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Abstract
Data integrity in Smart Grids ( ¥ ca ulnerable with the implementation

raceability Framework (CBDTF). It enhances

Iversity.in

age of Engineering, Mylavaram,

of the novel Community Blockchain-Drive
Detection Rates (DR), maintains low End-to- Delay (EED), and uses less energy by using
distributed ledger technology #hd munity-based validation. This model deployed a
Delegated Proof of Stak

resulting in an average D n Rate (DR) of 98.7% for Data Tampering attacks and a False

cogpensus mechanism and community-driven testing,

rk of 100 nodes, the accuracy of this model was tested. The present study
able contribution to the field by signifying how BC platforms driven by the public
ess SG's data security issues while maintaining the accuracy of real-time operations.
Keywords: Smart Grids, Data Tampering, Blockchain, Data Integrity, Attacks, Security.
1. Introduction

The Smart Grid (SG) has revolutionized power systems, transforming traditional power
systems into advanced sensing, communication, and control technologies [1-3]. This has led to

increased vulnerabilities to Data Tampering (DT) and cyber-attacks, compromising grid



stability, incorrect hyping, and potentially causing network failures [4-5]. Traditional security
mechanisms challenge the distributed nature of current SG and the requirement for real-time
data validation [6-8]. The SG has improved grid monitoring, demand response, and the efficient
integration of Distributed Energy Resources (DER). However, it has also expanded the attack
surface for malicious actors due to the complex network of interconnected devices, creating
multiple entry points for data manipulation [9].

The integrity of data in SG is of primary importance for several reasons.

a) Operational decisions heavily rely on the accuracy of tests from grid compone % 3

g )

smart meters, Phasor Measurement Units (PMUs), and Supervisory Cgifol ¥
Acquisition (SCADA) systems.
ption

ta [11].
demands the use of

b) Financial transactions and billing processes are reliant on reliaN

c) The practical operation of grid stability and security mechanis

reliable real-time data. ,

Data integrity in grid operations can lead to financial disruptions [12]. Current

security solutions in SG face limitations, includi ¢ p@nts of failure, scalability
challenges, and limitations in traditional ¢ i@ cthods. Blockchain Technology (BT)-

based solutions also introduce End-to-1ggd (EED)¥nd energy overhead, making them

BT implementations by 4@erag| munity participation and specialized consensus
mechanisms designedgasalic’@gfor SG, thereby enhancing BT's potential.

This paper present. )y contributions:

1) Angm € as explicitly developed for SG data validation.

2) C us anism that is energy-efficient and secure without compromising
A& spite its EE.

)

3 hn of validation that is determined by the community and improves attack

etcl®n Rate (DR) while also reducing the probability of False Positives Rates (FPR).

development of a robust traceability model that enables real-time auditing and
verification of grid data.

5) The use of real-world SG data and attacks for substantial test validation

The remainder of this paper is organized as follows: Section 2 reviews relevant literature

and identifies current research gaps. Section 3 presents the proposed model, technical

methodology, and implementation details. Section 4 outlines the experimental setup and



evaluation metrics. Section 5 presents results and discussion, including comparison with
baseline approaches. Finally, Section 6 concludes the paper and recommends future research
directions.
2. Literature Survey

This survey examines recent research and developments in the deployment of BT in
Singapore, focusing on its key role in addressing security challenges in the sector to enha
transparency and efficiency.

The authors [15] propose a BT-based security model for the Smart Grid
focuses on secure authentication and efficient data sharing among distributegd @evi
introduce redesigned blocks and gateway nodes for device identity \, n implement
a multi-layer Smart Contract (SC) for secure interactions. The art Grid Bulletin
discusses BT's potential to address cybersecurity issues in the SG but s challenges such as
scalability and the requirement for standardized consensus algoritv

Recent advancements have explored the combiy

Networks (WSN) to secure SG data [15], thereby, @su
te d secure trust management in SG

RETINA, a model that utilizes BC for
applications, integrates Public Key Inf ‘@ PKI) Web of Trust (WoT) concepts to

facilitate decentralized communication and ™g&ust key management. It also incorporates an SC-

based energy trading mechanism tQ promote tr

account factors such as trust ang#en pe.

Ses an,i tive mechanism for BT-based data sharing among

to combat False Data Injection (FDI) attacks, ensuring data

bly, [18] performed a detailed examination of BT applications in the energy
ifying possibilities and challenges in the method of implementing BT for the aim
enfancing the security and efficiency of SG.
3. Proposed Methodology
3.1. Model of the CBDTF

The CBDTF uses a multi-layered model (Figure 1) that integrates SG setup with Distributed
Ledger Technology (DLT) and encourages community participation for enhanced security and

transparency. This architecture, denoted as system W, consists of four interconnected layers:



the Data Collection Layer (DCL), the Blockchain Integration Layer (BIL), the Community
Consensus Layer (CCL), and the Traceability Management Layer (TML). Together, these

layers ensure robust data integrity, traceability, and resilience against DT.
i. DCL: The DCL serves as the primary interface with the SG's data collection
components. The SG setup includes data sources S = {sy,s,,...,S,}, which

continuously generates raw time-series data points 'd;(t)’. These raw sizes, X(t)
{x1(t), x5(t), ..., X, (1)}, experience a preprocessing function ¢ (x;(t)) to standardi
clean, and validate the data.

