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1. INTRODUCTION

Formaldehyde is a commonly used industrial chemical, particularly in sectors like textiles, plastics, wood products,
adhesives. Its toxicity poses significant concerns for air quality in industrial environments, as prolonged exposure can leaghto
serious health issues, including respiratory problems, skin irritation, and even cancer. Therefore, monitoring formaldeh
levels is crucial for ensuring workplace safety and adherence to regulatory standards. To accurately detect and quant
formaldehyde in industrial air, various advanced techniques have been developed. One prominent method is
transform infrared (FTIR) spectroscopy, which utilizes infrared light absorption to identify formaldehyde moleculeg
effective for continuous and real-time monitoring, offering high sensitivity and specificity in detecting this ¢
Another widely used technique is gas chromatography-mass spectrometry (GC-MS), which excels i

generally requires periodic sampling and laboratory processing, making it less ideal for continuous
settings.

. Electrochemical
lications. These

Recent advancements in sensor technology have transformed the landscape of for
sensors, appreciated for their portability and cost-effectiveness, are becoming more p
sensors generate electrical signals that correlate with formaldehyde concentration, a
Photoacoustic spectroscopy (PAS) is another emerging technique, known for its gy to accurately measure low
concentrations of formaldehyde. This method involves using a modulated light source t i
generating a pressure wave detected as an acoustic signal. Additionally, innovatisﬁch
enable remote monitoring and data analytics, greatly improving industrig y management. These systems can
automatically collect and transmit data to centralized platforms, facilitati alysis, early warnings, and compliance
with occupational safety regulations. Fig 1 shows the architecture of F
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Fig 1. Formaldehyde Detection in Industry

Various strategies to enhance the performance of semiconductor gas sensors specifically for formaldehyde detection have
n discussed, highlighting advancements in material design, nanostructuring, and sensor configurations that improve
sensitivity and selectivity [1]. The importance of integrating functional materials and optimizing sensor parameters to achieve
high-performance detection is emphasized, along with recent trends and future directions in formaldehyde sensor technology.
Polymer-based materials used in formaldehyde gas sensors, focusing on their synthesis and application, have been reviewed

3



[2]. Various polymer composites and their properties that contribute to improved sensitivity and response times are discussed,
along with challenges in developing stable and selective sensors and recent advancements in sensor performance. The review
suggests potential areas for future research in polymer sensor technology.

Recent advances in metal oxide semiconductor (MOS) materials for formaldehyde detection are explained, including
design and synthesis of various MOS materials, their structural, electrical, and gas-sensing properties [3]. Insights into tThe
mechanisms of formaldehyde adsorption and detection, as well as the influence of doping and nanostructuring og
performance, are provided. Future perspectives on enhancing MOS gas sensors are also presented. Advancements
nanotubes (CNTS) as gas sensors, including their unique properties that make them suitable for detecting varid
including formaldehyde, are discussed [4]. Different functionalization techniques that enhance the sensitivi
of CNT-based sensors, along with the integration of CNTSs into sensor devices and challenges associated
applications, are explored. The review concludes with future trends in CNT sensor development.

highlighting the development of various sensing mechanisms and materials that i )
effectiveness of different polymeric materials and their potential for real-world ¢@licati issgesed, along with
challenges in sensor performance, stability, and selectivity. Suggestions for future reses @FCtions are also provided. The
recent progress in organic chemosensors for formaldehyde detection is summarized, dI'@sing various organic materials,
including small molecules and polymers, that exhibit high sensitivity and selectivity toywar®

sensing mechanisms and fabrication techniques used in developing these sensors % ed. Future challenges and

potential improvements in organic sensor technologies are discussed.

