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Abstract:

Routing in Low-Power and Lossy Networks (LLNSs) requires a care ancing act between
energy efficiency and network longevity, especially in situations mgiyva y the Internet of
Things (1oT). Traditional RPL (Routing Protocol for Lo ﬁLossy Networks) often
fails when confronted with changing climatic condis eftic node activity, thereby
increasing energy consumption and reducig
CA-RPL (Context-Aware Reinforced Py

routing decisions in real-time based on re

ork's pan. This work presents the

Fra rk), which dynamically adjusts its
energy, node mobility, connection quality, and

traffic patterns. The system utilizes reinforceNgapt learning and a decision engine based on

fuzzy logic to dynamically id timal parent nodes and alternative paths, thereby

minimizing control packet and@alancing the energy burden throughout the network.
how

Simulation results in Pyth at CA-RPL increases the overall network lifetime by

30.2% and signifig \UC®® the average energy consumption by 21% compared to

conventional ) function-enhanced RPL versions. Where reliability and

ne Efficiency, Context-Aware Routing, RL, Fuzzy Logic, Network Lifetime,

hings.
Introduction:

Many more energy-efficient devices are now connected because of the proliferation of the
Internet of Things (loT). Spots where resources are scarce include environmental sensing
networks, smart cities, and industrial monitoring systems. This is especially true in areas where

supplies are low[1]. A lack of processing capacity and energy, inconsistent connections, and a
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range of topologies characterize low-capability and lossy networks (LLNSs). Since finding a
happy medium between maximum energy efficiency and maximum network longevity is
crucial in this case, routing becomes a significant issue [2]. The Internet Engineering Task
Force (IETF) has made it a requirement that all LLNs must adhere to the RPL standard. This
standard is based on the IPv6 Routing Protocol for Low Power and Lossy Networks. RPL

implementations can fail in the real world, regardless of whether they are updated or stand

versions. This is especially true in the Internet of Things industry, where trends are_o

shifting, and predictions are notoriously difficult to make[3].

The biggest problem with conventional RPL is that it employs routing algog@ms

adapt to the evolving needs of a network. This encompasses the timg NOSQR, MOoVe, use
te sel

overwhelming volume of control messages, high energy consumpti@by nodes, and early

energy, need connectivity, and transmit data in that order. I tion, an

network failure are all potential outcomes of these factors[4-5].4ffese Wmits will become
increasingly apparent for Internet of Things (IoT) syst re expected to operate in
challenging conditions or that demand a high level I ity gd longevity. It is crucial to

address these issues so that energy can be pd any sensor nodes that remain idle for

extended periods, maintenance costs ca
7].
The lack of enough flexibility in the numerous

2d, and ®rvice outages can be minimized[6-

buting alternatives has long been a source of
disappointment for the research ity. A variety of reform ideas have suggested ways to
improve RPL's Objective g@inction s) and other metric combinations[8]. Due to their

overemphasis on epaks connection reliability, the current solutions necessitate

smar orks that can respond instantly to changes in the network is necessary

toclp
This

duces the CA-RPL routing architecture, a novel routing design for dynamic

Y

-Po

Ing reinforcement learning with fuzzy logic decision engines formed the basis for

and Lossy Networks (LLNSs), as a possible solution to these issues. The idea of

building CA-RPL. This allows the protocol to dynamically adjust its routing choices based on
the current condition of the related environment. Among the details it provides are the current
user count, connection strength, node mobility, and remaining energy in the event of a failure.
Using what it has learned from its previous routing experiences, the CA-RPL algorithm

continuously tweaks its parent node selection process. This feature enables the routing system



to provide better load balancing with minimal additional control effort while also reducing
energy consumption.
The following are the main objectives of this work:
e A test model, known as the context-aware routing decision framework, utilizes fuzzy
logic to make real-time routing decisions based on various factors, including energy
usage, connection quality, mobility, and other relevant factors.

e Anessential part of reinforcement learning is building a module based on smart lea

that enables nodes to learn the best routing behaviors over time, particularly i
with a longer lifespan.

e Adaptive propagation methods were employed to mitiga ﬁ C stion and

minimize the weight of control messages. A decrease overhead is the
outcome of this.

e The Extensive research utilizing Python simul 'ns&ws at the network
outperforms ordinary RPL and its upgraded va @ terms of longevity (30%

longer) and energy consumption (25% lowe

When it comes to real Internet of Thing

adaptable framework. Due to these cha

2. Related Survey:

The Routing Protocol for Log- arj Lossy Networks (RPL) is the most suitable routing
protocol for 10T scenario ere urces are limited and topologies change frequently.