The preprocessing includes data standardization and preliminary validatio

' _ (x; (D), IfV(x;(t)) = True

P(xi(0) = {NULL, Otherwise

Where,

e x;(t) > The validated measurement ,

efined consistency checks.
g the BT. Validated data

q
(1)

e V(x;(t)) i-> A validation function ensuring adherenc,

ii.  BIL: The BIL is responsible for generating

points ‘x;(t)" are grouped into blg b,, ..., b, }. Each block 'b;" comprises
several vital components:
e Timestamp (7;) : Records the crea@@ time of the block.

e Previous Block Hash (h(by_1)): Ensur@block immutability and order.

e Merkle Root (MR) as (@, The root hash of all transactions ‘T’ within the block.
e Validator Signat (Z = oy, ..., aj}) : Captures approvals from community
validators.

The function de @ lock creation process, as shown in Eq. (2).
)

lidated data, timestamp

hash of the previous block to generate the new block 'b;’.



Smart Grid Data Sources (S)

si(t) s2(t) s3(t) e sa(t)

v

Data Collection Layer (DCL)

Preprocessing: @(xs(f)) — x{(t) | Validation: V(xi(t)) € {true, false}

v

Blockchain Integration Layer (BIL)

Merkle Root: Mr(T) ‘ : h — b;

v

Community Consensus Layer (CCL)

Block Creation: B(x/'(f))

Validator Pool: V = {vi...Vn} C(b,V)> 6 Trust: 7(v;) = Z(w;)

Traceability
Historical Recqg

Figure 1: PropSged CBDTF Model

iii.  CCL: The CCL impleme consensu¥ mechanism ‘C’ to validate and approve new
blocks. A communi {p1, P2, ..., bm} provides a set of validators V =
{vi, vy, ..., v, }. EQRAValid valuates the integrity of the block 'b;," and casts a

L ONQQeir trust score ‘w;’. Consensus is achieved if the weighted

passes a threshold '6°, Eq. (3).
3)

ynamically adjusted based on each validator's historical reliability,
nsiveness, and peer evaluations.
ML: The TML maintains a comprehensive historical record 'H (x;)’ of all data points
and their associated metadata. For each data point 'x;(t)’, the traceability function 'T’
maps it to its historical record:
H(x;) = {(tx, 0, my) | k € [0,n]}, (4)
Where,

e 17, The timestamp



e 0,~> The validator's signature
e m;—~> The metadata.

The layer ensures any modification u(x;(t)) to a data point is immutably recorded and
verifiable, Eq. (5).
Vu(x;(t)),3o; € Z: Verify (aj,u(xi(t))) = True (5)
3.2 SG Data Collection and Preprocessing
The SG data collection and preprocessing phase forms the first layer of the

context, ensuring that raw data from diverse sources is prepared for securcggn

integration into the BT. The process involves structured data acquisiti

and transformation to maintain accuracy, consistency, and reliabilj
1 Data Collection from SG Devices: The SG set-up compris erous devices, S =
{s1,85,...,S,}, such as smart meters, sensors, and actu?s, ich continuously

generate time-series data.

The measurements collected at time ‘t’ are representegaa 0).
X(6) = {x1(8), %2 (), oo, Xxm (D)} (6)
Where,

e x;(t)> The raw size from the i*" de

e 'm’ = The sum of measurements.

e x;(t) > Connected with a including device ID, timestamp, and location, as

M;(t) = {ID, 7, Loc}.
2 Data Validation a tandardization: To ensure the integrity and usability of the
ction ¢(x;(t)) is applied, encompassing validation and

g. (7).

P (x; (7

Wh

o :(t))~> Validation function that checks each data point for anomalies such as
issing values, outliers, or invalid formats. If V(x;(t)) evaluates to True, the
measurement x;(t) is transformed into a validated and standardized form x;(t);

otherwise, it is discarded. Validation involves threshold checks and outlier DR using

statistical methods.
For instance, if the expected range for a measurement x;(t) is [a, b], the validation is

expressed as Eq. (8)



True, Ifa<x(t)<b
False,  Otherwise

V) = { ®)

3 Handling Missing Data: In cases where measurements contain missing values,
imputation methods are employed. Let Xyigsing (t) < X(t) as the set of missing data
points. These are replaced using predictive imputation methods (IMP), such as linear
interpolation or Machine Learning (ML)-based predictions, as shown in Eq. (9).

x;(t) = IMP (Xcongext ) (
Where,

*  Xcontext =2 The contextual data surrounding x;(t).

4 Data Transformation and Normalization: After validatig oints are

: p
normalized to ensure compatibility across different dev: etrics. @et x; (t)
represent the validated measurement.
The normalization function N (x;(t)) transforms the data intc’tan

[0, 1], using Eq. (10).

dized range, e.g.,

N(xi(t)) " Max(X')-Min(X")’ "

Where,
e Max(X'), Min(X") = The maxi minimum values in the validated dataset.
5 Temporal Alignment: The SG devi requently generate data at varying intervals.
To maintain temporal co ncy, all measurements are resampled to a standard time
interval At.
The resampling function ensu iform timestamps, Eq. (11)
Xatignea (t) = R(X'( (11)

