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Abstract: 

Routing in Low-Power and Lossy Networks (LLNs) requires a careful balancing act between 

energy efficiency and network longevity, especially in situations motivated by the Internet of 

Things (IoT). Traditional RPL (Routing Protocol for Low-Power and Lossy Networks) often 

fails when confronted with changing climatic conditions and erratic node activity, thereby 

increasing energy consumption and reducing the network's lifespan. This work presents the 

CA-RPL (Context-Aware Reinforced Propagation Framework), which dynamically adjusts its 

routing decisions in real-time based on residual energy, node mobility, connection quality, and 

traffic patterns. The system utilizes reinforcement learning and a decision engine based on 

fuzzy logic to dynamically identify optimal parent nodes and alternative paths, thereby 

minimizing control packet overhead and balancing the energy burden throughout the network. 

Simulation results in Python show that CA-RPL increases the overall network lifetime by 

30.2% and significantly reduces the average energy consumption by 21% compared to 

conventional and objective function-enhanced RPL versions. Where reliability and 

sustainability are critical for Internet of Things (IoT) implementations in industrial and smart 

city environments, the proposed approach offers an intelligent and adaptable pathing paradigm. 

Terms: Energy Efficiency, Context-Aware Routing, RL, Fuzzy Logic, Network Lifetime, 

Internet of Things. 

1. Introduction: 

Many more energy-efficient devices are now connected because of the proliferation of the 

Internet of Things (IoT). Spots where resources are scarce include environmental sensing 

networks, smart cities, and industrial monitoring systems. This is especially true in areas where 

supplies are low[1]. A lack of processing capacity and energy, inconsistent connections, and a 
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range of topologies characterize low-capability and lossy networks (LLNs). Since finding a 

happy medium between maximum energy efficiency and maximum network longevity is 

crucial in this case, routing becomes a significant issue [2]. The Internet Engineering Task 

Force (IETF) has made it a requirement that all LLNs must adhere to the RPL standard. This 

standard is based on the IPv6 Routing Protocol for Low Power and Lossy Networks. RPL 

implementations can fail in the real world, regardless of whether they are updated or standard 

versions. This is especially true in the Internet of Things industry, where trends are often 

shifting, and predictions are notoriously difficult to make[3].  

The biggest problem with conventional RPL is that it employs routing algorithms that can't 

adapt to the evolving needs of a network. This encompasses the times when nodes move, use 

energy, need connectivity, and transmit data in that order. Incorrect route selection, an 

overwhelming volume of control messages, high energy consumption by nodes, and early 

network failure are all potential outcomes of these factors[4-5]. These limits will become 

increasingly apparent for Internet of Things (IoT) systems that are expected to operate in 

challenging conditions or that demand a high level of reliability and longevity. It is crucial to 

address these issues so that energy can be conserved on many sensor nodes that remain idle for 

extended periods, maintenance costs can be reduced, and service outages can be minimized[6-

7]. 

The lack of enough flexibility in the numerous routing alternatives has long been a source of 

disappointment for the research community. A variety of reform ideas have suggested ways to 

improve RPL's Objective Functions (OFs) and other metric combinations[8]. Due to their 

overemphasis on energy or connection reliability, the current solutions necessitate 

compromises that are less than ideal. Where topology is dynamic or traffic patterns are hard to 

predict, most updates fail to provide results because they respond instead of acting. Building 

smarter routing frameworks that can respond instantly to changes in the network is necessary 

to close these knowledge gaps[9].  

This study introduces the CA-RPL routing architecture, a novel routing design for dynamic 

Low-Power and Lossy Networks (LLNs), as a possible solution to these issues. The idea of 

combining reinforcement learning with fuzzy logic decision engines formed the basis for 

building CA-RPL. This allows the protocol to dynamically adjust its routing choices based on 

the current condition of the related environment. Among the details it provides are the current 

user count, connection strength, node mobility, and remaining energy in the event of a failure. 

Using what it has learned from its previous routing experiences, the CA-RPL algorithm 

continuously tweaks its parent node selection process. This feature enables the routing system 
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to provide better load balancing with minimal additional control effort while also reducing 

energy consumption.  

The following are the main objectives of this work:  

• A test model, known as the context-aware routing decision framework, utilizes fuzzy 

logic to make real-time routing decisions based on various factors, including energy 

usage, connection quality, mobility, and other relevant factors. 

• An essential part of reinforcement learning is building a module based on smart learning 

that enables nodes to learn the best routing behaviors over time, particularly in networks 

with a longer lifespan.  

• Adaptive propagation methods were employed to mitigate routing congestion and 

minimize the weight of control messages. A decrease in control overhead is the 

outcome of this.  

• The Extensive research utilizing Python simulations shows that the network 

outperforms ordinary RPL and its upgraded variations in terms of longevity (30% 

longer) and energy consumption (25% lower).  

When it comes to real Internet of Things networks, CA-RPL is a reliable, scalable, and 

adaptable framework. Due to these changes, CA-RPL will now alter how LLN routing works. 

 

2. Related Survey: 

The Routing Protocol for Low-Power and Lossy Networks (RPL) is the most suitable routing 

protocol for IoT scenarios where resources are limited and topologies change frequently. 

Regular RPL solutions often fail to work effectively in real-world IoT systems, as these 

situations are complex and constantly evolving. The major purpose of this article review is to 

make RPL work better by combining reinforcement learning, fuzzy logic, and approaches that 

consider the situation.  

➢ Reinforcement Learning-Based Enhancements:  

Reinforcement learning (RL) will help address the issues that RPL has with adaptation. Farag 

and Stefanovic (2021) [10] propose a technique in which each node employs Q-learning to 

determine the optimal strategy for selecting a parent. This strategy adjusts factors such as the 

distance between hops, the quality of the connection, and the network's level of activity. This 

strategy improved both the average delay and packet delivery, even though individuals spoke 

to each other more frequently.  
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Dey and Ghosh (2024) [11] enabled nodes to independently assess the state of DODAGs using 

their iTRPL concept. iTRPL has trust assessments that distinguish between nodes that can be 

trusted and those that cannot. This makes the network more secure against internal attacks.  