Regular RPL solutj to work effectively in real-world 10T systems, as these

nstantly evolving. The major purpose of this article review is to

ent Learning-Based Enhancements:

info ent learning (RL) will help address the issues that RPL has with adaptation. Farag

novic (2021) [10] propose a technique in which each node employs Q-learning to
mine the optimal strategy for selecting a parent. This strategy adjusts factors such as the
distance between hops, the quality of the connection, and the network's level of activity. This
strategy improved both the average delay and packet delivery, even though individuals spoke

to each other more frequently.



Dey and Ghosh (2024) [11] enabled nodes to independently assess the state of DODAGS using
their iTRPL concept. iTRPL has trust assessments that distinguish between nodes that can be
trusted and those that cannot. This makes the network more secure against internal attacks.
» Fuzzy Logic-Based Routing Strategies:

Fuzzy logic has enhanced RPL's decision-making capabilities by enabling it to evaluate
multiple routing components simultaneously. Mehbodniya et al. (2022) [12] utilized fu
logic to develop EA-RPL, which considers various factors, including residual energy, load. a
Expected Transmission Count (ETX). This method made the network use less §

survive longer.

Arivubrakan and Kanagachidambaresan (2021)[13] created a wa F Logic to
identify parent nodes based on hop count, energy, signal strength; Z Their STmulation
results showed significant improvements in two Quality of Service ( metrics: the packet
delivery ratio and latency. ,

» Context-Aware Routing Mechanisms:

Researchers have been exploring context-aware roy 0040 enhance the flexibility of
RPL as network conditions evolve. RoyaecgPe

RPL, that incorporates context-aware ‘@
Wt-aware objective RPL (O-RPL) in the field
of agriculture. It examines bot nal world and what makes each node unique. This

0 4] used a routing decision model, M-

ncludi® node mobility and energy levels.

design helped the networ | 1oT applications last longer and improved routing

performance.

ad al energy.
. (2021) [17] developed Chained Secure Mode (CSM), which utilizes network

INMY to enhance defenses against various types of routing attacks. It protects RPL against

of e

replay attacks. Attacks on CSM reduced latency and increased packet delivery rates.

» Limitations of Existing Approaches and the Proposed Solution:
Although there are still some issues with RPL, these changes have made it easier to use. The
reason is that RL-based approaches will not be the fastest to react to changes in the network,

as they require a significant amount of time to train. Fuzzy logic approaches are effective at



piecing together different signals, but they could make it harder to come up with rules and cost
more to do the math. Context-Aware Reinforced Propagation (CA-RPL) is a system that
utilizes both reinforcement learning and fuzzy logic to inform its decision-making process. CA-
RPL's purpose is to reduce the number of control packets that need to be delivered and find a
good balance between energy use by automatically selecting the optimal parent nodes and other
paths. The first results from simulations suggest that CA-RPL will significantly increase

lifespan of a network while using less energy than traditional RPL implementations.

3. Methodology: Context-Aware Reinforced Propagation k

The Context-Aware Reinforced Propagation Framework (CA-RPL) ¥intelligent decision-

making framework that speeds up LLN routing. The RPL protovc prates fuzzy logic

and reinforcement learning (RL) from CA-RPL to make pathways more flexible in a
network that is constantly evolving. The approach feggur uzZQ decision engine, a routing
algorithm, a system architecture, and a m oNg@inforcement learning, as illustrated in
Figure 1.

3 ;/:/—\ Routing Table
Manager
Fuzzy Logic

Engine i

/I]\/I‘] Parent selection

ext
onitor

Reinforcement
Learning Agent
Data Forwarding
(to Sink Node)
Figure 1: Proposed CA-RPL Architecture

» Sensor Nodes (SNs):




To make 10T Low Power and Lossy Networks (LLNS) operate, sensor nodes are particularly
critical. These nodes primarily use data sensing and multi-hop transmission to perceive and
engage with their surrounding environment. The three main aspects of an SN that make it work
are as follows:

Sensing Modules: The sensing modules enable sensor nodes to detect and measure various

environmental or system parameters, including temperature, motion, light intensity, humidi

support the data that travels across the network.
Communication Units: Sensor nodes (SNs) comprise wireless tran ha send and
O0WPA

energy.
An SN's principal role is to gati#r d t it also helps with network routing by passing data
from other nodes to the si the rolesde exchanged in that way, the network could function

on its own. Nodes egai text-aware decision-making approaches, such as CA-RPL's

fuzzy logic and rei St Iearning, to determine the optimal route based on the current

networkgand ons. Sensor node design is both challenging and crucial, as it is
essengial ike a nce between processing power, connectivity, and energy efficiency.
de (Gateway):

de, or gateway, is where all the network's sensors connect. It has to gather data
the SNs and connect the limited LLN environment to other systems, including cloud
platforms, centralized databases, or command centers. A regular sink node, on the other hand,
is made to fulfill its principal job as follows:

Higher Processing Capabilities: The sink node can handle more complex protocols, combine

or filter data first, and analyze vast amounts of data, as it has more memory and a faster CPU



than sink nodes (SNs). It can handle data as rapidly as a supercomputer. Before putting data in
the cloud, complicated systems could use local control algorithms or basic analytics.
Uninterrupted Power Supply: Typically, the sink node is connected to the power grid or
equipped with large-capacity rechargeable batteries, ensuring it can always access power. It
can operate continuously without pausing, as it doesn't have the same power restrictions as
sensor nodes. So, it could continue for a long time, even with a significant amount of weig
External Connectivity: The sink node can connect to the outside world through
methods, including Ethernet, Wi-Fi, LTE/5G, and satellite. People further up the ;

stack can now access the discovered data from the LLN in real-time and from a

to this connection.

The sink node will obtain its data directly from nearby SNs or via i 2 nodes ™ a multi-
hop transmission. The sink node would need to conduct more supervisg
CA-RPL, which are becoming increasingly sophisticated. Thisﬁe

software updates, and control signals to the entire networ rcement learning systems,

ork in systems like

send out rules,

it will also aid in training or determining incentives iI'gINg pgles toward communication

and routing patterns that consume less en PL protocol is a clever combination

of the original RPL (Routing Protocol ower aM Lossy Networks) with additional
features, including context awareness and@&chine learning-based flexibility. The network
conditions might change at any mgment whenWu utilize the Internet of Things. People will
move around, nodes can fail, aglfl ¢ ions can become worse, for example. Modern RPL
relies heavily on fixed or et megs ents such as Hop Count or Expected Transmission

Count (ETX). CA-RPlgma tQgther hand, is more adaptable, real-time, and ever-changing.
3.1  Context @
To perfQan p, 3 g

nces of each node in real-time. To make this happen, each node x,,

eters:
ge quickly, the CA-RPL protocol must be able to track the current
state exg@nal i
ac a group of contextual elements is illustrated in Figure 2. These traits hold
Ko ion, including energy availability, node mobility, communication reliability,

d. This information helps to make educated decisions about where to go.



Tl Tmo Sensor Node  (z,)

p . (%m)
Q PQ Neighbor Nodes
Zn Residual Energy R.(z,)
Mobility H(z,,)
Traffic Load W(z,,) O
PQ
Tm3 K
Figure 2: Monitored Contextual Parameters at the Sensor node
» Residual Energy R, (x,):
At node x,, displays the remaining power in the batterg. epij@ an eye on R,, the network

can last longer by not sending data via nog

‘@
If R, IS the battery's maximum or initia BCity and R .yrrent (X,) 1S the quantity of energy
in (1):

unnifig Tow on power. This is crucial

since sensor nodes typically run on batig

miteOqower remaining.

right now, then the energy that is left over is g

Rcurrent (Xn)
R (xy) = "umrentn @)
This normalization conve < (x, )q@i#fa value between 0 and 1, where 1 signifies the battery

entirely dead.

q(t);z((:m)ll )
It OSes the function q(t) to indicate where node x,, is at time t. To normalize, utilize the
maximum expected displacement, which is indicated as s,,,,,. This approach gives a mobility
index H(x,) € [0,1], where 0 means no movement and 1 is the most evident movement.

» Link Quality PQ(x,, X;m1):



The quality of the link affects how well the node x,, and node x,,, can connect wirelessly. The
packet delivery ratio, the expected transmission count (ETX), and the received signal strength
indicator (RSSI) are all common measures. One of these values is the anticipated transmission
time (ETX), which represents the overall time required to transfer a packet, including any

retransmission times (3).

ETX(Xn,Xm)—1
PQ(xp, xm) =1 - # ©)

ETX will be anywhere from 1 (a perfect connection) to ET X, (the worst link). On
normalized value for PQ(x,, x,,,) is 1, which suggests that the linkages are verygi

One will also use normalized RSSI or packet reception rate (PRR

determine the quality of a network.
» Traffic Load W (x,):
t

This tells how much data processing load or network congestioz node x,. Buffer

overflows will cause additional delays and packet losse ffic is heavy, which can
significantly impact the effectiveness of routing. Onega (4)o illustrate the normalized
traffic load. Here, Q. rrent (X5) 1S the curregiagile ngth umber of packets waiting to
be transmitted) and Q,;,4, 1S the maxim pac

W(Xn) — Qcurrent (Xn) (4)

