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downtime, reducing maintenance costs, an
framework that combines Recursive F
to address the challenges of high dj
begins with comprehensive data pr
thereby enhancing model effigg
feature set to classify four fa
feature selection with ense
varying operatjonal

achieves a hi
real-time f;

n with Cross-Validation (RFECV) and Random Forest classifiers
fitting, and limited model generalization. The proposed approach
owed by RFECV to identify and retain the most relevant features,
uracy Subsequently, a Random Forest classifier is trained on this optimized
re, Power Failure, Tool Wear Failure, and Overstrain Failure. By integrating
the framework effectively mitigates high variance and improves robustness under
A distributions. Experimental results demonstrate that the proposed methodology
g1 99.2% along with improved computational efficiency, making it highly suitable for
tions in smart manufacturing systems.

I. INTRODUCTION

In today’s rapidly evolving industrial landscape, the integration of intelligent manufacturing systems has become a
cornerstone for achieving operational excellence and competitive advantage. As industries increasingly embrace
automation, the deployment of embedded sensors and condition-monitoring technologies has revolutionized how
machines are monitored and maintained [1]. Predictive maintenance and fault diagnosis have emerged as essential
components within this paradigm, enabling organizations to anticipate equipment failures before they occur, thereby
minimizing downtime, reducing maintenance costs, and enhancing safety standards [2]. This shift from traditional
reactive or scheduled maintenance to proactive and condition-based approaches relies heavily on advanced data-driven
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methods capable of extracting meaningful insights from vast amounts of sensor data. Using machine learning, it is now
possible to analyze historical equipment data and identify complex patterns that change the way fault diagnosis takes
place [3]. Machine learning techniques are widely appreciated for their simplicity, reliability, and fast training
capabilities, making them suitable for diagnosing relatively simple systems. Deep Learning approaches, on the other
hand, offer powerful end-to-end solutions capable of managing complex systems and compound faults, especially whe
large training datasets are available. Transfer learning methods address the critical issues of data scarcity and sam
imbalance by enabling knowledge transfer across different operating conditions, machines, or even applicatio
domains. Despite these advancements, the implementation of machine learning in real-world fault diagnosis continues

samples, has severe computational needs, and remains unclear for users in terms of
operations.

r(gsettings, and incomplete or noisy
| learns and its use in practice make
ed issue to maintain fault diagnostic
itations [9]. Including a large number

In addition, industrial systems have many types of equipment, diff
components. As a result of these factors, shifts in the data between h
the model perform poorly when it meets new or evolving errors.
models that are strong, expandable, and responsive on the spot

trees todether, manage data that contains thousands of
Forest models may still be affected by the problem of too
ing faults. For this reason, using RFECV enables you to find

o0 improve classification accuracy and model stability compared to
es have been explored for fault diagnosis, RF remains a valuable
and necessary approach due to it
performance in machinery i is tasks[12]. Based on what this research learns, it suggests a strong machine

enhance accuracy, make
(No Fallure, Pow

learer, and use resources more efficiently. In this system, we aim to separate four
ear Failure, and Overstrain Failure) basic failure types that often come up in
¥S through careful preprocessing of the senses of vibration, torque, the time worked,
the framework uses performance measures from cross-validation to help it remove

im through this research project is to give industry a solid, scalable, and clear method for diagnosing machine
so industrial operations become both safer and more efficient than before. The proposed methodology aims to
implement Recursive Feature Elimination with Cross-Validation (RFECV) to effectively select the most significant
features from the available dataset, which helps reduce dimensionality and enhances both the efficiency and accuracy
of the fault diagnosis model. Building on this, a Random Forest classifier is developed and trained using the optimally
selected features to accurately classify machine fault types, including No Failure, Power Failure, Tool Wear Failure,
and Overstrain Failure, while addressing issues such as overfitting and improving model generalization. Furthermore,
this approach tackles the challenges of high variance and limited robustness found in existing machine fault diagnosis



methods by integrating feature selection with ensemble learning techniques, thereby ensuring reliable fault prediction
across diverse operating conditions and varying data distributions.