➢ Fuzzy Logic-Based Routing Strategies:  

Fuzzy logic has enhanced RPL's decision-making capabilities by enabling it to evaluate 

multiple routing components simultaneously. Mehbodniya et al. (2022) [12] utilized fuzzy 

logic to develop EA-RPL, which considers various factors, including residual energy, load, and 

Expected Transmission Count (ETX). This method made the network use less power and 

survive longer. 

Arivubrakan and Kanagachidambaresan (2021)[13] created a way to use Fuzzy Logic to 

identify parent nodes based on hop count, energy, signal strength, and ETX. Their simulation 

results showed significant improvements in two Quality of Service (QoS) metrics: the packet 

delivery ratio and latency.  

➢ Context-Aware Routing Mechanisms: 

Researchers have been exploring context-aware routing methods to enhance the flexibility of 

RPL as network conditions evolve. Royaee et al. (2021)[14] used a routing decision model, M-

RPL, that incorporates context-aware variables, including node mobility and energy levels. 

Their approach was better at balancing the load and conserving energy than traditional RPL.  

Liu et al. (2015) [15] developed the scaled context-aware objective RPL (O-RPL) in the field 

of agriculture. It examines both the external world and what makes each node unique. This 

design helped the networks of agricultural IoT applications last longer and improved routing 

performance.  

➢ Security Considerations in RPL: 

The major security issue with RPL-based networks remains unaddressed. Jiang and Liu (2022) 

[16] proposed a straightforward trust-based security mechanism to address the vulnerability of 

RPL to selective forwarding attacks. They can identify and eliminate hazardous nodes with 

minimal additional energy.  

Raoof et al. (2021) [17] developed Chained Secure Mode (CSM), which utilizes network 

coding to enhance defenses against various types of routing attacks. It protects RPL against 

replay attacks. Attacks on CSM reduced latency and increased packet delivery rates.  

➢ Limitations of Existing Approaches and the Proposed Solution: 

Although there are still some issues with RPL, these changes have made it easier to use. The 

reason is that RL-based approaches will not be the fastest to react to changes in the network, 

as they require a significant amount of time to train. Fuzzy logic approaches are effective at 
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piecing together different signals, but they could make it harder to come up with rules and cost 

more to do the math. Context-Aware Reinforced Propagation (CA-RPL) is a system that 

utilizes both reinforcement learning and fuzzy logic to inform its decision-making process. CA-

RPL's purpose is to reduce the number of control packets that need to be delivered and find a 

good balance between energy use by automatically selecting the optimal parent nodes and other 

paths. The first results from simulations suggest that CA-RPL will significantly increase the 

lifespan of a network while using less energy than traditional RPL implementations. 

 

 

3. Methodology: Context-Aware Reinforced Propagation Framework (CA-RPL) 

The Context-Aware Reinforced Propagation Framework (CA-RPL) is an intelligent decision-

making framework that speeds up LLN routing. The RPL protocol incorporates fuzzy logic 

and reinforcement learning (RL) from CA-RPL to make routing pathways more flexible in a 

network that is constantly evolving. The approach features a fuzzy decision engine, a routing 

algorithm, a system architecture, and a module for reinforcement learning, as illustrated in 

Figure 1. 

 

Figure 1: Proposed CA-RPL Architecture 

➢ Sensor Nodes (SNs):  
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To make IoT Low Power and Lossy Networks (LLNs) operate, sensor nodes are particularly 

critical. These nodes primarily use data sensing and multi-hop transmission to perceive and 

engage with their surrounding environment. The three main aspects of an SN that make it work 

are as follows:  

Sensing Modules: The sensing modules enable sensor nodes to detect and measure various 

environmental or system parameters, including temperature, motion, light intensity, humidity, 

gas levels, and more. Smart agriculture, healthcare monitoring, and industrial automation all 

utilize different sensors, depending on the specific application. These modules collect data to 

support the data that travels across the network.  

Communication Units: Sensor nodes (SNs) comprise wireless transceivers that can send and 

receive data using short-range protocols such as Zigbee, IEEE 802.15.4, or 6LoWPAN. It chose 

these protocols since they don't use a lot of power or bandwidth. The communication module 

enables each node to behave like a router, delivering data packets it has received from other 

nodes via multiple hops, as well as data it has obtained independently.  

Energy Sources: This is a problem in regions that are difficult to access or unsafe, as most 

SNs rely on them. Energy efficiency has been a primary objective for the nodes since their 

inception and initial use. It needs to make routing choices that utilize less energy if one wants 

the networks to survive longer. This is because detecting, processing, and sending all require 

energy.  

An SN's principal role is to gather data, but it also helps with network routing by passing data 

from other nodes to the sink. If the roles are exchanged in that way, the network could function 

on its own. Nodes employ context-aware decision-making approaches, such as CA-RPL's 

fuzzy logic and reinforcement learning, to determine the optimal route based on the current 

network and external conditions. Sensor node design is both challenging and crucial, as it is 

essential to strike a balance between processing power, connectivity, and energy efficiency.  

 

➢ Sink Node (Gateway): 

The sink node, or gateway, is where all the network's sensors connect. It has to gather data 

from all the SNs and connect the limited LLN environment to other systems, including cloud 

platforms, centralized databases, or command centers. A regular sink node, on the other hand, 

is made to fulfill its principal job as follows:  

Higher Processing Capabilities: The sink node can handle more complex protocols, combine 

or filter data first, and analyze vast amounts of data, as it has more memory and a faster CPU 
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than sink nodes (SNs). It can handle data as rapidly as a supercomputer. Before putting data in 

the cloud, complicated systems could use local control algorithms or basic analytics.  

Uninterrupted Power Supply: Typically, the sink node is connected to the power grid or 

equipped with large-capacity rechargeable batteries, ensuring it can always access power. It 

can operate continuously without pausing, as it doesn't have the same power restrictions as 

sensor nodes. So, it could continue for a long time, even with a significant amount of weight.  

External Connectivity: The sink node can connect to the outside world through various 

methods, including Ethernet, Wi-Fi, LTE/5G, and satellite. People further up the application 

stack can now access the discovered data from the LLN in real-time and from anywhere, thanks 

to this connection.  

