipeline with
essential libraries, including PyTorch to run deep learning modules, Scikit-learn and XGBoost to perform
classification, and OpenCV to preprocess the images. The federated learning operations were implemented with the
Flower framework, whereas the meta-learning functionality, such as the Reptile algorithm, was integrated personall

a batch size of 32, and an early stopping patience of 20 epochs to avoid overfitting. MetaFusion-FL framewo
cross-modality, federated meta-learning-based framework designed towards accurate, robust, and explai

framework that can operate in privacy-preserving, decentralized settings. MetaFusion-FL has th
of a multi-stage pipeline, including dataset harmonization, modality-specific preprocesal
i ility. All these
ut it is also

pox Images

The suggested methodology s pre-process of acquiring Mpox skin lesion images that were
obtained in different sources, had v s, lighting, and modality. To facilitate comparisons, color space
normalization methods including ation were employed, and metadata labelling was used to indicate

image modality, anatomical fgai acquisition conditions. Preprocessing comprised CLAHE to improving the

lon were used to highlight diagnostic features. The output of HAMFM was
hybrid encoder constituted by Vision Transformers (ViT) and Capsule Networks to

portant regions of the lesions and feature contributions towards clinical validation.

Table 1: Accuracy Comparison across Models

Model Accuracy (%)
MetaFusion-FL 99.46
ViT-RLXGBFL 99.12
ResViT-FLBoost 98.78




SA-PSO 98.5
EfficientNet-BO 94.55
MobileNetV3 96.8
MRpoxNet 98.9
SwinTransformer 93.71
DenseNet201 95.62
Xception 94.3

Table 1 and Figure 4 shows thecomparative study of the model accuracy on different g

accuracy of 98.9% that outsmarts traditional architectures.

110 Accuracy Comparison Across Models
105 A
3 100 99.46% 99.12% 98.78%  gg.5% @
-~ 96.8%
> 95.62%
g o5 94.55% 4 © 943%
5
o
g 90

6.8%) and DenseNet201 (95.62%) show moderate accuracy, sacrificing

| efficiency. EfficientNet-B0 and Xception obtain accuracies of 94.55 and 94.3
percent, re

limitations

n general, the fusion and ensemble models demonstrate better accuracy on this
compari

e Mpox lesion images.



Original

Figure 5: Preprgg
Table 2: Pr
Model Kcision (%0) Recall (%6) F1-Score (%)
MetaFusion-FL g, 52 99.4 99.46
ViT-RLXGBFL . 99 99.1
ResViT-FLBoost 98.85 98.7 98.77
98.6 98.4 98.5
94.7 94.4 94.55
96.9 96.5 96.7
99 98.8 98.9
93.8 93.6 93.7
95.8 95.5 95.65
94.5 94.1 94.3

F1-Scores of 99.1% and 98.77%, respectively, indicating the potential of Vision Transformers
h ensemble methods. MRpoxNet is competitive having an F1-Score of 98.9%, showing precision and
SA-PSO comes next with a balanced performance (98.5%), indicating the effectiveness of optimization based
techmyues.



Precision, Recall, and F1-Score

MetaFusion-FL 99.52 99.40
VIT-RLXGBFL 99.20 99.00 99.10
ResViT-FLBoost 98.85 98.70 98.77
SA-PSO 98.60 98.40 98.50
EfficientNet-BO - 94.70 94.40 94.55
MobileNetV3 96.90 96.70
- 96
MRpoxNet 99.00 98.80 98.90

SwinTransformer - 93.80 93.60 93.70

Model
Percentage

DenseNet201 - 95.80 95.50 95.6
Xception - 94.50 94.10 94.3 - 94

Precisibn (%) Recail (%) Fl-Scc;re (%

Figure6:Precision, Recall, and F1-Score ,

MobileNetV3 and DenseNet201 provide moderate scores 0¢95.65%), which balance between
accuracy and light computation. EfficientNet-B0O and Xception er F1-Scores of 94.55 and 94.3,
respectively, and SwinTransformer has the lowest at 93.7 as its lower accuracy in Table 1. In
general, the fusion-based models significantly outclagg rchitecture in terms of all considered metrics.