Qmax

The result of W (x,) € [0,1] is achjeved, with @tndicating no load or an empty queue and 1
indicating total congestion.
» Parameter Normgzglation:

It has to normalize thgsses s to a range of [0,1] before you can utilize them in the fuzzy

(%)

he lo and greatest values that are predicted for the parameter n are n,,;, and n,,4,. TO

su ach node x,, has a vector of normalized conditions, which is given in (6):

%) = [Re(xn), H(xn), (PQ (X, Xm) Imerny W ()] (6)

In this case, K(n) is the set of neighbors of a node x,,. The CA-RPL protocol uses this vector
to find out which adjacent nodes are appropriate for routing. This helps make the network more
energy-efficient, dependable, and long-lasting from the outset. This strategy utilizes decision

engines such as fuzzy logic and learning by doing.



3.2 Fuzzy Logic Decision Engine:

The Fuzzy Logic Decision Engine (FLE) is a key aspect of CA-RPL, which utilizes a variety
of contextual variables, some of which may not always be apparent or evident, to determine
whether neighboring nodes are routing data as desired, as shown in Figure 3. Fuzzy logic is
well-suited for this task, as it mimics human thought processes and allows individuals to j

groups over time rather than being confined to separate, binary groupings.

Residual Energy R, _—

>@< Mobility H >

[e) o

2@ Link Quality PQ

Traffic Load W

~

Fuzzy Logic
Decision Engine

o

Fuzzy Desirability
Score

Figure 3: Fuzzy Logic Decig
> Inputs to the Fuz ste

normalized contextual factors from the data that enters into

The engine obtains t4

the fuzzy system,

see how stable nodes x,,, which are near to one other.

when two wireless nodes, x,, and x,,,, are connected in a manner that works.

done on packets at the neighbor node x,,,.
tilize the interval [0,1] to make these inputs more consistent.
» Fuzzy Sets and Membership Functions:

Fuzzy sets define qualitative states for each input parameter, such as:
Low, Medium, and High:



For instance, fuzzy membership functions (4., (Re), Unmeaium (Re), tuign(Re) Would change
the residual energy R.. A membership function might be a triangle or a trapezoid. A triangle

membership for "Medium™ energy would be (7):
0, Ro<aorR,=>c

Re—a
.uMedium(Re) = b-a’ a<R,=b (7)
C:;e, b<R,<c

The triangle's base, height, and diagonal are a, b, and c, in that order. For all three {28

mobility, connection quality, and traffic load—membership functions are set up i

way.
» Rule Base: IT—Then Rules:

Fuzzy decision-making is based on heuristic principles that indica uts and outcomes

are related.

For example: ,

Rule 1: If R, is High AND PQ is High AND W is Lo js Low, THEN all indicate

that something is particularly desired.
Rule 2: If R, is Low OR PQ is Low, THE

Rule 3: If H is enormous (the node trave

psts the object is not particularly desired.
d a lot), 1t's not very enticing (routes are not
trustworthy).

When verifying the accuracy of rule, it is Customary to use fuzzy AND (minimum) and

OR (maximum) operators to ynput memberships in (8):

ap = min(,usl (n4), ps, (n3 8

Where a,, demonstr i power of rule p. Values ug,(n;) are the persons in the input
set.

The each'rule is a group of fuzzy values that represent how desirable something

Low, Medium, or High. The system integrates all of the rule outputs into

jguous desirability score FDS(x,,) € [0,1] by executing the following:

mum of the weighted membership functions.
Getting rid of the fuzziness in the combined results gives you a clear scalar value. The centroid
test, often known as the center of gravity test, is one of these methods.

irabili irability Dlst

Desirability"Desirability
FDS(xm):f s
[ Desirability*Desirability D

(9)



In (9), the desirability variable [ is included in the range [0,1], and ppesirapiriey (D is the sum
of all membership functions in that range. The output FDS(x,,) demonstrates how acceptable
neighbor x,, is a routing parent that takes into consideration numerous distinct contextual
aspects simultaneously.

» Fuzzy Decision Process:

For a neighbor x,,,:

Get the membership values of the input from (10):
Briign(Re(Xm)), row (H (m) ), tmeainm (PQ Gy X)), row (W (X)) (0
Check out how the rule's usage changes in (11): &
& = min (pign(Re), row (), tyseainom (PQ), Hrow (W) ) )

a could change a fuzzy set that states "High™ appeal. One can get C DS (x,,) by putting
all the rules together and then defuzzifying them.

The Fuzzy Logic Decision Engine enables CA-RPL ake sound and accurate

conclusions, similar to a person's judgment, regargg hej§a neighbor is a good fit,
[

handling network parameters that are un ina e measurements. Making a
continuous desirability score FDS(x @ hat es it easier to pick parents. This
approach for changing loT settings make %S more stable, uses less energy, and speeds up

the network.