The sink node will obtain its data directly from nearby SNs or via intermediate nodes in a multi-

hop transmission. The sink node would need to conduct more supervisory work in systems like 

CA-RPL, which are becoming increasingly sophisticated. This node will send out rules, 

software updates, and control signals to the entire network. In reinforcement learning systems, 

it will also aid in training or determining incentives by directing nodes toward communication 

and routing patterns that consume less energy. The CA-RPL protocol is a clever combination 

of the original RPL (Routing Protocol for Low-Power and Lossy Networks) with additional 

features, including context awareness and machine learning-based flexibility. The network 

conditions might change at any moment when you utilize the Internet of Things. People will 

move around, nodes can fail, and connections can become worse, for example. Modern RPL 

relies heavily on fixed or preset measurements such as Hop Count or Expected Transmission 

Count (ETX). CA-RPL, on the other hand, is more adaptable, real-time, and ever-changing. 

3.1 Contextual Parameters: 

To perform properly and change quickly, the CA-RPL protocol must be able to track the current 

state and external influences of each node in real-time. To make this happen, each node 𝑥𝑛 

maintains track of a group of contextual elements is illustrated in Figure 2. These traits hold 

critical information, including energy availability, node mobility, communication reliability, 

and workload. This information helps to make educated decisions about where to go.  
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Figure 2: Monitored Contextual Parameters at the Sensor node 𝒙𝒏 

➢ Residual Energy 𝑅𝑒(𝑥𝑛): 

At node 𝑥𝑛 displays the remaining power in the batteries. By keeping an eye on 𝑅𝑒, the network 

can last longer by not sending data via nodes that are running low on power. This is crucial 

since sensor nodes typically run on batteries with limited power remaining.  

If 𝑅𝑚𝑎𝑥 is the battery's maximum or initial capacity and 𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑥𝑛) is the quantity of energy 

right now, then the energy that is left over is given in (1):  

𝑅𝑒(𝑥𝑛) =
𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑥𝑛)

𝑅𝑚𝑎𝑥
     (1) 

This normalization converts 𝑅𝑒(𝑥𝑛) into a value between 0 and 1, where 1 signifies the battery 

is fully charged and 0 means it is entirely dead.  

➢ Mobility Index 𝐻(𝑥𝑛): 

The node's mobility, which indicates how its actual location changes over time, affects the 

stability of connections and the reliability of routing. A node that moves around a lot will cause 

route disruptions more often than one that stays still. 𝛥𝑡 provides the average change in position 

over a specific length of time, as shown in (2).  

 𝐻(𝑥𝑛) =
‖𝑞(𝑡)−𝑞(𝑡−𝛥𝑡)‖

𝑠𝑚𝑎𝑥
    (2) 

It uses the function 𝑞(𝑡) to indicate where node 𝑥𝑛 is at time 𝑡. To normalize, utilize the 

maximum expected displacement, which is indicated as 𝑠𝑚𝑎𝑥. This approach gives a mobility 

index 𝐻(𝑥𝑛) ∈ [0,1], where 0 means no movement and 1 is the most evident movement.  

➢ Link Quality 𝑃𝑄(𝑥𝑛, 𝑥𝑚1): 
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The quality of the link affects how well the node 𝑥𝑛 and node 𝑥𝑚 can connect wirelessly. The 

packet delivery ratio, the expected transmission count (ETX), and the received signal strength 

indicator (RSSI) are all common measures. One of these values is the anticipated transmission 

time (ETX), which represents the overall time required to transfer a packet, including any 

retransmission times (3).   

𝑃𝑄(𝑥𝑛, 𝑥𝑚) = 1 −
𝐸𝑇𝑋(𝑥𝑛,𝑥𝑚)−1

𝐸𝑇𝑋𝑚𝑎𝑥−1
   (3)  

ETX will be anywhere from 1 (a perfect connection) to 𝐸𝑇𝑋𝑚𝑎𝑥 (the worst link). One possible 

normalized value for 𝑃𝑄(𝑥𝑛, 𝑥𝑚) is 1, which suggests that the linkages are very high quality. 

One will also use normalized RSSI or packet reception rate (PRR) in various methods to 

determine the quality of a network.  

➢ Traffic Load 𝑊(𝑥𝑛): 

This tells how much data processing load or network congestion at the node 𝑥𝑛. Buffer 

overflows will cause additional delays and packet losses when traffic is heavy, which can 

significantly impact the effectiveness of routing. One can use (4) to illustrate the normalized 

traffic load. Here, 𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝑥𝑛) is the current queue length (the number of packets waiting to 

be transmitted) and 𝑄𝑚𝑎𝑥 is the maximum buffer capacity.  

𝑊(𝑥𝑛) =
𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝑥𝑛)

𝑄𝑚𝑎𝑥
      (4) 

The result of 𝑊(𝑥𝑛) ∈ [0,1] is achieved, with 0 indicating no load or an empty queue and 1 

indicating total congestion.  

➢ Parameter Normalization:  

It has to normalize these attributes to a range of [0,1] before you can utilize them in the fuzzy 

logic or reinforcement learning modules. This is because they originate from various physical 

quantities and scales. This sameness makes it much easier to compare and weigh traits.  

The normalization function 𝐾(⋅) is usually defined as (5):  

𝐾(𝑛) =
𝑛−𝑛𝑚𝑖𝑛

𝑛𝑚𝑎𝑥−𝑛𝑚𝑖𝑛
      (5) 

The lowest and greatest values that are predicted for the parameter 𝑛 are 𝑛𝑚𝑖𝑛 and 𝑛𝑚𝑎𝑥. To 

sum up, each node 𝑥𝑛 has a vector of normalized conditions, which is given in (6):  

𝐷(𝑥𝑛) = [𝑅𝑒(𝑥𝑛), 𝐻(𝑥𝑛), {𝑃𝑄(𝑥𝑛, 𝑥𝑚)}𝑚∈𝐾(𝑛), 𝑊(𝑥𝑛)]  (6) 

In this case, 𝐾(𝑛) is the set of neighbors of a node 𝑥𝑛. The CA-RPL protocol uses this vector 

to find out which adjacent nodes are appropriate for routing. This helps make the network more 

energy-efficient, dependable, and long-lasting from the outset. This strategy utilizes decision 

engines such as fuzzy logic and learning by doing.  
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3.2 Fuzzy Logic Decision Engine:  

The Fuzzy Logic Decision Engine (FLE) is a key aspect of CA-RPL, which utilizes a variety 

of contextual variables, some of which may not always be apparent or evident, to determine 

whether neighboring nodes are routing data as desired, as shown in Figure 3. Fuzzy logic is 

well-suited for this task, as it mimics human thought processes and allows individuals to join 

groups over time rather than being confined to separate, binary groupings.  