A detailed examination of microfabricated formaldehyde gas ser
processes, and performance metrics [7]. Various microfabric
miniaturization are described, along with the integration g electronic devices for real-time monitoring. Future
prospects for microfabricated sensor technologies arg
semiconductor nanostructures for advanced formalde
influence gas sensing performance and sensitivity [8]'
capabilities is emphasized. Future challenges and research™

, focusing on their design, fabrication

e of surface modification and doping in enhancing sensor
hctions in metal oxide sensor development are also highlighted.

ace- level detEction of gaseous formaldehyde is presented, discussing the
uperior sensing potential, including high surface area and electron
ation of graphene into sensor platforms are highlighted. The review
gas sensing technologies. Recent progress in fluorescent probes for
detecting carbonyl species, focusing de, is reviewed [10]. Various probe designs and mechanisms for
fluorescence detection are disc izing their sensitivity and selectivity. Advancements in small molecule probes
and their potential applicatio y tal monitoring are highlighted. Future directions in probe development and

The use of graphene-based structures for
unique properties of graphene that contrib
mobility [9]. Various sensing mechanis
concludes with insights into the futur

Trends in s
landscape,

or measuring atmospheric formaldehyde gas concentration, focusing on the patent
rious sensor technologies, including electrochemical, optical, and semiconductor-based

of innovation in sensor design for improved performance is highlighted. The development of
functional material fluorescent probes for formaldehyde detection is reviewed, exploring various
heir fluorescence response mechanisms [12]. Recent advancements in sensitivity, selectivity, and
plications are emphasized. Challenges in developing robust and efficient probes are discussed, along

rogress in fluorescent formaldehyde detection using small molecule probes is discussed, highlighting various
emical strategies that enhance the selectivity and sensitivity of these probes [13]. The importance of molecular design in
veloping effective fluorescent sensors is emphasized. Future challenges and research directions in fluorescent probe
nology for formaldehyde detection are also presented. The use of CdO-ZnO nanorices for enhanced and selective
formaldehyde gas sensing applications is investigated, discussing the synthesis of these nanorices and their unique structural
properties that contribute to improved sensing performance [14]. The mechanisms of formaldehyde interaction with the




nanorices and the factors influencing sensitivity are highlighted. Future prospects for these materials in sensor applications
are outlined.

A formaldehyde gas sensor with a remarkable detection limit of 1 ppb based on an In-doped LaFeO3 porous structu
presented, describing the synthesis and characterization of the sensor and highlighting its excellent sensitivity and ra
response [15]. The mechanisms underlying the sensor’s performance are discussed, focusing on the role of doping and porols
structure. Future research directions for enhancing sensor performance are also suggested. UV-activated semicondyg S
sensor response measurement for formaldehyde detection is investigated, discussing the advantages of using UV acififation 18
enhance sensor sensitivity and response times [16]. The experimental setup and results are detailed, empha%gi
effectiveness of this approach. The review also considers the implications of UV activation for future sepg
applications.

Multi-wall carbon nanotube gas sensors modified with amino groups for low-concentration f def
explored, discussing the synthesis and functionalization of CNTs and highlighting their j d ing capan
The mechanisms of gas adsorption and detection are analyzed, showing how modifig#fons SancX@erformance. Future
challenges and the potential for further improvements in CNT-based sensors are also ¢@ressed.

1. MATERIALS AND METHODS

2.1 Data Collection ,

Data from several industrial areas in India that are known to have high h usage and air pollution issues were
gathered for this study. Two important sites were Ankleshwar whic k foroducing chemicals and Gujarats Vapi
ecau avy chemical industries. Additionally
g the chemical industries for thorough data on air
il Nadu which deals extensively with chemical

Fig 2 Data Collection locations



High-precision sensors were installed to track formaldehyde levels and real-time data was recorded every minute for six
months. The air quality index (AQI) which highlights spikes in formaldehyde concentrations and acts as a stand-in for overall
pollution levels was one of the parameters that was continuously monitored along with temperature and humidity. WitRin
each industrial zone, each sensor node was positioned strategically at several points to guarantee both data accuracy and \@ie
coverage.

2.2 Data measurement

To guarantee the validity and dependability of formaldehyde detection, the data needed to be precisely measured ag

points from various times and conditions. These exacting measurements offered a strong basis for
deep-learning model predicted formaldehyde concentrations.