Where,

(i () 1 V(xi(£)) = True, Vi} (12)
pre-processed dataset is then forwarded to the BT integration layer for secure
rage and further analysis.
3.3 Blockchain Integration Mechanism (BIM)
The BIM (Figure 2) is a pivotal component of the proposed model, designed to securely
manage SG data by organizing, validating, and storing it in a decentralized and immutable

ledger. The mechanism converts pre-processed data into secure BT transactions, ensuring



consensus and synchronization across a distributed network using transaction development,

block creation, cryptographic linkage, decentralized consensus, and ledger synchronization.
The process begins with the transformation of validated data points as Xg,, (8) =

{x1(t), x3(t), ..., X3y (t)}, into BT-compatible transactions. Each transaction T;(t) encapsulates

a data payload x;(t), metadata M;(t) including device ID, timestamp, and location, and a

unique transaction identifier TxID;. The identifier is generated using a cryptographic h

function H(-), ensuring the uniqueness and integrity of the transaction, Eq. (13)

TXID; = H(x{(t) | M;())

Where,

e ||I=> concatenation.

e These transactions form a transaction set T(t) = {T,(t), T (t)}, which serves

as the primary input for block creation. The validated transaCNQgs are grouped into

blocks, represented as 'B;,’, where 'k’ denotes the blggleindg® Each block contains two
main components: a header and a body. The hea s critical elements such as
the block index 'k’, a timestamp 'z;,’, the &¥fpto Phash of the previous block

h(Bk_1), and an MR as M,.(T).
By iteratively hashing pairs of tra to generate a root hash, the MR securely
encapsulates all block transactions, as show g. (14).
M, (T) = H(H(T,) | H(T,)) | HggTs) Il H(T,)) .. (14)

This structure ensurcsatNgug#®orWy and traceability of individual transactions, as any

modification to a transact will

block. The block's

in a mismatch of the MR, thereby invalidating the
the transaction set "T(t)’, providing the complete list of

validated transactio h the block.

Bie-)IM(T) 1 T(£)) 15)
hash uniquely identifies the block and links it to its predecessor in the BT,
ng a secure and tamper-proof chain.
To validate and add a block to the BC, a decentralized consensus mechanism 'C’ is
employed, leveraging the participatory role of validators V = {v;, v,, ..., v, }. The BC protocol
enables validators to independently assess the integrity and validity of the block. The consensus
process aggregates validator votes, weighted by trust scores of ‘w;’, to determine block

approval, which is accepted if the weighted sum meets a predefined threshold of ‘6, Eq. (16).



C(Bi,V) = True & Xiy (w; - v;(Bi)) = 6 (16)

This decentralized validation prevents any single entity from DT with the ledger,
thereby protecting its integrity and availability.

Once consensus is achieved, the validated block is appended to the global ledger £ =
{B1,B5, ..., Bx}. All nodes in the BT network synchronize their copies of 'L’ to ensure
consistency. This synchronization is verified through a ledger consistency function "&(

which compares the block hashes across all nodes, Eq. (17).

&(L) = True < h(By) Matches across all nodes. (
The BIM's security is based on cryptographic basics and decentralizeg@etw e
cryptographic linkage between blocks prevents unauthorized ion hile the

immutable ledger maintains a transparent record of all SG tra

accountability and trust in the system (Figure 2).

Smart Grid Sensor Data Collection Transaction
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' '

1
Smart Gllfid Sensor :
] 1
Sz 1
[ 1
1
' Send_data
r = ”‘ '
] 1 1
i 1
' 1
' 1
' Send_data ' '
T e '
1
1
'

1

Smart Guid Sensor
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Figure 2: Overall process of BIM
4 ceability and Data Verification Protocols

he proposed model includes Traceability and Data Verification Protocols (Figure 3),

Validate_block

>

Commit_block

which ensure transparent auditability, cryptographic security, and verifiability of all data in the
SG ecosystem. These protocols combine cryptographic principles, blockchain immutability,

and community-driven consensus mechanisms to ensure robust data integrity.



1 Data Traceability Model: The traceability protocol sets an unbroken chain of
provenance for every data point 'x;(t)" within the SG. The historical lineage of a data
point is captured as Eq. (18)
T(x; () = {(tx, o, i) | k € [0,n]} (18)
Where:

e t,~> The timestamp of a specific operation (generation, validation, or modification)

x; (),
e 0,2 The cryptographic signature of the validator that authorized the operation,
e u;~> Operation metadata, including the type of action and associateg araﬁ
alNQ@n

The traceability mechanism uses BT's inherent immutability sactions

involving  x;(t) are  recorded in linked  block ach  transaction
'T;It is cryptographically hashed as shown in Eq. (19).
h(T) = Hx!(®) Il t I| M;) / (19)
Where,
e M;~> Metadata such as device ID and g icl

'By’, linked by the MR as M,.(T),

Eq. (20).

M, (T) = H(H(T) 1 H(T,)) Il -+ (20)




Traceability and Data Verification Protocols

Raw data Validated
Smart Grid Data Point Cryptographic Validation| dat Validator Consensus
xi'(t) VerifyHash(T;) = C(By) = True <
H(T:) =h_stored(T:) X(wyvi(Bx)) = 0
Consensus-validated
blocks
Ledger Consistency

&(L) = True < VBLEL, h(By) consistent

i Consistent blocks

Data Traceability Framework
T(x:'(1)) = {(t,00 ) | KE[O,n]}

fi: Timestamp ox: Validator Signature

ﬁwerati Metadata

Real-Time Ve

uxi(t) — T

Figure 3: TraceabiliNg@and Data Verification

The model ensures instant d jon of any modification to 'Ti' due to a mismatch in the
MR, allowing stakeholders t he entire operational history of a data point. A query
to the BC as h(x;(t)) retr’ges all iated transactions {Ti}, providing a verifiable record
of changes.