 

Figure 3: Fuzzy Logic Decision Engine 

➢ Inputs to the Fuzzy System: 

The engine obtains the following normalized contextual factors from the data that enters into 

the fuzzy system, which are verified all the time at the node 𝑥𝑛 and its neighbors 𝑥𝑚:  

𝑅𝑒: Residual energy- tells how much energy is left at the node 𝑥𝑚.  

𝐻: Mobility Index- To see how stable nodes 𝑥𝑚 which are near to one other. 

𝑃𝑄: Link Quality is when two wireless nodes, 𝑥𝑛 and 𝑥𝑚, are connected in a manner that works.  

𝑊: The traffic load is the amount of traffic that is now congested and the amount of work that 

has to be done on packets at the neighbor node 𝑥𝑚.  

We utilize the interval [0,1] to make these inputs more consistent.  

➢ Fuzzy Sets and Membership Functions: 

Fuzzy sets define qualitative states for each input parameter, such as:  

Low, Medium, and High: 
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For instance, fuzzy membership functions 𝜇𝐿𝑜𝑤(𝑅𝑒), 𝜇𝑀𝑒𝑑𝑖𝑢𝑚(𝑅𝑒), 𝜇𝐻𝑖𝑔ℎ(𝑅𝑒) would change 

the residual energy 𝑅𝑒. A membership function might be a triangle or a trapezoid. A triangle 

membership for "Medium" energy would be (7):  

𝜇𝑀𝑒𝑑𝑖𝑢𝑚(𝑅𝑒) = {

0,     𝑅𝑒 ≤ 𝑎 𝑜𝑟 𝑅𝑒 ≥ 𝑐 
𝑅𝑒−𝑎

𝑏−𝑎
,       𝑎 < 𝑅𝑒 ≤ 𝑏

𝑐−𝑅𝑒

𝑐−𝑏
,        𝑏 < 𝑅𝑒 < 𝑐

   (7) 

The triangle's base, height, and diagonal are 𝑎, 𝑏, and 𝑐, in that order. For all three factors—

mobility, connection quality, and traffic load—membership functions are set up in the same 

way.  

➢ Rule Base: If–Then Rules: 

Fuzzy decision-making is based on heuristic principles that indicate how inputs and outcomes 

are related.  

For example:  

Rule 1: If 𝑅𝑒 is High AND 𝑃𝑄 is High AND 𝑊 is Low AND 𝐻 is Low, THEN all indicate 

that something is particularly desired.  

Rule 2: If 𝑅𝑒 is Low OR 𝑃𝑄 is Low, THEN it suggests that the object is not particularly desired.  

Rule 3: If 𝐻 is enormous (the node travels around a lot), it's not very enticing (routes are not 

trustworthy).  

When verifying the accuracy of each rule, it is customary to use fuzzy AND (minimum) and 

OR (maximum) operators to amalgamate input memberships in (8):  

𝛼𝑝 = min(𝜇𝑆1
(𝑛1), 𝜇𝑆2

(𝑛2), … )    (8) 

Where 𝛼𝑝 demonstrates the firing power of rule 𝑝. Values 𝜇𝑆𝑖
(𝑛𝑖) are the persons in the input 

set.  

➢ Aggregation and Defuzzification: 

 The outcome of each rule is a group of fuzzy values that represent how desirable something 

is, which might be Low, Medium, or High. The system integrates all of the rule outputs into 

one unambiguous desirability score 𝐹𝐷𝑆(𝑥𝑚) ∈ [0,1] by executing the following:  

In aggregation, all of the fuzzy outcomes from the rules are merged by adding or taking the 

maximum of the weighted membership functions.  

Getting rid of the fuzziness in the combined results gives you a clear scalar value. The centroid 

test, often known as the center of gravity test, is one of these methods.  

𝐹𝐷𝑆(𝑥𝑚) =
∫ 𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝜇𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑙)∙𝑙𝑠𝑙

∫ 𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝜇𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑙)𝑠𝑙    (9) 
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In (9), the desirability variable 𝑙 is included in the range [0,1], and 𝜇𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑙) is the sum 

of all membership functions in that range. The output 𝐹𝐷𝑆(𝑥𝑚) demonstrates how acceptable 

neighbor 𝑥𝑚 is a routing parent that takes into consideration numerous distinct contextual 

aspects simultaneously.  

➢ Fuzzy Decision Process:  

For a neighbor 𝑥𝑚: 

Get the membership values of the input from (10):  

𝜇𝐻𝑖𝑔ℎ(𝑅𝑒(𝑥𝑚)), 𝜇𝐿𝑜𝑤(𝐻(𝑥𝑚)), 𝜇𝑀𝑒𝑑𝑖𝑢𝑚(𝑃𝑄(𝑥𝑛, 𝑥𝑚)), 𝜇𝐿𝑜𝑤(𝑊(𝑥𝑚))   (10) 

Check out how the rule's usage changes in (11):  

𝛼 = min (𝜇𝐻𝑖𝑔ℎ(𝑅𝑒), 𝜇𝐿𝑜𝑤(𝐻), 𝜇𝑀𝑒𝑑𝑖𝑢𝑚(𝑃𝑄), 𝜇𝐿𝑜𝑤(𝑊))    (11) 

𝛼 could change a fuzzy set that states "High" appeal. One can get clear 𝐹𝐷𝑆(𝑥𝑚) by putting 

all the rules together and then defuzzifying them.  

The Fuzzy Logic Decision Engine enables CA-RPL nodes to make sound and accurate 

conclusions, similar to a person's judgment, regarding whether a neighbor is a good fit, 

handling network parameters that are unknown and inaccurate measurements. Making a 

continuous desirability score 𝐹𝐷𝑆(𝑥𝑚) ∈ [0,1]  that makes it easier to pick parents. This 

approach for changing IoT settings makes routes more stable, uses less energy, and speeds up 

the network. 