Il. LITERATURE REVIEW

Zhao et al.[13] proposed a novel framework named Identification for Fault Diagnosis (14FD) that integrate
regularized data-driven modeling and frequency analysis for machinery fault diagnosis under nonlinear system
identification. The framework is designed to mitigate the effects of external environmental changes and irg
diagnostic accuracy. It introduces a fault diagnosis-oriented regularization (FDoR) technique that incorpora
physical knowledge through a penalty parameter, making the model specifically tailored for fault d

air-water heat pump system without system modifications. The model achiev acCWPacy of 85% on the NIST

Standards and Technology (NIST). The FDA is trained on this lab-generated data a
e§|ed fault feature analysis from long-

term monitoring data, which avoids the need for expensive custom

real-world data, highlighting a technical gap in generalizabji o0 dojain shift, data incompleteness, and
inadequate fault labeling in practical applications. Brito et al g@ovel unsupervised framework for fault
detection and diagnosis in rotating machinery, addg nge of limited labeled data and the need for model
interpretability. The approach consists of three g extraction (from vibration signals in time and
frequency domains), anomaly-based fault detes is using SHAP for model explainability.

To diagnose faults, the model leverages feature I'"gu@hce scores from SHAP explanations, enabling unsupervised

ethodology demonstrated its effectiveness on three rotating

selection, interpretability using SH
points in the area are that useful
and Local-DIFFI are computa

accuracy without requiring labeled data. Nevertheless, the weak
epends on the quality of the features, and methods such as SHAP

in brushless motors, S@port VVel@r Machines (SVM), Neural Networks (NN), and Random Forests are used (RF).
It collects and ¢ ine? 3

ideas on cwmrccts. Experiments prove that NN comes out on top in terms of success rate. SVM and
y, each having an accuracy of 95% and 92% respectively, while the best performance was

inery that involves bearings, gears and gearboxes, and pumps. The framework tries to find ways to
the major problems linked to expert-dependent traditional faults diagnosis methods finding solutions by
ing only knowledge and manual work. With the help of deep learning, the framework lets users the automatic
overy of useful features and accurate recognition of types of faults. The model manages to reach an accuracy of
97.75%. It is an effective way to do extract features, since it reduces the amount of manual work. An intervention
makes diagnostics more reliable and improves their consistency. However, it faces challenges in generalization, real-
time application, and adaptability to unseen fault types, which are highlighted as areas for future research. Gonzalez-
Jimenez et al. [18] proposed a machine learning-based fault diagnosis strategy for detecting power connection
failures in induction machines, such as high resistance connections (HRC), single phasing faults, and opposite wiring
connections. The model is designed to aid maintenance personnel in identifying these faults, particularly those caused
by human errors during assembly. Due to the scarcity of real-world failure data, a simulation-driven approach using




Software-in-the-Loop (SiL) simulations was adopted to generate synthetic training data. The proposed system
achieved an accuracy of 98.5%. Using this approach, it’s possible to identify a range of faults even without using real
data. Its disadvantage is its dependence on simulations, which may decrease its effective use in real industries.

Tran et al. [19] proposed an loT-based architecture integrated with machine learning algorithms to enhan
cybersecurity in cyber-physical systems (CPS) for industrial electrical machines. The architecture focuses
monitoring induction motor status and detecting cyber-attacks in real time. The system uses the Random Fores
algorithm for fault detection due to vibration and cyber-attack recognition, achieving an accuracy of 99.03%, which
outperforms other ML models in industrial conditions. The infrastructure leverages the CONTACT Elemg
platform to visualize motor faults and fake data signals triggered by detected cyber-attacks on a dashbog
advantage of this model lies in its high detection accuracy, low latency, and clear visualization, making it suit}
cost-effective and secure remote monitoring. However, technical gaps remain in terms of scalabili
industrial networks and robustness under varying attack types. Shubita et al. [20] proposed a machi
fault diagnosis system that uses acoustic emission (AE) signals for early fault detection in rggi
system is implemented on an embedded device with 10T connectivity, enablinggeal-ti on and
classification. It achieved an accuracy of 96.1% using a fine decision tree model R
its ability to provide accurate and real-time monitoring with minimal lateg
deployment. However, the technical gap lies in the limited exploration of mode
or noisy conditions, which may affect real-world generalization.