Modgl ig@CA-RPL:

each sensor node is an RL agent that operates independently

3.3 Reinforcement Learrg
The CA-RPL protocQlemmaits
@ ask is to select the optimal parent node or next-hop node in real-

oice has a direct impact on the network's speed, reliability, and

uses Q-learning-based RL here, as shown in Figure 4. This is a well-
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Current State f

(Node Context) By

avs
Action g
(Select Parent REeWﬂl'd
Node) g
m Policy
- (Select action

— based on
- Q-values) l

QUf,9) « Qf,9) + o | E( ' o) - QU g)]

Next State g’

Y4

Figure 4: Reinforcement Learning Model in CA-RPL

» RL Formulation for Routing: K

An MDP (Markov Decision Process) ca plain the RL problem in CA-RPL. An MDP
is defined like this:

States (f): The states provide noggmgformation about its local network environment, such as
its mobility status, traffic logg, quality with neighbors, and remaining energy. In
this situation, "state” impl hat t de is doing in the network.

ss is picking a parent node among the ones that are close by.

the next hop in the process of sending packets.

Algorithm of Q-Learning:
Q-learning, the best value-based RL method, will learn the best Q-function, Q(f, g), which
displays the expected total discounted reward if an agent does action g in state f and then
maintains following the best policy. One needs to do the following (12) to keep Q-learning up

to date:



Q(f,9) < Q(f,9) + «|E(f,9) +ymaxQ(f.g) - Q(f. )| (12)

Where f shows the current state of the node, the act of the chosen parent is what g means.
E(f, g) shows that there is an instantaneous reward in state f with action g.

f’is the condition that results from action g.

The representation of every potential action g’ in the future state is f'.

The learning rate, which is represented by a € (0,1), determines the relative significanc
new knowledge compared to existing information.
y € (0,1) is a discount factor that tells how large the benefits will be in the futu

» Q-Update:
@ ert sum of
scounted by y. The

To update, we need to change the current estimate Q(f, g) such
the immediate reward E(f, g) and the best future reward, max Q(f N

square brackets show the temporal difference (TD) error, which is i diTWg¥ence between the

anticipated and actual values.

The TD error is positive when the choice of action is t@ected, which indicates that
Q(f, g) went higher.
Z

Since it is negative, the value of Q(f, g
In certain cases, this iterative update gc™Q@uite near to the ideal Q-function after many

iterations.
> Reward Function Desi

The reward function E (f, athers one crucial network aspect that routing needs

to operate well on (13)
E(f,g) =#.-(1

Q+#;-(1—C)—#y-W (13)
ergy required to transfer data via the selected parent. As energy

ds of earning a reward grow greater. To find out how excellent the link

atio or RSSI. A higher PQ signifies a better reward. C is the average time it
d something via the parent. Lowering latency makes the return better. W is the
of traffic or congestion at the parent node that has been normalized. The incentive fades
away when traffic increases because packet errors or delays are more likely to occur. One can
show how essential each parameter is by adjusting the weights %4, %, %5, #.,4. The application's
priorities decide these things. For instance, it could be more important to be energy-efficient
than to be latency-sensitive. The incentive function drives the RL agent to choose parent nodes



that demonstrate minimal latency and energy consumption, superior connection quality, and a

limited number of congested neighbors.

» State and Action Spaces:
The state space F is made up of a group of contextual elements, as shown in (14).
f=1{Re,H,PQ, W} (14)

After all the settings have been set to the same level, it can use function approxjmgati

techniques to turn the continuous state into a discrete one or something that is near
it for Q-learning to operate in the real world.

The action space G is the set of neighbors that node x,, can be used (

G = {9192~ 9p} (15)

One of the p neighboring nodes might get a packet for each action.

The agent uses an exploration-exploitation strategy to find a ydium between trying out
new paths and utilizing good ones that are already there:

To uncover better routing paths, choose a random nt dically and examine it. To

get the most out of the circumstance and st rd, choose the parent node with the

highest Q(f, g) value. The e-greedy a common technique to select an action at
random g, or in certain situations, the most w&@aknown one. The Q-values demonstrate whether
each parent node choice will workegit in the loMy term when the node transitions to different

network states and obtains di g results. This allows the routing protocol to do the

e

etwork survive longer, avoid paths that are poorly maintained or

following:
Adjust to changes i
traffic loads. Find

, such as relocating nodes, utilizing power, and managing

iddle ground between saving energy and improving network

is more adaptable than traditional RPL, which relies on fixed
will change based on new information as it learns from it in real-time.

d TUnction improves various metrics by considering several QoS parameters. This
S offe to choose how to route based on anything. When choices are made in a decentralized
each node decides which rules work best on its own without support from a higher
authority. The CA-RPL Reinforcement Learning model suggests that sensor nodes can
independently obtain optimal routing rules through interaction with their surroundings. The Q-
learning approach updates the expected value of selecting a specific parent node repeatedly by
utilizing observable incentives that display energy usage, network quality, latency, and traffic



load. This technology allows IoT networks to employ adaptive, context-aware routing. This
helps the network live longer, consume less energy, and be more dependable for

communication.