 

3.3 Reinforcement Learning Model in CA-RPL: 

The CA-RPL protocol posits that each sensor node is an RL agent that operates independently 

of others. The node's primary task is to select the optimal parent node or next-hop node in real-

time along the path. This choice has a direct impact on the network's speed, reliability, and 

energy use. This paper uses Q-learning-based RL here, as shown in Figure 4. This is a well-

established approach to learning that utilizes a model, enabling agents to determine the optimal 

way to interact with their environment by trying things out and observing what works. 
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Figure 4: Reinforcement Learning Model in CA-RPL 

 

➢ RL Formulation for Routing: 

An MDP (Markov Decision Process) can help explain the RL problem in CA-RPL. An MDP 

is defined like this:  

States (f): The states provide node information about its local network environment, such as 

its mobility status, traffic load, connection quality with neighbors, and remaining energy. In 

this situation, "state" implies what the node is doing in the network.  

Actions (g): One step in the process is picking a parent node among the ones that are close by. 

This is equivalent to selecting the next hop in the process of sending packets.  

Reward (E): A scalar feedback signal in a given state gauges the instantaneous impact of an 

action. A great deal of consideration was given to quantifying the network's performance when 

designing the incentive scheme. Every node aspires to learn a technique that will help it make 

better decisions about how to route traffic by maximizing the expected cumulative reward over 

time.  

➢ Algorithm of Q-Learning:  

Q-learning, the best value-based RL method, will learn the best Q-function, 𝑄(𝑓, 𝑔), which 

displays the expected total discounted reward if an agent does action 𝑔 in state 𝑓 and then 

maintains following the best policy. One needs to do the following (12) to keep Q-learning up 

to date:  
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𝑄(𝑓, 𝑔) ← 𝑄(𝑓, 𝑔) + 𝛼 [𝐸(𝑓, 𝑔) + 𝛾 max
𝑘′

𝑄(𝑓′, 𝑔′) − 𝑄(𝑓, 𝑔)] (12) 

Where 𝑓 shows the current state of the node, the act of the chosen parent is what 𝑔 means.  

𝐸(𝑓, 𝑔) shows that there is an instantaneous reward in state 𝑓 with action 𝑔.  

𝑓’is the condition that results from action 𝑔.  

The representation of every potential action 𝑔′ in the future state is 𝑓′.  

The learning rate, which is represented by 𝛼 ∈ (0,1), determines the relative significance of 

new knowledge compared to existing information.  

γ ∈ (0,1) is a discount factor that tells how large the benefits will be in the future.  

➢ Q-Update:  

To update, we need to change the current estimate 𝑄(𝑓, 𝑔) such that it is closer to the sum of 

the immediate reward 𝐸(𝑓, 𝑔) and the best future reward, max
𝑘′

𝑄(𝑓′, 𝑔′), discounted by 𝛾. The 

square brackets show the temporal difference (TD) error, which is the difference between the 

anticipated and actual values.  

The TD error is positive when the choice of action is better than expected, which indicates that 

𝑄(𝑓, 𝑔) went higher.  

Since it is negative, the value of 𝑄(𝑓, 𝑔) goes down.  

In certain cases, this iterative update gets quite near to the ideal Q-function after many 

iterations.  

➢ Reward Function Design:  

The reward function 𝐸(𝑓, 𝑔) in CA-RPL gathers one crucial network aspect that routing needs 

to operate well on (13): 

𝐸(𝑓, 𝑔) = 𝓀1 ∙ (1 − 𝑅𝑐) + 𝓀2 ∙ 𝑃𝑄 + 𝓀3 ∙ (1 − 𝐶) − 𝓀4 ∙ 𝑊  (13) 

𝑅𝑐 displays the amount of energy required to transfer data via the selected parent. As energy 

usage decreases, the odds of earning a reward grow greater. To find out how excellent the link 

quality 𝑃𝑄 is between the current node and the selected parent, people often look at things like 

packet delivery ratio or RSSI. A higher 𝑃𝑄 signifies a better reward. 𝐶 is the average time it 

takes to send something via the parent. Lowering latency makes the return better. 𝑊 is the 

amount of traffic or congestion at the parent node that has been normalized. The incentive fades 

away when traffic increases because packet errors or delays are more likely to occur. One can 

show how essential each parameter is by adjusting the weights 𝓀1, 𝓀2, 𝓀3, 𝓀4. The application's 

priorities decide these things. For instance, it could be more important to be energy-efficient 

than to be latency-sensitive. The incentive function drives the RL agent to choose parent nodes 
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that demonstrate minimal latency and energy consumption, superior connection quality, and a 

limited number of congested neighbors.  

 

➢ State and Action Spaces: 

The state space 𝐹 is made up of a group of contextual elements, as shown in (14).  

𝑓 = {𝑅𝑒 , 𝐻, 𝑃𝑄, 𝑊}    (14) 

After all the settings have been set to the same level, it can use function approximation 

techniques to turn the continuous state into a discrete one or something that is near enough to 

it for Q-learning to operate in the real world.  

The action space 𝐺 is the set of neighbors that node 𝑥𝑛 can be used to route in (15).  

𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑝}    (15) 

One of the 𝑝 neighboring nodes might get a packet for each action.  

The agent uses an exploration-exploitation strategy to find a happy medium between trying out 

new paths and utilizing good ones that are already there:  

To uncover better routing paths, choose a random parent node periodically and examine it. To 

get the most out of the circumstance and the largest reward, choose the parent node with the 

highest 𝑄(𝑓, 𝑔) value. The 𝜖-greedy method is a common technique to select an action at 

random 𝜖, or in certain situations, the most well-known one. The Q-values demonstrate whether 

each parent node choice will work out in the long term when the node transitions to different 

network states and obtains different routing results. This allows the routing protocol to do the 

following:  

Adjust to changes in the network, such as relocating nodes, utilizing power, and managing 

traffic loads. Find a decent middle ground between saving energy and improving network 

performance. To help the network survive longer, avoid paths that are poorly maintained or 

frequently used. RL is more adaptable than traditional RPL, which relies on fixed 

measurements. RL will change based on new information as it learns from it in real-time.  