¥ under varying operational

Siyuan et al. [21] proposed a duplet classification model combining two((: utional Neural Networks
(CNNs) for fault diagnosis in rotating machinery involving both ro c®ing components. The idea involved
through the model was constructed by working on a dataset of 48 m alih problems created by different faults
different levels and types of these two parties. CNN architectu credi®d to distinguish between rotor and

having the ability to respond to various external problems g aged. It was possible to achieve the
model. A high rate of identifying mixed faults a . that the results are highly reliable. Moreover, a
single-vs-rest approach was built based on C h known diseases. Four new fault categories,
including those that go unnoticed, were tested'

onments and recognize new types of faults. However, there
gch type of fault may increase the overall model. Real-time

distribution of their vibration signals
on top of each other and trainin n
into one approach, so you do ave to er features manually. On data from the machine fault simulator, the
accuracy of the classificagjgayl
Because this way wor [ INggmation, the model can learn to structure the data and make the process of
finding issues automa . Still, getting the right performance from the model requires careful selection of
scale and depth g hyperparameters and running the model can be difficult.

achines by studying the vibration signals. This system performs empirical mode decomposition (EMD)
ise from the signals and does multi-domain feature extraction to find both the time and frequency features
ibration data collected from healthy and bad induction motors. The extracted features are classified using multiple
rithms including SVM, KNN, Decision Tree, and Linear Discriminant Analysis, with the support vector machine
using a Gaussian kernel achieving the best performance of 98.2% accuracy.
The advantage of this method lies in the hybrid use of time and frequency features, which enhances the fault
discriminative capability of the model. However, a technical gap remains in the generalization of the system across
different machine types and operational conditions, which could affect its applicability in broader industrial settings.
Hung et al. [25] proposed a system-on-chip (SoC)-based tool wear detection model that leverages deep learning with
sensor fusion techniques. The system was trained using vibrational and acoustic signals collected from a three-axis
CNC machine operating under various spindle speeds and torque conditions. The inputs to the deep learning model




were frequency spectrum representations of signals from a MEMS microphone and a three-axial accelerometer, with
tool flank wear measured via a camera, adhering to 1SO 8688-2:1989 standards. The model achieved detection
accuracies of 99.7% for the single-sensor model and 87.75% for the fused model when deployed on a Pocket Beagle
SoC.

The advantage of this system lies in its real-time detection capability, high accuracy, and cost-efficient embedd
implementation. However, it shows reduced performance in the fused model, possibly due to signal integrati
complexity or variability in machining conditions, indicating a need for more robust fusion strategies. Orru et al. [26
proposed a simple and easy-to-implement machine learning (ML) model for early fault prediction of centrifuga
pumps in the oil and gas industry. The model is based on real-life sensor data including temperature, pressug
vibration readings, which are pre-processed and denoised before training. Two algorithms—Support Vector i
(SVM) and Multilayer Perceptron (MLP)—were implemented using the KNIME platform. The model achisge

approach lies in its practical simplicity and effective performance using real industrial data, suppo
decision-making. However, the model is still in a preliminary stage, and potential technical ga
broader validation across different operating conditions and scalability for more co fa

Table 1: A Review of Research on Machine Fault Diagnosi

Author Proposed Model Findings Challenges
Zhao et al.[13] Identification for Fault | Achieved 92% accuracy tational complexity
Diagnosis (14FD) machinery fault dizggi and tuning difficulties in

integrating regularn
modeling and fr
incorporates
via S

regularization parameters.

&)

Bode et al. [14] Data-driven Fault
Detection Algorithm
(FDA)

uracy in | Poor generalization to real-
faults in heat pump | world data due to domain
using Al-based FDAs | shift, incomplete data, and
0 NIST laboratory data; | fault labeling issues.
ansfer to real-world
systems  without  hardware
odifications; leveraged big data
d feature extraction for energy-
fficient building climate
systems.