3.4 Hybrid Metric and Parent Selection:
In Context-Aware RPL (CA-RPL), selecting a parent node is crucial for ensuring relia

energy-efficient, and context-aware routing in Low-Power and Lossy Networks (LLNS).

up

Reinforcement Learning
(Q-Learning)

Fuzzy logic Engine
Input : (R., H, PQ, W)

v

FDS(z,,)[0,1] Q(f,9)

/

>
Hybrid Metric Parent Selection
M =A-FDS(xzm) +(1 —X)-Q(f,9) x, = arg max M(zm)
m

Figu Id metric and Parent selection process in the CA-RPL framework

d for a Hybrid Metric:
y thing that classical RPL uses to measure is energy or the ETX. However, these static
strategies don't work in a changing environment. Two different but complementary subsystems
in CA-RPL conduct the node quality assessment. The Fuzzy Decision Engine (FDS) quickly

and in context evaluates nodes that are near to one another based on real-time parameters, such
as energy and network quality. One will obtain a better picture of the ways a Reinforcement

Learning Agent (Q-value) will perform in the long term by looking at how well it fared in the



past. A hybrid desirability measure combines both perspectives, selecting a parent that is more

flexible and adaptive.

» Hybrid metrics:
The Hybrid Metric M (x,,,) is the sum of the weights for a hypothetical neighbor node x,,,.
M(xm) =1 FDS(xp) + (1 —2) - Q(f, 9) (16)
Where in (16), M (x,,) displays the last score for the hybrid node x,,,.
The value A, which will be any number between 0 and 1, is supposed to make the

RL sections have the same impact. The Fuzzy Desirability Score (FDS) for the g@fren

is FDS(x,;,). The Q-value Q(f, g) € R, which is learned over time, g X as the
next-hop parent.
The node's current state f, which includes things like how mobile it is, much traffic it has,

how much energy it has left, and more. Action g is to choose Wa parent.

> Interpretation of [A (Lambda)]:
W ENCOL is influenced by the context when A4
@ prior oCcurrences and acquired knowledge.

For instance, if A =0.5, a balanced valug

The node's choice is based only on fuzz
=1. For A =0, the decision is solely cont
Qakes sure that both experience and current

environmental input work togeth create resflience and adaptation better. This parameter

eta-learning or simulation-based profiling, or both

dex (H), link quality (PQ), and traffic (). The Q-table Q(f, g) reveals
arent is the neighbor x,, in state f. To produce M(x,,), use the hybrid
data above. When all the neighbors' M(x,,) values have been obtained; the
e is then picked using equation (17).

> arg gln;é)é M (x,,) a7

Getting information from all possible nodes K that are close to each other. x;, is the best parent

node to use as the next hop.

a. Being able to change and remain the same:



The hybrid metric will be able to adapt to long-term changes while disregarding short-term
noise, as it incorporates both learned behavior and instantaneous qualities.

b. Learning that is mindful of energy:
Fuzzy logic and reinforcement learning work together to stop nodes from becoming overloaded
too soon by telling them that energy is always accessible and indirectly displaying them the
whole cost and benefit of energy.

c. Raising the bar for link quality:

Taking link dependability into consideration in both FDS (via context) and Q (f, g
successful transmission history) makes sure that data is sent from one end to t he
» An Example of Hybrid Metrics:

For a neighbor x,, assume that:

FDS(x;)=0.8.

Q (f,90) =05, p 4
A=0.6.

Then,

M(x;) =0.6-0.8+ (1—0.6)-0.5=0. = (18)
In (18), considering about another neig

FDS(x,)=0.6

Q(f,92) =0.7

M(x,) =0.6-0.6+0.4-0.7 28 = 0.64 (19)

In this situation, x; woul the since it has the largest M(x,,). One will adjust the
istics that are specific to the application or a meta-optimizer.
Future secure loT will include trust ratings, node age, or the risk of malicious
ke the hybrid technique even more effective. CA-Hybrid RPL's
pproach to quickly examine different situations, as it combines both
rning and Fuzzy Logic. These two factors work together to enable the
ngs (loT) Local Learning Networks (LLNs) to make more informed routing
A-RPL calculates a composite score M (x,,) to enhance next-hop selection as the
ork or environment changes. There are several benefits to this approach, including reduced

power consumption, increased packet transmission, and extended network lifespan.