2.3 Data preprocessing

Processing the data was a crucial step in improving the predictive power of the model.
preprocessing stage to standardize all variables and enhance model convergence duriﬁ

re scaling was done during the
ing. By scaling temperature
tion'¥chnique was used to ensure
formaldehyde.

humidity AQI and formaldehyde levels to a range between 0 and 1, a Min-Max norm
that each feature had an equal impact on the model. Fig 3 demonstrates the

Formaldehy

Fig @ir poll olecules of chemical formaldehyde

The Interquartile Range (If
5 times, the IQR were filtered
missing data wasg i
artificially expa
real-world cquditi

s used to find and eliminate outliers. Any data points that were more than 1 or
to remove anomalies that might distort the results. In order to preserve continuity
terpolation taking advantage of patterns in the current dataset. The dataset was
ntation techniques such as small changes to temperature and AQI values to replicate
training accuracy.

I11.PROPOSED TECHNIQUE
3.1 Dgep Lear Technique

Con al Neural Network

suggested method uses a Convolutional Neural Network (CNN) architecture which was created especially to find
rmaldehyde patterns in data on air quality. Each layer of the CNN has three-layer architecture, which consists of
volution pooling and activation functions optimized to detect minute changes in formaldehyde concentrations in the face
shifting environmental conditions. Fig 4 provides the architecture of CNN. The input matrix denoted by X contains
variables such as temperature (T) humidity (H) and AQI (A). The convolution process is described as follows in equation (1).




M N

F(i,j) =YY X(i+m,j+n) K(m,n)

m=0 n=0

1)

where X is the input matrix, K is the kernel matrix, M, NM , NM,N are kernel dimensions and F(ij) is the filtereg
This method is used to find local patterns linked to elevated formaldehyde levels. The feature maps are down-sam
max pooling after convolution which lowers dimensionality while preserving important information.
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The Rectified Linear Unit (ReLU) actjv : f(x)=max(0,x)
Several metrics were used to ass he C odel's performance offering a thorough examination of its predictive

del performance was prediction accuracy which quantifies the percentage of

power. One important metric g
correctly predicted data poin
capacity to precisely identify

essential. The predictig 0
better model fit.

and the CNN model's prediction accuracy are displayed in the table. For example, the industrial zone of Vapi
orted formaldehyde levels between 50 and 200 ppb, with a prediction accuracy of 92.5 % high sensitivity of 94.2 %, and
pecificity of 90.8 %, which are given in Table 1 and Fig 5. By minimizing false predictions these metrics show that the
del successfully detects true positives and negatives.




Table 1: Prediction Accuracy Across Different Industrial Locations

Industrial Zone Formaldehyde Level Prediction Accuracy Sensitivity Specificity
(ppb) (%) (%) (%)
Vapi Industrial Area 50-200 925 94.2 90.8
Ankleshwar Chemical 100-300 89.7 914 88.2

Zone
Manali Petrochemical 150-400 91.3 92.8
Area
Bhopal Chemical 75-250 93.1 95.0
Industrial

95 T T T T 0017_
) —ill- Prediction Accuracy (%)
~@-— Sensitivity (%)

94 —A— Specificity (%) E 0.016 4

934 0.015
o _
§ 7 LImJ 0.014
§ 91 =
< _

0.013
90 {"ﬁ
4 I.. i 012
89 :
lATl-“ Ill-*
8 - 114
Vapi Inldustrial Anklelshwar Malnali Bhopal éhemical so-lzoo 1001300 1501400 75-I250
Area Chemical Zone  Petrochemical Area Industrial
. Formaldehyde Level (ppb)
Industrial Zone
(a) (b)
g5 idity across regions
The industrial area of Bhopgleiia ed the highest sensitivity of 95.0%, which is noteworthy because it shows that
the model can accurately de angmounts of formaldehyde. However, Ankleshwar's prediction accuracy was

marginally lower which mig
with a range of pollutio

b industrial emissions vary more. The CNN model accuracy in real-world settings
onstrated by the Mean Squared Error (MSE) values which range from 0. 011 to 0.
expected and actual values.

itivity and specificity of the CNN model in the summer, monsoon and winter seasons. It is vital to
ce in a variety of environmental settings because seasonal variations in temperature humidity and
tterns can have a substantial impact on air quality. The CNN model demonstrated its highest sensitivity
paratively strong specificity (89. 3 %) during the summer indicating that it is highly responsive to detect
ring periods of high temperature and peak industrial emissions. Fig 6 and table 2 give the values of the
specificity values in different seasons.