2 Data Veri @ rotocols: In BC, data verification protocols ensure data

integrity, and network synchronization using cryptographic validation,
nsus, and ledger consistency at three primary levels.

graphic Validation: Cryptographic validation guarantees that the content
of each transaction has not been altered. For any transaction 'T;" containing x; (t),

Its integrity is verified by recalculating the hash and comparing it with the stored

hash, as shown in Eq. (21).

True, lfH(Tl) = hstored (Ti)'
False, otherwise.

VerifyHash (T;) = { (21)

This step ensures that even a minor alteration to T; or x;(t) renders the transaction

invalid.




e Validator Consensus: Each block ‘B,’ experiences a decentralized consensus
process before being attached to the BC. Validators V = {v,, v,, ..., v, }, selected
from the community, independently verify the block's compliance with protocol
rules.

The consensus decision is formalized as Eq. (22)

C(By) = True © Y%, (w;-v;(By)) =6 (22)

Where:
e w;~> The trust score of the validator v;, O
e v;(By)~> The validator's vote (1 for approval, 0 for rejection),
e 0> The predefined consensus threshold.
Data validation is decentralized, reducing the risk of centralized att
e Ledger Consistency: To maintain synchronization across ietributed ledger 'L,
each node periodically validates the integrity of§ &h This is achieved using
a ledger consistency function 'é(£)’, which ¢ see hashes of all blocks, Eq.
(23).
§(L) = True <& VB € L,h(By) is coy

0SS es. (23)
Inconsistencies trigger a reconcilia

blockchain's reliability.

3 Real-Time Verificatio Dynamic Data: The model supports real-time data
verification, addressj 10@where data points are dynamically updated in real-
time.

Each modificatig ) ults in a new transaction T,.,, While preserving the original

transaction T, A Eq. (24).
u(x; (24)

review 'Ty.,, ' and append their cryptographic signatures o;, ensuring that
y modification is authorized and traceable. The BT maintains the current state of
:(t) and its historical record.
Cryptographic Techniques for Data Security
The proposed model uses cryptographic methods to ensure the integrity, authenticity,
and confidentiality of SG data throughout its lifecycle. These methods utilize cryptographic
hashing, digital signatures, and secure key management to establish a robust foundation for

tamper-resistant and verifiable data storage. At the core of data security is cryptographic



hashing, which ensures that any variation to data is directly measurable. Each validated data
point 'x;(t)" is hashed using a cryptographic hash function 'H(+)’, producing a fixed-length
digest, Eq. (25).
h(x;(t)) = H(x;(t)) (25
Where,

e This hash is unique to 'x;(t)" and is computationally infeasible to reverse-engineer,

replicate for different inputs, ensuring the integrity of the data. In the BT 32

transactions are aggregated into a Merkle Tree (MT), with the MR as 'M,." r
the combined integrity of all transactions in a block, Eq. (26).
M, = H(H(Ty) | H(T)) Il -+ 6)
Where,

e T, The hash of transaction 'i’.

t&e MT, invalidating the

ansactions and blocks are

e If any transaction 'T;’ is altered, the change prop

block's cryptographic hash and breaking the BT's

The model uses digital signatures tg_en th
authorized. Each validator 'v; in the net ign®Q private key ijriV for signing and a

public key k]Pub for verification. A transa ;" is signed by a validator using their private

key, Eq. (27).

o; = Sign (T;, k™) (27)

e ;> The transaction, 1ing netydrk participants to verify the validator's authenticity,
Eqg. (28).

Verify (aj, T, kjpub @ | étil: rs:ir:iture is valid, 28)
res and secure key management are employed in a system to ensure the
tracea ustworthiness of data while also maintaining the confidentiality of sensitive
gh encryption and decryption. Public-key (PuK) cryptography helps secure
e between participants. Let 'K’ a symmetric key used for data encryption. The
crypts 'K’ using the recipient's PuK as Kpy, , Eq. (29).

k= Encrypt (K, Kpyb) (29)
The recipient decrypts Ck using their Private Key (PrK) as K, , Eq. (30).
K = Decrypt (Ck, Kpriy ) (30)

This ensures that the symmetric key remains secure even if the key exchange is

intercepted, enabling encrypted data transmission.



3.6 Consensus Algorithm

The Delegated Proof of Stake (DPoS) was selected for the proposed BT due to its
suitability for SG's unique requirements, including high transaction NT, low EED, EE,
decentralization, and resilience against adversarial behavior, following an evaluation of various
consensus protocols.

The exponential development of data generated by DER and Internet of Things (I

to process this data effectively. Sustainability prioritizes sustainability, maki

intensive mechanisms, such as Proof of Work (PoW), unsuitable. Th

and provide robust fault tolerance to mitigate risks from m3
disruptions.

In the DPoS, block validation is delegated to a predefw set®f validators V =
{vy,v,, ..., v}, where 'm’ is the total number of valid ted by stakeholder voting.