4. Results and Discussions:



The results were obtained as a result of the tests that were conducted to evaluate the
effectiveness of the CA-RPL routing architecture for LLNs. It designed a fictitious dataset and
ran it through a series of tests using a network simulator written in Python to ensure proper
functionality. A Low Power Wide Area Network (LLN) environment is shown in this dataset
[18]. This environment consists of 200 sensor nodes that are dispersed throughout a 500m x
500m area. These sensor nodes are linked to each other via the Internet of Things (1oT)

includes realistic patterns for moving nodes, fluctuating traffic loads, and energ

constraints. It adjusted the initial values of energy, mobility, and connection qualij

node individually to ensure they responded in a manner consistent with their lf#na

actual world, such as when the weather changes or when nodes exhi al vior.

A comparison is made between CA-RPL, standard RPL, and an uj8 rsion ol'RPL that
utilizes objective functions, all of which are performed in the experi al environment with
the same network configurations. By continuing the simulation fo@Rten(0®t periods, we can
determine how long the network will continue to func ow well it will generally

perform.

4.1  Network Lifetime (NL) anad Residual Energy (ARE):

[ @ carrL @ T-RPL @ O-RPL @ EA-RPL @ M-RPL PL
T - T T

NL (seconds)
e e

©ee ¢ ¢

ARE (Joules)

@0

T T T T T T
50 [ 10 20 30 40 50
No of Nodes

Qﬂetwork lifetime Figure 6b: Average Residual Energy

espan of the network is a key factor in determining how long-lasting and dependable an
LLN routing system is, as shown in Figure 6a. The fundamental goal of CA-RPL's design was
to make it feasible to automatically extend the network layer (NL) by evenly distributing

energy usage among all nodes. CA-RPL prevents highly central nodes from being overutilized
by utilizing fuzzy energy assessment and learning-based routing together. It is defined as (20):



— mi fiepletion
NL I}éllp(tl ) (20)

At time t2°P*"" 'when all of the nodes' K energy has been used up, node i will have run out
of energy. CA-RPL lasted 30% longer (1740s) than T-RPL (1250s). It also fared better in the
tests than O-RPL (1360s), EA-RPL (1430s), M-RPL (1310s), and F-RPL (1540s). RPL
typically selects the optimal pathways based solely on the number of hops or the quality of t
connections. CA-RPL, on the other hand, employs load balancing that considers context

routing, taking into account energy, to prevent high-quality nodes from receiving

requests.
This work utilized ARE to assess the equity and energy efficiency of, as s In
Figure 6b. No single set of nodes would be overburdened, as RPL Qstributes

traffic and chooses parents based on the situation.

1 .
ARE = =53 R (i tona) (21)

Where in (21), R, (i, tonq) Shows the residual energy of W er the simulation at the time

tena- CA-RPL was able to maintain 2.14 J because | ¥ed ghybrid strategy that spread
out energy usage and prevented frequent re ASS| T-RPL only had 1.32J. When O-RPL

eter, such as rank or ETX, they

and EA-RPL choose pathways based e pa

generate hotspot nodes. Even if they opercg@etter than regular M-RPL, this is still true. Its

adaptive hybrid strategy made learning-based@lection more effective than F-RPL, which
lacked fuzzy awareness.

4.2 Packet Delivery ) and End-to-End Delay (EED):

Figure 7a. Packet Delivery Ratio Figure 7b. End-to-End Delay



To determine the reliability of the network, it would utilize the Packet Delivery Ratio (PDR),
as shown in Figure 7a. When making decisions, CA-RPL considers link quality (PQ) and traffic
load to avoid pathways that are either too crowded or too sluggish. Its learning system
continuously strengthens successful routes, making delivery promises more reliable and
calculated (22).

PDR = Total Packets received at Sink % 100% (22)

Total Packets Sent by Sources

The CA-RPL program has a success rate of 95.2%. For T-RPL, the success rate
for O-RPL, it was 89.7%; for EA-RPL, it was 90.7%; and for M-RPL, it wag¥8.6%
RPL, the success rate was 91.5%. CA-RPL can deliver a large amo

or mobile settings because it can automatically avoid connections
quality. This is not the same as M-RPL or simple T-RPL. To achieveSais, the fuzzy engine

analyzes the stability and power of connections.

For applications that require real-time functionality, E measures are particularly
critical. Using fuzzy traffic load predictions, as sh in b, CA-RPL finds the most
stable pathways with the fewest hops an a m busy ones. This results in a lower

EED using (23).