Table 2: Sensitivity and Specificity Across Seasons

Season Summer Monsoon Winter
Sensitivity (%) 94.2 91.8 90.5
Specificity (%) 89.3 92 88.7
Formaldehyde Mean (ppb) 180 210 160
Temperature Mean (°C) 35 28 22
Humidity Mean (%) 65 78
250 . . : . : . : . f
| E=] Summer " |
I Monsoon D
200+ FEEEH Winter .

150

Season

100

50

NEEE] EEm

pecificity Formaldehyde Temperature ~ Humidity
(%) Mean (ppb) Mean (°C)  Mean (%)

le 3 and Fig 7 shows how different AQI levels affect the CNN model's detection accuracy. As a composite metric that
fers information on pollution levels and general air quality, the AQI is an essential tool for determining formaldehyde
centrations in industrial areas. The CNN model demonstrated a remarkable 93. 2 % prediction accuracy for identifying
formaldehyde levels between 50 and 200 ppb in Vapi, which has an AQI range of 150-300 ppb. The model's dependability is
demonstrated by its high accuracy even in moderately polluted air.




Table 3 Air Quality Index (AQI) Variability Impact

Industrial Zone AQI Range | Formaldehyde Level (ppb) | Model Accuracy (%)
Vapi Industrial Area 150-300 50-200 93.2
Ankleshwar Chemical Zone | 200-400 100-300 90.5
Manali Petrochemical Area | 250-500 150-400 91.7

Vapi Industrial Area
93.5, 150-300

AQI

Ankleshwar Chemical Zone
200-400

Manali Petrochemical Area
250-500

Impaciof 401 variability on model accuracy

ring with the detection process may be the reason for the slight decrease in
ar industrial zone where the AQI was higher (200-400 ppb). Even though the
) to 500, the CNN model was able to maintain a strong prediction accuracy of 91.7
ell in highly polluted environments. These findings imply that the CNN model
adjusts well to d narios even though high AQI levels can present difficulties for conventional approaches.

4.4 CNN Mo i Errors by Parameter

ironmental factors on predicting formaldehyde levels is broken down in detail in Table 4 and Fig 8.
011 the highest error rate at 6. 3 % and a significant contribution to prediction error at 39 2%. The data
Quality Index (AQI) is the most important factor influencing prediction accuracy. A vital role for AQI in
in air quality that impact formaldehyde levels is suggested by the fact that it also exhibits the strongest
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Table 4: CNN Model Prediction Errors by Parameter

Parameter Temperature Humidity AQI
MSE 0.012 0.014 0.011
Error Rate (%) 55 4.8
Contribution to Prediction | 32.1 28.7
Error (%)
Correlation with | 0.68 0.72
Formaldehyde
Standard Deviation 2.3 1.9
Weight in Model (%0) 29.5 27

50 T T T T T T

| == Temperature

=@— Humidity

404 —te— AQI

30+

20

Prediction Errors

10

T T T T T T T T
Error Rate (%) Contribution  Correlation Standard Weight in
to Prediction with Deviation Model (%)
Error (%)  Formaldehyde

Parameter

Fig 8 Prediction Errors

iations have a moderate impact on formaldehyde levels as evidenced by its moderate correlation of 0. 68
lon of 2. 3. With a 4. 8 % error rate and an MSE of 0. 014 % humidity accounts for 28. 7 % of prediction
ignificant but smaller impact than AQI as evidenced by its correlation of 0. 72 with formaldehyde. The
jght assignments highlight the intricacy of how environmental factors interact to predict formaldehyde
centrations further validating AQI dominance at 43. 5 % followed by Temperature at 29. 5 % and Humidity at 27. 0 %.