Table 3: Infer

Model Latency (ms)
MetaFusion-FL 48
53
56
60
30
27
51
inTransformer 65
enseNet201 58
Xception 55

jgure 7 emphasizes Inference latency, in milliseconds (ms), of different deep learning models
me and resource-constraint applications. MobileNetV3 and EfficientNet-B0 have the lowest
30 ms, respectively, which once again justifies their fame as lightweight and efficient models,
ployed on edge devices. MetaFusion-FL, although supreme in terms of accuracy (observed in Tables
ers relatively efficient latency of 48 ms and thus is a well-balanced choice. MRpoxNet and ViT-
ave a little higher latency of 51 ms and 53 ms, respectively, which is acceptable in most applications.




Inference Latency Comparison

s)
o o
o w

m:
w
v}

u
=]

N
o

Inference Latency (
~
&

w
o

Figure7:Inference Latency Comparison

On the larger side, SwinTransformer exhibits the highest latency of 6

possibly because of the
complicated design. DenseNet201, Xception, and ResViT-FLBoost are also located ist i

h latency group (55 58
ms), and SA-PSO obtains 60 ms. In general, lightweight models have better re Se tine€, whereas fusion-based

models provide a trade-off between latency and good performance.

Table 4: Training Time per

Model
MetaFusion-FL
VIiT-RLXGBFL
ResViT-FLBoost
SA-PSO
EfficientNet-BO

63
110
123
117
111

e comparison of training time per epoch (in seconds) of different deep learning
ponents when evaluating the scalability of a model and its computing efficiency.

training
aspect as
123s ds,

ited scenarios, compared to other models. EfficientNet-BO0 is not lagging behind in this
es 75 seconds per epoch. Conversely, SwinTransformer requires the longest training time of
ause of complicated attention mechanisms and deeper design.
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Figure 8: Training Time per Epoch

The training time of MetaFusion-FL, ViT-RLXGBFL, ResViT-FLBoost?A Net is moderately high,
O

between 105 and 112 seconds, because these are composite models and ensembl ed. SA-PSO and DenseNet201
require 115 and 117 seconds respectively, which implies higher comp plexity. Xception is close behind
at 111 seconds. In general, the lightweight models are faster to train, 5t precise models (as presented in
Tables 1 and 2) are much slower (in terms of training time per epg@®.

Table 5: Robustness to Noi a Under Perturbation
Model sian NOWe Speckle Noise
MetaFusion-FL 97.85 97.6
ViT-RLXGBFL 96.9 96.7
ResViT-FLBoost 96.4 96.1
SA-PSO 95.7 95.4
EfficientNet-B0 88.1 87.9
90.25 89.85
96.1 95.8
87.3 86.9
89.8 89.2
88.4 88

investigates the stability of different models to two kinds of noise disturbances, i.e.,
hich models real world data degradation channels. MetaFusion-FL is the most resilient,
85% in the presence of Gaussian noise and 97.6% in the presence of Speckle noise, which



Robustness to Noise (Accuracy %) Under Perturbation

Gaussian Noise
Xception Speckle Noise

DenseNet201 -

SwinTransformer

MRpoxNet

MobileNetV3 4

EfficientNet-BO 4

SA-PSO A

ResViT-FLBoost

ViT-RLXGBFL 4

MetaFusion-FL 4

80.0 BZI,S BS‘,O 87‘,5 Sd,O Qi,S 95',0
Accuracy (%)

100.0

The performance of MRpoxNet is also good with over ) type@f noise. On the contrary, older and
lighter versions such as EfficientNet-BO, MobileNet\4Rg ence significant accuracy reduction,
gardless of its architecture depth, achieves the

itivity to high-frequency perturbations. By
large, the fusion-based and ensemble models are m8 BL to noise and thus can be deployed in noisy or uncertain
conditions, e.g., in medical imaging or in real-time sur'gg@lance.

ontribution by Modality

Importance Score (%0)
20.3
18.6
12.5
10.1
8.5

7.3
E Enhancement 6.7

Metadata 6.2
Segmentation Mask 5.4
Attention Map 4.4

Tal and Figure 10 shows how each data modality contributes to the total feature importance or its relative
influ model performance. Clinical Imaging has the most importance points of 20.3% highlighting how this
t is vital in proper diagnosis and analysis. Close behind is dermoscopy at 18.6%, demonstrating its importance
in theClose assessment of skin lesions. Smartphone images are at 12.5%, and it indicates the increased applicability
of mobile-captured data to accessible diagnostics. Texture Features and Color Histogram take 10.1% and 8.5%
respectively which means that the texture and color information are valuable in differentiating subtle difference.