Validators are responsible for proposing and validagi@® b s igd¥ deterministic, round-robin

hieves predictable performance. Let

The decision to approve a block ‘B, is Mverned by the weighted consensus function,
Eq. (31).
C(By) = True & Y1, v;(B
Where:
e vi(B) €{

€2))

-

idator v; 's approval (1) or rejection (0) of By,
hreshold, typically set as a supermajority (6 > 0.67) to ensure

st adversarial actions.

take represents collateral that can be forfeited in the event of malicious activity. The

p@abily of selecting a validator is proportional to their voting weight, Eq. (32).
) = (32)

B Z;‘n=1 Wj
This ensures that validators with higher trust and stake are more likely to contribute to
block validation.

4. Experimental Setup



The CBDTF's effectiveness in mitigating DT within SG was evaluated using a real-
world dataset, robust hardware setup, and a carefully selected software environment in a
comprehensive experimental setup.
4.1 Dataset

The study used the Synthetic Models for Advanced, Realistic Testing: Distribution
Systems and Scenarios (SMART-DS) dataset, developed by the National Renewable Ener,
Laboratory, to simulate real-world electrical distribution systems. The dataset, which i

types. This granularity enables comprehensive testing of the CH

resemble actual solar generation operations.

4.2 Hardware and Software Specifications ,
The experiments were conducted on a high-pg cg computing cluster. Each

compute node was equipped with dual Intel Xeon E #2683

per processor), 128 GB of DDR4 RAM, a

—

storage. A dedicated Gigabit Ethernet

switch was used to enable low-EED tion aMiong the nodes, ensuring efficient

operation of the private BT. Each node in cluster functioned as an independent BT user,
collectively forming a distributed ledger set-up esentative of SG stakeholders such as utility

providers, consumers, and pros

The software st

robustness. Ubuntu was selected as the operating system for its stability and

reams. PostgreSQL was used for metadata storage, facilitating efficient
d analysis. Docker containers encapsulated components for consistency. The
ent involved ingesting sensor data from the SMART-DS into the BT network, which
was then distributed to BC nodes via Apache Kafka. Hyperledger Fabric SC validated the data
against predefined criteria, ensuring authenticity and accuracy. The data was recorded on the
BC, embedding a cryptographic hash, timestamp, and validator's signature, creating an
immutable audit trail for end-to-end traceability and prompt detection of DT attacks.

Table 1: Dataset Description



Feature Description Unit Resolution

The geographical area represented in the dataset
Region ) ) - -
(e.g., San Francisco, Greensboro, Austin).

Details of substations, feeders, transformers, and ]
Network Topology o o - High
customer connections in the distribution network.

Active power consumption and generation in the 15-Minute
Real Power (P) o kW ]
distribution system. intervals
Reactive Power ) ) o 15-minute
Reactive power flow in the distribution network. kVAR
Q)
Voltage measurements at various nodes in the
Voltage
network.
Current measurements across distribution lines and
Current .
nodes. intervals
Granular breakdown of energy consumption by 15-Minute
Load Profiles ) o . .
different building types and end-use categories. intervals
Renewable Energy Solar and wind energy generation data wg High-resolution
Profiles temporal and spatial variation, temporal
Meteorological data, including 15-Minute
Weather Data ) )
speed, and solar energy ¥ Y intervals

4.3 Attack Simulation Using SMAR

The proposed CBDTF's robustness was g@ed using the SMART-DS, which provides high-

resolution data from energy distghution net s. The dataset's granularity and diversity

enabled the generation of advis enarios to test the model's resilience against data

tampering (DT), False Daig¥njecti 1), Sybil attacks, and other malicious activities. The

simulations also incl t nipulation and BT integration.

(t)®rom the SMART-DS were tampered with by introducing deviations 'AV’,

erating new values V' (t) = V(t) + AV. The simulation tested the immutability of
the BT and its ability to detect changes. DT caused mismatches in cryptographic hashes,
invalidating blocks and propagating conflicts throughout the blockchain, ensuring that

validators promptly flagged any modifications.

False Data Injection Attack (FDIA): FDIA introduced invented data points into
SMART-DS, simulated extreme conditions, and injected them into the BC before




ingestion, resulting in unrealistic spikes in Energy Consumption (EC) or RE generation.
e.g., solar power generation Pg,,, (t) > 0 was inserted for nighttime intervals, violating
natural constraints. The BC-SC validation mechanisms successfully identified
anomalies by cross-checking against temporal and physical constraints. Range checks,
such as Pg,, () € [0, Pyaxl, and correlations with meteorological data prevented these
falsified entries from being recorded on the BC.

3 Sybil Attack: A Sybil attack was simulated by presenting multiple adversaria

presence of Sybil nodes, the system maintained fault tolerance 2Xgagontinued to operate

securely. ,

4 Denial-of-Service (DoS): The system's resilien ted by simulating a DoS

attack by injecting a large volume of redund aNgCtioggfrom the SMART-DS. The

queuing system, implemented usi e ka, prioritized valid transactions and

efficiently managed the improv# and metrics were monitored to prove
the system'’s operational stability eveSginder attack.