Brito et al. [15] Achieved 96.72% accuracy in | Computational cost of
unsupervised classification using | interpretability methods
Ensemble, KNN, and CBLOF; | (e.g., SHAP, Local-DIFFI);
employs SHAP-based | performance sensitivity to
explainability for root cause | the quality of extracted
analysis; effective across three | vibration features.
real-world rotating machinery
datasets.

Achieved 97% accuracy with | Real-time integration
NN, 95% with SVM, and 92% | challenges and limited
with RF; effectively analyzes | adaptability to evolving fault
fault severity and suggests | patterns.

countermeasures using sensor | The model faces a high
data. variance issue as it struggles
to validate on unseen faults

ML-based fault diagnosis
using SVM, NN, and RF

Tang et al. [17] Deep  Learning-Based | Achieved 97.75% accuracy in | Generalization issues, real-
Intelligent Fault | fault classification for rotating | time implementation
Diagnosis Framework machinery components | constraints, and difficulty
(bearings, gears, pumps) by | adapting to unseen fault
enabling  automatic  feature | types.




learning and reducing reliance on
manual feature extraction.

The model might lead to
overfitting with increased
epochs

Gonzalez-Jimenez | ML-Based Fault | Achieved 98.5% accuracy in | Dependency on simulated
etal. [18] Diagnosis for  Power | diagnosing power connection | data may limit real-world
Connections in IMs faults (HRC, single phasing, and | generalizability; lacks
opposite wiring) using Software- | validation with field
in-the-Loop (SiL) simulation- | datasets.
generated training data.
Tran et al. [19] loT-based architecture | Achieved 99.03% accuracy in | Scalability
with  integrated ML | detecting induction motor faults | heterogeneous
(Random Forest) for CPS | and cyber-attacks using Random | networks and
security and motor fault | Forest; leverages CONTACT | under diverg

detection

Element loT platform for real-
time visualization of motor status
and cyber-attack data; offers low
latency, high detection accuracy,
and clear dashboards.

scenarios  re|
issues.

Shubita et al. [20]

ML-based Fault
Diagnosis System using
AE on loT-Enabled
Device

Achieved 96.1% accuracy
early fault detection of rotating
machines using AE signals;
implemented on embedded loT,
device for real-time moaitoring

Chen Siyuan et
al.[21]

Duplet Classifier using
two 1-D CNNs

robusthess under
yIng  operational/noisy
ditions; lacks
ization to real-world
environments.

Achieved 95.93%
diagnosing  mixed

Increased model complexity

due to separate CNNs;
computational overhead
during real-time
deployment.

Shao et al. [22]

Deep Belief Network
(DBN)-based
Diagnosis

Fault

Kafeel etal. [24]

automatically learning features
om vibration signal frequency
stributions. Combines feature
xtraction and classification in a
unified deep learning framework
using stacked RBMs.

Model performance depends
heavily on architecture scale
and  depth; introduces
challenges in
hyperparameter tuning and
computational complexity.

The hybrid use of time and
frequency  features,  which
enhances the fault discriminative
capability of the model

Generalization of the system

across different machine
types and  operational
conditions

Hung

learning  with

sensor fusion

This system provides real-time
detection capability.

This model faces integration
capability issues

Orru

pport Vector Machine

Detecting system deviations and
issuing fault prediction alerts"”

This model faces challenges
in broader validation across
different operating
conditions and in scaling to
more complex fault
scenarios

As shown in table 1, the existing fault diagnosis models face several technical challenges, including high computational
complexity and difficulties in tuning regularization and hyperparameters. Many models struggle with generalization
issues, particularly when validating on unseen fault types or transferring from simulated or laboratory data to real-world
scenarios, often due to domain shifts and incomplete or noisy data. Real-time implementation and integration remain
problematic, especially for deep learning and ensemble methods with increased model complexity and computational
overhead. Industry experts are also very concerned about the ability to scale these networks in many settings and how



they will handle ever-changing threats. Furthermore, knowing how the Al model works is helpful, but it contributes to
the model’s complexity, and there are usually difficulties for models to maintain their results as faults evolve and work
in more types of environments. This research addresses the technical gaps of high variance and overfitting commonly
observed in machine fault diagnosis models, focusing on improving robustness and generalization in Random Forest-
based predictive maintenance.