The reward function improves various metrics by considering several QoS parameters. This 

allows one to choose how to route based on anything. When choices are made in a decentralized 

way, each node decides which rules work best on its own without support from a higher 

authority. The CA-RPL Reinforcement Learning model suggests that sensor nodes can 

independently obtain optimal routing rules through interaction with their surroundings. The Q-

learning approach updates the expected value of selecting a specific parent node repeatedly by 

utilizing observable incentives that display energy usage, network quality, latency, and traffic 
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load. This technology allows IoT networks to employ adaptive, context-aware routing. This 

helps the network live longer, consume less energy, and be more dependable for 

communication. 

 

3.4 Hybrid Metric and Parent Selection: 

In Context-Aware RPL (CA-RPL), selecting a parent node is crucial for ensuring reliable, 

energy-efficient, and context-aware routing in Low-Power and Lossy Networks (LLNs). In IoT 

environments characterized by fluctuating energy consumption, mobility, and congestion, 

parent selection requires a combination of acquired routing patterns and instantaneous 

evaluations. To meet this need, a hybrid measure was created that combines Q-values from 

reinforcement learning (RL) with fuzzy logic outputs, as shown in Figure 5.  

 

Figure 5: Hybrid metric and Parent selection process in the CA-RPL framework 

➢ Need for a Hybrid Metric: 

The only thing that classical RPL uses to measure is energy or the ETX. However, these static 

strategies don't work in a changing environment. Two different but complementary subsystems 

in CA-RPL conduct the node quality assessment. The Fuzzy Decision Engine (FDS) quickly 

and in context evaluates nodes that are near to one another based on real-time parameters, such 

as energy and network quality. One will obtain a better picture of the ways a Reinforcement 

Learning Agent (Q-value) will perform in the long term by looking at how well it fared in the 
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past. A hybrid desirability measure combines both perspectives, selecting a parent that is more 

flexible and adaptive.  

 

➢ Hybrid metrics: 

 The Hybrid Metric 𝑀(𝑥𝑚) is the sum of the weights for a hypothetical neighbor node 𝑥𝑚.  

𝑀(𝑥𝑚) = 𝜆 ∙ 𝐹𝐷𝑆(𝑥𝑚) + (1 − 𝜆) ∙ 𝑄(𝑓, 𝑔)   (16) 

Where in (16), 𝑀(𝑥𝑚) displays the last score for the hybrid node 𝑥𝑚.  

The value 𝜆, which will be any number between 0 and 1, is supposed to make the fuzzy and 

RL sections have the same impact. The Fuzzy Desirability Score (FDS) for the current scenario 

is 𝐹𝐷𝑆(𝑥𝑚). The Q-value 𝑄(𝑓, 𝑔) ∈ ℝ, which is learned over time, for picking node 𝑥𝑚 as the 

next-hop parent.  

The node's current state 𝑓, which includes things like how mobile it is, how much traffic it has, 

how much energy it has left, and more. Action 𝑔 is to choose 𝑥𝑚 as the parent.  

 

➢ Interpretation of [λ (Lambda)]: 

The node's choice is based only on fuzzy logic; hence, it is influenced by the context when 𝜆 

=1. For 𝜆 =0, the decision is solely contingent upon prior occurrences and acquired knowledge. 

For instance, if 𝜆 =0.5, a balanced value makes sure that both experience and current 

environmental input work together to create resilience and adaptation better. This parameter 

will be dynamically updated, adjusted by meta-learning or simulation-based profiling, or both 

to improve routing performance in a specific deployment configuration.  

➢ Selection and computation process: 

The CA-RPL node determines for each neighbor nodes 𝑥𝑚:  

To extract 𝐹𝐷𝑆(𝑥𝑚) from the fuzzy rule base, one needs to use context inputs like residual 

energy (𝑅𝑒), mobility index (𝐻), link quality (𝑃𝑄), and traffic (𝑊). The Q-table 𝑄(𝑓, 𝑔) reveals 

that the next-hop parent is the neighbor 𝑥𝑚 in state 𝑓. To produce 𝑀(𝑥𝑚), use the hybrid 

formula on the data above. When all the neighbors' 𝑀(𝑥𝑚) values have been obtained; the 

parent node is then picked using equation (17).  

𝑥𝑚
∗ = arg max

𝑥𝑚∈𝐾
𝑀(𝑥𝑚)    (17) 

Getting information from all possible nodes 𝐾 that are close to each other. 𝑥𝑚
∗  is the best parent 

node to use as the next hop.  

a. Being able to change and remain the same: 
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The hybrid metric will be able to adapt to long-term changes while disregarding short-term 

noise, as it incorporates both learned behavior and instantaneous qualities.  

b. Learning that is mindful of energy:  

Fuzzy logic and reinforcement learning work together to stop nodes from becoming overloaded 

too soon by telling them that energy is always accessible and indirectly displaying them the 

whole cost and benefit of energy.  

c. Raising the bar for link quality:  

Taking link dependability into consideration in both FDS (via context) and 𝑄 (𝑓, 𝑔) (through 

successful transmission history) makes sure that data is sent from one end to the other.  

➢ An Example of Hybrid Metrics:  

For a neighbor 𝑥1, assume that:  

𝐹𝐷𝑆(𝑥1)= 0.8.  

𝑄 (𝑓, 𝑔1)  = 0.5.  

𝜆 = 0.6.  

Then, 

𝑀(𝑥1) = 0.6 ∙ 0.8 + (1 − 0.6) ∙ 0.5 = 0.48 + 0.2 = 0.68  (18) 

In (18), considering about another neighbor 𝑥2: 

𝐹𝐷𝑆(𝑥2)= 0.6  

𝑄 (𝑓, 𝑔2)  = 0.7 

𝑀(𝑥2) = 0.6 ∙ 0.6 + 0.4 ∙ 0.7 = 0.36 + 0.28 = 0.64  (19) 

In this situation, 𝑥1 would be the parent since it has the largest 𝑀(𝑥𝑚). One will adjust the 

value of 𝜆 on the fly by using heuristics that are specific to the application or a meta-optimizer. 