EED =13k (68 cipea — tio

Soveived = tiont) (23)

L shows when all the packets h een received. The wait times for T-RPL (252.6 ms), O-
RPL (234.8 ms), EA-RPL , -RPL (249.7 ms), and F-RPL (211.2 ms) were all
larger than the wait time CA- is 198.6ms. This was possible because anticipatory
routing used Q-val N zrules. Therefore, responder protocols, such as the existing
methods, don't &

i0 me it takes to generate and transfer buffers as much.

umption (EC) and Control Packet Overhead (CPO):



—=—CA-RP1
| =—TRrL

——0-RPL
320 4 EA-RPL
e M-RPL
F-RPL

CPO (%)

EC (Joules)

T T T T T T T T T
0 1] 20 30 40 50 L) 10 20 30 40 50

No of Nodes No of Packets Transmitted
Nig ver
@ trol I data, as
aking it as easy as

shown in Figure 8a, based on (24). CA-RPL was able to decrease E®

Figure 8a: Energy Consumption Figure 8b: Co

This statistic measures the total energy used for sending, receivi

possible to find routes and reducing the number of retransmissions,
EC = RIS, Rey) + Rey + By
The symbols for the energy expenses of transmission ept®n (R.,), and control (R¢r1)
are as follows: The other values are suL* " igher than CA-RPL's 257.8J): T-RPL
(346.9J), O-RPL (328.1J), EA-RPL 96.7J), and F-RPL(282.6J). The
decline occurred because the control packe™Sg@ere less intelligent, node usage was more evenly
distributed, and there were fewer retransmissio
It examines how well routing pjtoc erform and how they can be improved in the future.
CA-RPL utilizes reliable rg@ing algorij@ns, selective parent change, and reduced broadcasts
to maintain a low CPQgas i ated in Figure 8b. It is calculated using (25):

‘
Rata+C@Mtrol)Sent
steensive of the five options: T-RPL, O-RPL, EA-RPL, M-RPL, and
.2% more to run. Smart parent change reduction and early link filtering,

x 100% (25)

ic, significantly reduced the occurrence of DIO/DAO broadcasting when the

poloqghanged.

outing Load Distribution (RLD) and Parent Change Frequency (PCF):
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Figure 9a: Routing Load Distribution Figure 9b: Pareg ) requency
K fail quickly

sure that no node receives too many forwarding tasks. It is defined’ZG
RLD =~ 3K (s; — 5)2 (26)

If s; is the average number of packets sent by node i, @en thedlverage load for forwarding.

] lower than the variances for T-RPL

The lowest variance for CA-RPL was 1
(26.4), O-RPL (23.1), EA-RPL (16.7);
CA-RPL is an effective approach for manag

and FD

scoring mechanism utilizes Q-v 0 ensure that no node receives excessive

workloads.
One method to assess th outing is by examining the PCF. Changing parents
nd energy. Figure 9b shows that CA-RPL uses fuzzy scoring

L to minimize switching, as shown in (27).

(27)

on how much activity and movement they have. Route flapping occurs frequently
reactive protocols, such as EA-RPL, and metric-limited ones, like O-RPL. The proposed
two-layer method makes this problem easier to deal with.

The findings of all the testing indicate that CA-RPL is well-designed and clever. In the complex
and ever-changing LLN of current IoT systems, CA-RPL helps things operate more efficiently,

consume less energy, and be more reliable.



5. Conclusion:

The Context-Aware Reinforced Propagation Framework (CA-RPL) presented is a significant
improvement for routing in Low Power and Lossy Networks (LLNSs), particularly in situations
where resources are limited, and the Internet of Things (loT) is characterized by its dynamic
nature. With the use of fuzzy logic and reinforcement learning, CA-RPL can make intelligen

adjustments to factors such as the remaining energy in a node, its movement, and traffic flg

needs to be enhanced to function effectively over the long term in les, for monitoring

industry, and for sensing the environment. To maintain open ? ication and enable

operations to continue for a longer period, CA-RPL identifigg

managing traffic reduction and routing responsiveness.

routing technique that is both flexible and ¢

future Low-Power and Lossy Networks e he Internet of Things.

There are several positive aspects to CA- ever, it will not work effectively with nodes
that have limited processing capacity. A sign nt amount of computational power is required

for its fuzzy logic and reinforce arning components, which is the reason behind this. For

this reason, there will not be ing since it is more difficult to simulate the ambient
dynamics and radio frequ inter ce that occur in the actual world. CA-RPL will be put

ernet of Things (1oT) hardware platforms, such as RIOT OS
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