I1l.  PROPOSED METHODOLOGY

This section describes the proposed methodology illustrated in the figurel, which presents a structured methgf®
for machine fault classification using a machine learning approach. The process begins with data preprocessind
includes steps such as dropping irrelevant columns, label encoding of categorical data, feature and targa

one of the four possible outcomes: No Failure, Power Failure, Tool Wear Failur
proactive maintenance and minimizing operational downtime.

Preprocessing

Dropping Irrelevant
Columns

Label Encoding

Input Dataset:
Feature and
Target Separation
Train-Test Split
Feature Set
K Random Forest
Classifier

No Failure Power Failure  Tool Wear Failure  Qverstrain Failure

Fig 1. Architecture of the proposed model RFRFECV

. Preprocessing
The initial phase prepares the raw input dataset for subsequent analysis.

1)Input Dataset: Let the raw input dataset be represented by Equation(1)



D = {(Xllxl)ﬂ (Xz,Xz), LA} (XN!XN)} (1)

where X; is a vector of features for the i instance, and y; is its corresponding label. The dataset has N instances
and M initial features.

2)Dropping Irrelevant Columns: As shown in equation (2). This step aims to remove features that do not
contribute to the predictive power of the model. denote the set of irrelevant feature indices. After removing thes
columns, the dataset is transformed into a new feature set, as represented in Equation (2).

Frelevant = {] | ] E/Firrelevant} (2)

D" = {(x1',x1), (x2", X2), oo, (Xn', X3} 3)

where Xi’ is Xj with columns in Firelevant rfemoved. As shown in Equation (3), the updated dat N
input-output pairs where each x;' is derived from the original feature vector x; by udi e fea
in Firrelevant . This results in a reduced-dimensional representation that retains g st ant features for
model training.

3)Label Encoding: If the target variable is categorical, it needs to be convert
Let Y={y,,V2,¥3, - VN (4) be the set of original categorical labels. As r
label encoding maps these to numerical values: L:Y—{0,1,2,3} (e.g., "No Fgire'
etc.).

numerical representations.
ented in equation(4) , the
» "Power Failure" —1,

The transformed dataset now has numerical labels:

D" = {(x,",11), (X n. @Ml (4) , where li=L(yi).

4)Feature and Target Separation: The p
(y). X={x1"x2",....xn""} (matrix of features)

lit into features (X) and the target variable
...In} (vector of target labels)

5)Train-Test Split: The dataset is divided into trai
testing sets. Dirain""=(Xtrain,Ytrain) Dre test, Ytest)

and testing sets. Let Diain” and Deest’” be the training and

B. Feature Selection

This stage identifies the most refe et of features.

ion with Cross-Validation (RFECV)

odel and removes the weakest features until the optimal number of features is
-validation performance. Let Mmodel e the base machine learning model. Let K be the

. Initialization
Start with the full set of P features, F={f1,f,,...,fr}.
Step 2 :lteration

The model is trained on the current feature set FFF using K-fold cross-validation applied to the training
data Xirin. During this process, the model's performance measured using metrics such as accuracy or F1-
score—is evaluated on each fold. Let Sk represent the score obtained on fold k, and the average score
across all folds is calculated as represented in equation (5).

§= = TK_1Sk (5)



After evaluating performance, the feature with the lowest importance, denoted as fweakest, iS identified
and removed from the feature set F. This iterative process continues to refine the model by eliminating
the least significant features.

Step 3 :Recursion
Repeat step 2 until an optimal performance is observed or a minimum number of features is reached.
Step 4 :Optimal Feature Set Selection

Select the feature set Fselectea that yields the highest average cross-validation score. The dataset iSg
projected onto this selected feature set: Xirain"=Xitrain[Fselected] Xtest’=Xtest[ Fselected]

Step 5: Feature Set
The output of the feature selection phase is the reduced set of features, F

C. Random Forest Classifier
The selected features are fed into a Random Forest Classifier for predicting the failure t
ecision trees.