Future secure IoT protocols will include trust ratings, node age, or the risk of malicious 

behavior, which would make the hybrid technique even more effective. CA-Hybrid RPL's 

Metric is an excellent approach to quickly examine different situations, as it combines both 

Reinforcement Learning and Fuzzy Logic. These two factors work together to enable the 

Internet of Things (IoT) Local Learning Networks (LLNs) to make more informed routing 

decisions. CA-RPL calculates a composite score 𝑀(𝑥𝑚)  to enhance next-hop selection as the 

network or environment changes. There are several benefits to this approach, including reduced 

power consumption, increased packet transmission, and extended network lifespan. 

 

4. Results and Discussions: 
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The results were obtained as a result of the tests that were conducted to evaluate the 

effectiveness of the CA-RPL routing architecture for LLNs. It designed a fictitious dataset and 

ran it through a series of tests using a network simulator written in Python to ensure proper 

functionality. A Low Power Wide Area Network (LLN) environment is shown in this dataset 

[18]. This environment consists of 200 sensor nodes that are dispersed throughout a 500m x 

500m area. These sensor nodes are linked to each other via the Internet of Things (IoT). It 

includes realistic patterns for moving nodes, fluctuating traffic loads, and energy use 

constraints. It adjusted the initial values of energy, mobility, and connection quality for each 

node individually to ensure they responded in a manner consistent with their behavior in the 

actual world, such as when the weather changes or when nodes exhibit unusual behavior.  

A comparison is made between CA-RPL, standard RPL, and an upgraded version of RPL that 

utilizes objective functions, all of which are performed in the experimental environment with 

the same network configurations. By continuing the simulation for extended periods, we can 

determine how long the network will continue to function and how well it will generally 

perform. 

 

4.1 Network Lifetime (NL) and Average Residual Energy (ARE): 

 

  

Figure 6a: Network lifetime   Figure 6b: Average Residual Energy 

The lifespan of the network is a key factor in determining how long-lasting and dependable an 

LLN routing system is, as shown in Figure 6a. The fundamental goal of CA-RPL's design was 

to make it feasible to automatically extend the network layer (NL) by evenly distributing 

energy usage among all nodes. CA-RPL prevents highly central nodes from being overutilized 

by utilizing fuzzy energy assessment and learning-based routing together. It is defined as (20): 
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𝑁𝐿 = min
𝑖∈𝐾

(𝑡𝑖
𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛)    (20) 

At time 𝑡𝑖
𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛

, when all of the nodes' 𝐾 energy has been used up, node 𝑖 will have run out 

of energy. CA-RPL lasted 30% longer (1740s) than T-RPL (1250s). It also fared better in the 

tests than O-RPL (1360s), EA-RPL (1430s), M-RPL (1310s), and F-RPL (1540s). RPL 

typically selects the optimal pathways based solely on the number of hops or the quality of the 

connections. CA-RPL, on the other hand, employs load balancing that considers context and 

routing, taking into account energy, to prevent high-quality nodes from receiving excessive 

requests.  

This work utilized ARE to assess the equity and energy efficiency of the nodes, as shown in 

Figure 6b. No single set of nodes would be overburdened, as CA-traffic RPL redistributes 

traffic and chooses parents based on the situation.  

𝐴𝑅𝐸 =
1

|𝐾|
∑ 𝑅𝑒(𝑖, 𝑡𝑒𝑛𝑑)|𝐾|

𝑖=1      (21) 

Where in (21), 𝑅𝑒(𝑖, 𝑡𝑒𝑛𝑑) shows the residual energy of node 𝑖 after the simulation at the time 

𝑡𝑒𝑛𝑑. CA-RPL was able to maintain 2.14 J because it employed a hybrid strategy that spread 

out energy usage and prevented frequent retransmissions. T-RPL only had 1.32J. When O-RPL 

and EA-RPL choose pathways based on only one parameter, such as rank or ETX, they 

generate hotspot nodes. Even if they operate better than regular M-RPL, this is still true. Its 

adaptive hybrid strategy made learning-based selection more effective than F-RPL, which 

lacked fuzzy awareness. 

 

4.2 Packet Delivery Ratio (PDR) and End-to-End Delay (EED): 

  

Figure 7a. Packet Delivery Ratio   Figure 7b. End-to-End Delay 
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To determine the reliability of the network, it would utilize the Packet Delivery Ratio (PDR), 

as shown in Figure 7a. When making decisions, CA-RPL considers link quality (PQ) and traffic 

load to avoid pathways that are either too crowded or too sluggish. Its learning system 

continuously strengthens successful routes, making delivery promises more reliable and 

calculated (22). 

𝑃𝐷𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑡 𝑆𝑖𝑛𝑘

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡 𝑏𝑦 𝑆𝑜𝑢𝑟𝑐𝑒𝑠
× 100%   (22) 

The CA-RPL program has a success rate of 95.2%. For T-RPL, the success rate was 86.2%; 

for O-RPL, it was 89.7%; for EA-RPL, it was 90.7%; and for M-RPL, it was 88.6%. For F-

RPL, the success rate was 91.5%. CA-RPL can deliver a large amount of data quickly in noisy 

or mobile settings because it can automatically avoid connections that are too busy or of poor 

quality. This is not the same as M-RPL or simple T-RPL. To achieve this, the fuzzy engine 

analyzes the stability and power of connections. 

For applications that require real-time functionality, EED's delay measures are particularly 

critical. Using fuzzy traffic load predictions, as shown in Figure 7b, CA-RPL finds the most 

stable pathways with the fewest hops and stays away from busy ones. This results in a lower 

EED using (23).  

𝐸𝐸𝐷 =
1

𝐿
∑ (𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

(𝑖)
− 𝑡𝑠𝑒𝑛𝑡

(𝑖)
)𝐿

𝑖=1     (23) 

𝐿 shows when all the packets have been received. The wait times for T-RPL (252.6 ms), O-

RPL (234.8 ms), EA-RPL (221.6 ms), M-RPL (249.7 ms), and F-RPL (211.2 ms) were all 

larger than the wait time for CA-RPL is 198.6ms. This was possible because anticipatory 

routing used Q-values and fuzzy rules. Therefore, responder protocols, such as the existing 

methods, don't prioritize the time it takes to generate and transfer buffers as much. 