5 Data Replay Attack: Re attacks wWPe simulated by resending valid transactions

from the SMART-DS t@magglate network outputs, such as energy billing or load
prediction. The BT&¥C logj cted duplicates by validating transaction hashes and
timestamps, e ransaction could be reused, Eq. (33)

H(T) = H(T)), (33)

nsactions. The immutability of the BT further prevented unauthorized
licate entries.

e SMART-DS was ingested into the BC in real-time, with each data point processed
e following pipeline:

Data ingestion using Apache Kafka to simulate high-velocity streams.

Validation of dataset-derived transactions using SC implemented on Hyperledger
Fabric.

c) Cryptographic hashing and block formation for validated transactions.

d) Consensus-driven validation and recording of blocks in the distributed ledger.



4.4 Evaluation Metrics and Baseline Models
The performance of the proposed CBDTF was thoroughly evaluated using a set of
quantitative metrics and compared against baseline models commonly employed for data
integrity and security in distributed systems. These metrics were selected to measure the
model’s effectiveness in ensuring data integrity, resilience against attacks, and computational
efficiency.
1) Evaluation Metrics
e Detection Rate (DR): The DR measures the model's ability to detect DT {

data. It is computed as the ratio of successfully detected attacks to the sy of

attacks, Eq. (34).

DR = Number of Detected Attacks (34)
Total Number of Attacks
A higher DR indicates better system reliability.
e False Positive Rate (FPR): This metric quantid hﬁoportion of legitimate
transactions incorrectly flagged as tampered, ag s . (35).
FPR = Number of Incorrectly Flagged Transactions (35)

Total Number of Legitimate Transactions

o Alow FPRis critical to mi ptionS normal operations.

e Consensus Resilience (CR): Congus resilience evaluates the robustness of the

DPoS mechanism under adversarial cONgitions, particularly against Sybil attacks. It

measures the minimuglff pe age of malicious validators required to disrupt
36
CR = . & x 100 (36)

L =qJ1 Validate a Block. (37)
Intaining low EED is critical for real-time SG applications.

(NT): NT measures the number of tx/kWh by the BT, as shown in Eq. (38).

Total Transactions Processed ( 3 8)
Total Time Taken (s)

o A higher NT ensures scalability for handling large data sets, which is typical in SG

environments.

e EE: The EE metric quantifies the EC during block validation and consensus processes:



Transactions Processed
EE = 39)
Energy Consumed (kWh)

Higher EE is significant in RE systems, such as SG.
e Tamper Resistance Index (TRI): This index measures the model's ability to resist DT

attempts, integrating the DR and FPR:
DR

TRl =——,€>0 (40)
o A higher TRI value indicates superior DT resistance.
i) Baseline Models: The proposed CBDTF was compared against several
baseline models to prove its security, efficiency, and scalability adv
e PoW-BC: PoW, like Bitcoin, was used as a baseline for D ca@nd security.

While PoW provides strong immutability guarantees, it s igh and low
NT, making it unsuitable for real-time SG applications.

e DPoS-BC: DPoS was evaluated for EE compared todPoWWPHowever, DPoS
mechanisms frequently challenge scalability a tralization, particularly in

adversarial scenarios such as Sybil attacks.

0 ‘
N Q

yironments.

e PBFT: PBFT, commonly used in e C, served as a baseline for low-EED

and high-NT consensus. Its pe fegradeWin larger networks, highlighting its
limitations in highly distributed S
e Centralized Database Systems (CDSW(No BC): Traditional centralized database

models were included C ison of data traceability and DT resistance. While

these systems pro hig ey lack the immutability and transparency that BT

provides, makjg ulnerable to insider threats and data theft.

onfiguration

he for CBDTF implementation adopts a permissioned architecture based on
crleg@®r Fabric, incorporating multiple organizations representing different SG
efolders. The network topology establishes a distributed network where each organization
maintains peer nodes that participate in transaction validation and block formation. This
configuration implements Byzantine fault tolerance NT carefully defined endorsement policies

requiring signatures from a minimum of ‘4’ out of ‘n’ organizations, where k = [2n/3].
The network implements a multi-channel configuration to segregate different grid

measurements, with each channel maintaining its ledger. Critical data streams such as power



measurements and voltage readings require higher endorsement thresholds (75% of
organizations) than routine configuration updates (51% of organizations). Private data
collections enable selective data sharing among organizations while maintaining
confidentiality through cryptographic hashing of shared data between organization pairs.

Table 2: Blockchain Network Configuration Parameters

Parameters Configuration Detail Value
Maximum Block Size 2 MB
Block Parameters Block Generation Time 5 Seco
Maximum Transaction Size 5

Cache Size per Peer

State Database Database Size per Channel
Database Type CouchDB
Number of Nodes 5
Consensus Protocol Raft
Ordering Service .
Batch Timeout 2 Seconds
Maximum Message 500
2048 Bits
365 Days
Certificate Authority
ECDSA-SHA256
5
5 Seconds
Expiration Timeout 25 Seconds
Gossip Protocol
econnect Interval 25 Seconds
Max Block Distance 20

izes a Raft-based consensus mechanism with five ordering
nodes distributed aci@ izations. The block-cutting parameters are optimized for optimal
ability, with each organization having its own Certificate Authority
ndardized security parameters. The gossip protocol parameters ensure
er communication and block propagation. The state database configuration
B with optimized cache and storage parameters to facilitate efficient query

jtored by the configuration service, allowing for dynamic adjustments based on
performance metrics and operational requirements.