Layer-wise Contribution Analysis for Formaldehyde Detection in CNN Architecture

Table 5 breaks down each layer’s contribution in a CNN model specifically tailored for detecting formaldehyde in industrial
air quality monitoring. Each layer, starting from the input layer to the output layer, contributes uniquely to detection accuracy
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and efficiency. For example, Convolution Layer 2 enhances accuracy by refining feature extraction, raising the detection
accuracy to 93.1% while maintaining a manageable false positive rate of 6.3%. Pooling layers, especially Max Pooling Layer
2, are instrumental in reducing memory usage (43.8 MB), showing their importance in minimizing computational lgad
without compromising accuracy.

Table 5. Analysis for Formaldehyde Detection in CNN Architecture

Layer Type Filter | Activation | Detection | False Processing | Memory
Size | Function Accuracy | Positives | Time (ms) | Usage
(%) (%) M
Input Layer | Image N/A | N/A N/A N/A
Input
Convolution | Conv2D | 3x3 ReLU 91.2 7.4
Layer 1
Max Pooling | Max 2X2 N/A 92.4 6.8
Layer 1 Pooling
A
Convolution | Conv2D | 3x3 | ReLU 93.1 @7 3.3 55.2
Layer 2
Max Pooling | Max 2X2 N/A 5.9 2.9 43.8
Layer 2 Pooling
Fully Dense N/A | Sigmoid 5 5.5 3.5 60.1
Connected 1
Dropout Dropout 93 6.2 2.7 42.5
Layer
Output De Softmax 94.8 5.3 3 58
Layer
By inte across the network, the fully connected (dense) layers greatly increase detection accuracy,

les the CNN to identify complex patterns linked to the presence of formaldehyde. Although it
ac®®acy, the dropout layer reduces overfitting by introducing regularization, illustrating the trade-off
d model robustness. The model is appropriate for real-time applications since the final output layer,

pact of each component is better understood because to this layer-by-layer analysis, which enables focused
timization techniques to improve detection speed even more while efficiently controlling resource usage.

476 Formaldehyde Detection Performance at Different Concentrations
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The CNN model's detection ability is examined in Table 6 and Fig 9, across a range of formaldehyde concentrations,
demonstrating its accuracy in a variety of situations. The examination of formaldehyde detection over a range of
concentrations reveals that accuracy decreases with increasing formaldehyde levels. The model obtains a high detectign
accuracy of 93.5% at lower concentrations (50-150 ppb), with a minimal false positive rate of 7.5% and a true positive ra@of
92.8%. The accuracy marginally drops to 91.4% when the concentration increases to 150-300 ppb, however, the true posi
rate remains high at 91.0%. At concentrations between 300 and 450 ppb, the trend continues, with accuracy droppin
88.6% and false positives rising to 9.8%.

90

80

c o

S 704 I A

: A = Yoe
£ 60 oo i

[«b]

o

S 504

bt == Detection Accuracy (%)
§ 40 4 —@— True Positives (%)

30:) False Positives (%)

5 30

Table 6: Formaldehyde Detection Pe

Formaldehyde Ran True  Positives | False  Positives
(Ppb) curagy (%) (%) (%)
50-150 935 92.8 75
150-300 91.4 91 8
88.6 87.9 9.8
86.2 85.5 11.1
60 83.7 83 12.6
00 80.9 80.1 13.9
00-1050 78.5 77.8 15.2

Accuracy decreases to 86.2% and 83.7% for mid- to higher ranges (450-600 ppb and 600-750 ppb), but false positives

iceably increase to 11.1% and 12.6%, respectively. False positives increase dramatically to 13.9% and 15.2% in the higher
concentration ranges (750-900 ppb and 900-1050 ppb), while detection accuracy further decreases to 80.9% and 78.5%.
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These findings show that although the model does a good job of identifying lower formaldehyde levels, its efficacy decreases
as concentrations rise, most likely as a result of the complexity and unpredictability that greater pollution levels bring.

4.7 Optimized Feature Contribution for Formaldehyde Detection Model Performance

The contribution of each parameter to the formaldehyde detection model optimization is shown in Table 7. Particulate matter
(35 %) and AQI (30 %) are essential for increasing detection accuracy because they have the greatest impact on
Mean squared Error (MSE) and raising true positive and sensitivity rates. Lower-contributing elements such as sola adlatlo
have little effect indicating that formaldehyde detection models can perform noticeably better when high-co
parameters are optimized.