 

4.3 Energy Consumption (EC) and Control Packet Overhead (CPO): 
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Figure 8a: Energy Consumption   Figure 8b: Control Packet Overload 

This statistic measures the total energy used for sending, receiving, and controlling data, as 

shown in Figure 8a, based on (24). CA-RPL was able to decrease EC by making it as easy as 

possible to find routes and reducing the number of retransmissions.  

𝐸𝐶 = ∑ 𝑅𝑡𝑛
(𝑖)

+ 𝑅𝑒𝑛
(𝑖)

+ 𝐸𝑐𝑡𝑟𝑙
(𝑖)𝐾

𝑖=1     (24) 

The symbols for the energy expenses of transmission (𝑅𝑡𝑛), reception (𝑅𝑒𝑛), and control (𝑅𝑐𝑡𝑟𝑙) 

are as follows: The other values are substantially higher than CA-RPL's 257.8J: T-RPL 

(346.9J), O-RPL (328.1J), EA-RPL (318.3J), M-RPL (296.7J), and F-RPL(282.6J). The 

decline occurred because the control packets were less intelligent, node usage was more evenly 

distributed, and there were fewer retransmissions.  

It examines how well routing protocols perform and how they can be improved in the future. 

CA-RPL utilizes reliable routing algorithms, selective parent change, and reduced broadcasts 

to maintain a low CPO, as illustrated in Figure 8b. It is calculated using (25): 

𝐶𝑃𝑂 =
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 (𝐷𝑎𝑡𝑎+𝐶𝑜𝑛𝑡𝑟𝑜𝑙)𝑆𝑒𝑛𝑡
× 100%   (25) 

CA-RPL was the least expensive of the five options: T-RPL, O-RPL, EA-RPL, M-RPL, and 

F-RPL. It only costs 14.2% more to run. Smart parent change reduction and early link filtering, 

based on fuzzy logic, significantly reduced the occurrence of DIO/DAO broadcasting when the 

topology changed.  

 

4.4 Routing Load Distribution (RLD) and Parent Change Frequency (PCF): Auth
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Figure 9a: Routing Load Distribution   Figure 9b: Parent Change Frequency 

RLD determines how fair the loads are, as illustrated in Figure 9a. Nodes fail too quickly 

because the load isn't even. CA-RPL uses residual energy and mobility as fuzzy inputs to make 

sure that no node receives too many forwarding tasks. It is defined as (26): 

𝑅𝐿𝐷 =
1

𝐾
∑ (𝑠𝑖 − �̅�)2𝐾

𝑖=1       (26) 

If 𝑠𝑖 is the average number of packets sent by node 𝑖, then �̅� is the average load for forwarding. 

The lowest variance for CA-RPL was 10.8, which was lower than the variances for T-RPL 

(26.4), O-RPL (23.1), EA-RPL (16.7), M-RPL (21.8), and F-RPL (18.2). This suggests that 

CA-RPL is an effective approach for managing traffic. The rationale is that CA-RPL's two-part 

scoring mechanism utilizes Q-value and FDS to ensure that no node receives excessive 

workloads.  

One method to assess the reliability of routing is by examining the PCF. Changing parents 

frequently requires a lot of time and energy. Figure 9b shows that CA-RPL uses fuzzy scoring 

and consistent judgments in RL to minimize switching, as shown in (27).  

𝑃𝐶𝐹 =
1

𝐾
∑ 𝑃𝑎𝑟𝑒𝑛𝑡 𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑠𝑖

𝐾
𝑖=1     (27) 

The PCF for CA-RPL is 2.8, which is lower than the PCF for T-RPL (6.8), O-RPL (5.9), EA-

RPL (4.7), M-RPL (5.2), and F-RPL (3.9). RL modifies choices depending on input over time, 

which makes things less wobbly. Fuzzy engines, on the other hand, prefer stable parents 

depending on how much activity and movement they have. Route flapping occurs frequently 

with reactive protocols, such as EA-RPL, and metric-limited ones, like O-RPL. The proposed 

two-layer method makes this problem easier to deal with. 

The findings of all the testing indicate that CA-RPL is well-designed and clever. In the complex 

and ever-changing LLN of current IoT systems, CA-RPL helps things operate more efficiently, 

consume less energy, and be more reliable. 
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5. Conclusion: 

The Context-Aware Reinforced Propagation Framework (CA-RPL) presented is a significant 

improvement for routing in Low Power and Lossy Networks (LLNs), particularly in situations 

where resources are limited, and the Internet of Things (IoT) is characterized by its dynamic 

nature. With the use of fuzzy logic and reinforcement learning, CA-RPL can make intelligent 

adjustments to factors such as the remaining energy in a node, its movement, and traffic flow. 

In comparison to five other variants of RPL, the simulation results show that CA-RPL 

consumes an average of 21% less energy and maintains the network's functionality for 30.2% 

longer. The Control Packet Overhead, Routing Load Distribution, and Packet Delivery Ratio 

are some of the measurements being taken. There are several areas in which the technology 

needs to be enhanced to function effectively over the long term in smart cities, for monitoring 

industry, and for sensing the environment. To maintain open communication and enable 

operations to continue for a longer period, CA-RPL identifies a point of equilibrium between 

managing traffic reduction and routing responsiveness. Lastly, CA-RPL is equipped with a 

routing technique that is both flexible and energy-efficient, making it suitable for use with 

future Low-Power and Lossy Networks (LLNs) based on the Internet of Things. 

There are several positive aspects to CA-RPL; however, it will not work effectively with nodes 

that have limited processing capacity. A significant amount of computational power is required 

for its fuzzy logic and reinforcement learning components, which is the reason behind this. For 

this reason, there will not be sufficient testing since it is more difficult to simulate the ambient 

dynamics and radio frequency interference that occur in the actual world. CA-RPL will be put 

through its paces on real-world Internet of Things (IoT) hardware platforms, such as RIOT OS 

and Contiki-NG, to evaluate its performance in real-time. The optimal routes could be found 

through the use of federated learning. Blockchain technology could be utilized to enhance 

routing security, and CA-RPL could be modified to operate with networks that include both 

mobile and static nodes. 
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