5. Results and Analysis

5.1 Detection Rate



The proposed CBDTF demonstrated exceptional performance in mitigating numerous
attack scenarios, with an average DR of 98.7%. Its robust cryptographic validation mechanisms
and advanced traceability features outperformed baseline models. Its effectiveness was
particularly notable in Unauthorized Data Modification and Data Replay, where its hash-based

integrity checks and SC rules ensured near-complete DR of DT transactions (Figure 4).

Comparison of Detection Rate (DR) Across Models
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Data Modification Injection

PoW and DPoS demonstrated modSg@ate DR capabilities, with average DR rates of

80.8% and 84.4%, respectively. PQiaLs computat®nally intensive validation process effectively
combats DT attacks, but Sybil @&t e challenges due to its lack of identity verification
mechanisms. PoS, on tigl other , outperforms PoW in most scenarios but has

vulnerabilities in Syhg

Hybrid PoW-PoS system effectively balances PoW + PoS, achieving an average
of 89.0%. It was effective against Data Replay but fell short of CBDTF in scenarios
requiring higher precision and DT resistance.

The Hybrid PoW-PoS system effectively balanced PoW + PoS, achieving an average
DR of 89.0%. It was effective against Data Replay but fell short of CBDTF in scenarios
requiring higher precision and DT resistance.



5.2 False Positive Rate (FPR)

The analysis of FPR (Figure 5) reveals that models with lower FPR can effectively
detect DT transactions and distinguish legitimate and malicious data without disrupting normal
operations.

Comparison of False Positive Rate (FPR) Across Models
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Unauthorized False Data
Data Modification Injection Attack

Attack Scenarios

to its robust validation mechanisms. It p ms well in Unauthorized Data Modification
(UDM) and Data Replay, with an below 3¢

PoW, on the other hand, has a

¥in challenging scenarios like Sybil and DoS.

of 7.02% due to its computational mining process,

which lacks nuanced vali n me ms. It challenges in detecting Sybil, with an FPR of
12.5%. While its FPRgg r simpler scenarios, it is less reliable than CBDTF.

W with an average FPR of 5.66% but displayed vulnerabilities

as UDM and FDI. However, scalability issues under Sybil and DoS resulted
igher FPR.

The centralized model had the highest average FPR of 11.66%, but its vulnerability in
adversarial conditions was evident. It was prone to frequent misclassification, particularly in
Sybil and DoS, indicating its inability to maintain reliable validation under attack. The hybrid

model achieved an average FPR of 3.92%. It proved consistent performance across all



scenarios, with the lowest FPR recorded in UDM (FPR: 2.9%) and the highest in Sybil (FPR:
5.4%).
5.3 Consensus Resilience (CR) Across

Figure 6 illustrates the CR of the proposed CBDTF and baseline models across
numerous attack scenarios. CR measures the robustness of a consensus mechanism under
adversarial conditions, reflecting the ability to maintain data integrity and operational stabilj

With an average CR of 96.2%, the CBDTF outperformed all baseline models acrgss

attack scenarios. The DPoS consensus mechanism proved highly effective i
adversarial attacks, particularly in scenarios like Data Replay (CR: 98.1%)
97.5%). The model verified slight reductions in resilience under Sy, 95? and DoS
(CR: 93.4%), but its performance remained consistently high, sho robustifess. PoW
achieved an average CR of 84.3%, demonstrating moderate resilienc UDM (91.3%) and
FDI (89.5%). However, its resilience significantly dropped in SyMCR. 7.8%) due to the

nder DoS scenarios, where

validator selection process when adversaries c@hpromised stakes. PBFT verified consistent
0, excelling in UDM (CR: 94.2%) and Data Replay
BFT provided robust DT resistance, but its limited
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Figure 6: Consensus Resilience analysis
The centralized model recorded the lowest avera CR,63.6 o, highlighting its
vulnerabilities in all scenarios. It performed poorly in Sy 5%) and DoS (CR: 65.3%)

due to the lack of distributed validation and redu Cy. i arginally better in simpler

le for adversarial environments. The

Models
CBDTF
PoW
PoS
PBFT
CcDB
Hybrid PoW-PoS

Latency (ms)

Unauthorized False Data Sybil Denial-of-Service
Data Modification Injection Attack (DoS)

Attack Scenarios

Figure 7: EED analysis
5.4 EED (ms) Comparison



EED measures the time it takes for a model to validate and process a block, highlighting
its efficiency in real-time operations. Figure 7 demonstrates the EED performance of the
proposed CBDTF and baseline models. The CBDTF achieved an average EED of 120.8 ms,
showcasing its efficiency in handling real-time transactions. Its low EED across all attack
scenarios, particularly in UDM (112 ms) and Data Replay (116 ms), is attributed to the
lightweight DPoS mechanism. PoW recorded the highest average EED at 309.8 ms, with sev

delays under Sybil (430 ms). The computationally intensive mining process signifjcan

Data Modification (135 ms) and Data Replay Attacks (145 ms). HowW
consensus mechanism added delays in more extensive networks u Syt (198 ms). Due to

its non-distributed architecture, the centralized model achg cJowest EED (average 100.2

ms). However, the absence of decentralization
inappropriate for adversarial conditions .