1)Random Forest (RF): An ensemble learning method that constructs a mwde 0

Let T be the number of decision trees in the forest. Each tree te yained as follows:

Step 1 : Bootstrap Aggregating (Bagging)

A random subset of the training dat3 - placeN@pt) is sampled to train each tree. Let this
sample be Dt'=(Xiain,t',Yirain,t)-

Step 2: Random Feature Subspace
At each node of the decision , Onlya random subset of m features is considered for splitting.
Step 3: Tree Constructj decisign Ty is grown on Dy

Step 4: Training

The Random Fo enoted as RF, is trained on the selected features of the training data:

tra,

een instance Xnew from Xeest' (With features corresponding to Fseiected), €ach tree t in the forest
y~t. The final prediction for Xnew is the mode of the predictions from all trees: y*"*"=mode(y"

p 6 : Output Classes

The model outputs one of the four predefined failure types: "No Failure", "Power Failure", "Tool Wear
Failure", "Overstrain Failure".

IV. RESULTS AND DISCUSSION



A. Dataset Description

The dataset used in this study contains detailed information related to engine performance and failure analysis. It
includes variables such as vibration levels, torque, process temperature, air temperature (in Kelvin), engine speed (in RPM),
and operational hours. Each entry is uniquely identified by a UDI (Unique Identifier) and is associated with a specific Produ,
ID and engine type, where the type may denote categories such as motor (M) or liquid (L). The dataset also records the ty,
of failure (if any), including specific classifications such as rotational failures, across a total of 500 machines. These attribut
enable a comprehensive analysis of engine behavior under varying operational conditions. It can be used in many way.
example, spotting reasons for engine failure, checking for engine temperature, speed, and torque, examining variou
types, and making forecasts for maintenance. The dataset is available at the following sour
https://www.kaggle.com/datasets/nair26/predictive-maintenance-of-machines. The dataset is split into 754
25% testing.

RFRFECWY Classifier
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Fig 2. Confusion matrix of the proposed model

figure 2 represents the prediction results of Random Forest classifier with Recursive Feature Elimination and
Cross-Validation (RFRFECV) on multi-class machine failure problems. The four labels tested in the model were No
Failure, Overstrain Failure, Power Failure, and Tool Wear Failure. It classified 115 instances as No Failure and just one
was ruled as Tool Wear Failure. All three cases of Overstrain Failure were grouped under the correct class with 100%
correctness. No errors happened in the prediction of Power Failure, as all two instances were accurately classified, and
although four instances of Tool Wear Failure were found, the model misclassified one as being from the No Failure class.
On the whole, the confusion matrix confirm that the main class is classified very accurately and that all failure categories
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are detected well. The findings prove that choosing the right features and training the model correctly worked well. The
slight number of cases that were wrongly classified implies that some failure groups may have traits in common with
others. Therefore, RFRFECV was a dependable choice for handling data from many types of machinery and for
recognizing faults in machines with preventive measures.

Feature Importances (Random Forest)

Operational Hours
Torgue [Nm]

Rotational speed [rpm]
Vibration Levels
Process temperature [K]

Air temperature [K]

/

T
0.00 0.05 .10 0.15 0.20
elative Importance

Type

Fig 3. Feature Importance lysis Using RFRFECV

The figure 3 illustrates how a Ranm E lassifier worked well when it was trained using RFRFECV to predict
multiple machine failure conditions. foulategories used in this classification problem: No Failure, Overstrain
Failure, Power Failure, and Tool Failu s model was able to identify 115 of the instances in the “No Failure”

marked as involving “Tool Wear Failure.” When it comes to the “Overstrain
ny mistakes and identified all the instances correctly. Thus, the model has the
s and certain types of failures. Consequently, the RFRFECV method allowed the
is improved the model’s precision in spotting and classifying different machine