Table 7. Feature Contribution for Formaldehyde Detection Model Performancg

Parameter Optimal | Contribution | MSE True False g N@Livity | Specificity
Weight | to Detection | Reduction | Positive | Positive s Increase
(%) (%) Impact | Reduction (%)
(%) (%)
Temperature | 25 32.2 0.008 6.5 4.8 6.4
Humidity 20 28 0.01 5.9 4.1 6.3 5.7
AQI 30 375 0.006 7.2 4 7.9 7.1
Wind Speed | 15 21 0.011 3.4 5.6 5.2
Particulate 35 39.2 0.005 4.9 8.3 7.6
Matter
Pressure 18 235 6.2 5.8
VOCs 22 27.1 6.5 6
Solar 12 19.3 4.9 4.6
Radiation
4.8 Impact o
Table 8 sh ) t environmental factors such as temperature humidity and air quality index (AQI) levels affect a

y to detect formaldehyde. Model performance varies significantly when AQI levels are combined
ature and humidity ranges. For instance a stable indoor environment has the lowest processing time (2. 7

14



Table 8: Impact of Environmental Factors on Formaldehyde Detection Accuracy Using CNN

Environmental | Temperature | Humidity | AQI Level | Formaldehyde | False False
Factor Range (°C) Range Detection Positives | Negatives

(%) Accuracy (%) (%) (%)
High 35-45 20-30 Moderate | 90.3 8.2 4.5
Temperature & (101-150)
Low Humidity
Moderate 25-35 40-50 Good (0- | 94.7 3.1 2.8
Temperature & 50)
Moderate
Humidity
Low 15-25 60-70 Unhealthy | 88.6 , 5.7 3.3
Temperature & (151-200)
High Humidity
High 35-45 60-70 9.8 6.1 35
Temperature &
High Humidity
Low 15-25 20-30 6.7 4 3
Temperature &
Low Humidity
Stable Indoor | 22-25 40-45 d (0-|96.2 4.3 2.5 2.7
Environment
Outdoor 30-40 0 ry 85.4 10.5 7.3 3.6
Industrial Zone Unhealthy

(201-300)

Urban 5 Moderate 93.1 6.1 3.7 2.9
Residential Are (101-150)

These ggdi ighligW® the difficulties that high AQI levels and changing environmental conditions present for precise
ombinations of high temperatures and high humidity in settings with unhealthy AQI levels also
accuracy (87. 1 % accuracy) and longer processing times highlighting the impact of combined
mes on model effectiveness. Understanding the CNN model's resilience in various environmental

easier with the help of this analysis which will help with the development of focused strategies to increase

P Comparative Analysis of CNN Model Variations for Formaldehyde Detection

In order to demonstrate how changes in layer number, kernel size, activation function, and dropout rate affect performance,
this table (table 9) compares various CNN model modifications for formaldehyde detection. Although it requires a longer

15



training time of 160 seconds, the Optimized CNN with 8 layers, a dropout rate of 30%, and ReL U activation obtains the
maximum detection accuracy of 94.1% with low false positives (5.5%) and false negatives (3.9%). Deeper and more
optimized CNN architectures are more successful for formaldehyde detection in complex situations, as evidenced by fe
Basic CNN with few layers and no dropout, which shows lower accuracy (88.2%) and greater error rates. The accuracy (@d
training time trade-offs of each variation help choose the best model for a given deployment, especially for real-t
monitoring applications.