robustness of PoW and the efficiency o Q c
under Sybil (248 ms) and DoS scenarios ( ms) was higher than that of CBDTF but lower
than that of PoW.

arison Across Models

Models
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. PoW

""" . = Il PoS

s PBFT

s CDB

s Hybrid PoW-PoS

Throughput (TPS)

Unauthorized False Data Sybil Denial-of-Service
Data Modification Injection Attack (DoS)
Attack Scenarios

Figure 8: NT analysis
5.5 NT Comparison



NT measures the number of Transactions Processed Per Second (TPS), reflecting the
scalability of each model. Figure 8 highlights the NT performance across all models. The
CBDTF achieved an average NT of 1113 TPS, making it the most efficient decentralized model.
It performed consistently well across all scenarios, with exceptionally high NT in UDM (1213
TPS) and Data Replay (1182 TPS). PoW recorded the lowest average NT at 279.2 TPS, with
significant drops under Sybil Attacks (208 TPS). Its reliance on mining reduced TPS, limitj

average NT at 1541.6 TPS, signifying its advantage in non-distributed Cg@ronments. However,

he hybrid model
achieved an average NT of 800.4 TPS, balancing t s of PoW and PoS. Its

it lacks the security and fault tolerance necessary for DT-resistant lem >

performance was consistent across scenarios but e hingCBDTF due to its higher
validation complexity.

Energy Efficienc Across Whdels

Models
CBDTF

. PoW

s PoS

................ W PBFT

mm CDB

B Hybrid PoW-PoS

Energy Efficiency (Transactions/kWh)

False Data Sybil Denial-of-Service
Injection Attack (DoS)
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Figure 9: EE analysis
(transactions per kilowatt-hour (tx/kWh))

Figure 9 compares EE and highlights the operational sustainability of the proposed
CBDTF and baseline models.

The CBDTF achieved an average EE of 10,395.6 tx/kWh, ranking second among all

models. Its lightweight DPoS mechanism minimizes computational overhead while



maintaining high NT, resulting in superior performance under scenarios such as UDM (11,237
tx/kWh) and Data Replay (11,162 &x/kWh). Due to its non-distributed architecture, the CDS
achieved the highest EE of 11,964.6 tx/kWh; however, this efficiency comes at the cost of
reduced DT resistance and resilience to adversarial attacks.

PBFT verified strong EE with an average of 8,180.2 tx/kWh, leveraging its deterministic
consensus mechanism. However, its performance declined slightly in adversarial scenari

such as Sybil (7,437 tx/kWh). The hybrid model balanced the strengths of PoW and

achieving an average of 7,667.2 tx/kWh. Its performance was consistent across all
with the highest efficiency in Data Replay (8,016 tx/kWh). PoS averaged 6,62
lower EE under high-load scenarios like DoS (6,247 tx/kWh). Its ¢
PoW but inferior to CBDTF. PoW recorded the lowest EE at 2,

etter than

h, refl€cting the
high computational cost of mining. Its performance under scenarios 11@Sybil (1,728 tx/kWh)

further highlighted its unsuitability for energy-sensitive applicatio’
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Figure 10: TRI analysis

ance Index (TRI)

(Figure 10) assesses the models’ ability to resist DT while minimizing FP and
¢ high DR accuracy. The CBDTF achieved the highest average TRI of 60.26,
ificantly outperforming all baseline models. Its superior performance across scenarios,
such as UDM (82.9) and Data Replay (75.2), underscores its robust validation mechanisms and
cryptographic security. The hybrid model achieved the second-highest average TRI at 24.7,
performing well in scenarios like UDM (31.2). Its combination of PoW's immutability and

PoS's efficiency provided balanced DT resistance. PBFT recorded an average TRI of 20.24,



benefiting from its deterministic consensus. However, its limited scalability reduced its
effectiveness in adversarial scenarios, such as Sybil (9.2). PoS achieved an average TRI of
17.5, performing consistently better than PoW in most scenarios. Its performance in Data
Replay (19.4) highlights its stake-based validation strengths. PoW exhibited an average TRI of
13.32, reflecting its vulnerabilities in scenarios like Sybil (5.4). Its high computational demands
further constrained its DT resistance. The CDS had the lowest TRI at 6.36, demonstrati
significant weaknesses in adversarial conditions. Its inability to handle distributed valjdati
made it highly susceptible to DT.

6. Conclusion and Future Work

T cks in SG

providifig robust

The CBDTF is a comprehensive model that effectively m
environments. Its multi-layered network integrates BT+ SG of
security without compromising performance. The model's DR of 98.7%@across various attack
scenarios and low FPR of 1.78% prove its superior ability to identi d pMvent DT attempts,
advancing state-of-the-art SG security. The DPoS con chanism has demonstrated
96.2% resilience and an EED of 120.8 ms, outperfor itioge BT, making real-time data
validation feasible in SG operations. The gt
an EE of 10,395.6 tx/kWh, making it p @

validates the effectiveness of community-dNgn validation in enhancing security and reducing

ny@Rcess 1,113 tx/kWh while maintaining

large-$ale deployment. CBDTF's success
computational overhead, setting new benchmaMg for BT-based security solutions in critical
setup security. The integration G operations proposes a blueprint for securing other
critical systems. HowevegWurther i tigation is required to validate its scalability and

availability against e ack vectors and zero-day exploits as technology evolves, as

ensive networks.
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