category and just one case
Failure” category, the systg
ability to tell between rou
team to pickgthe rj aty
failures.
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Feature Relationships Colored by Failure Type
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nal figures, offering views of the distributions of the features individually. Each scatter plot in the off-
ows the trend between two features. The analysis using pair plots explains the features’ distributions alone
elationships with one another, as well as the significant patterns spotted for each failure case. The feature called
ype' is a category, with "Type 1' occurring most often, while both 'Air Temperature' and 'Process Temperature' are narrowly
distributed and only take values inside certain ranges, but 'Air Temperature' sometimes drops below these ranges. 'Rotational
peed' displays multiple peaks, suggesting varied operating regimes, whereas ‘Torque' and 'Vibration Levels' demonstrate
unimodal distributions concentrated at lower values with a tail extending to higher levels. ‘Operational Hours' presents a
broader distribution, with a noticeable peak at lower values potentially indicating newer units or shorter operational cycles.
In terms of bivariate relationships, a strong inverse correlation exists between 'Rotational Speed' and 'Torque', where
increased rotational speed generally corresponds to decreased torque, a typical characteristic of mechanical systems with



constant power output. No direct linear relationship is evident between ‘Operational Hours' and either "Torque' or 'Rotational
Speed across the entire dataset, although specific failure types might exhibit localized clustering. 'Air' and 'Process
temperatures' show an expected correlation with each other, but their relationships with other operational parameters like
"Torque' or 'Rotational Speed' are less pronounced linearly. Similarly, 'Vibration Levels' show scatter with other features, but
no strong linear correlations are immediately apparent across the dataset. Crucially, the coloring by 'Failure Type' illumina
key patterns: 'No Failure' instances, representing the majority, are broadly distributed across all features, forming the primal
clusters. 'Power Failure' instances are fewer and tend to cluster in specific regions, such as higher torque values at varyin
operational hours, or lower rotational speeds combined with higher torque, potentially indicating overload conditions. Zs
Wear Failure' events are sparse but more prominent at higher operational hours, consistent with accumulated wear,
appear at higher 'Vibration Levels', a common symptom of tool degradation. Finally, 'Overstrain Failure' events are
and consistently occur at extremely high "Torque' values, aligning with the definition of overstrain.

Table 2 : Accuracy-based performance of the proposed model

Author Proposed Model racy
Zhaoetal.[ ] Identification for Fault Diagnosis (14FD) 92%
Bodeetal. [] Data-driven Fault Detection Algorithm (FDA) 85%
Brito et al. [ ] Unsuperwsed Framework for Fault Detection and Diag 96.72%

Machinery
95%
Chenetal. [] ML-based fault diagnosis using SV 97%
92%
Tangetal. [] Deep Learning-Based @€ lagnosis Framework 97.50%
Gonzalez-Jimenez etal. [] | ML-Based Fault Diag Power Connections in IMs 98.50%
Tranetal. [] IoT—b_ased architecture wit\g@tegrated ML (Random Forest) for CPS 99.03%
security and mqtor fault detec
Shubitaetal. [ ] ML-based jagnosis System using AE on loT-Enabled Device 96.10%
Chen Siyuan et al.[ ] iglf two 1-D CNNs 95.93%
Shaoetal. [] f Network (DBN)-based Fault Diagnosis 99%
Kafeel etal. [ ] Ph system based on Hybrid machine learning models 98.20%
Orruetal. [] ector Machine (SVM) 98.10%
Proposed md% 99.20%
Table 2 des N formance (in terms of accuracy) of existing fault diagnosis methods used across various domains

, induction motors, and cyber-physical systems. Models range from conventional machine
as Support Vector Machines (SVM) and Random Forest (RF) to deep learning-based frameworks

such as

d to distinguish between different techniques. The RFRFECV Classifier, proposed in this study, achieves the
uracy of 99.20%, outperforming all other existing approaches. Notably, models such as the 10T-based architecture
ith integrated machine learning (99.03%), Deep Belief Network (99%), and Hybrid ML models (98.20%) also demonstrate
trong performance, reflecting a clear trend toward the adoption of hybrid and deep learning-based solutions for fault
iagnosis.
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