Table 9. Comparative Analysis of CNN Model Variations

Model Number | Kernel | Activation | Dropout | Detection | False False
Variation of Size Function Rate Accuracy | Positives Negative
Layers (%) (%) (%) (%) )
Basic CNN 5 3x3 ReLU 0 88.2
CNN with | 5 3x3 ReLU 20 90.8
Dropout
CNN with | 6 3x3 ReLU 0 91.6 6, 5.2 130
Batch

Normalization

Deeper CNN 8 3x3 RelLU 7 6.3 4.8 145
Wider CNN 6 5x5 ReLU 91.9 6.8 5 140
CNN with | 6 3x3 Sigmoid 20 89.4 7.8 6.1 135
Sigmoid

Activation

Optimized 8 3x3 ReL 30 94.1 55 3.9 160
CNN

CNN with L2 | 6 ReLU 20 92.3 6.1 4.5 138
Regularizgtion

V. DISCUSSION

5.1 Co ativ formance

ison of prediction models for formaldehyde detection reveals that deep learning techniques, particularly CNNs
ANNS, outperform traditional methods in accuracy and error minimization. CNN achieves the highest prediction
curacy (92.3%) with a low MSE (0.013), indicating its strength in handling complex air quality data. ANNs follow closely
h 91.1% accuracy and an MSE of 0.016, reflecting robust predictive capabilities. Advanced machine learning models like
Boost and GBM also perform well, with accuracies of 90.8% and 89.5%, and relatively low false detection rates,
leveraging ensemble techniques to reduce errors. Fig 10 and Table 10 give the results of comparative analysis.
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Table 10: Comparison Between CNN and Traditional Regression Models

Model Prediction False  Positives | False Negatives
Accuracy (%) (%) (%)
CNN 92.3 6.8 4.2
Linear Regression 78.5 12.9 8.6
Support Vector | 84.7 10.2 6.1
Machine (SVM) ,
Decision Tree 81.4 11.5 0.038
Random Forest 87.9 9 0.026
k-Nearest Neighbors | 80.6 7.9 0.041
(k-NN)
Gradient  Boosting | 89.5 8.5 5.1 0.021
Machine (GBM)
XGBoost 7.9 4.8 0.018
Artificial 7.3 4.6 0.016
Network (ANN)
13.5 9.1 0.048
12.1 8.2 0.043
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On the other hand, conventional methods such as I3
accuracies (78.5% and 81.4%, respectively), underscW
results highlight how well deep learning works for preciss
pollution levels.

S an ear Regression show greater MSEs and lower
shortcomings in handling non-linear data patterns. These
aldehyde identification, especially in settings with fluctuating

VI. CONCLUSION

This study analysis highlights the effe
formaldehyde in industrial air qualit
prediction accuracy greatly surpasad
intricacies of air quality data
given the consistent and relid

e d deg@ndability of using Convolutional Neural Networks (CNNSs) to detect
\Viron cross various Indian regions. The model has proven to have a high
entional regression-based techniques. CNNs are well-suited for managing the

y and specificity across different seasons and AQI levels. Because pollutants like
tly depending on temperature humidity and other local factors this flexibility is essential for
industrial activity. The model's overall accuracy is still strong even though each of the
s temperature humidity and AQI contributes to prediction error according to a thorough analysis
of each on i passes a variety of pollutants AQI in particular proved to be the most difficult factor to handle
but the CN with impressive accuracy. The study also demonstrated how formaldehyde concentrations affect
ce showing that extreme pollution conditions present particular difficulties as accuracy slightly declines
ver, the CNN-based detection system has shown strong predictive capabilities maintaining a high true
at higher formaldehyde levels improving safety in industrial settings where accurate air quality monitoring

formaldehyde can
areas with i

¥sk industries. These results lend credence to the continuous advancement of Al-powered air quality monitoring systems as a
perior substitute for conventional techniques. By incorporating Recurrent Neural Networks (RNNs) to capture temporal
erns and improve long-term prediction accuracy future research will concentrate on improving the model to address
issues seen in higher pollution ranges. The applicability of the model will also be further generalized by enlarging the dataset
to encompass a wider range of industrial environments and seasonal conditions. A solid basis for the wider implementation of
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Al-powered formaldehyde detection systems is provided by the success of this study opening the door to safer and more
effective industrial operations.

Abbreviation

DL — Deep Learning

SVM - Support Vector Machine

ML — Machine Learning

ROC  — Receiver Operating Characteristic
AUC  — Area Under the Curve

API — Application Programming Interface
RMSE - Root Mean Square Error

WSN  — Wireless Sensor Network

ANN  — Artificial Neural Network ,
HAP  — Hazardous Air Pollutant
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