Feature Importance Contribution by Modality
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Figurel0:Feature Importance Contribution by Mo

Edge Map and CLAHE Enhancement show 7.3 % and 6.7 % respectively a
detection and contrast enhancement methods are important. Metadata and Segmen

it indicates that the edge
contribute 6.2 and 5.4

percent respectively, which indicates the advantage of context and regi ormation. Finally, the Attention
Map has 4.4% with a reflection of how concentrated attention mecha ffer additional knowledge. On the
whole, this allocation underlines the importance of multi-modal dajgain n if@@rder to ensure the highest possible
model accuracy and robustness
Table 7: Client-wise Ag ed d Learning Setup
Client ID Local Accuracy (%)
Hospital-1 99.42
Hospital-2 99.37
99.35
99.5
99.48
99.45
99.46
99.41
99.44
99.43

ated learning framework. Hospital-4 got the best local accuracy of 99.5%, with Hospital-5
.8% and Hospital-7 with 99.46%. The least accuracy obtained was 99.35 percent at Hospital-3,
very high. This uniformity among geographically and demographically varied clients indicates that




Client-wise Accuracy in Federated Learning Setup

Hospital-9
99.44%

Hospital-10
99.43%

Hospital-8
99.41%

Hospital-1
99.42%

Hospital-7
99.46%

Hospital-2
99.37%

Hospital-3
99.35%

Hospital-4
99.5%

Figure 11: Client- y in rated Learning Setup

It emphasis on the fact that the model can'% learn using decentralized data without communicating
the data directly. This consistency in performance is eSgRtial in secure areas such as healthcare, where data privacy
is vital, and model faithfulness has to be upheld crossXg@itutionally. In general, the federated method provides

collaborative learning without much sacrifi local performance.

4.1. Discussion

The overall experiment fcomes MetaFusion-FL framework highly confirm its efficiency and can
be used in practice in Mpox detectio e given model demonstrates superiority over the current architectures on the
various evaluation measurg ion, recall, and F1-score, and provides exceptional classification accuracy
of 99.46%. The combinat s-modality features through the Hierarchy Attention-Based Multimodal Fusion
(HAMFM) module obust to differences in lighting, resolution, image quality as the Lesion features
maging source. Moreover, the hybrid Transformer-Capsule encoder permits deep
of the lesion structures that is crucial in distinguishing Mpox among other visually

lemedicine frameworks, smart diagnostic applications, and hospital information systems. Its
cess heterogeneous imaging data renders it useful in either technologically advanced clinic
or in resource constrained rural environments where imaging devices maybe different. Its latency of
nce and the high accuracy are guarantees that it is ready to be used in real-time diagnostics. Nevertheless, the
model has one deficiency in the form of dependence on preselected imaging modalities, such as a smartphone,
dermoscopic, and clinical scans. The diagnostic context could also be enriched with other types of data: a thermal
image or clinical history of the patient. Also, the model is resistant to image noise, but in case of extreme distortions
or low-light conditions, prediction quality can still be compromised. Multimodal clinical data fusion and dynamic
quality-aware input filtering could be used as future improvements to boost model resilience and decision confidence
in the real world further.




5. Conclusion and Future Work

In this paper, a new cross-modality federated meta-learning framework named MetaFusion-FL was proposed
to achieve robust Mpox detection in response to the deficiency of the current centralized and modality-specific models.
The model achieved state-of-the-art results by fusing the smartphone, dermoscopic, and clinical imaging modalities
with a Hierarchical Attention-Based Multimodal Fusion (HAMFM) and encoding them with a Transformer-Capsule
Network, showing an extraordinary level of detail (semantic and morphological) in the skin lesions. This is
possible by the federated learning design enabled by the Reptile meta-learning algorithm that enables the mog
learn in a collaborative manner across a broad network of client institutions without losing the privacy of the pa
or the security of the data. Experimental results indicate that MetaFusion-FL attains the state-of-the-art g R

O D
[
Q

Moreover, it is highly tolerant to noisy inputs and stable performance across federated nodes.
interpretable, which enables its clinical use as Grad-CAM++ and SHAP provide explanatlo to
medical workers. ThIS allows thelr use in practical appllcatlons requmng trust and agg e model can be

with mobile telehealth platforms and smart diagnostic devices. It is also possible to S
in the future to make the model changeover time to new lesion patterns and new viral va
MetaFusion-FL initiates privacy-preserving, explainable Al in dermatology and e?‘uic

erated continual learning
Rts that emerge. Therefore,
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